1
|
Le Nail LR, Brennan M, Rosset P, Deschaseaux F, Piloquet P, Pichon O, Le Caignec C, Crenn V, Layrolle P, Hérault O, De Pinieux G, Trichet V. Comparison of Tumor- and Bone Marrow-Derived Mesenchymal Stromal/Stem Cells from Patients with High-Grade Osteosarcoma. Int J Mol Sci 2018; 19:E707. [PMID: 29494553 PMCID: PMC5877568 DOI: 10.3390/ijms19030707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 01/09/2023] Open
Abstract
Osteosarcoma (OS) is suspected to originate from dysfunctional mesenchymal stromal/stem cells (MSC). We sought to identify OS-derived cells (OSDC) with potential cancer stem cell (CSC) properties by comparing OSDC to MSC derived from bone marrow of patients. This study included in vitro characterization with sphere forming assays, differentiation assays, cytogenetic analysis, and in vivo investigations of their tumorigenicity and tumor supportive capacities. Primary cell lines were isolated from nine high-grade OS samples. All primary cell lines demonstrated stromal cell characteristics. Compared to MSC, OSDC presented a higher ability to form sphere clones, indicating a potential CSC phenotype, and were more efficient at differentiation towards osteoblasts. None of the OSDC displayed the complex chromosome rearrangements typical of high grade OS and none of them induced tumors in immunodeficient mice. However, two OSDC demonstrated focused genomic abnormalities. Three out of seven, and six out of seven OSDC showed a supportive role on local tumor development, and on metastatic progression to the lungs, respectively, when co-injected with OS cells in nude mice. The observation of OS-associated stromal cells with rare genetic abnormalities and with the capacity to sustain tumor progression may have implications for future tumor treatments.
Collapse
Affiliation(s)
- Louis-Romée Le Nail
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
- Centre Hospitalier Régional Universitaire de Tours, Service de Chirurgie Orthopédique 2, Faculté de Médecine de Tours, Université de Tours, 37044 CEDEX 9 Tours, France.
| | - Meadhbh Brennan
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
- Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Philippe Rosset
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
- Centre Hospitalier Régional Universitaire de Tours, Service de Chirurgie Orthopédique 2, Faculté de Médecine de Tours, Université de Tours, 37044 CEDEX 9 Tours, France.
| | - Frédéric Deschaseaux
- STROMA Lab, INSERM U1031, Etablissement Français du Sang Occitanie, Université de Toulouse, 31432 Toulouse, France.
| | - Philippe Piloquet
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, Faculté de Médecine de Nantes, 44034 CEDEX 1 Nantes, France.
| | - Olivier Pichon
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, Faculté de Médecine de Nantes, 44034 CEDEX 1 Nantes, France.
| | - Cédric Le Caignec
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, Faculté de Médecine de Nantes, 44034 CEDEX 1 Nantes, France.
| | - Vincent Crenn
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
- Centre Hospitalier Universitaire de Nantes, Service de Chirurgie Orthopédique, Faculté de Médecine de Nantes, Université de Nantes, 44034 CEDEX 1 Nantes, France.
| | - Pierre Layrolle
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
| | - Olivier Hérault
- Centre Hospitalier Régional Universitaire de Tours, Service d'Hématologie Biologique, 37044 CEDEX 9 Tours, France.
- National Center for Scientific Research (CNRS) GDR 3697, 75020 Paris, France.
- National Center for Scientific Research (CNRS) ERL 7001 LNOx, 37032 CEDEX 1 Tours, Université de Tours, 37044 Tours, France.
| | - Gonzague De Pinieux
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
- Centre Hospitalier Régional Universitaire de Tours, Hôpital Trousseau, Service d'Anatomie Pathologique, Faculté de Médecine de Tours, Université de Tours, 37044 CEDEX 9 Tours, France.
| | - Valérie Trichet
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
- National Center for Scientific Research (CNRS) GDR 3697, 75020 Paris, France.
