1
|
Lin ZZ, Hu MCT, Hsu C, Wu YM, Lu YS, Ho JAA, Yeh SH, Chen PJ, Cheng AL. Synergistic efficacy of telomerase-specific oncolytic adenoviral therapy and histone deacetylase inhibition in human hepatocellular carcinoma. Cancer Lett 2023; 556:216063. [PMID: 36669725 DOI: 10.1016/j.canlet.2023.216063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/08/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023]
Abstract
The telomerase-specific oncolytic adenovirus Telomelysin and the histone deacetylase inhibitor AR42 have demonstrated anticancer effects in preclinical models of human hepatocellular carcinoma (HCC). However, the clinical development of Telomelysin may be hindered by human antiviral immunity and tumor resistance. Combining oncolytic and epigenetic therapies is a viable approach for treating various cancers. This study investigated the potential synergism of Telomelysin and AR42 and the relevant underlying mechanisms. Telomelysin and AR42 exhibited synergistic antiproliferative effects in human HCC models in vitro and in vivo. Apoptosis induced by Telomelysin was significantly enhanced by AR42 in both PLC5 and Hep3B HCC cells. AR42 treatment unexpectedly attenuated the expression of the coxsackievirus and adenovirus receptor and the mRNA levels of human telomerase reverse transcriptase, which may be positively associated with the cytotoxicity of Telomelysin. Meanwhile, the cellular antiviral interferon response was not altered by AR42 treatment. Further, we found that Telomelysin enhanced Akt phosphorylation in HCC cells. AR42 reduced Telomelysin-induced phospho-Akt activation and enhanced Telomelysin-induced apoptosis. The correlation of Akt phosphorylation with drug-induced apoptosis was validated in HCC cells with upregulated or downregulated Akt signaling. Combination therapy with Telomelysin and AR42 demonstrated synergistic anti-HCC efficacy. Clinical trials investigating this new combination regimen are warranted.
Collapse
Affiliation(s)
- Zhong-Zhe Lin
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan; Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Chiun Hsu
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan; Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao-Ming Wu
- Department of Surgery, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Shen Lu
- Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ja-An Annie Ho
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shiou-Hwei Yeh
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Jer Chen
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ann-Lii Cheng
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan; Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Functional Drug Screening of Small Molecule Inhibitors of Epigenetic Modifiers in Refractory AML Patients. Cancers (Basel) 2022; 14:cancers14174094. [PMID: 36077629 PMCID: PMC9455071 DOI: 10.3390/cancers14174094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/13/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
The use of inhibitors of epigenetic modifiers in the treatment of acute myeloid leukemia (AML) has become increasingly appealing due to the highly epigenetic nature of the disease. We evaluated a library of 164 epigenetic compounds in a cohort of 9 heterogeneous AML patients using an ex vivo drug screen. AML blasts were isolated from bone marrow biopsies according to established protocols and treatment response to the epigenetic library was evaluated. We find that 11 histone deacetylase (HDAC) inhibitors, which act upon mechanisms of cell cycle arrest and apoptotic pathways through inhibition of zinc-dependent classes of HDACs, showed efficacy in all patient-derived samples. Other compounds, including bromodomain and extraterminal domain (BET) protein inhibitors, showed efficacy in most samples. Specifically, HDAC inhibitors are already clinically available and can be repurposed for use in AML. Results in this cohort of AML patient-derived samples reveal several epigenetic compounds with high anti-blast activity in all samples, despite the molecular diversity of the disease. These results further enforce the notion that AML is a predominantly epigenetic disease and that similar epigenetic mechanisms may underlie disease development and progression in all patients, despite differences in genetic mutations.
Collapse
|
3
|
Pramanik SD, Kumar Halder A, Mukherjee U, Kumar D, Dey YN, R M. Potential of histone deacetylase inhibitors in the control and regulation of prostate, breast and ovarian cancer. Front Chem 2022; 10:948217. [PMID: 36034650 PMCID: PMC9411967 DOI: 10.3389/fchem.2022.948217] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that play a role in chromatin remodeling and epigenetics. They belong to a specific category of enzymes that eliminate the acetyl part of the histones' -N-acetyl lysine, causing the histones to be wrapped compactly around DNA. Numerous biological processes rely on HDACs, including cell proliferation and differentiation, angiogenesis, metastasis, gene regulation, and transcription. Epigenetic changes, specifically increased expression and activity of HDACs, are commonly detected in cancer. As a result, HDACi could be used to develop anticancer drugs. Although preclinical outcomes with HDACs as monotherapy have been promising clinical trials have had mixed results and limited success. In both preclinical and clinical trials, however, combination therapy with different anticancer medicines has proved to have synergistic effects. Furthermore, these combinations improved efficacy, decreased tumor resistance to therapy, and decreased toxicity. In the present review, the detailed modes of action, classification of HDACs, and their correlation with different cancers like prostate, breast, and ovarian cancer were discussed. Further, the different cell signaling pathways and the structure-activity relationship and pharmaco-toxicological properties of the HDACi, and their synergistic effects with other anticancer drugs observed in recent preclinical and clinical studies used in combination therapy were discussed for prostate, breast, and ovarian cancer treatment.
Collapse
Affiliation(s)
- Siddhartha Das Pramanik
- Department of Pharmaceutical Engineering and Technology, IIT-BHU, Varanasi, Uttar Pradesh, India
| | - Amit Kumar Halder
- Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Ushmita Mukherjee
- Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Dharmendra Kumar
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Sasaram, Bihar, India
| | - Yadu Nandan Dey
- Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Mogana R
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI Education SDN.BHD., Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Histone Deacetylase Inhibitors in the Treatment of Hepatocellular Carcinoma: Current Evidence and Future Opportunities. J Pers Med 2021; 11:jpm11030223. [PMID: 33809844 PMCID: PMC8004277 DOI: 10.3390/jpm11030223] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a major health problem worldwide with a continuous increasing prevalence. Despite the introduction of targeted therapies like the multi-kinase inhibitor sorafenib, treatment outcomes are not encouraging. The prognosis of advanced HCC is still dismal, underlying the need for novel effective treatments. Apart from the various risk factors that predispose to the development of HCC, epigenetic factors also play a functional role in tumor genesis. Histone deacetylases (HDACs) are enzymes that remove acetyl groups from histone lysine residues of proteins, such as the core nucleosome histones, in this way not permitting DNA to loosen from the histone octamer and consequently preventing its transcription. Considering that HDAC activity is reported to be up-regulated in HCC, treatment strategies with HDAC inhibitors (HDACIs) showed some promising results. This review focuses on the use of HDACIs as novel anticancer agents and explains the mechanisms of their therapeutic effects in HCC.
Collapse
|
5
|
Bastola S, Pavlyukov MS, Yamashita D, Ghosh S, Cho H, Kagaya N, Zhang Z, Minata M, Lee Y, Sadahiro H, Yamaguchi S, Komarova S, Yang E, Markert J, Nabors LB, Bhat K, Lee J, Chen Q, Crossman DK, Shin-Ya K, Nam DH, Nakano I. Glioma-initiating cells at tumor edge gain signals from tumor core cells to promote their malignancy. Nat Commun 2020; 11:4660. [PMID: 32938908 PMCID: PMC7494913 DOI: 10.1038/s41467-020-18189-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/23/2020] [Indexed: 01/07/2023] Open
Abstract
Intratumor spatial heterogeneity facilitates therapeutic resistance in glioblastoma (GBM). Nonetheless, understanding of GBM heterogeneity is largely limited to the surgically resectable tumor core lesion while the seeds for recurrence reside in the unresectable tumor edge. In this study, stratification of GBM to core and edge demonstrates clinically relevant surgical sequelae. We establish regionally derived models of GBM edge and core that retain their spatial identity in a cell autonomous manner. Upon xenotransplantation, edge-derived cells show a higher capacity for infiltrative growth, while core cells demonstrate core lesions with greater therapy resistance. Investigation of intercellular signaling between these two tumor populations uncovers the paracrine crosstalk from tumor core that promotes malignancy and therapy resistance of edge cells. These phenotypic alterations are initiated by HDAC1 in GBM core cells which subsequently affect edge cells by secreting the soluble form of CD109 protein. Our data reveal the role of intracellular communication between regionally different populations of GBM cells in tumor recurrence. Intratumoural spatial heterogeneity is crucial to enhance therapeutic resistance in glioblastoma. Here, the authors show a paracrine signaling mechanism where glioblastoma-initiating cells located in the tumour edge elevate their malignancy by interaction with core-located tumour cells.
Collapse
Affiliation(s)
- Soniya Bastola
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Marat S Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russian Federation
| | - Daisuke Yamashita
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sadashib Ghosh
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Heejin Cho
- Research Institute for Future Medicine, Seoul, 06351, Republic of Korea.,Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Noritaka Kagaya
- Biomedical Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Zhuo Zhang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Mutsuko Minata
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yeri Lee
- Research Institute for Future Medicine, Seoul, 06351, Republic of Korea.,Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | | | - Shinobu Yamaguchi
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Svetlana Komarova
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Eddy Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - James Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Louis B Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Krishna Bhat
- Department of Translational Molecular Pathology and Brain Tumor Center, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - James Lee
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, 43210, USA
| | - Qin Chen
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Integrative medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kazuo Shin-Ya
- Biomedical Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.,Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Research and Development Center for Precision Medicine, Tsukuba University, Tsukuba, Japan.
| |
Collapse
|
6
|
Tng J, Lim J, Wu KC, Lucke AJ, Xu W, Reid RC, Fairlie DP. Achiral Derivatives of Hydroxamate AR-42 Potently Inhibit Class I HDAC Enzymes and Cancer Cell Proliferation. J Med Chem 2020; 63:5956-5971. [DOI: 10.1021/acs.jmedchem.0c00230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiahui Tng
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Junxian Lim
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kai-Chen Wu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew J. Lucke
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Weijun Xu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert C. Reid
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
7
|
Duan S, Gong X, Liu X, Cui W, Chen K, Mao L, Jun S, Zhou R, Sang Y, Huang G. Histone deacetylase inhibitor, AR-42, exerts antitumor effects by inducing apoptosis and cell cycle arrest in Y79 cells. J Cell Physiol 2019; 234:22411-22423. [PMID: 31102271 DOI: 10.1002/jcp.28806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022]
Abstract
Retinoblastoma (RB) is the most common type of intraocular malignant tumor that occurs in childhood. AR-42, a member of a newly discovered class of phenylbutyrate-derived histone deacetylase inhibitors, exerts antitumor effects on many cancers. In the present study, we initially evaluated the effect of AR-42 towards RB cells and explored the underlying mechanism in this disease. Our results found that AR-42 showed powerful antitumor effects at low micromolar concentrations by inhibiting cell viability, blocking cell cycle, stimulating apoptosis in vitro, and suppressing RB growth in a mouse subcutaneous tumor xenograft model. Furthermore, the AKT/nuclear factor-kappa B signaling pathway was disrupted in Y79 cells treated with AR-42. In conclusion, we propose that AR-42 might be a promising drug treatment for RB.
Collapse
Affiliation(s)
- Sujuan Duan
- Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.,Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xiaona Gong
- Department of Ophthalmology, Xiangyang First People's Hospital, Xiangyang, China
| | - Xing Liu
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wenwen Cui
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Kaddie Chen
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Longbing Mao
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Sun Jun
- First Clinical Department, Medical School of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Ruihao Zhou
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yi Sang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Guofu Huang
- Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.,Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
8
|
Tolba MF, Omar HA, Hersi F, Nunes ACF, Noreddin AM. The impact of Catechol-O-methyl transferase knockdown on the cell proliferation of hormone-responsive cancers. Mol Cell Endocrinol 2019; 488:79-88. [PMID: 30904591 DOI: 10.1016/j.mce.2019.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 02/24/2019] [Accepted: 03/17/2019] [Indexed: 02/07/2023]
Abstract
Estrogen (E2) plays a central role in the development and progression of hormone-responsive cancers. Estrogen metabolites exhibit either stimulatory or inhibitory roles on breast and prostate cells. The catechol metabolite 4-hydroxyestradiol (4-OHE2) enhances cell proliferation, while 2-methoxyestradiol (2 ME) possesses anticancer activity. The major metabolizing enzyme responsible for detoxifying the deleterious metabolite 4-OHE2 and forming the anticancer metabolite 2 ME is Catechol-O-Methyl Transferase (COMT). The current work investigated the relationship between the expression level of COMT and the cell proliferation of hormone-responsive cancers. The results showed that COMT silencing enhanced the cell proliferation of ER-α positive cancer cells MCF-7 and PC-3 but not the cells that lack ER-α expression as MDA-MB231 and DU-145. The data generated from our study provides a better understanding of the effect of COMT on critical signaling pathways involved in the development and progression of breast cancer (BC) and prostate cancer (PC) including ER-α, p21cip1, p27kip1, NF-κB (P65) and CYP19A1. These findings suggest that COMT enzyme plays a tumor suppressor role in hormone receptor-positive tumors which opens the door for future studies to validate COMT expression as a novel biomarker for the prediction of cancer aggressiveness and treatment efficacy.
