1
|
Ruhi MK, Rickard BP, Overchuk M, Sinawang PD, Stanley E, Mansi M, Sierra RG, Hayes B, Tan X, Akin D, Chen B, Demirci U, Rizvi I. PpIX-enabled fluorescence-based detection and photodynamic priming of platinum-resistant ovarian cancer cells under fluid shear stress. Photochem Photobiol 2024; 100:1603-1621. [PMID: 39189505 DOI: 10.1111/php.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 08/28/2024]
Abstract
Over 75% percent of ovarian cancer patients are diagnosed with advanced-stage disease characterized by unresectable intraperitoneal dissemination and the presence of ascites, or excessive fluid build-up within the abdomen. Conventional treatments include cytoreductive surgery followed by multi-line platinum and taxane chemotherapy regimens. Despite an initial response to treatment, over 75% of patients with advanced-stage ovarian cancer will relapse and succumb to platinum-resistant disease. Recent evidence suggests that fluid shear stress (FSS), which results from the movement of fluid such as ascites, induces epithelial-to-mesenchymal transition and confers resistance to carboplatin in ovarian cancer cells. This study demonstrates, for the first time, that FSS-induced platinum resistance correlates with increased cellular protoporphyrin IX (PpIX), the penultimate downstream product of heme biosynthesis, the production of which can be enhanced using the clinically approved pro-drug aminolevulinic acid (ALA). These data suggest that, with further investigation, PpIX could serve as a fluorescence-based biomarker of FSS-induced platinum resistance. Additionally, this study investigates the efficacy of PpIX-enabled photodynamic therapy (PDT) and the secretion of extracellular vesicles under static and FSS conditions in Caov-3 and NIH:OVCAR-3 cells, two representative cell lines for high-grade serous ovarian carcinoma (HGSOC), the most lethal form of the disease. FSS induces resistance to ALA-PpIX-mediated PDT, along with a significant increase in the number of EVs. Finally, the ability of PpIX-mediated photodynamic priming (PDP) to enhance carboplatin efficacy under FSS conditions is quantified. These preliminary findings in monolayer cultures necessitate additional studies to determine the feasibility of PpIX as a fluorescence-based indicator, and mediator of PDP, to target chemoresistance in the context of FSS.
Collapse
Affiliation(s)
- Mustafa Kemal Ruhi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Brittany P Rickard
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Marta Overchuk
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Prima Dewi Sinawang
- Department of Chemical Engineering, School of Engineering, Stanford University, Stanford, California, USA
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratories, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California, USA
- Department of Radiology, School of Medicine, Canary Center at Stanford, Stanford University, Palo Alto, California, USA
| | - Elizabeth Stanley
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Matthew Mansi
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Brandon Hayes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Xianming Tan
- Department of Biostatistics, University of North Carolina School of Public Health, Chapel Hill, North Carolina, USA
| | - Demir Akin
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratories, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California, USA
- Department of Radiology, School of Medicine, Canary Center at Stanford, Stanford University, Palo Alto, California, USA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratories, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California, USA
- Department of Radiology, School of Medicine, Canary Center at Stanford, Stanford University, Palo Alto, California, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Overchuk M, Rickard BP, Tulino J, Tan X, Ligler FS, Huang HC, Rizvi I. Overcoming the effects of fluid shear stress in ovarian cancer cell lines: Doxorubicin alone or photodynamic priming to target platinum resistance. Photochem Photobiol 2024; 100:1676-1693. [PMID: 38849970 DOI: 10.1111/php.13967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/15/2024] [Accepted: 05/05/2024] [Indexed: 06/09/2024]
Abstract
Resistance to platinum-based chemotherapies remains a significant challenge in advanced-stage high-grade serous ovarian carcinoma, and patients with malignant ascites face the poorest outcomes. It is, therefore, important to understand the effects of ascites, including the associated fluid shear stress (FSS), on phenotypic changes and therapy response, specifically FSS-induced chemotherapy resistance and the underlying mechanisms in ovarian cancer. This study investigated the effects of FSS on response to cisplatin, a platinum-based chemotherapy, and doxorubicin, an anthracycline, both of which are commonly used to manage advanced-stage ovarian cancer. Consistent with prior research, OVCAR-3 and Caov-3 cells cultivated under FSS demonstrated significant resistance to cisplatin. Examination of the role of mitochondria revealed an increase in mitochondrial DNA copy number and intracellular ATP content in cultures grown under FSS, suggesting that changes in mitochondria number and metabolic activity may contribute to platinum resistance. Interestingly, no resistance to doxorubicin was observed under FSS, the first such observation of a lack of resistance under these conditions. Finally, this study demonstrated the potential of photodynamic priming using benzoporphyrin derivative, a clinically approved photosensitizer that localizes in part to mitochondria and endoplasmic reticula, to enhance the efficacy of cisplatin, but not doxorubicin, thereby overcoming FSS-induced platinum resistance.