| |
Collapse
|
2
|
Lebok P, Kopperschmidt V, Kluth M, Hube-Magg C, Özden C, B T, Hussein K, Mittenzwei A, Lebeau A, Witzel I, Wölber L, Mahner S, Jänicke F, Geist S, Paluchowski P, Wilke C, Heilenkötter U, Simon R, Sauter G, Terracciano L, Krech R, von d Assen A, Müller V, Burandt E. Partial PTEN deletion is linked to poor prognosis in breast cancer. BMC Cancer 2015; 15:963. [PMID: 26672755 PMCID: PMC4682275 DOI: 10.1186/s12885-015-1770-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 10/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deletions of chromosome 10q23, including the PTEN (phosphatase and tensin homolog) locus, are known to occur in breast cancer, but systematic analyses of its clinical relevance are lacking. METHODS We thus analyzed a tissue microarray (TMA) with 2,197 breast cancers by fluorescence in-situ hybridization (FISH) using a PTEN-specific probe. RESULTS PTEN deletions were detected in 19% of no special type, 9% of lobular, 4% of tubular cancers and 46% in carcinomas with medullary features. 98.7% of deletions were heterozygous and only 1.3% were homozygous. PTEN deletion was significantly linked to advanced tumor stage (p=0.0054), high-grade (p<0.0001), high tumor cell proliferation (Ki67 Labeling Index; p<0.0001), and shortened overall survival (p=0.0090). PTEN deletions were inversely associated with features of luminal type breast cancers (ER/PR positivity; p<0.0001 each, and CCND1 amplification; p=0.0020). PTEN deletions were also strongly linked to amplification of genes involved in the PTEN/AKT pathway such as MYC (p=0.0430) and HER2 (p=0.0065). Remarkably the combined analysis of MYC, HER2, CCND1 and PTEN aberrations suggested that aberrations of multiple PTEN/AKT pathway genes have a strong additive effect on breast cancer prognosis. While cancers with one of these aberrations behaved only marginally different from cancers with none, disease outcome was markedly worse in cancers with two or more aberrations as compared to those with only one aberration (p=0.0002). In addition, the particularly poor prognosis of patients with HER2 amplification and PTEN deletions challenges the concept of PTEN deletions interfering with trastuzumab therapy. CONCLUSION PTEN deletion occurs in a relevant fraction of breast cancers, and is linked to aggressive tumor behavior. Reduced PTEN function cooperates with MYC and HER2 activation in conferring aggressive phenotype to cancer cells.
Collapse
Affiliation(s)
- P Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - V Kopperschmidt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - M Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - C Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - C Özden
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Taskin B
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - K Hussein
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - A Mittenzwei
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - A Lebeau
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - I Witzel
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - L Wölber
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - S Mahner
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - F Jänicke
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - S Geist
- Department of Gynecology, Regio Clinic Pinneberg, Pinneberg, Germany.
| | - P Paluchowski
- Department of Gynecology, Regio Clinic Pinneberg, Pinneberg, Germany.
| | - C Wilke
- Department of Gynecology, Regio Clinic Elmshorn, Elmshorn, Germany.
| | - U Heilenkötter
- Department of Gynecology, Clinical Centre Itzehoe, Itzehoe, Germany.
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - L Terracciano
- Department of Pathology, Basel University Clinics, Basel, Switzerland.
| | - R Krech
- Institute of Pathology, Clinical Centre Osnabrück, Osnabrück, Germany.
| | | | - V Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - E Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Wip1 phosphatase in breast cancer. Oncogene 2014; 34:4429-38. [PMID: 25381821 DOI: 10.1038/onc.2014.375] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 12/13/2022]
Abstract
Understanding the factors contributing to tumor initiation, progression and evolution is of paramount significance. Among them, wild-type p53-induced phosphatase 1 (Wip1) is emerging as an important oncogene by virtue of its negative control on several key tumor suppressor pathways. Originally discovered as a p53-regulated gene, Wip1 has been subsequently found amplified and more recently mutated in a significant fraction of human cancers including breast tumors. Recent development in the field further uncovered the utility of anti-Wip1-directed therapies in delaying tumor onset or in reducing the tumor burden. Furthermore, Wip1 could be an important factor that contributes to tumor heterogeneity, suggesting that its inhibition may decrease the rate of cancer evolution. These effects depend on several signaling pathways modulated by Wip1 phosphatase in a spatial and temporal manner. In this review we discuss the recent development in understanding how Wip1 contributes to tumorigenesis with its relevance to breast cancer.
Collapse
|
4
|
Tennstedt P, Bölch C, Strobel G, Minner S, Burkhardt L, Grob T, Masser S, Sauter G, Schlomm T, Simon R. Patterns of TPD52 overexpression in multiple human solid tumor types analyzed by quantitative PCR. Int J Oncol 2013; 44:609-15. [PMID: 24317684 DOI: 10.3892/ijo.2013.2200] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/29/2013] [Indexed: 11/06/2022] Open
Abstract
Tumor protein D52 (TPD52) is located at chromosome 8q21, a region that is frequently gained or amplified in multiple human cancer types. TPD52 has been suggested as a potential target for new anticancer therapies. In order to analyze TPD52 expression in the most prevalent human cancer types, we employed quantitative PCR to measure TPD52 mRNA levels in formalin-fixed tissue samples from more than 900 cancer tissues obtained from 29 different human cancer types. TPD52 was expressed at varying levels in all tested normal tissues, including skin, lymph node, lung, oral mucosa, breast, endometrium, ovary, vulva, myometrium, liver, pancreas, stomach, kidney, prostate, testis, urinary bladder, thyroid gland, brain, muscle and fat tissue. TPD52 was upregulated in 18/29 (62%) tested cancer types. Strongest expression was found in non-seminoma (56-fold overexpression compared to corresponding normal tissue), seminoma (42-fold), ductal (28-fold) and lobular breast cancer (14-fold). In these tumor types, TPD52 upregulation was found in the vast majority (>80%) of tested samples. Downregulation was found in 11 (38%) tumor types, most strongly in papillary renal cell cancer (-8-fold), leiomyosarcoma (-6-fold), clear cell renal cell cancer (-5-fold), liposarcoma (-5-fold) and lung cancer (-4-fold). These results demonstrate that TPD52 is frequently and strongly upregulated in many human cancer types, which may represent candidate tumor types for potential anti-TPD52 therapies.