Collapse
Affiliation(s)
- Mai F Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Chapman University School of Pharmacy, Irvine, CA 92618, USA; School of Medicine, University of California, Irvine, CA, USA.
| | - Hany A Omar
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511 Egypt; Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Fatima Hersi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ane C F Nunes
- Division of Nephrology and Hypertension, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Ayman M Noreddin
- Chapman University School of Pharmacy, Irvine, CA 92618, USA; School of Medicine, University of California, Irvine, CA, USA; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
9
|
Kulp SK, Chen CS, Wang DS, Chen CY, Chen CS. Retraction: Antitumor Effects of a Novel Phenylbutyrate-based Histone Deacetylase Inhibitor, ( S)-HDAC-42, in Prostate Cancer. Clin Cancer Res 2019; 25:2940. [DOI: 10.1158/1078-0432.ccr-19-0731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Synergistic activity of imatinib and AR-42 against chronic myeloid leukemia cells mainly through HDAC1 inhibition. Life Sci 2018; 211:224-237. [DOI: 10.1016/j.lfs.2018.09.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 02/01/2023]
|
11
|
Wei D, Lu T, Ma D, Yu K, Li X, Chen B, Xiong J, Zhang T, Wang J. Heme oxygenase-1 reduces the sensitivity to imatinib through nonselective activation of histone deacetylases in chronic myeloid leukemia. J Cell Physiol 2018; 234:5252-5263. [PMID: 30256411 DOI: 10.1002/jcp.27334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022]
Abstract
Resistance towards imatinib (IM) remains troublesome in treating many chronic myeloid leukemia (CML) patients. Heme oxygenase-1 (HO-1) is a key enzyme of antioxidative metabolism in association with cell resistance to apoptosis. Our previous studies have shown that overexpression of HO-1 resulted in resistance development to IM in CML cells, while the mechanism remains unclear. In the current study, the IM-resistant CML cells K562R indicated upregulation of some of the histone deacetylases (HDACs) compared with K562 cells. Therefore, we herein postulated HO-1 was associated with HDACs. Silencing HO-1 expression in K562R cells inhibited the expression of some HDACs, and the sensitivity to IM was increased. K562 cells transfected with HO-1 resisted IM and underwent obvious some HDACs. These findings related to the inhibitory effects of high HO-1 expression on the reactive oxygen species (ROS) signaling pathway that negatively regulated HDACs. Increased expression of HO-1 activated HDACs by inhibiting ROS production. In summary, HO-1, which is involved in the development of drug resistance in CML cells by regulating the expression of HDACs, is probably a novel target for improving CML therapy.
Collapse
MESH Headings
- Adult
- Antineoplastic Agents/pharmacology
- Drug Resistance, Neoplasm
- Enzyme Activation
- Female
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Heme Oxygenase-1/metabolism
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Humans
- Imatinib Mesylate/pharmacology
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Middle Aged
- Protein Kinase Inhibitors/pharmacology
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Young Adult
Collapse
Affiliation(s)
- Danna Wei
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, PR, China
- Department of Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Guiyang, PR, China
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, PR, China
| | - Tingting Lu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, PR, China
- Department of Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Guiyang, PR, China
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, PR, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, PR, China
- Department of Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Guiyang, PR, China
| | - Kunlin Yu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, PR, China
- Department of Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Guiyang, PR, China
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, PR, China
| | - Xinyao Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, PR, China
- Department of Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Guiyang, PR, China
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, PR, China
| | - Bingqing Chen
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, PR, China
- Department of Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Guiyang, PR, China
| | - Ji Xiong
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, PR, China
- Department of Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Guiyang, PR, China
| | - Tianzhuo Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, PR, China
- Department of Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Guiyang, PR, China
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, PR, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, PR, China
- Department of Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Guiyang, PR, China
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, PR, China
| |
Collapse
|
12
|
Choi SA, Kwak PA, Park CK, Wang KC, Phi JH, Lee JY, Lee CS, Lee JH, Kim SK. A novel histone deacetylase inhibitor, CKD5, has potent anti-cancer effects in glioblastoma. Oncotarget 2018; 8:9123-9133. [PMID: 27852054 PMCID: PMC5354719 DOI: 10.18632/oncotarget.13265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023] Open
Abstract
There have been extensive efforts to improve the outcome of glioblastoma, but the prognosis of this disease has not been significantly altered to date. Histone deacetylase inhibitors (HDACIs) have been evaluated as promising anti-cancer drugs and regulate cell growth, cell cycle arrest and apoptosis in glioblastoma. Here, we demonstrated the therapeutic efficacy of a novel pan-HDACI, 7-ureido-N-hydroxyheptanamide derivative (CKD5), compared with traditional pan-HDACIs, such as suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA), in vitro and in vivo. Compared with SAHA and TSA, CKD5 had improved cytotoxic effects and induced apoptosis, anti-proliferative activity and cell cycle arrest at G2/M phase. Furthermore, CKD5 significantly reduced tumor volume and prolonged the survival in vivo compared with TSA, suggesting improved anti-cancer efficacy among HDACIs. Our results demonstrate that the novel HDACI CKD5 is a promising therapeutic candidate for glioblastoma.
Collapse
Affiliation(s)
- Seung Ah Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Korea
| | - Pil Ae Kwak
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Kyu-Chang Wang
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Ji Yeoun Lee
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea.,Department of Anatomy, Seoul National University Hospital, Seoul, Korea
| | - Chang Sik Lee
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, Gyeonggi-do, Korea
| | - Ju-Hee Lee
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, Gyeonggi-do, Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
13
|
Zhang M, Pan Y, Dorfman RG, Chen Z, Liu F, Zhou Q, Huang S, Zhang J, Yang D, Liu J. AR-42 induces apoptosis in human hepatocellular carcinoma cells via HDAC5 inhibition. Oncotarget 2017; 7:22285-94. [PMID: 26993777 PMCID: PMC5007137 DOI: 10.18632/oncotarget.8077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 02/23/2016] [Indexed: 01/16/2023] Open
Abstract
Histone deacetylases (HDACs) play critical roles in apoptosis and contribute to the proliferation of cancer cells. AR-42 is a novel Class I and II HDAC inhibitor that shows cytotoxicity against various human cancer cell lines. The present study aims to identify the target of AR-42 in hepatocellular carcinoma (HCC) as well as evaluate its therapeutic efficacy. We found that HDAC5 was upregulated in HCC tissues compared to adjacent normal tissues, and this was correlated with reduced patient survival. CCK8 and colony-formation assays showed that HDAC5 overexpression promotes proliferation in HCC cell lines. Treatment with AR-42 decreased HCC cell growth and increased caspase-dependent apoptosis, and this was rescued by HDAC5 overexpression. We demonstrated that AR-42 can inhibit the deacetylation activity of HDAC5 and its downstream targets in vitro and in vivo. Taken together, these results demonstrate for the first time that AR-42 targets HDAC5 and induces apoptosis in human hepatocellular carcinoma cells. AR-42 therefore shows potential as a new drug candidate for HCC therapy.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Yida Pan
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Robert G Dorfman
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zhaogui Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fuchen Liu
- Department of Hepatobiliary Surgery, The Eastern Hepatobiliary Surgery Hospital of Second Military Medical University, Shanghai, China
| | - Qian Zhou
- School of Life Sciences, Fudan University, Shanghai, China
| | - Shan Huang
- Department of Pathology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jun Zhang
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Dongqin Yang
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China.,Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences and Department of Immunology, Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Chen YJ, Wang WH, Wu WY, Hsu CC, Wei LR, Wang SF, Hsu YW, Liaw CC, Tsai WC. Novel histone deacetylase inhibitor AR-42 exhibits antitumor activity in pancreatic cancer cells by affecting multiple biochemical pathways. PLoS One 2017; 12:e0183368. [PMID: 28829799 PMCID: PMC5567660 DOI: 10.1371/journal.pone.0183368] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/02/2017] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Pancreatic cancer is one of the most lethal types of cancer with a 5-year survival rate of ~5%. Histone deacetylases (HDACs) participate in many cellular processes, including carcinogenesis, and pharmacological inhibition of HDACs has emerged as a potential therapeutic strategy. In this study, we explored antitumor activity of the novel HDAC inhibitor AR-42 in pancreatic cancer. METHODS Human pancreatic cancer cell lines BxPC-3 and PANC-1 were used in this study. Real-time PCR, RT-PCR, and western blotting were employed to investigate expression of specific genes and proteins, respectively. Translocation of apoptosis-inducing factor was investigated by immunofluorescence and subcellular fractionation. The number of apoptotic cells, cell cycle stages, and reactive oxygen species (ROS) generation levels were determined by flow cytometry. Cell invasiveness was examined by the Matrigel invasion assay. Efficacy of AR-42 in vivo was evaluated by utilizing BxPC-3 xenograft mouse model. RESULTS AR-42 inhibited pancreatic cancer cell proliferation by causing G2/M cell cycle arrest via regulating expression levels of genes and proteins involved in cell cycle. AR-42 also induced ROS generation and DNA damage, triggering apoptosis of pancreatic cancer cells via both caspase-3-dependent and caspase-3-independent pathways. In addition, AR-42 increased expression levels of negative regulators of p53 (miR-125b, miR-30d, and miR33), which could contribute to lower expression level of mutant p53 in pancreatic cancer cells. Cell invasion assay showed that AR-42 reduced cancer cell aggressiveness and significantly diminished BxPC-3 xenograft tumor growth in vivo. CONCLUSION AR-42, a novel HDAC inhibitor, inhibited pancreatic cancer cells by regulating p53 expression, inducing cell cycle arrest, particularly at the G2/M stage, and activating multiple apoptosis pathways. Additionally, AR-42 inhibited cell invasiveness and potently suppressed pancreatic cancer tumors in vivo. We conclude that by virtue of its multiple mechanisms of action, AR-42 possesses a considerable potential as an antitumor agent in pancreatic cancer.
Collapse
Affiliation(s)
- Yi-Jin Chen
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Hung Wang
- Department of Otolaryngology, Cathay General Hospital, Taipei City, Taiwan
- Department of Otolaryngology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Wan-Yu Wu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Chi Hsu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ling-Rung Wei
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Fan Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Wen Hsu
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Chih-Chuang Liaw
- Doctoral Degree Program of Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wan-Chi Tsai
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Miller AC, Rivas R, McMahon R, Miller K, Tesoro L, Villa V, Yanushkevich D, Lison P. Radiation protection and mitigation potential of phenylbutyrate: delivered via oral administration. Int J Radiat Biol 2017; 93:907-919. [DOI: 10.1080/09553002.2017.1350301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alexandra C. Miller
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, USA
- Center for Radiological Research, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Rafael Rivas
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, USA
| | - Robert McMahon
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, USA
| | - Karvelisse Miller
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, USA
| | - Leonard Tesoro
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, USA
| | - Vilmar Villa
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, USA
| | - Daminik Yanushkevich
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, USA
| | - Paul Lison
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, USA
| |
Collapse
|
16
|
The HDAC inhibitor AR42 interacts with pazopanib to kill trametinib/dabrafenib-resistant melanoma cells in vitro and in vivo. Oncotarget 2017; 8:16367-16386. [PMID: 28146421 PMCID: PMC5369969 DOI: 10.18632/oncotarget.14829] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/19/2017] [Indexed: 12/11/2022] Open
Abstract
Studies focused on the killing of activated B-RAF melanoma cells by the histone deacetylase (HDAC) inhibitor AR42. Compared to other tumor cell lines, PDX melanoma isolates were significantly more sensitive to AR42-induced killing. AR42 and the multi-kinase inhibitor pazopanib interacted to activate: an eIF2α–Beclin1 pathway causing autophagosome formation; an eIF2α–DR4/DR5/CD95 pathway; and an eIF2α-dependent reduction in the expression of c-FLIP-s, MCL-1 and BCL-XL. AR42 did not alter basal chaperone activity but increased the ability of pazopanib to inhibit HSP90, HSP70 and GRP78. AR42 and pazopanib caused HSP90/HSP70 dissociation from RAF-1 and B-RAF that resulted in reduced ‘RAF’ expression. The drug combination activated a DNA-damage-ATM-AMPK pathway that was associated with: NFκB activation; reduced mTOR S2448 and ULK-1 S757 phosphorylation; and increased ULK-1 S317 and ATG13 S318 phosphorylation. Knock down of PERK, eIF2α, Beclin1, ATG5 or AMPKα, or expression of IκB S32A S36A, ca-mTOR or TRX, reduced cell killing. AR42, via lysosomal degradation, reduced the protein expression of HDACs 2/5/6/10/11. In vivo, a 3-day exposure of dabrafenib/trametinib resistant melanoma cells to the AR42 pazopanib combination reduced tumor growth and enhanced survival from ∼25 to ∼40 days. Tumor cells that had adapted through therapy exhibited elevated HGF expression and the c-MET inhibitor crizotinib enhanced AR42 pazopanib lethality in this evolved drug-resistant population.