Collapse
Affiliation(s)
- Marta Overchuk
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Brittany P Rickard
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin Tulino
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Xianming Tan
- Department of Biostatistics, University of North Carolina School of Public Health, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Frances S Ligler
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Lee S, Wu H, Yeo S, Kyoung Lee W, Yoon I. Transition metal-dependent heavy-atom effect of metallochlorin photosensitizers for enhanced photodynamic therapy. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Rickard BP, Overchuk M, Obaid G, Ruhi MK, Demirci U, Fenton SE, Santos JH, Kessel D, Rizvi I. Photochemical Targeting of Mitochondria to Overcome Chemoresistance in Ovarian Cancer †. Photochem Photobiol 2023; 99:448-468. [PMID: 36117466 PMCID: PMC10043796 DOI: 10.1111/php.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Ovarian cancer is the most lethal gynecologic malignancy with a stubborn mortality rate of ~65%. The persistent failure of multiline chemotherapy, and significant tumor heterogeneity, has made it challenging to improve outcomes. A target of increasing interest is the mitochondrion because of its essential role in critical cellular functions, and the significance of metabolic adaptation in chemoresistance. This review describes mitochondrial processes, including metabolic reprogramming, mitochondrial transfer and mitochondrial dynamics in ovarian cancer progression and chemoresistance. The effect of malignant ascites, or excess peritoneal fluid, on mitochondrial function is discussed. The role of photodynamic therapy (PDT) in overcoming mitochondria-mediated resistance is presented. PDT, a photochemistry-based modality, involves the light-based activation of a photosensitizer leading to the production of short-lived reactive molecular species and spatiotemporally confined photodamage to nearby organelles and biological targets. The consequential effects range from subcytotoxic priming of target cells for increased sensitivity to subsequent treatments, such as chemotherapy, to direct cell killing. This review discusses how PDT-based approaches can address key limitations of current treatments. Specifically, an overview of the mechanisms by which PDT alters mitochondrial function, and a summary of preclinical advancements and clinical PDT experience in ovarian cancer are provided.
Collapse
Affiliation(s)
- Brittany P. Rickard
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marta Overchuk
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; North Carolina State University, Raleigh, NC 27606, USA
| | - Girgis Obaid
- Department of Bioengineering, University of Texas at Dallas, Richardson TX 95080, USA
| | - Mustafa Kemal Ruhi
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Suzanne E. Fenton
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Janine H. Santos
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Imran Rizvi
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; North Carolina State University, Raleigh, NC 27606, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Residual Microscopic Peritoneal Metastases after Macroscopic Complete Cytoreductive Surgery for Advanced High-Grade Serous Ovarian Carcinoma: A Target for Folate Receptor Targeted Photodynamic Therapy? Pharmaceuticals (Basel) 2022; 15:ph15081034. [PMID: 36015182 PMCID: PMC9416203 DOI: 10.3390/ph15081034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Despite conventional treatment combining complete macroscopic cytoreductive surgery (CRS) and systemic chemotherapy, residual microscopic peritoneal metastases (mPM) may persist as the cause of peritoneal recurrence in 60% of patients. Therefore, there is a real need to specifically target these mPM to definitively eradicate any traces of the disease and improve patient survival. Therapeutic targeting method, such as photodynamic therapy, would be a promising method for such a purpose. Folate receptor alpha (FRα), as it is specifically overexpressed by cancer cells from various origins, including ovarian cancer cells, is a good target to address photosensitizing molecules. The aim of this study was to determine FRα expression by residual mPM after complete macroscopic CRS in patients with advanced high-grade serous ovarian cancer (HGSOC). A prospective study conducted between 1 June 2018 and 10 July 2019 in a single referent center accredited by the European Society of Gynecological Oncology for advanced EOC surgical management. Consecutive patients presenting with advanced HGSOC and eligible for complete macroscopic CRS were included. Up to 13 peritoneal biopsies were taken from macroscopically healthy peritoneum at the end of CRS and examined for the presence of mPM. In case of detection of mPM, a systematic search for RFα expression by immunohistochemistry was performed. Twenty-six patients were included and 26.9% presented mPM. In the subgroup of patients with mPM, FRα expression was positive on diagnostic biopsy before neoadjuvant chemotherapy for 67% of patients, on macroscopic peritoneal metastases for 86% of patients, and on mPM for 75% of patients. In the subgroup of patients with no mPM, FRα expression was found on diagnostic biopsy before neoadjuvant chemotherapy in 29% of patients and on macroscopic peritoneal metastases in 78% of patients. FRα is well expressed by patients with or without mPM after complete macroscopic CRS in patients with advanced HGSOC. In addition to conventional cytoreductive surgery, the use of a therapeutic targeting method, such as photodynamic therapy, by addressing photosensitizing molecules that specifically target FRα may be studied.