Collapse
Affiliation(s)
- Pierre Tennstedt
- Martini-Clinic, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charlotte Bölch
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gundula Strobel
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lia Burkhardt
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Grob
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sawinee Masser
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Jørgensen CLT, Ejlertsen B, Bjerre KD, Balslev E, Nielsen DL, Nielsen KV. Gene aberrations of RRM1 and RRM2B and outcome of advanced breast cancer after treatment with docetaxel with or without gemcitabine. BMC Cancer 2013; 13:541. [PMID: 24215511 PMCID: PMC3840598 DOI: 10.1186/1471-2407-13-541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/06/2013] [Indexed: 11/10/2022] Open
Abstract
Background The purpose of the present study was to retrospectively evaluate whether copy number changes of the genes encoding the ribonucleotide reductase subunit M1 (RRM1) and/or subunit M2B (RRM2B) predict sensitivity to gemcitabine administered in combination with docetaxel compared to single agent docetaxel in advanced breast cancer patients. Methods Primary tumor samples from patients randomly assigned to gemcitabine plus docetaxel or docetaxel alone were analyzed for RRM1 and RRM2B copy number changes using Fluorescence In Situ Hybridization (FISH) technology with probes covering respectively RRM1 at 11p15.5 and a reference probe covering the centromere of chromosome 11 (CEN-11), and RRM2B at 8q22.3 and a reference probe covering the centromere of chromosome 8 (CEN-8). The assays were validated in a material of 60 normal breast samples. Time to progression (TTP) was the primary endpoint. Overall survival (OS) and response rate (RR) were secondary endpoints. Associations between RRM1/CEN-11 and/or RRM2B/CEN-8 ratios and time-to-event endpoints were analyzed by unadjusted and adjusted Cox proportional hazards regression models. Heterogeneity of treatment effects on TTP and OS according to gene status were investigated by subgroup analyses, and the Wald test was applied. All statistical tests were two-sided. Results FISH analysis for both RRM1 and RRM2B was successful in 251 patients. RRM1 and RRM2B aberrations (deletions and amplifications) were observed in 15.9% and 13.6% of patients, respectively. RRM1 aberrations were associated with a decreased OS in the time interval 1.5-7.4 years (hazard ratio = 1.72, 95% confidence interval = 1.05-2.79, P = 0.03). RRM2B aberrations alone or in combination with RRM1 aberrations had no prognostic impact in terms of TTP or OS. RR was not different by gene status. No significant differences were detected in TTP or OS within subgroups according to gene status and chemotherapy regimen. Conclusions This study demonstrated the presence of RRM1 and RRM2B copy number changes in primary breast tumor specimens. Nevertheless, we found no support of the hypothesis that aberrations of RRM1 or RRM2B, neither individually nor in combination, are associated with an altered clinical outcome following chemotherapy with gemcitabine in combination with docetaxel compared to docetaxel alone in advanced breast cancer patients.
Collapse
|
6
|
Byrne JA, Chen Y, Martin La Rotta N, Peters GB. Challenges in identifying candidate amplification targets in human cancers: chromosome 8q21 as a case study. Genes Cancer 2012; 3:87-101. [PMID: 23050042 DOI: 10.1177/1947601912456287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 07/08/2012] [Indexed: 12/13/2022] Open
Abstract
Detailed genomic characterization of cancer specimens is required to identify all genes whose dysregulation contributes to tumorigenesis and/or tumor progression. These include amplification target genes, whose oncogenic functions derive from their overexpression in response to increased gene copy number, and which increasingly serve as therapeutic targets and predictive markers. We propose that identifying novel amplification target genes is becoming more challenging, and may require the comparative analysis of multiple studies mapping gene copy number changes and/or defining associations between gene copy number and expression. We therefore reviewed the array comparative genomic hybridization and single nucleotide polymorphism profiling literature to identify copy number increases that were restricted to chromosome 8q21 in human cancers, which were reported most frequently in breast cancer. We determined the minimal regions of overlap between gained regions and then examined which chromosome 8q21 genes were most frequently overexpressed, or otherwise supported, in individual studies. As these combined approaches supported the previously proposed amplification targets TCEB1, TPD52, and WWP1, the comparison of multiple genomic studies may therefore effectively predict candidate gene amplification targets, and prioritize these for further study.