Collapse
|
17
|
Elshafae SM, Kohart NA, Altstadt LA, Dirksen WP, Rosol TJ. The Effect of a Histone Deacetylase Inhibitor (AR-42) on Canine Prostate Cancer Growth and Metastasis. Prostate 2017; 77:776-793. [PMID: 28181686 DOI: 10.1002/pros.23318] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/20/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND Canine prostate cancer (PCa) is an excellent preclinical model for human PCa. AR-42 is a histone deacetylase inhibitor (HDACi) developed at The Ohio State University that inhibits the proliferation of several cancers, including multiple myeloma, lung, and hepatocellular cancer. In this study, we investigated whether AR-42 would prevent or decrease. The growth and metastasis of a canine PCa (Ace-1 cells) to bone in vitro and in vivo. METHODS Proliferation, cell viability, invasion, and metastasis of a canine prostate cancer cell line (Ace-1) were measured following treatment with AR-42. Expression of anoikis resistance, epithelial-to-mesenchymal transition (EMT), and stem cell-related markers were also evaluated. To assess the efficacy of AR-42 on prevention of PCa metastasis to bone, Ace-1 cells were injected in the left cardiac ventricle of nude mice, mice were treated with AR-42, and the incidence and growth of bone metastasis were measured. Bioluminescence was performed to monitor the bone metastases in nude mice. RESULTS AR-42 inhibited the in vitro proliferation of Ace-1 cells in a time- and dose-dependent manner. The IC50 concentration of AR-42 for Ace-1 cells was 0.42 μM after 24 hr of treatment. AR-42 induced apoptosis, decreased cell migration, and increased the stem cell properties of Ace-1 cells in vitro. AR-42 downregulated E-cadherin, N-cadherin, TWIST, MYOF, anoikis resistance, and osteomimicry genes, while it upregulated SNAIL, PTEN, FAK, and ZEB1 gene expression in Ace-1 cells. Importantly, AR-42 decreased the bioluminescence and incidence of bone metastasis in nude mice. In addition, AR-42 induced apoptosis and altered the tumor cell morphology to an irregular cell phenotype with condensed chromatin in the bone metastases. CONCLUSION AR-42 decreased PCa growth and bone metastasis, induced apoptosis, and downregulated osteomimicry genes in PCa cells in the bone microenvironment. Prostate 77:776-793, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Said M Elshafae
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
- Faculty of Veterinary Medicine, Department of Pathology, Benha University, Benha, Egypt
| | - Nicole A Kohart
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Lucas A Altstadt
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Wessel P Dirksen
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Thomas J Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| |
Collapse
|
18
|
Sborov DW, Canella A, Hade EM, Mo X, Khountham S, Wang J, Ni W, Poi M, Coss C, Liu Z, Phelps MA, Mortazavi A, Andritsos L, Baiocchi RA, Christian BA, Benson DM, Flynn J, Porcu P, Byrd JC, Pichiorri F, Hofmeister CC. A phase 1 trial of the HDAC inhibitor AR-42 in patients with multiple myeloma and T- and B-cell lymphomas. Leuk Lymphoma 2017; 58:2310-2318. [PMID: 28270022 DOI: 10.1080/10428194.2017.1298751] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Histone deacetylase inhibitors (HDACi) have proven activity in hematologic malignancies, and their FDA approval in multiple myeloma (MM) and T-cell lymphoma highlights the need for further development of this drug class. We investigated AR-42, an oral pan-HDACi, in a first-in-man phase 1 dose escalation clinical trial. Overall, treatment was well tolerated, no DLTs were evident, and the MTD was defined as 40 mg dosed three times weekly for three weeks of a 28-day cycle. One patient each with MM and mantle cell lymphoma demonstrated disease control for 19 and 27 months (ongoing), respectively. Treatment was associated with reduction of serum CD44, a transmembrane glycoprotein associated with steroid and immunomodulatory drug resistance in MM. Our findings indicate that AR-42 is safe and that further investigation of AR-42 in combination regimens for the treatment of patients with lymphoma and MM is warranted. TRIAL REGISTRATION http://clinicaltrials.gov/ct2/show/NCT01129193.
Collapse
Affiliation(s)
- Douglas W Sborov
- a Division of Hematology, Department of Internal Medicine , University of Utah , Salt Lake City , UT , USA
| | - Alessandro Canella
- b Comprehensive Cancer Center , The Ohio State University , Columbus , OH , USA
| | - Erinn M Hade
- c Center for Biostatistics, Department of Biomedical Informatics , The Ohio State University , Columbus , OH , USA
| | - Xiaokui Mo
- c Center for Biostatistics, Department of Biomedical Informatics , The Ohio State University , Columbus , OH , USA
| | - Soun Khountham
- b Comprehensive Cancer Center , The Ohio State University , Columbus , OH , USA
| | - Jiang Wang
- b Comprehensive Cancer Center , The Ohio State University , Columbus , OH , USA
| | - Wenjun Ni
- d Division of Pharmaceutics, College of Pharmacy , The Ohio State University , Columbus , OH , USA
| | - Ming Poi
- b Comprehensive Cancer Center , The Ohio State University , Columbus , OH , USA.,d Division of Pharmaceutics, College of Pharmacy , The Ohio State University , Columbus , OH , USA
| | - Christopher Coss
- b Comprehensive Cancer Center , The Ohio State University , Columbus , OH , USA.,d Division of Pharmaceutics, College of Pharmacy , The Ohio State University , Columbus , OH , USA
| | - Zhongfa Liu
- d Division of Pharmaceutics, College of Pharmacy , The Ohio State University , Columbus , OH , USA
| | - Mitch A Phelps
- b Comprehensive Cancer Center , The Ohio State University , Columbus , OH , USA.,d Division of Pharmaceutics, College of Pharmacy , The Ohio State University , Columbus , OH , USA
| | - Amir Mortazavi
- e Division of Medical Oncology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Leslie Andritsos
- f Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Robert A Baiocchi
- f Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Beth A Christian
- f Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Don M Benson
- f Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Joseph Flynn
- f Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Pierluigi Porcu
- f Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - John C Byrd
- f Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Flavia Pichiorri
- g Comprehensive Cancer Center , City of Hope , Duarte , CA , USA
| | - Craig C Hofmeister
- f Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| |
Collapse
|
19
|
Murahari S, Jalkanen AL, Kulp SK, Chen CS, Modiano JF, London CA, Kisseberth WC. Sensitivity of osteosarcoma cells to HDAC inhibitor AR-42 mediated apoptosis. BMC Cancer 2017; 17:67. [PMID: 28109246 PMCID: PMC5251323 DOI: 10.1186/s12885-017-3046-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/02/2017] [Indexed: 11/10/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common primary bone tumor in both humans and dogs and is the second leading cause of cancer related deaths in children and young adults. Limb sparing surgery along with chemotherapy has been the mainstay of treatment for OS. Many patients are not cured with current therapies, presenting a real need for developing new treatments. Histone deacetylase (HDAC) inhibitors are a promising new class of anticancer agents. In this study, we investigated the activity of the novel HDAC inhibitor AR-42 in a panel of human and canine OS cell lines. Methods The effect of AR-42 and suberoylanilide hydroxamic acid (SAHA) alone or in combination with doxorubicin on OS cell viability was assessed. Induction of histone acetylation after HDAC inhibitor treatment was confirmed by Western blotting. Drug-induced apoptosis was analyzed by FACS. Apoptosis was assessed further by measuring caspase 3/7 enzymatic activity, nucleosome fragmentation, and caspase cleavage. Effects on Akt signaling were demonstrated by assessing phosphorylation of Akt and downstream signaling molecules. Results AR-42 was a potent inhibitor of cell viability and induced a greater apoptotic response compared to SAHA when used at the same concentrations. Normal osteoblasts were much less sensitive. The combination of AR-42 with doxorubicin resulted in a potent inhibition of cell viability and apparent synergistic effect. Furthermore, we showed that AR-42 and SAHA induced cell death via the activation of the intrinsic mitochondrial pathway through activation of caspase 3/7. This potent apoptotic activity was associated with the greater ability of AR-42 to downregulate survival signaling through Akt. Conclusions These results confirm that AR-42 is a potent inhibitor of HDAC activity and demonstrates its ability to significantly inhibit cell survival through its pleiotropic effects in both canine and human OS cells and suggests that spontaneous OS in pet dogs may be a useful large animal model for preclinical evaluation of HDAC inhibitors. HDAC inhibition in combination with standard doxorubicin treatment offers promising potential for chemotherapeutic intervention in both canine and human OS.
Collapse
Affiliation(s)
- Sridhar Murahari
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Aimee L Jalkanen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Current address: Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Samuel K Kulp
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Ching-Shih Chen
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Jaime F Modiano
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Cheryl A London
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - William C Kisseberth
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
20
|
Kikuchi M, Yamashita K, Waraya M, Minatani N, Ushiku H, Kojo K, Ema A, Kosaka Y, Katoh H, Sengoku N, Enomoto T, Tanino H, Sawanobori M, Watanabe M. Epigenetic regulation of ZEB1-RAB25/ESRP1 axis plays a critical role in phenylbutyrate treatment-resistant breast cancer. Oncotarget 2016; 7:1741-53. [PMID: 26646320 PMCID: PMC4811494 DOI: 10.18632/oncotarget.6480] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/15/2015] [Indexed: 01/14/2023] Open
Abstract
Phenylbutyrate (PB) is a histone deacetylase antagonist that also exhibits antitumor activity. In this study, we used 7 breast cancer cell lines to identify biomarker candidates that predict PB sensitivity in breast cancer. Comprehensive gene expression profiles were compared using microarrays, and the importance of the identified genes to PB sensitivity was confirmed in gene transfection experiments. CRL and MDAMB453 cells were identified as PB-sensitive, while MDAMB231 cells were PB-resistant.RAB25 and ESRP1 were identified as key regulators of PB sensitivity, while ANKD1, ETS1, PTRF, IFI16 and KIAA1199 acted as PB resistance-related genes. Expression of these genes was dramatically altered by DNA demethylation treatments. RAB25 expression inhibited IFI16 and PTRF, while ESRP1 expression suppressed ANKRD1, ETS1, and KIAA1199. Both RAB25 and ESRP1 were suppressed by ZEB1, which was in turn regulated via epigenetic mechanisms. Thus, PB sensitivity is influenced by epigenetic expression alteration of ZEB1. The genes associated with PB sensitivity are downstream targets of ZEB1. Epigenetic regulation of ZEB1 may prove valuable as a critical biomarker for predicting resistance to breast cancer therapies.