Collapse
Affiliation(s)
- Jennifer A Byrne
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, Australia ; The University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Westmead, Australia
| | | | | | | |
Collapse
|
7
|
Focken T, Steinemann D, Skawran B, Hofmann W, Ahrens P, Arnold N, Kroll P, Kreipe H, Schlegelberger B, Gadzicki D. Human BRCA1-associated breast cancer: no increase in numerical chromosomal instability compared to sporadic tumors. Cytogenet Genome Res 2011; 135:84-92. [PMID: 22024613 DOI: 10.1159/000332005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2011] [Indexed: 12/28/2022] Open
Abstract
BRCA1 is a major gatekeeper of genomic stability. Acting in multiple central processes like double-strand break repair, centrosome replication, and checkpoint control, BRCA1 participates in maintaining genomic integrity and protects the cell against genomic instability. Chromosomal instability (CIN) as part of genomic instability is an inherent characteristic of most solid tumors and is also involved in breast cancer development. In this study, we determined the extent of CIN in 32 breast cancer tumors of women with a BRCA1 germline mutation compared to 62 unselected breast cancers. We applied fluorescence in situ hybridization (FISH) with centromere-specific probes for the chromosomes 1, 7, 8, 10, 17, and X and locus-specific probes for 3q27 (BCL6), 5p15.2 (D5S23), 5q31 (EGR1), 10q23.3 (PTEN), and 14q32 (IGH@) on formalin-fixed paraffin-embedded tissue microarray sections. Our hypothesis of an increased level of CIN in BRCA1-associated breast cancer could not be confirmed by this approach. Surprisingly, we detected no significant difference in the extent of CIN in BRCA1-mutated versus sporadic tumors. The only exception was the CIN value for chromosome 1. Here, the extent of CIN was slightly higher in the group of sporadic tumors.
Collapse
Affiliation(s)
- T Focken
- Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Byrne JA, Maleki S, Hardy JR, Gloss BS, Murali R, Scurry JP, Fanayan S, Emmanuel C, Hacker NF, Sutherland RL, Defazio A, O'Brien PM. MAL2 and tumor protein D52 (TPD52) are frequently overexpressed in ovarian carcinoma, but differentially associated with histological subtype and patient outcome. BMC Cancer 2010; 10:497. [PMID: 20846453 PMCID: PMC2949808 DOI: 10.1186/1471-2407-10-497] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 09/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The four-transmembrane MAL2 protein is frequently overexpressed in breast carcinoma, and MAL2 overexpression is associated with gain of the corresponding locus at chromosome 8q24.12. Independent expression microarray studies predict MAL2 overexpression in ovarian carcinoma, but these had remained unconfirmed. MAL2 binds tumor protein D52 (TPD52), which is frequently overexpressed in ovarian carcinoma, but the clinical significance of MAL2 and TPD52 overexpression was unknown. METHODS Immunohistochemical analyses of MAL2 and TPD52 expression were performed using tissue microarray sections including benign, borderline and malignant epithelial ovarian tumours. Inmmunohistochemical staining intensity and distribution was assessed both visually and digitally. RESULTS MAL2 and TPD52 were significantly overexpressed in high-grade serous carcinomas compared with serous borderline tumours. MAL2 expression was highest in serous carcinomas relative to other histological subtypes, whereas TPD52 expression was highest in clear cell carcinomas. MAL2 expression was not related to patient survival, however high-level TPD52 staining was significantly associated with improved overall survival in patients with stage III serous ovarian carcinoma (log-rank test, p < 0.001; n = 124) and was an independent predictor of survival in the overall carcinoma cohort (hazard ratio (HR), 0.498; 95% confidence interval (CI), 0.34-0.728; p < 0.001; n = 221), and in serous carcinomas (HR, 0.440; 95% CI, 0.294-0.658; p < 0.001; n = 182). CONCLUSIONS MAL2 is frequently overexpressed in ovarian carcinoma, and TPD52 overexpression is a favourable independent prognostic marker of potential value in the management of ovarian carcinoma patients.
Collapse
Affiliation(s)
- Jennifer A Byrne
- Molecular Oncology Laboratory, Children's Cancer Research Unit, The Children's Hospital at Westmead, Westmead, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Amplification of 8q21 in breast cancer is independent of MYC and associated with poor patient outcome. Mod Pathol 2010; 23:603-10. [PMID: 20139910 DOI: 10.1038/modpathol.2010.5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Copy number gains involving the long arm of chromosome 8, including high-level amplifications at 8q21 and 8q24, have been frequently reported in breast cancer. Although the role of the MYC gene as the driver of the 8q24 amplicon is well established, the significance of the 8q21 amplicon is less clear. The breast cancer cell line SK-BR-3 contains three separate 8q21 amplicons, the distal two of which correspond to putative target genes TPD52 and WWP1. To understand the effect of proximal 8q21 amplification on breast cancer phenotype and patient prognosis, we analyzed 8q21 copy number changes using fluorescence in situ hybridization (FISH) in a tissue microarray containing more than 2000 breast cancers. Amplification at 8q21 was found in 3% of tumors, and was associated with medullary type (P<0.03), high tumor grade (P<0.0001), high Ki67 labeling index (P<0.05), amplification of MYC (P<0.0001), HER2, MDM2, and CCND1 (P<0.05 each), as well as the total number of gene amplifications (P<0.0001). 8q21 copy number gains were significantly related to unfavorable patient outcome in univariate analysis. However, multivariate Cox regression analysis did not reveal an independent prognostic value of 8q21 amplification. The position of our FISH probe and data of a previously performed high-resolution CGH study in the breast cancer cell line SK-BR-3 involve TCEB1 and TMEM70 as new possible candidate oncogenes at 8q21 in breast cancer.
Collapse
|
10
|
Melchor L, Saucedo-Cuevas LP, Muñoz-Repeto I, Rodríguez-Pinilla SM, Honrado E, Campoverde A, Palacios J, Nathanson KL, García MJ, Benítez J. Comprehensive characterization of the DNA amplification at 13q34 in human breast cancer reveals TFDP1 and CUL4A as likely candidate target genes. Breast Cancer Res 2009; 11:R86. [PMID: 19995430 PMCID: PMC2815550 DOI: 10.1186/bcr2456] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 11/17/2009] [Accepted: 12/08/2009] [Indexed: 02/04/2023] Open
Abstract
Introduction Breast cancer subtypes exhibit different genomic aberration patterns with a tendency for high-level amplifications in distinct chromosomal regions. These genomic aberrations may drive carcinogenesis through the upregulation of proto-oncogenes. We have characterized DNA amplification at the human chromosomal region 13q34 in breast cancer. Methods A set of 414 familial and sporadic breast cancer cases was studied for amplification at region 13q34 by fluorescence in situ hybridization (FISH) analysis on tissue microarrays. Defining the minimal common region of amplification in those cases with amplification at 13q34 was carried out using an array-based comparative genomic hybridization platform. We performed a quantitative real-time - polymerase chain reaction (qRT-PCR) gene expression analysis of 11 candidate genes located within the minimal common region of amplification. Protein expression levels of two of these genes (TFDP1 and CUL4A) were assessed by immunohistochemical assays on the same tissue microarrays used for FISH studies, and correlated with the expression of a panel of 33 antibodies previously analyzed. Results We have found 13q34 amplification in 4.5% of breast cancer samples, but the frequency increased to 8.1% in BRCA1-associated tumors and to 20% in basal-like tumors. Tumors with 13q34 amplification were associated with high grade, estrogen receptor negativity, and expression of EGFR, CCNE, CK5, and P-Cadherin, among other basal cell markers. We have defined a 1.83 megabases minimal common region of genomic amplification and carried out mRNA expression analyses of candidate genes located therein, identifying CUL4A and TFDP1 as the most likely target genes. Moreover, we have confirmed that tumors with 13q34 amplification significantly overexpress CUL4A and TFDP1 proteins. Tumors overexpressing either CUL4A or TFDP1 were associated with tumor proliferation and cell cycle progression markers. Conclusions We conclude that 13q34 amplification may be of relevance in tumor progression of basal-like breast cancers by inducing overexpression of CUL4A and TFDP1, which are both important in cell cycle regulation. Alternatively, as these genes were also overexpressed in non-basal-like tumor samples, they could play a wider role in cancer development by inducing tumor proliferation.