Collapse
Affiliation(s)
- Mariko Kikuchi
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Keishi Yamashita
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan.,Epigenetic Treatment Research Group, Japan
| | - Mina Waraya
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Naoko Minatani
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hideki Ushiku
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Ken Kojo
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Akira Ema
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yoshimasa Kosaka
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hiroshi Katoh
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Norihiko Sengoku
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Takumo Enomoto
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hirokazu Tanino
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | | | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| |
Collapse
|
21
|
Henderson SE, Ding LY, Mo X, Bekaii-Saab T, Kulp SK, Chen CS, Huang PH. Suppression of Tumor Growth and Muscle Wasting in a Transgenic Mouse Model of Pancreatic Cancer by the Novel Histone Deacetylase Inhibitor AR-42. Neoplasia 2016; 18:765-774. [PMID: 27889645 PMCID: PMC5126135 DOI: 10.1016/j.neo.2016.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the United States. This study was aimed at evaluating the efficacy of AR-42 (formerly OSU-HDAC42), a novel histone deacetylase (HDAC) inhibitor currently in clinical trials, in suppressing tumor growth and/or cancer-induced muscle wasting in murine models of PDAC. EXPERIMENTAL DESIGN The in vitro antiproliferative activity of AR-42 was evaluated in six human pancreatic cancer cell lines (AsPC-1, COLO-357, PANC-1, MiaPaCa-2, BxPC-3, SW1990). AsPC-1 subcutaneous xenograft and transgenic KPfl/flC (LSL-KrasG12D;Trp53flox/flox;Pdx-1-Cre) mouse models of pancreatic cancer were used to evaluate the in vivo efficacy of AR-42 in suppressing tumor growth and/or muscle wasting. RESULTS Growth suppression in AR-42-treated cells was observed in all six human pancreatic cancer cell lines with dose-dependent modulation of proliferation and apoptotic markers, which was associated with the hallmark features of HDAC inhibition, including p21 upregulation and histone H3 hyperacetylation. Oral administration of AR-42 at 50 mg/kg every other day resulted in suppression of tumor burden in the AsPC-1 xenograft and KPfl/flC models by 78% and 55%, respectively, at the end of treatment. Tumor suppression was associated with HDAC inhibition, increased apoptosis, and inhibition of proliferation. Additionally, AR-42 as a single agent preserved muscle size and increased grip strength in KPfl/flC mice. Finally, the combination of AR-42 and gemcitabine in transgenic mice demonstrated a significant increase in survival than either agent alone. CONCLUSIONS These results suggest that AR-42 represents a therapeutically promising strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Sally E Henderson
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1925 Coffey Rd., Columbus, OH, 43210, USA.
| | - Li-Yun Ding
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, 1800 Cannon Drive, Columbus, OH, 43210, USA.
| | - Tanios Bekaii-Saab
- Division of Medical Oncology, Department of Internal Medicine, Mayo Clinic, 5777 East Mayo Boulevard, Phoenix, AZ, 85054, USA.
| | - Samuel K Kulp
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, 500 West 12th Ave, Columbus, OH, 43210, USA.
| | - Ching-Shih Chen
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, 500 West 12th Ave, Columbus, OH, 43210, USA; Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec. 2, Taipei City, 115, Taiwan.
| | - Po-Hsien Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
| |
Collapse
|
22
|
Kgatle MM, Kalla AA, Islam MM, Sathekge M, Moorad R. Prostate Cancer: Epigenetic Alterations, Risk Factors, and Therapy. Prostate Cancer 2016; 2016:5653862. [PMID: 27891254 PMCID: PMC5116340 DOI: 10.1155/2016/5653862] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the most prevalent urological cancer that affects aging men in South Africa, and mechanisms underlying prostate tumorigenesis remain elusive. Research advancements in the field of PCa and epigenetics have allowed for the identification of specific alterations that occur beyond genetics but are still critically important in the pathogenesis of tumorigenesis. Anomalous epigenetic changes associated with PCa include histone modifications, DNA methylation, and noncoding miRNA. These mechanisms regulate and silence hundreds of target genes including some which are key components of cellular signalling pathways that, when perturbed, promote tumorigenesis. Elucidation of mechanisms underlying epigenetic alterations and the manner in which these mechanisms interact in regulating gene transcription in PCa are an unmet necessity that may lead to novel chemotherapeutic approaches. This will, therefore, aid in developing combination therapies that will target multiple epigenetic pathways, which can be used in conjunction with the current conventional PCa treatment.
Collapse
Affiliation(s)
- Mankgopo M. Kgatle
- Division of Hepatology and Liver Research, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Observatory, Western Cape 7925, South Africa
| | - Asgar A. Kalla
- Division of Rheumatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Observatory, Western Cape 7925, South Africa
| | - Muhammed M. Islam
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Western Cape 7925, South Africa
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Private Bag X169, Pretoria, Gauteng 0001, South Africa
| | - Razia Moorad
- Department of Surgery, Faculty of Health Science, University of Cape Town and Groote Schuur Hospital, Observatory, Western Cape 7925, South Africa
| |
Collapse
|
23
|
Canella A, Cordero Nieves H, Sborov DW, Cascione L, Radomska HS, Smith E, Stiff A, Consiglio J, Caserta E, Rizzotto L, Zanesi N, Stefano V, Kaur B, Mo X, Byrd JC, Efebera YA, Hofmeister CC, Pichiorri F. HDAC inhibitor AR-42 decreases CD44 expression and sensitizes myeloma cells to lenalidomide. Oncotarget 2016; 6:31134-50. [PMID: 26429859 PMCID: PMC4741593 DOI: 10.18632/oncotarget.5290] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/14/2015] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy of plasma cells in the bone marrow. Despite multiple treatment options, MM is inevitably associated with drug resistance and poor outcomes. Histone deacetylase inhibitors (HDACi's) are promising novel chemotherapeutics undergoing evaluation in clinical trials for the potential treatment of patients with MM. Although in preclinical studies HDACi's have proven anti-myeloma activity, but in the clinic single-agent HDACi treatments have been limited due to low tolerability. Improved clinical outcomes were reported only when HDACi's were combined with other drugs. Here, we show that a novel pan-HDACi AR-42 downregulates CD44, a glycoprotein that has been associated with lenalidomide and dexamethasone resistance in myeloma both in vitro and in vivo. We also show that this CD44 downregulation is in part mediated by miR-9–5p, targeting insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), which directly binds to CD44 mRNA and increases its stability. Importantly, we also demonstrate that AR-42 enhances anti-myeloma activity of lenalidomide in primary MM cells isolated from lenalidomide resistant patients and in in vivo MM mouse model. Thus, our findings shed light on potential novel combinatorial therapeutic approaches modulating CD44 expression, which may help overcome lenalidomide resistance in myeloma patients.
Collapse
Affiliation(s)
- Alessandro Canella
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Hector Cordero Nieves
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Douglas W Sborov
- Department of Internal Medicine, Oncology/Hematology Fellowship, The Ohio State University, Columbus, OH, USA
| | - Luciano Cascione
- Lymphoma & Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, Switzerland
| | - Hanna S Radomska
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Emily Smith
- Department of Internal Medicine, Biomedical Sciences Graduate Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Andrew Stiff
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jessica Consiglio
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Present Address: Sanford Burnham Prebys Medical Discovery Insitute, La Jolla, CA, USA
| | - Enrico Caserta
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Lara Rizzotto
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Nicola Zanesi
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Volinia Stefano
- Department of Internal Medicine, Biosystems Analysis, LTTA, Department of Morphology, Surgery and Experimental Medicine, Università degli Studi, Ferrara, Italy
| | - Balveen Kaur
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - John C Byrd
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Yvonne A Efebera
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Craig C Hofmeister
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Flavia Pichiorri
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
24
|
Cheng H, Xie Z, Jones WP, Wei XT, Liu Z, Wang D, Kulp SK, Wang J, Coss CC, Chen CS, Marcucci G, Garzon R, Covey JM, Phelps MA, Chan KK. Preclinical Pharmacokinetics Study of R- and S-Enantiomers of the Histone Deacetylase Inhibitor, AR-42 (NSC 731438), in Rodents. AAPS J 2016; 18:737-45. [PMID: 26943915 PMCID: PMC5256597 DOI: 10.1208/s12248-016-9876-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/20/2016] [Indexed: 01/07/2023] Open
Abstract
AR-42, a new orally bioavailable, potent, hydroxamate-tethered phenylbutyrate class I/IIB histone deacetylase inhibitor currently is under evaluation in phase 1 and 2 clinical trials and has demonstrated activity in both hematologic and solid tumor malignancies. This report focuses on the preclinical characterization of the pharmacokinetics of AR-42 in mice and rats. A high-performance liquid chromatography-tandem mass spectrometry assay has been developed and applied to the pharmacokinetic study of the more active stereoisomer, S-AR-42, when administered via intravenous and oral routes in rodents, including plasma, bone marrow, and spleen pharmacokinetics (PK) in CD2F1 mice and plasma PK in F344 rats. Oral bioavailability was estimated to be 26 and 100% in mice and rats, respectively. R-AR-42 was also evaluated intravenously in rats and was shown to display different pharmacokinetics with a much shorter terminal half-life compared to that of S-AR-42. Renal clearance was a minor elimination pathway for parental S-AR-42. Oral administration of S-AR-42 to tumor-bearing mice demonstrated high uptake and exposure of the parent drug in the lymphoid tissues, spleen, and bone marrow. This is the first report of the pharmacokinetics of this novel agent, which is now in early phase clinical trials.
Collapse
Affiliation(s)
- Hao Cheng
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA
| | - Zhiliang Xie
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA
| | - William P Jones
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA
| | | | - Zhongfa Liu
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA
| | - Dasheng Wang
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA
| | - Samuel K Kulp
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA
| | - Jiang Wang
- Comprehensive Cancer, The Ohio State University, Columbus, Ohio, USA
| | - Christopher C Coss
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA
| | - Ching-Shih Chen
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA
| | - Guido Marcucci
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA
- Comprehensive Cancer, The Ohio State University, Columbus, Ohio, USA
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Gehr Family Center For Leukemia Research Hematologist Malignancies Institute City of Hope, Duarte, CA, 90010, USA
| | - Ramiro Garzon
- Comprehensive Cancer, The Ohio State University, Columbus, Ohio, USA
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Mitch A Phelps
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA.
- Comprehensive Cancer, The Ohio State University, Columbus, Ohio, USA.
| | - Kenneth K Chan
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA.
- Comprehensive Cancer, The Ohio State University, Columbus, Ohio, USA.
- The National Cancer Institute, Rockville, Maryland, USA.
| |
Collapse
|
25
|
Kaushik D, Vashistha V, Isharwal S, Sediqe SA, Lin MF. Histone deacetylase inhibitors in castration-resistant prostate cancer: molecular mechanism of action and recent clinical trials. Ther Adv Urol 2015; 7:388-95. [PMID: 26622323 DOI: 10.1177/1756287215597637] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Historically, androgen-deprivation therapy has been the cornerstone for treatment of metastatic prostate cancer. Unfortunately, nearly majority patients with prostate cancer transition to the refractory state of castration-resistant prostate cancer (CRPC). Newer therapeutic agents are needed for treating these CRPC patients that are unresponsive to androgen deprivation and/or chemotherapy. The histone deacetylase (HDAC) family of enzymes limits the expression of genomic regions by improving binding between histones and the DNA backbone. Modulating the role of HDAC enzymes can alter the cell's regulation of proto-oncogenes and tumor suppressor genes, thereby regulating potential neoplastic proliferation. As a result, histone deacetylase inhibitors (HDACi) are now being evaluated for CRPC or chemotherapy-resistant prostate cancer due to their effects on the expression of the androgen receptor gene. In this paper, we review the molecular mechanism and functional target molecules of different HDACi as applicable to CRPC as well as describe recent and current clinical trials involving HDACi in prostate cancer. To date, four HDAC classes comprising 18 isoenzymes have been identified. Recent clinical trials of vorinostat, romidepsin, and panobinostat have provided cautious optimism towards improved outcomes using these novel therapeutic agents for CPRC patients. Nevertheless, no phase III trial has been conducted to cement one of these drugs as an adjunct to androgen-deprivation therapy. Consequently, further investigation is necessary to delineate the benefits and drawbacks of these medications.