Collapse
Affiliation(s)
- Lorenzo Melchor
- Human Genetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Center (CNIO), Madrid, E-28029, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Shehata M, Bièche I, Boutros R, Weidenhofer J, Fanayan S, Spalding L, Zeps N, Byth K, Bright RK, Lidereau R, Byrne JA. Nonredundant functions for tumor protein D52-like proteins support specific targeting of TPD52. Clin Cancer Res 2008; 14:5050-60. [PMID: 18698023 DOI: 10.1158/1078-0432.ccr-07-4994] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Tumor protein D52 (TPD52 or D52) is frequently overexpressed in breast and other cancers and present at increased gene copy number. It is, however, unclear whether D52 amplification and overexpression target specific functional properties of the encoded protein. EXPERIMENTAL DESIGN The expression of D52-like genes and MAL2 was compared in breast tissues using quantitative reverse transcription-PCR. The functions of human D52 and D53 genes were then compared by stable expression in BALB/c 3T3 fibroblasts and transient gene knockdown in breast carcinoma cell lines. In situ D52 and MAL2 protein expression was analyzed in breast tissue samples using tissue microarray sections. RESULTS The D52 (8q21.13), D54 (20q13.33), and MAL2 (8q24.12) genes were significantly overexpressed in breast cancer tissue (n = 95) relative to normal breast (n = 7; P </= 0.005) unlike the D53 gene (6q22.31; P = 0.884). Subsequently, D52-expressing but not D53-expressing 3T3 cell lines showed increased proliferation and anchorage-independent growth capacity, and reduced D52 but not D53 expression in SK-BR-3 cells significantly increased apoptosis. High D52 but not MAL2 expression was significantly associated with reduced overall survival in breast carcinoma patients (log-rank test, P < 0.001; n = 357) and was an independent predictor of survival (hazard ratio, 2.274; 95% confidence interval, 1.228-4.210; P = 0.009; n = 328). CONCLUSION D52 overexpression in cancer reflects specific targeting and may contribute to a more proliferative, aggressive tumor phenotype in breast cancer.
Collapse
Affiliation(s)
- Mona Shehata
- Molecular Oncology Laboratory, Oncology Research Unit, The University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Westmead 2145, New Zealand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Melchor L, Honrado E, Huang J, Alvarez S, Naylor TL, García MJ, Osorio A, Blesa D, Stratton MR, Weber BL, Cigudosa JC, Rahman N, Nathanson KL, Benítez J. Estrogen receptor status could modulate the genomic pattern in familial and sporadic breast cancer. Clin Cancer Res 2008; 13:7305-13. [PMID: 18094411 DOI: 10.1158/1078-0432.ccr-07-0711] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Familial breast cancer represents 5% to 10% of all breast tumors. Mutations in the two known major breast cancer susceptibility genes, BRCA1 and BRCA2, account for a minority of familial breast cancer, whereas families without mutations in these genes (BRCAX group) account for 70% of familial breast cancer cases. EXPERIMENTAL DESIGN To better characterize and define the genomic differences between the three classes of familial tumors and sporadic malignancies, we have analyzed 19 BRCA1, 24 BRCA2, and 31 BRCAX samples from familial breast cancer patients and 19 sporadic breast tumors using a 1-Mb resolution bacterial artificial chromosome array-based comparative genomic hybridization. RESULTS We found that BRCA1/2 tumors showed a higher genomic instability than BRCAX and sporadic cancers. There were common genomic alterations present in all breast cancer groups, such as gains of 1q and 16p or losses of 8ptel-p12 and 16q. We found that the presence/absence of the estrogen receptor (ER) may play a crucial role in driving tumor development through distinct genomic pathways independently of the tumor type (sporadic or familial) and mutation status (BRCA1 or BRCA2). ER(-) tumors presented higher genomic instability and different altered regions than ER+ ones. CONCLUSIONS According to our results, the BRCA gene mutation status (mainly BRCA1) would contribute to the genomic profile of abnormalities by increasing or modulating the genome instability.
Collapse
Affiliation(s)
- Lorenzo Melchor
- Human Genetics Group, Human Cancer Genetics Program, Spanish National Cancer Center (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen C, Zhou Z, Ross JS, Zhou W, Dong JT. The amplified WWP1 gene is a potential molecular target in breast cancer. Int J Cancer 2007; 121:80-87. [PMID: 17330240 DOI: 10.1002/ijc.22653] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The amplification of the q21 band of chromosome 8 (8q21) occurs in a large percentage of breast cancers. WWP1, an HECT domain-containing ubiquitin E3 ligase located in the 8q21 region, negatively regulates the TGF-beta tumor suppressor pathway. To characterize the role of WWP1 in breast cancer, we analyzed WWP1 gene dosage and expression level as well as WWP1's function. A copy number gain of WWP1 was found in 51% (18/35) of breast cancer cell lines and in 41% (17/41) of primary breast tumors. Expression of WWP1 mRNA was analyzed with real-time RT-PCR, Northern blot, and Western blot. WWP1 mRNA is up-regulated in 58% (19/33) of breast cancer cell lines, and overexpression of WWP1 is significantly correlated with a gene copy number gain. In a panel of cDNA from primary breast tumors and normal tissues, expression of WWP1 in tumors is significantly higher than that in normal tissues. Functionally, RNAi-mediated WWP1 knockdown significantly induced cell growth arrest and apoptosis in the MCF7 and HCC1500 breast cancer cell lines. Consistently, WWP1 inhibition activated caspases. Forced overexpression of WWP1 by the lentiviral system in 2 immortalized breast epithelial cell lines MCF10A and 184B5 promoted cell proliferation. These results suggest that genomic aberrations of WWP1 may contribute to the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Ceshi Chen
- The Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12208, USA.
| | | | | | | | | |
Collapse
|
14
|
Vincent-Salomon A, Gruel N, Lucchesi C, MacGrogan G, Dendale R, Sigal-Zafrani B, Longy M, Raynal V, Pierron G, de Mascarel I, Taris C, Stoppa-Lyonnet D, Pierga JY, Salmon R, Sastre-Garau X, Fourquet A, Delattre O, de Cremoux P, Aurias A. Identification of typical medullary breast carcinoma as a genomic sub-group of basal-like carcinomas, a heterogeneous new molecular entity. Breast Cancer Res 2007; 9:R24. [PMID: 17417968 PMCID: PMC1868916 DOI: 10.1186/bcr1666] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 03/01/2007] [Accepted: 04/06/2007] [Indexed: 11/23/2022] Open
Abstract
Introduction Typical medullary breast carcinoma (MBC) has recently been recognized to be part of the basal-like carcinoma spectrum, a feature in agreement with the high rate of TP53 mutations previously reported in MBCs. The present study was therefore designed to identify phenotypic and genetic alterations that distinguish MBCs from basal-like carcinomas (BLC). Methods Expression levels of estrogen receptor (ER), progesterone receptor (PR), ERBB2, TP53, cytokeratins (KRTs) 5/6, 14, 8/18, epidermal growth factor receptor and KIT, as well as TP53 gene sequence and high-density array comparative genomic hybridization (CGH) profiles, were assessed and compared in a series of 33 MBCs and 26 BLCs. Results All tumors were negative for ER, PR and ERBB2. KRTs 5/6 were more frequently expressed in MBCs (94%) than in BLCs (56%) (p = 0.0004). TP53 mutations were disclosed in 20/26 MBCs (77%) and 20/24 BLCs (83%). Array CGH analysis showed that a higher number of gains (95 regions) and losses (34 regions) was observed in MBCs than in BLCs (36 regions of gain; 13 regions of losses). In addition, gains of 1q and 8q, and losses of X were found to be common to the two groups, whereas gains of 10p (53% of the cases), 9p (30.8% of the cases) and 16q (25.8% of the cases), and losses of 4p (34.8% of the cases), and amplicons of 1q, 8p, 10p and 12p were the genetic alterations found to characterize MBC. Conclusion Our study has revealed that MBCs are part of the basal-like group and share common genomic alterations with BLCs, the most frequent being 1q and 8q gains and X losses; however, MBCs are a distinct entity within the basal-like spectrum, characterized by a higher rate of KRT 5/6 expression, a higher rate of gains and losses than BLCs, recurrent 10p, 9p and 16q gains, 4p losses, and 1q, 8p, 10p and 12p amplicons. Our results thus contribute to a better understanding of the heterogeneity in basal-like breast tumors and provide potential diagnostic tools.
Collapse
Affiliation(s)
- Anne Vincent-Salomon
- Department of Tumor Biology, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
- INSERM Unit 830, Institut Curie, 26 rue d'Ulm,75248 Paris cedex 05, France
| | - Nadège Gruel
- INSERM Unit 830, Institut Curie, 26 rue d'Ulm,75248 Paris cedex 05, France
- Translational Research Department, Institut Curie, 26 rue d'Ulm 75248 Paris cedex 05, France
| | - Carlo Lucchesi
- INSERM Unit 830, Institut Curie, 26 rue d'Ulm,75248 Paris cedex 05, France
| | - Gaëtan MacGrogan
- Department of Pathology, Institut Bergonié, 229 Cours de l'Argonne 33076 Bordeaux cedex, France
| | - Remi Dendale
- Department of Radiation Therapy, 26 rue d'Ulm, Institut Curie, 75248 Paris cedex 05, France
| | - Brigitte Sigal-Zafrani
- Department of Tumor Biology, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
- Breast Cancer Study Group, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Michel Longy
- Department of Pathology, Institut Bergonié, 229 Cours de l'Argonne 33076 Bordeaux cedex, France
| | - Virginie Raynal
- INSERM Unit 830, Institut Curie, 26 rue d'Ulm,75248 Paris cedex 05, France
| | - Gaëlle Pierron
- Department of Tumor Biology, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Isabelle de Mascarel
- Department of Pathology, Institut Bergonié, 229 Cours de l'Argonne 33076 Bordeaux cedex, France
| | - Corinne Taris
- Department of Tumor Biology, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Dominique Stoppa-Lyonnet
- Department of Tumor Biology, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
- INSERM Unit 830, Institut Curie, 26 rue d'Ulm,75248 Paris cedex 05, France
| | - Jean-Yves Pierga
- Department of Medical Oncology, Institut Curie, 26 rue d'Ulm 75248 Paris cedex 05, France
| | - Rémy Salmon