Collapse
Affiliation(s)
- Dharam Kaushik
- Department of Urology, University of Texas Health Science Center and Cancer Therapy and Research Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Vishal Vashistha
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sudhir Isharwal
- Section of Urology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Soud A Sediqe
- Department of Internal Medicine, MetroHealth Medical Center, Cleveland, OH, USA
| | - Ming-Fong Lin
- Section of Urology, and Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
26
|
Tseng YC, Kulp SK, Lai IL, Hsu EC, He WA, Frankhouser DE, Yan PS, Mo X, Bloomston M, Lesinski GB, Marcucci G, Guttridge DC, Bekaii-Saab T, Chen CS. Preclinical Investigation of the Novel Histone Deacetylase Inhibitor AR-42 in the Treatment of Cancer-Induced Cachexia. J Natl Cancer Inst 2015; 107:djv274. [PMID: 26464423 DOI: 10.1093/jnci/djv274] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 08/31/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer cachexia is a debilitating condition that impacts patient morbidity, mortality, and quality of life and for which effective therapies are lacking. The anticachectic activity of the novel HDAC inhibitor AR-42 was investigated in murine models of cancer cachexia. METHODS The effects of AR-42 on classic features of cachexia were evaluated in the C-26 colon adenocarcinoma and Lewis lung carcinoma (LLC) models. Effects on survival in comparison with approved HDAC inhibitors (vorinostat, romidepsin) were determined. The muscle metabolome and transcriptome (by RNA-seq), as well as serum cytokine profile, were evaluated. Data were analyzed using mixed effects models, analysis of variance, or log-rank tests. All statistical tests were two-sided. RESULTS In the C-26 model, orally administered AR-42 preserved body weight (23.9±2.6 grams, AR-42-treated; 20.8±1.3 grams, vehicle-treated; P = .005), prolonged survival (P < .001), prevented reductions in muscle and adipose tissue mass, muscle fiber size, and muscle strength and restored intramuscular mRNA expression of the E3 ligases MuRF1 and Atrogin-1 to basal levels (n = 8). This anticachectic effect, confirmed in the LLC model, was not observed after treatment with vorinostat and romidepsin. AR-42 suppressed tumor-induced changes in inflammatory cytokine production and multiple procachexia drivers (IL-6, IL-6Rα, leukemia inhibitory factor, Foxo1, Atrogin-1, MuRF1, adipose triglyceride lipase, uncoupling protein 3, and myocyte enhancer factor 2c). Metabolomic analysis revealed cachexia-associated changes in glycolysis, glycogen synthesis, and protein degradation in muscle, which were restored by AR-42 to a state characteristic of tumor-free mice. CONCLUSIONS These findings support further investigation of AR-42 as part of a comprehensive therapeutic strategy for cancer cachexia.
Collapse
Affiliation(s)
- Yu-Chou Tseng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy (YCT, SKK, ILL, ECH, CSC), Department of Molecular Virology, Immunology, and Medical Genetics (WAH, DCG), Department of Surgery (MB), Department of Internal Medicine (GBL, GM, TBS), and Center for Biostatistics (XM), College of Medicine, and Genomics Shared Resource (DEF, PSY), The Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Institute of Basic Medical Sciences, National Cheng-Kung University, Tainan, Taiwan (CSC); Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan (CSC)
| | - Samuel K Kulp
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy (YCT, SKK, ILL, ECH, CSC), Department of Molecular Virology, Immunology, and Medical Genetics (WAH, DCG), Department of Surgery (MB), Department of Internal Medicine (GBL, GM, TBS), and Center for Biostatistics (XM), College of Medicine, and Genomics Shared Resource (DEF, PSY), The Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Institute of Basic Medical Sciences, National Cheng-Kung University, Tainan, Taiwan (CSC); Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan (CSC)
| | - I-Lu Lai
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy (YCT, SKK, ILL, ECH, CSC), Department of Molecular Virology, Immunology, and Medical Genetics (WAH, DCG), Department of Surgery (MB), Department of Internal Medicine (GBL, GM, TBS), and Center for Biostatistics (XM), College of Medicine, and Genomics Shared Resource (DEF, PSY), The Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Institute of Basic Medical Sciences, National Cheng-Kung University, Tainan, Taiwan (CSC); Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan (CSC)
| | - En-Chi Hsu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy (YCT, SKK, ILL, ECH, CSC), Department of Molecular Virology, Immunology, and Medical Genetics (WAH, DCG), Department of Surgery (MB), Department of Internal Medicine (GBL, GM, TBS), and Center for Biostatistics (XM), College of Medicine, and Genomics Shared Resource (DEF, PSY), The Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Institute of Basic Medical Sciences, National Cheng-Kung University, Tainan, Taiwan (CSC); Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan (CSC)
| | - Wei A He
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy (YCT, SKK, ILL, ECH, CSC), Department of Molecular Virology, Immunology, and Medical Genetics (WAH, DCG), Department of Surgery (MB), Department of Internal Medicine (GBL, GM, TBS), and Center for Biostatistics (XM), College of Medicine, and Genomics Shared Resource (DEF, PSY), The Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Institute of Basic Medical Sciences, National Cheng-Kung University, Tainan, Taiwan (CSC); Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan (CSC)
| | - David E Frankhouser
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy (YCT, SKK, ILL, ECH, CSC), Department of Molecular Virology, Immunology, and Medical Genetics (WAH, DCG), Department of Surgery (MB), Department of Internal Medicine (GBL, GM, TBS), and Center for Biostatistics (XM), College of Medicine, and Genomics Shared Resource (DEF, PSY), The Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Institute of Basic Medical Sciences, National Cheng-Kung University, Tainan, Taiwan (CSC); Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan (CSC)
| | - Pearlly S Yan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy (YCT, SKK, ILL, ECH, CSC), Department of Molecular Virology, Immunology, and Medical Genetics (WAH, DCG), Department of Surgery (MB), Department of Internal Medicine (GBL, GM, TBS), and Center for Biostatistics (XM), College of Medicine, and Genomics Shared Resource (DEF, PSY), The Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Institute of Basic Medical Sciences, National Cheng-Kung University, Tainan, Taiwan (CSC); Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan (CSC)
| | - Xiaokui Mo
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy (YCT, SKK, ILL, ECH, CSC), Department of Molecular Virology, Immunology, and Medical Genetics (WAH, DCG), Department of Surgery (MB), Department of Internal Medicine (GBL, GM, TBS), and Center for Biostatistics (XM), College of Medicine, and Genomics Shared Resource (DEF, PSY), The Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Institute of Basic Medical Sciences, National Cheng-Kung University, Tainan, Taiwan (CSC); Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan (CSC)
| | - Mark Bloomston
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy (YCT, SKK, ILL, ECH, CSC), Department of Molecular Virology, Immunology, and Medical Genetics (WAH, DCG), Department of Surgery (MB), Department of Internal Medicine (GBL, GM, TBS), and Center for Biostatistics (XM), College of Medicine, and Genomics Shared Resource (DEF, PSY), The Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Institute of Basic Medical Sciences, National Cheng-Kung University, Tainan, Taiwan (CSC); Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan (CSC)
| | - Gregory B Lesinski
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy (YCT, SKK, ILL, ECH, CSC), Department of Molecular Virology, Immunology, and Medical Genetics (WAH, DCG), Department of Surgery (MB), Department of Internal Medicine (GBL, GM, TBS), and Center for Biostatistics (XM), College of Medicine, and Genomics Shared Resource (DEF, PSY), The Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Institute of Basic Medical Sciences, National Cheng-Kung University, Tainan, Taiwan (CSC); Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan (CSC)
| | - Guido Marcucci
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy (YCT, SKK, ILL, ECH, CSC), Department of Molecular Virology, Immunology, and Medical Genetics (WAH, DCG), Department of Surgery (MB), Department of Internal Medicine (GBL, GM, TBS), and Center for Biostatistics (XM), College of Medicine, and Genomics Shared Resource (DEF, PSY), The Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Institute of Basic Medical Sciences, National Cheng-Kung University, Tainan, Taiwan (CSC); Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan (CSC)
| | - Denis C Guttridge
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy (YCT, SKK, ILL, ECH, CSC), Department of Molecular Virology, Immunology, and Medical Genetics (WAH, DCG), Department of Surgery (MB), Department of Internal Medicine (GBL, GM, TBS), and Center for Biostatistics (XM), College of Medicine, and Genomics Shared Resource (DEF, PSY), The Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Institute of Basic Medical Sciences, National Cheng-Kung University, Tainan, Taiwan (CSC); Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan (CSC)
| | - Tanios Bekaii-Saab
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy (YCT, SKK, ILL, ECH, CSC), Department of Molecular Virology, Immunology, and Medical Genetics (WAH, DCG), Department of Surgery (MB), Department of Internal Medicine (GBL, GM, TBS), and Center for Biostatistics (XM), College of Medicine, and Genomics Shared Resource (DEF, PSY), The Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Institute of Basic Medical Sciences, National Cheng-Kung University, Tainan, Taiwan (CSC); Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan (CSC).
| | - Ching-Shih Chen
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy (YCT, SKK, ILL, ECH, CSC), Department of Molecular Virology, Immunology, and Medical Genetics (WAH, DCG), Department of Surgery (MB), Department of Internal Medicine (GBL, GM, TBS), and Center for Biostatistics (XM), College of Medicine, and Genomics Shared Resource (DEF, PSY), The Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Institute of Basic Medical Sciences, National Cheng-Kung University, Tainan, Taiwan (CSC); Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan (CSC).
| |
Collapse
|
27
|
Kong Y, Barisone GA, Sidhu RS, O'Donnell RT, Tuscano JM. Efficacy of Combined Histone Deacetylase and Checkpoint Kinase Inhibition in a Preclinical Model of Human Burkitt Lymphoma. Mol Med 2015; 21:824-832. [PMID: 26322845 DOI: 10.2119/molmed.2015.00032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/20/2015] [Indexed: 01/19/2023] Open
Abstract
Checkpoint kinase inhibition has been studied as a way of enhancing the effectiveness of DNA-damaging agents. More recently, histone deacetylase inhibitors have shown efficacy in several cancers, including non-Hodgkin lymphoma. To evaluate the effectiveness of this combination for the treatment of lymphoma, we examined the combination of AR42, a histone deacetylase inhibitor, and checkpoint kinase 2 (CHEK2) inhibitor II in vitro and in vivo. The combination resulted in up to 10-fold increase in potency in five Burkitt lymphoma cell lines when compared with either drug alone. Both drugs inhibited tumor progression in xenograft models, but the combination was more effective than either agent alone, resulting in regression of established tumors. No toxicity was observed. These results suggest that the combination of histone deacetylase inhibition and checkpoint kinase inhibition represent an effective and nontoxic treatment option that should be further explored in preclinical and clinical studies.
Collapse
Affiliation(s)
- YanGuo Kong
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, United States of America.,Department of Neurosurgery, Peking University Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Gustavo A Barisone
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Ranjit S Sidhu
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Robert T O'Donnell
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, United States of America.,Department of Veterans Affairs, Northern California Healthcare System, Sacramento, California, United States of America
| | - Joseph M Tuscano
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, United States of America.,Department of Veterans Affairs, Northern California Healthcare System, Sacramento, California, United States of America
| |
Collapse
|
28
|
Kusaczuk M, Krętowski R, Bartoszewicz M, Cechowska-Pasko M. Phenylbutyrate-a pan-HDAC inhibitor-suppresses proliferation of glioblastoma LN-229 cell line. Tumour Biol 2015; 37:931-42. [PMID: 26260271 PMCID: PMC4841856 DOI: 10.1007/s13277-015-3781-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
Phenylbutyrate (PBA) is a histone deacetylase inhibitor known for inducing differentiation, cell cycle arrest, and apoptosis in various cancer cells. However, the effects of PBA seem to be very cell-type-specific and sometimes limited exclusively to a particular cell line. Here, we provided novel information concerning cellular effects of PBA in LN-229 and LN-18 glioblastoma cell lines which have not been previously evaluated in context of PBA exposure. We found that LN-18 cells were PBA-insensitive even at high concentrations of PBA. In contrary, in LN-229 cells, 5 and 15 mmol/L PBA inhibited cell growth and proliferation mainly by causing prominent changes in cell morphology and promoting S- and G2/M-dependent cell cycle arrest. Moreover, we observed nearly a 3-fold increase in apoptosis of LN-229 cells treated with 15 mmol/L PBA, in comparison to control. Furthermore, PBA was found to up-regulate the expression of p21 whereas p53 expression level remained unchanged. We also showed that PBA down-regulated the expression of the anti-apoptotic genes Bcl-2/Bcl-XL, however without affecting the expression of pro-apoptotic Bax and Bim. Taken together, our results suggest that PBA might potentially be considered as an agent slowing-down the progress of glioblastoma; however, further analyses are still needed to comprehensively resolve the nature of its activity in this type of cancer.
Collapse
Affiliation(s)
- Magdalena Kusaczuk
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza 2A, 15-222, Białystok, Poland.
| | - Rafał Krętowski
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza 2A, 15-222, Białystok, Poland
| | - Marek Bartoszewicz
- Department of Microbiology, Institute of Biology, University of Białystok, Białystok, Poland
| | - Marzanna Cechowska-Pasko
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza 2A, 15-222, Białystok, Poland
| |
Collapse
|
29
|
Li DR, Zhang H, Peek E, Wang S, Du L, Li G, Chin AI. Synergy of Histone-Deacetylase Inhibitor AR-42 with Cisplatin in Bladder Cancer. J Urol 2015; 194:547-55. [PMID: 25748177 DOI: 10.1016/j.juro.2015.02.2918] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 01/30/2023]
Abstract
PURPOSE Cisplatin based chemotherapy regimens form the basis of systemic bladder cancer treatment, although they show limited response rates and efficacy. Recent molecular analysis of bladder cancer revealed a high incidence of mutations in chromatin regulatory genes, suggesting a therapeutic avenue for histone deacetylase inhibitors. We investigated the ability of the novel histone deacetylase inhibitor AR-42 to synergize with cisplatin in preclinical models of bladder cancer. MATERIALS AND METHODS We assessed the ability of the pan-histone deacetylase inhibitor AR-42 with and without cisplatin to destroy bladder cancer cells by survival and apoptosis assays in vitro, and by growth and differentiation in an in vivo xenograft model. We also assessed the response to the bladder cancer stem cell population by examining the effect of AR-42 on the CD44(+)CD49f(+) population with and without cisplatin. Synergy was calculated using combination indexes. RESULTS The AR-42 and cisplatin combination synergistically destroyed bladder cancer cells via apoptosis and it influenced tumor growth and differentiation in vivo. When tested in the CD44(+)CD49f(+) bladder cancer stem cell population, AR-42 showed greater efficacy with and without cisplatin. CONCLUSIONS AR-42 may be an attractive novel histone deacetylase inhibitor with activity against bladder cancer. Its efficacy in bladder cancer stem cells and synergy with cisplatin warrant further clinical investigation. Our in vitro and animal model studies provide preclinical evidence that AR-42 may be administered in conjunction with cisplatin based chemotherapy to improve the treatment of bladder cancer in patients.
Collapse
Affiliation(s)
- David R Li
- Department of Urology, University of California-Los Angeles, Los Angeles, California
| | - Hanwei Zhang
- Department of Urology, University of California-Los Angeles, Los Angeles, California; Eli and Edythe Broad Stem Cell Research Center, University of California-Los Angeles, Los Angeles, California
| | - Elizabeth Peek
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California
| | - Song Wang
- Urology Center, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Lin Du
- Department of Biostatistics, University of California-Los Angeles, Los Angeles, California
| | - Gang Li
- Department of Biostatistics, University of California-Los Angeles, Los Angeles, California; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, California
| | - Arnold I Chin
- Department of Urology, University of California-Los Angeles, Los Angeles, California; Eli and Edythe Broad Stem Cell Research Center, University of California-Los Angeles, Los Angeles, California; Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, California.
| |
Collapse
|
30
|
Kong Y, Barisone GA, Abuhay M, O’Donnell RT, Buksh Z, Yousefian F, Tuscano JM. Histone deacetylase inhibition enhances the lymphomacidal activity of the anti-CD22 monoclonal antibody HB22.7. Leuk Res 2014; 38:1320-6. [DOI: 10.1016/j.leukres.2014.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/20/2014] [Accepted: 08/26/2014] [Indexed: 11/28/2022]
|
31
|
Guzman ML, Yang N, Sharma KK, Balys M, Corbett CA, Jordan CT, Becker MW, Steidl U, Abdel-Wahab O, Levine RL, Marcucci G, Roboz GJ, Hassane DC. Selective activity of the histone deacetylase inhibitor AR-42 against leukemia stem cells: a novel potential strategy in acute myelogenous leukemia. Mol Cancer Ther 2014; 13:1979-90. [PMID: 24934933 PMCID: PMC4383047 DOI: 10.1158/1535-7163.mct-13-0963] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most patients with acute myelogenous leukemia (AML) relapse and die of their disease. Increasing evidence indicates that AML relapse is driven by the inability to eradicate leukemia stem cells (LSC). Thus, it is imperative to identify novel therapies that can ablate LSCs. Using an in silico gene expression-based screen for compounds evoking transcriptional effects similar to the previously described anti-LSC agent parthenolide, we identified AR-42 (OSU-HDAC42), a novel histone deacetylase inhibitor that is structurally similar to phenylbutyrate, but with improved activity at submicromolar concentrations. Here, we report that AR-42 induces NF-κB inhibition, disrupts the ability of Hsp90 to stabilize its oncogenic clients, and causes potent and specific cell death of LSCs but not normal hematopoietic stem and progenitor cells. Unlike parthenolide, the caspasedependent apoptosis caused by AR-42 occurs without activation of Nrf-2-driven cytoprotective pathways. As AR-42 is already being tested in early clinical trials, we expect that our results can be extended to the clinic.
Collapse
Affiliation(s)
- Monica L Guzman
- Division of Hematology/Medical Oncology, Department of Medicine and
| | - Neng Yang
- Division of Hematology/Medical Oncology, Department of Medicine and
| | - Krishan K Sharma
- Division of Hematology/Medical Oncology, Department of Medicine and
| | - Marlene Balys
- James P. Wilmot Cancer Center, University of Rochester School of Medicine, Rochester
| | - Cheryl A Corbett
- James P. Wilmot Cancer Center, University of Rochester School of Medicine, Rochester
| | - Craig T Jordan
- Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Michael W Becker
- James P. Wilmot Cancer Center, University of Rochester School of Medicine, Rochester
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Ross L Levine
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Guido Marcucci
- Division of Hematology, The Comprehensive Cancer Center, College of Pharmacy, Ohio State University, Columbus, Ohio
| | - Gail J Roboz
- Division of Hematology/Medical Oncology, Department of Medicine and
| | - Duane C Hassane
- Institute of Computational Biomedicine, Weill Medical College of Cornell University, New York;
| |
Collapse
|
32
|
Knoff J, Yang B, Hung CF, Wu TC. Cervical Cancer: Development of Targeted Therapies Beyond Molecular Pathogenesis. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2014; 3:18-32. [PMID: 24533233 PMCID: PMC3921905 DOI: 10.1007/s13669-013-0068-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It is well known that human papillomavirus (HPV) is the causative agent of cervical cancer. The integration of HPV genes into the host genome causes the upregulation of E6 and E7 oncogenes. E6 and E7 proteins inactivate and degrade tumor suppressors p53 and retinoblastoma, respectively, leading to malignant progression. HPV E6 and E7 antigens are ideal targets for the development of therapies for cervical cancer and precursor lesions because they are constitutively expressed in infected cells and malignant tumors but not in normal cells and they are essential for cell immortalization and transformation. Immunotherapies are being developed to target E6/E7 by eliciting antigen-specific immune responses. siRNA technologies target E6/E7 by modulating the expression of the oncoproteins. Proteasome inhibitors and histone deacetylase inhibitors are being developed to indirectly target E6/E7 by interfering with their oncogenic activities. The ultimate goal for HPV-targeted therapies is the progression through clinical trials to commercialization.
Collapse
Affiliation(s)
- Jayne Knoff
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Benjamin Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - T.-C. Wu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Obstetrics and Gynecology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
33
|
Omar HA, Arafa ESA, Maghrabi IA, Weng JR. Sensitization of Hepatocellular Carcinoma Cells to Apo2L/TRAIL by a Novel Akt/NF-κB Signalling Inhibitor. Basic Clin Pharmacol Toxicol 2014; 114:464-71. [DOI: 10.1111/bcpt.12190] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/30/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Hany A. Omar
- Division of Medicinal Chemistry; College of Pharmacy; The Ohio State University; Columbus OH USA
- Department of Pharmacology; Faculty of Pharmacy; Beni-Suef University; Beni-Suef Egypt
- Department of Pharmacology; College of Pharmacy; University of Sharjah; Sharjah United Arab Emirates
| | - El-Shaimaa A. Arafa
- Department of Pharmacology; Faculty of Pharmacy; Beni-Suef University; Beni-Suef Egypt
| | - Ibrahim A. Maghrabi
- Department of Clinical Pharmacy; College of Pharmacy; Taif University; Taif Saudi Arabia
| | - Jing-Ru Weng
- Department of Biological Science and Technology; China Medical University; Taichung Taiwan
| |
Collapse
|
34
|
Lin ZZ, Chou CH, Cheng AL, Liu WL, Chia-Hsien Cheng J. Radiosensitization by combining an aurora kinase inhibitor with radiotherapy in hepatocellular carcinoma through cell cycle interruption. Int J Cancer 2014; 135:492-501. [PMID: 24375034 DOI: 10.1002/ijc.28682] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/04/2013] [Accepted: 11/19/2013] [Indexed: 12/12/2022]
Abstract
Radiotherapy has been integrated into the multimodal treatment of hepatocellular carcinoma (HCC), especially of localized hepatic tumor(s) refractory to conventional treatment. However, tumor control remains unsatisfactory mainly because of insufficient dose, and sublethally irradiated tumor may associate with metastasis. Our aim was to assess the effect of combining a molecularly targeted Aurora kinase inhibitor, VE-465, with radiotherapy in in vitro and in vivo models of human HCC. Human HCC cell lines (Huh7 and PLC-5) were used to evaluate the in vitro synergism of combining VE-465 with irradiation. Flow cytometry analyzed the cell cycle changes, while western blot investigated the protein expressions after the combined treatment. Severe combined immunodeficient (SCID) mice bearing ectopic and orthotopic HCC xenografts were treated with VE-465 and/or radiotherapy for the in vivo response. VE-465 significantly enhanced radiation-induced death in HCC cells by a mechanism involving the enhanced inhibition of histone H3 phosphorylation and interruption of cell cycle change. In SCID, mice bearing ectopic HCC xenografts, pretreatment with VE-465 (20 mg/kg/day × 9 days) significantly enhanced the tumor-suppressive effect of radiotherapy (5 Gy/day × 5 days) by 54.0%. A similar combinatorial effect of VE-465 and radiotherapy was observed in an orthotopic model of Huh7 tumor growth by 17.2%. In the orthotopic Huh7 xenografts, VE-465 significantly enhanced radiation-induced tumor growth suppression by a mechanism involving the increased apoptosis. VE-465 is a potent inhibitor of Aurora kinase with therapeutic value as a radiosensitizer of HCC.
Collapse
Affiliation(s)
- Zhong-Zhe Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Oncology, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | | | | | | | | |
Collapse
|
35
|
Lee SY, Huang Z, Kang TH, Soong RS, Knoff J, Axenfeld E, Wang C, Alvarez RD, Chen CS, Hung CF, Wu TC. Histone deacetylase inhibitor AR-42 enhances E7-specific CD8⁺ T cell-mediated antitumor immunity induced by therapeutic HPV DNA vaccination. J Mol Med (Berl) 2013; 91:1221-31. [PMID: 23715898 PMCID: PMC3783646 DOI: 10.1007/s00109-013-1054-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED We have previously created a potent DNA vaccine encoding calreticulin linked to the human papillomavirus (HPV) oncogenic protein E7 (CRT/E7). While treatment with the CRT/E7 DNA vaccine generates significant tumor-specific immune responses in vaccinated mice, the potency with the DNA vaccine could potentially be improved by co-administration of a histone deacetylase inhibitor (HDACi) as HDACi has been shown to increase the expression of MHC class I and II molecules. Thus, we aimed to determine whether co-administration of a novel HDACi, AR-42, with therapeutic HPV DNA vaccines could improve the activation of HPV antigen-specific CD8(+) T cells, resulting in potent therapeutic antitumor effects. To do so, HPV-16 E7-expressing murine TC-1 tumor-bearing mice were treated orally with AR-42 and/or CRT/E7 DNA vaccine via gene gun. Mice were monitored for E7-specific CD8(+) T cell immune responses and antitumor effects. TC-1 tumor-bearing mice treated with AR-42 and CRT/E7 DNA vaccine experienced longer survival, decreased tumor growth, and enhanced E7-specific immune response compared to mice treated with AR-42 or CRT/E7 DNA vaccine alone. Additionally, treatment of TC-1 cells with AR-42 increased the surface expression of MHC class I molecules and increased the susceptibility of tumor cells to the cytotoxicity of E7-specific T cells. This study indicates the ability of AR-42 to significantly enhance the potency of the CRT/E7 DNA vaccine by improving tumor-specific immune responses and antitumor effects. Both AR-42 and CRT/E7 DNA vaccines have been used in independent clinical trials; the current study serves as foundation for future clinical trials combining both treatments in cervical cancer therapy. KEY MESSAGE AR-42, a novel HDAC inhibitor, enhances potency of therapeutic HPV DNA vaccines AR-42 treatment leads to strong E7-specific CD8+ T cell immune responses AR-42 improves tumor-specific immunity and antitumor effects elicited by HPV DNA vaccine AR-42 is more potent than clinically available HDACi in combination with HPV DNA vaccine.