- Department of Breast Surgery, Institut Curie, 26 rue d'Ulm 75248 Paris cedex 05, France
| | | | - Alain Fourquet
- Department of Radiation Therapy, 26 rue d'Ulm, Institut Curie, 75248 Paris cedex 05, France
| | - Olivier Delattre
- INSERM Unit 830, Institut Curie, 26 rue d'Ulm,75248 Paris cedex 05, France
| | - Patricia de Cremoux
- Department of Tumor Biology, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Alain Aurias
- INSERM Unit 830, Institut Curie, 26 rue d'Ulm,75248 Paris cedex 05, France
| |
Collapse
|
15
|
Melchor L, Garcia MJ, Honrado E, Pole JCM, Alvarez S, Edwards PAW, Caldas C, Brenton JD, Benítez J. Genomic analysis of the 8p11-12 amplicon in familial breast cancer. Int J Cancer 2007; 120:714-7. [PMID: 17096335 DOI: 10.1002/ijc.22354] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Amplification of 8p11-12 has been recurrently reported in sporadic breast cancer. These studies define a complex molecular structure with a set of minimal amplified regions, and different putative oncogenes that show a strong correlation between amplification and over-expression such as ZNF703/FLJ14299, SPFH2/C8orf2, BRF2 and RAB11FIP. However, none of these studies were carried out on familial breast malignancies. We have studied the incidence, molecular features and clinical value of this amplification in familial breast tumors associated with BRCA1, BRCA2 and non-BRCA1/2 gene mutations. We detected 9 out of 80 familial tumors with this amplicon by chromosomal comparative genomic hybridization. Next, we used a high-resolution comparative genomic hybridization array covering the 8p11-12 region to characterize this chromosomal region. This approach allowed us to define 2 cores of common amplification that largely overlap with those reported in sporadic tumors. Our findings confirm the molecular complexity of this chromosomal region and indicate that this genomic event is a common alteration in breast cancer, present not only in sporadic but also in familial tumors. Finally, we found correlation between the 8p11-12 amplification and proliferation (Ki-67) and cyclin E expression, which further proves in familial tumors the poor prognosis association previously reported in sporadic breast cancer.
Collapse
Affiliation(s)
- Lorenzo Melchor
- Human Genetics Group, Human Cancer Genetics Program, Spanish National Cancer Center (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers. BMC Cancer 2006; 6:245. [PMID: 17040570 PMCID: PMC1626089 DOI: 10.1186/1471-2407-6-245] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 10/13/2006] [Indexed: 12/31/2022] Open
Abstract
Background Oncogene amplification and overexpression occur in tumor cells. Amplification status may provide diagnostic and prognostic information and may lead to new treatment strategies. Chromosomal regions 8p12, 8q24, 11q13, 17q12 and 20q13 are recurrently amplified in breast cancers. Methods To assess the frequencies and clinical impact of amplifications, we analyzed 547 invasive breast tumors organized in a tissue microarray (TMA) by fluorescence in situ hybridization (FISH) and calculated correlations with histoclinical features and prognosis. BAC probes were designed for: (i) two 8p12 subregions centered on RAB11FIP1 and FGFR1 loci, respectively; (ii) 11q13 region centered on CCND1; (iii) 12p13 region spanning NOL1; and (iv) three 20q13 subregions centered on MYBL2, ZNF217 and AURKA, respectively. Regions 8q24 and 17q12 were analyzed with MYC and ERBB2 commercial probes, respectively. Results We observed amplification of 8p12 (amplified at RAB11FIP1 and/or FGFR1) in 22.8%, 8q24 in 6.1%, 11q13 in 19.6%, 12p13 in 4.1%, 17q12 in 9.9%, 20q13Z (amplified at ZNF217 only) in 9.9%, and 20q13Co (co-amplification of two or three 20q13 loci) in 8.5% of cases. The 8q24, 12p13, and 17q12 amplifications were correlated with high grade. The most frequent single amplifications were 8p12 (9.8%), 8q24 (3.3%) and 12p13 (3.3%), 20q13Z and 20q13Co (1.6%) regions. The 17q12 and 11q13 regions were never found amplified alone. The most frequent co-amplification was 8p12/11q13. Amplifications of 8p12 and 17q12 were associated with poor outcome. Amplification of 12p13 was associated with basal molecular subtype. Conclusion Our results establish the frequencies, prognostic impacts and subtype associations of various amplifications and co-amplifications in breast cancers.
Collapse
|