Collapse
Affiliation(s)
- Sung Yong Lee
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Internal Medicine, Korea University Medical Center, Seoul, South Korea
| | - Zhuomin Huang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Gynecology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Tae Heung Kang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ruey-Shyang Soong
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of General Surgery, Chang Gung Memorial Hospital at Keelung, Taiwan
| | - Jayne Knoff
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ellen Axenfeld
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Chenguang Wang
- Department of Biostatistics and Bioinformatics, Sidney Kimmel Cancer Comprehensive Cancer Center Johns Hopkins University, Baltimore, MD, USA
| | - Ronald D. Alvarez
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham
| | - Ching-Shih Chen
- Division of Medical Chemistry, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - T.-C. Wu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
36
|
Omar HA, Arafa ESA, Salama SA, Arab HH, Wu CH, Weng JR. OSU-A9 inhibits angiogenesis in human umbilical vein endothelial cells via disrupting Akt-NF-κB and MAPK signaling pathways. Toxicol Appl Pharmacol 2013; 272:616-24. [PMID: 23921148 DOI: 10.1016/j.taap.2013.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/11/2013] [Accepted: 07/24/2013] [Indexed: 10/26/2022]
Abstract
Since the introduction of angiogenesis as a useful target for cancer therapy, few agents have been approved for clinical use due to the rapid development of resistance. This problem can be minimized by simultaneous targeting of multiple angiogenesis signaling pathways, a potential strategy in cancer management known as polypharmacology. The current study aimed at exploring the anti-angiogenic activity of OSU-A9, an indole-3-carbinol-derived pleotropic agent that targets mainly Akt-nuclear factor-kappa B (NF-κB) signaling which regulates many key players of angiogenesis such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Human umbilical vein endothelial cells (HUVECs) were used to study the in vitro anti-angiogenic effect of OSU-A9 on several key steps of angiogenesis. Results showed that OSU-A9 effectively inhibited cell proliferation and induced apoptosis and cell cycle arrest in HUVECs. Besides, OSU-A9 inhibited angiogenesis as evidenced by abrogation of migration/invasion and Matrigel tube formation in HUVECs and attenuation of the in vivo neovascularization in the chicken chorioallantoic membrane assay. Mechanistically, Western blot, RT-PCR and ELISA analyses showed the ability of OSU-A9 to inhibit MMP-2 production and VEGF expression induced by hypoxia or phorbol-12-myristyl-13-acetate. Furthermore, dual inhibition of Akt-NF-κB and mitogen-activated protein kinase (MAPK) signaling, the key regulators of angiogenesis, was observed. Together, the current study highlights evidences for the promising anti-angiogenic activity of OSU-A9, at least in part through the inhibition of Akt-NF-κB and MAPK signaling and their consequent inhibition of VEGF and MMP-2. These findings support OSU-A9's clinical promise as a component of anticancer therapy.
Collapse
Affiliation(s)
- Hany A Omar
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | | | | | | | | | | |
Collapse
|
37
|
An HDAC inhibitor enhances cancer therapeutic efficiency of RNA polymerase III promoter-driven IDO shRNA. Cancer Gene Ther 2013; 20:351-7. [PMID: 23681283 DOI: 10.1038/cgt.2013.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are used in treating certain human malignancies. Our laboratories demonstrated their capability in enhancing antitumor effect of DNA vaccine driven by an RNA polymerase II (RNA pol II) promoter. However, it is unknown whether HDAC inhibitors enhance the therapeutic short hairpin RNA (shRNA) expressed by an RNA polymerase III (RNA pol III) promoter. We investigated whether HDAC inhibitors augmented antitumor effect of indoleamine 2,3 dioxygenase (IDO) shRNA. HDAC inhibitor OSU-HDAC42 and suberoylanilide hydroxamic acid enhanced RNA pol III-driven U6 and H1 promoter activity in three different cell types in vitro: 293, NIH3T3 and dendritic cell line DC2.4. Subcutaneous injection of OSU-HDAC42 enhanced U6 and H1 promoter activity on abdominal skin of mice in vivo. Combination of IDO shRNA and OSU-HDAC42 increased antitumor effect of IDO shRNA in MBT-2 murine bladder tumor model. IDO shRNA induced tumor-infiltrating CD8⁺ and CD4⁺ T cells, whereas OSU-HDAC42 treatment induced tumor-infiltrating CD4⁺ T cells. Combination of OSU-HDAC42 and IDO shRNA further induced tumor-infiltrating natural killer cells and enhanced interferon-γ in lymphocytes, but suppressed interleukin (IL)-4 expression of lymphocytes. In addition, OSU-HDAC42 treatment did not alter mRNA expression of IL-12 and tumor necrosis factor-α. In conclusion, HDAC inhibitor OSU-HDAC42 may serve as adjuvant of the therapeutic shRNA expressed by an RNA pol III promoter.
Collapse
|
38
|
Yang YL, Huang PH, Chiu HC, Kulp SK, Chen CS, Kuo CJ, Chen HD, Chen CS. Histone deacetylase inhibitor AR42 regulates telomerase activity in human glioma cells via an Akt-dependent mechanism. Biochem Biophys Res Commun 2013; 435:107-12. [PMID: 23624506 DOI: 10.1016/j.bbrc.2013.04.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/15/2013] [Indexed: 11/25/2022]
Abstract
Epigenetic regulation via abnormal activation of histone deacetylases (HDACs) is a mechanism that leads to cancer initiation and promotion. Activation of HDACs results in transcriptional upregulation of human telomerase reverse transcriptase (hTERT) and increases telomerase activity during cellular immortalization and tumorigenesis. However, the effects of HDAC inhibitors on the transcription of hTERT vary in different cancer cells. Here, we studied the effects of a novel HDAC inhibitor, AR42, on telomerase activity in a PTEN-null U87MG glioma cell line. AR42 increased hTERT mRNA in U87MG glioma cells, but suppressed total telomerase activity in a dose-dependent manner. Further analyses suggested that AR42 decreases the phosphorylation of hTERT via an Akt-dependent mechanism. Suppression of Akt phosphorylation and telomerase activity was also observed with PI3K inhibitor LY294002 further supporting the hypothesis that Akt signaling is involved in suppression of AR42-induced inhibition of telomerase activity. Finally, ectopic expression of a constitutive active form of Akt restored telomerase activity in AR42-treated cells. Taken together, our results demonstrate that the novel HDAC inhibitor AR42 can suppress telomerase activity by inhibiting Akt-mediated hTERT phosphorylation, indicating that the PI3K/Akt pathway plays an important role in the regulation of telomerase activity in response to this HDAC inhibitor.
Collapse
Affiliation(s)
- Ya-Luen Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Patil V, Sodji QH, Kornacki JR, Mrksich M, Oyelere AK. 3-Hydroxypyridin-2-thione as novel zinc binding group for selective histone deacetylase inhibition. J Med Chem 2013; 56:3492-506. [PMID: 23547652 DOI: 10.1021/jm301769u] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Small molecules bearing hydroxamic acid as the zinc binding group (ZBG) have been the most effective histone deacetylase inhibitors (HDACi) to date. However, concerns about the pharmacokinetic liabilities of the hydroxamic acid moiety have stimulated research efforts aimed at finding alternative nonhydroxamate ZBGs. We have identified 3-hydroxypyridin-2-thione (3-HPT) as a novel ZBG that is compatible with HDAC inhibition. 3-HPT inhibits HDAC 6 and HDAC 8 with an IC50 of 681 and 3675 nM, respectively. Remarkably, 3-HPT gives no inhibition of HDAC 1. Subsequent optimization led to several novel 3HPT-based HDACi that are selective for HDAC 6 and HDAC 8. Furthermore, a subset of these inhibitors induces apoptosis in various cancer cell lines.
Collapse
Affiliation(s)
- Vishal Patil
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | | | | | | | | |
Collapse
|
40
|
Burns SS, Akhmametyeva EM, Oblinger JL, Bush ML, Huang J, Senner V, Chen CS, Jacob A, Welling DB, Chang LS. Histone deacetylase inhibitor AR-42 differentially affects cell-cycle transit in meningeal and meningioma cells, potently inhibiting NF2-deficient meningioma growth. Cancer Res 2013; 73:792-803. [PMID: 23151902 PMCID: PMC3549000 DOI: 10.1158/0008-5472.can-12-1888] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Meningiomas constitute about 34% of primary intracranial tumors and are associated with increased mortality in patients with neurofibromatosis type 2 (NF2). To evaluate potential medical therapies for these tumors, we have established a quantifiable orthotopic model for NF2-deficient meningiomas. We showed that telomerase-immortalized Ben-Men-1 benign meningioma cells harbored a single nucleotide deletion in NF2 exon 7 and did not express the NF2 protein, merlin. We also showed that AR-42, a pan-histone deacetylase inhibitor, inhibited proliferation of both Ben-Men-1 and normal meningeal cells by increasing expression of p16(INK4A), p21(CIP1/WAF1), and p27(KIP1). In addition, AR-42 increased proapoptotic Bim expression and decreased anti-apoptotic Bcl(XL) levels. However, AR-42 predominantly arrested Ben-Men-1 cells at G(2)-M whereas it induced cell-cycle arrest at G(1) in meningeal cells. Consistently, AR-42 substantially decreased the levels of cyclin D1, E, and A, and proliferating cell nuclear antigen in meningeal cells while significantly reducing the expression of cyclin B, important for progression through G(2), in Ben-Men-1 cells. In addition, AR-42 decreased Aurora A and B expression. To compare the in vivo efficacies of AR-42 and AR-12, a PDK1 inhibitor, we generated and used luciferase-expressing Ben-Men-1-LucB cells to establish intracranial xenografts that grew over time. While AR-12 treatment moderately slowed tumor growth, AR-42 caused regression of Ben-Men-1-LucB tumors. Importantly, AR-42-treated tumors showed minimal regrowth when xenograft-bearing mice were switched to normal diet. Together, these results suggest that AR-42 is a potential therapy for meningiomas. The differential effect of AR-42 on cell-cycle progression of normal meningeal and meningioma cells may have implications for why AR-42 is well-tolerated while it potently inhibits tumor growth.
Collapse
Affiliation(s)
- Sarah S. Burns
- Center for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Elena M. Akhmametyeva
- Center for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Janet L. Oblinger
- Center for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Matthew L. Bush
- Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jie Huang
- Center for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Volker Senner
- Institut für Neuropathologie, Universitätsklinikum Münster, Germany
| | - Ching-Shih Chen
- The Ohio State University College of Pharmacy, Columbus, Ohio, USA
| | - Abraham Jacob
- Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - D. Bradley Welling
- Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Long-Sheng Chang
- Center for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
41
|
Increased anti-leukemic activity of decitabine via AR-42-induced upregulation of miR-29b: a novel epigenetic-targeting approach in acute myeloid leukemia. Leukemia 2012. [PMID: 23178755 DOI: 10.1038/leu.2012.342] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Histone deacetylase (HDAC) inhibitors either alone or in combination with hypomethylating agents have limited clinical effect in acute myeloid leukemia (AML). Previously, we demonstrated that AML patients with higher miR (microRNA)-29b expression had better response to the hypomethylating agent decitabine. Therefore, an increase in miR-29b expression preceding decitabine treatment may provide a therapeutic advantage. We previously showed that miR-29b expression is suppressed by a repressor complex that includes HDACs. Thus, HDAC inhibition may increase miR-29b expression. We hypothesized that priming AML cells with the novel HDAC inhibitor (HDACI) AR-42 would result in increased response to decitabine treatment via upregulation of miR-29b. Here, we show that AR-42 is a potent HDACI in AML, increasing miR-29b levels and leading to downregulation of known miR-29b targets (that is, SP1, DNMT1, DNMT3A and DNMT3B). We then demonstrated that the sequential administration of AR-42 followed by decitabine resulted in a stronger anti-leukemic activity in vitro and in vivo than decitabine followed by AR-42 or either drug alone. These preclinical results with AR-42 priming before decitabine administration represent a promising, novel treatment approach and a paradigm shift with regard to the combination of epigenetic-targeting compounds in AML, where decitabine has been traditionally given before HDACIs.
Collapse
|
42
|
Seidel C, Florean C, Schnekenburger M, Dicato M, Diederich M. Chromatin-modifying agents in anti-cancer therapy. Biochimie 2012; 94:2264-79. [DOI: 10.1016/j.biochi.2012.05.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/14/2012] [Indexed: 01/12/2023]
|
43
|
Marrocco-Tallarigo DL, Centenera MM, Scher HI, Tilley WD, Butler LM. Finding the place of histone deacetylase inhibitors in prostate cancer therapy. Expert Rev Clin Pharmacol 2012; 2:619-30. [PMID: 22112256 DOI: 10.1586/ecp.09.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Histone deacetylase inhibitors (HDACIs) are showing promise as therapeutic agents for hematological malignancies and solid tumors. In the case of prostate cancer, HDACIs are effective at inhibiting proliferation and inducing apoptosis in a range of in vitro and in vivo experimental models. Recent studies have revealed that the actions of HDACIs in prostate cancer cells extend beyond regulation of histone acetylation and affect proteins involved in maintaining cellular homeostasis and tumor progression, including the androgen receptor, p21(WAF1) and VEGF. The broad spectrum of HDACI targets has allowed rational design of combinations with other therapeutic agents to target multiple pathways involved in prostate cancer progression, including angiogenesis and androgen signaling. In particular, synergistic inhibition of prostate cancer cell growth has been demonstrated using HDACIs in combination with radio- and chemo-therapy, Apo2L/TRAIL, angiogenesis inhibitors, heat-shock protein 90 inhibitors and androgen receptor antagonists. This review examines the current understanding of the actions of HDACIs in prostate cancer cells, both in a laboratory and a clinical context and discusses the potential utility of combination strategies for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Deborah L Marrocco-Tallarigo
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, University of Adelaide and Hanson Institute, Adelaide, SA 5000, Australia.
| | | | | | | | | |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Recent advances in our understanding of the androgen axis signaling pathway have led to the development of therapeutic strategies to overcome the state of 'castration resistance' in prostate cancer. In this review, we examine the mechanisms of castration resistance, as well as recently reported and ongoing clinical studies, which will further identify therapeutic opportunities for novel therapeutics targeting the androgen-signaling axis in advanced prostate cancer. RECENT FINDINGS As evidenced by recently reported positive phase III clinical trials, secondary hormonal agents such as abiraterone and MDV3100 may still be very effective in the treatment of castration-resistant prostate cancer, even after the use of docetaxel chemotherapy. SUMMARY Novel agents targeting this pathway have demonstrated a proof of principle that overcoming castration resistance is possible, leading to significant changes in the landscape of treatment in this disease. The optimal combination, sequence, and pattern of use in these novel therapies will be the focus of clinical research in the near future.
Collapse
|
45
|
Radiosensitizing effect of a phenylbutyrate-derived histone deacetylase inhibitor in hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2012; 83:e181-9. [PMID: 22381897 DOI: 10.1016/j.ijrobp.2011.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 11/29/2011] [Accepted: 12/06/2011] [Indexed: 11/23/2022]
Abstract
PURPOSE Radiotherapy is integrated into the multimodal treatment of localized hepatocellular carcinoma (HCC) refractory to conventional treatment. Tumor control remains unsatisfactory and the sublethal effect associates with secondary spread. The use of an effective molecularly targeted agent in combination with radiotherapy is a potential therapeutic approach. Our aim was to assess the effect of combining a phenylbutyrate-derived histone deacetylase (HDAC) inhibitor, AR-42, with radiotherapy in in vitro and in vivo models of human HCC. METHODS AND MATERIALS Human HCC cell lines (Huh-7 and PLC-5) were used to evaluate the in vitro synergism of combining AR-42 with irradiation. Flow cytometry analyzed the cell cycle changes, whereas Western blot investigated the protein expressions after the combined treatment. Severe combined immunodeficient (SCID) mice bearing ectopic and orthotopic HCC xenografts were treated with AR-42 and/or radiotherapy for the in vivo response. RESULTS AR-42 significantly enhanced radiation-induced cell death by the inhibition of the DNA end-binding activity of Ku70, a highly versatile regulatory protein for DNA repair, telomere maintenance, and apoptosis. In ectopic xenografts of Huh-7 and PLC-5, pretreatment with AR-42 significantly enhanced the tumor-suppressive effect of radiotherapy by 48% and 66%, respectively. A similar combinatorial effect of AR-42 (10 and 25 mg/kg) and radiotherapy was observed in Huh-7 orthotopic model of tumor growth by 52% and 82%, respectively. This tumor suppression was associated with inhibition of intratumoral Ku70 activity as well as reductions in markers of HDAC activity and proliferation, and increased apoptosis. CONCLUSION AR-42 is a potent, orally bioavailable inhibitor of HDAC with therapeutic value as a radiosensitizer of HCC.
Collapse
|
46
|
Guerrant W, Patil V, Canzoneri JC, Oyelere AK. Dual targeting of histone deacetylase and topoisomerase II with novel bifunctional inhibitors. J Med Chem 2012; 55:1465-77. [PMID: 22260166 DOI: 10.1021/jm200799p] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Strategies to ameliorate the flaws of current chemotherapeutic agents, while maintaining potent anticancer activity, are of particular interest. Agents which can modulate multiple targets may have superior utility and fewer side effects than current single-target drugs. To explore the prospect in cancer therapy of a bivalent agent that combines two complementary chemo-active groups within a single molecular architecture, we have synthesized dual-acting histone deacetylase and topoisomerase II inhibitors. These dual-acting agents are derived from suberoylanilide hydroxamic acid (SAHA) and anthracycline daunorubicin, prototypical histone deacetylase (HDAC) and topoisomerase II (Topo II) inhibitors, respectively. We report herein that these agents present the signatures of inhibition of HDAC and Topo II in both cell-free and whole-cell assays. Moreover, these agents potently inhibit the proliferation of representative cancer cell lines.
Collapse
Affiliation(s)
- William Guerrant
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | | | | | | |
Collapse
|
47
|
Jacob A, Oblinger J, Bush ML, Brendel V, Santarelli G, Chaudhury AR, Kulp S, La Perle KMD, Chen CS, Chang LS, Welling DB. Preclinical validation of AR42, a novel histone deacetylase inhibitor, as treatment for vestibular schwannomas. Laryngoscope 2011; 122:174-89. [PMID: 22109824 DOI: 10.1002/lary.22392] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/07/2011] [Accepted: 09/14/2011] [Indexed: 01/17/2023]
Abstract
OBJECTIVES/HYPOTHESIS Recent studies indicate that vestibular schwannomas (VSs) rely on phosphatidylinositol 3-kinase/AKT activation to promote cell proliferation and survival; therefore, targeting AKT may provide new therapeutic options. We have previously shown that AR42, a novel histone deacetylase inhibitor, potently suppresses VS growth in vitro at doses correlating with AKT inactivation. The objectives of the current study were translational: 1) to examine the end biologic effects of AR42 on tumor growth in vivo, 2) to validate AKT as its in vivo molecular target, 3) to determine whether AR42 penetrates the blood-brain barrier (BBB), and 4) to study the pharmacotoxicity profile of AR42. STUDY DESIGN In vivo mouse studies. METHODS AR42 was dosed orally in murine schwannoma allografts and human VS xenografts. Magnetic resonance imaging was used to quantify changes in tumor volume, and intracellular molecular targets were analyzed using immunohistochemistry. BBB penetration was assayed, and both blood-chemistry measurements and histology studies were used to evaluate toxicity. RESULTS Growth of schwannoma implants was dramatically decreased by AR42 at doses correlating with AKT dephosphorylation, cell cycle arrest, and apoptosis. AR42 penetrated the BBB, and wild-type mice fed AR42 for 6 months behaved normally and gained weight appropriately. Blood-chemistry studies and organ histology performed after 3 and 6 months of AR42 treatment demonstrated no clinically significant abnormalities. CONCLUSIONS AR42 suppresses schwannoma growth at doses correlating with AKT pathway inhibition. This orally bioavailable drug penetrates the BBB, is well tolerated, and represents a novel candidate for translation to human VS clinical trials.
Collapse
Affiliation(s)
- Abraham Jacob
- Department of Surgery, Division of Otolaryngology, University of Arizona, Tucson, Arizona 85724, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Harrod R. Inhibiting HDACs in a preclinical model of HTLV-1-induced adult T-cell lymphoma. Leuk Res 2011; 35:1436-7. [DOI: 10.1016/j.leukres.2011.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 07/29/2011] [Accepted: 07/31/2011] [Indexed: 01/29/2023]
|
49
|
Thudi NK, Shu ST, Martin CK, Lanigan LG, Nadella MV, Van Bokhoven A, Werbeck JL, Simmons JK, Murahari S, Kisseberth WC, Breen M, Williams C, Chen CS, McCauley LK, Keller ET, Rosol TJ. Development of a brain metastatic canine prostate cancer cell line. Prostate 2011; 71:1251-63. [PMID: 21321976 PMCID: PMC3139788 DOI: 10.1002/pros.21341] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 12/16/2010] [Indexed: 12/27/2022]
Abstract
BACKGROUND Prostate cancer in men has a high mortality and morbidity due to metastatic disease. The pathobiology of prostate cancer metastasis is not well understood and cell lines and animal models that recapitulate the complex nature of the disease are needed. Therefore, the goal of the study was to establish and characterize a new prostate cancer line derived from a dog with spontaneous prostate cancer. METHODS A new cell line (Leo) was derived from a dog with spontaneous prostate cancer. Immunohistochemistry and PCR were used to characterize the primary prostate cancer and xenografts in nude mice. Subcutaneous tumor growth and metastases in nude mice were evaluated by bioluminescent imaging, radiography and histopathology. In vitro chemosensitivity of Leo cells to therapeutic agents was measured. RESULTS Leo cells expressed the secretory epithelial cytokeratins (CK)8, 18, and ductal cell marker, CK7. The cell line grew in vitro (over 75 passages) and was tumorigenic in the subcutis of nude mice. Following intracardiac injection, Leo cells metastasized to the brain, spinal cord, bone, and adrenal gland. The incidence of metastases was greatest to the central nervous system (80%) with a lower incidence to bone (20%) and the adrenal glands (16%). In vitro chemosensitivity assays demonstrated that Leo cells were sensitive to Velcade and an HDAC-42 inhibitor with IC(50) concentrations of 1.9 nm and 0.95 µm, respectively. CONCLUSION The new prostate cancer cell line (Leo) will be a valuable model to investigate the mechanisms of the brain and bone metastases.
Collapse
Affiliation(s)
- Nanda K. Thudi
- Department of Radiation Oncology, University of Alabama, Birmingham, Alabama, 35233
| | - Sherry T. Shu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, 43210
| | - Chelsea K. Martin
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, 43210
| | - Lisa G. Lanigan
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, 43210
| | - Murali V.P. Nadella
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, 43210
| | - Adrie Van Bokhoven
- Department of Pathology, University of Colorado Health Sciences Center, Aurora, Colorado
| | - Jillian L. Werbeck
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, 43210
| | - Jessica K. Simmons
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, 43210
| | - Sridhar Murahari
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, 43210
| | - William C. Kisseberth
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, 43210
| | - Matthew Breen
- Dept. of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh NC 27606
| | - Christina Williams
- Dept. of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh NC 27606
| | - Ching-Shih Chen
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, 43210
| | - Laurie K. McCauley
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109
| | - Evan T. Keller
- Departments of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Thomas J. Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
50
|
Antitumor activity of a novel histone deacetylase inhibitor (S)-HDAC42 in oral squamous cell carcinoma. Oral Oncol 2011; 47:1127-33. [PMID: 21865079 DOI: 10.1016/j.oraloncology.2011.07.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 11/22/2022]
Abstract
The aberrant regulation of epigenetic systems including histone acetylation contributes to inappropriate gene expression in cancer cells. In this study, we investigated the antitumor effects of the novel histone deacetylase inhibitor (S)-HDAC42 in oral squamous cell carcinoma (OSCC) cells. The antiproliferative effect of (S)-HDAC42 was multifold higher than that of suberoylanilide hydroxamic acid in a panel of oral squamous carcinoma cell lines examined. (S)-HDAC42 mediated caspase-dependent apoptosis by targeting multiple signaling pathways relevant to cell cycle progression and survival. We demonstrated that (S)-HDAC42 downregulated the levels of phospho-Akt, cyclin D1, and cyclin-dependent kinase 6, accompanied by increased p27 and p21 expression. In addition, (S)-HDAC42 suppressed NF-κB signaling by blocking tumor necrosis factor-α-induced nuclear translocation, and activated reactive oxygen species generation. Finally, (S)-HDAC42 exhibited high potency in suppressing OSCC tumor growth in a Ca922 xenograft nude mouse model. Together, these findings underscore the translational value of (S)-HDAC42 in fostering new therapeutic strategies for OSCC.
Collapse
|