Collapse
|
6
|
Kercher EM, Spring BQ. Photodynamic Treatments for Disseminated Cancer Metastases Using Fiber-Optic Technologies. Methods Mol Biol 2022; 2451:185-201. [PMID: 35505019 DOI: 10.1007/978-1-0716-2099-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor-targeted and -activatable photosensitizer delivery platforms are creating new opportunities to develop photodynamic therapy (PDT) of metastatic disease. This is possible by confining the activity of the photosensitizing chemical (i.e., the PDT agent) to the tumor in combination with diffuse near-infrared light irradiation for wide-field treatment. This chapter outlines protocols and research tools for preclinical development of light-activated therapies of cancer metastases using advanced-stage ovarian cancer as a model system. We also describe an in vivo molecular imaging approach that uniquely enables tracking intraperitoneal micrometastatic burden and responses to treatment using fluorescence microendoscopy.
Collapse
Affiliation(s)
- Eric M Kercher
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, USA
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Bryan Q Spring
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, USA.
- Department of Physics, Northeastern University, Boston, MA, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
7
|
Kim HI, Wilson BC. Photodynamic Diagnosis and Therapy for Peritoneal Carcinomatosis from Gastrointestinal Cancers: Status, Opportunities, and Challenges. J Gastric Cancer 2020; 20:355-375. [PMID: 33425438 PMCID: PMC7781745 DOI: 10.5230/jgc.2020.20.e39] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/15/2020] [Indexed: 12/21/2022] Open
Abstract
Selective accumulation of a photosensitizer and the subsequent response in only the light-irradiated target are advantages of photodynamic diagnosis and therapy. The limited depth of the therapeutic effect is a positive characteristic when treating surface malignancies, such as peritoneal carcinomatosis. For photodynamic diagnosis (PDD), adjunctive use of aminolevulinic acid- protoporphyrin IX-guided fluorescence imaging detects cancer nodules, which would have been missed during assessment using white light visualization only. Furthermore, since few side effects have been reported, this has the potential to become a vital component of diagnostic laparoscopy. A variety of photosensitizers have been examined for photodynamic therapy (PDT), and treatment protocols are heterogeneous in terms of photosensitizer type and dose, photosensitizer-light time interval, and light source wavelength, dose, and dose rate. Although several studies have suggested that PDT has favorable effects in peritoneal carcinomatosis, clinical trials in more homogenous patient groups are required to identify the true benefits. In addition, major complications, such as bowel perforation and capillary leak syndrome, need to be reduced. In the long term, PDD and PDT are likely to be successful therapeutic options for patients with peritoneal carcinomatosis, with several options to optimize the photosensitizer and light delivery parameters to improve safety and efficacy.
Collapse
Affiliation(s)
- Hyoung-Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Gastric Cancer Center, Yonsei Cancer Center, Seoul, Korea
- Open NBI Convergence Technology Research Laboratory, Severance Hospital, Seoul, Korea
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brian C. Wilson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Dai J, Cheng Y, Wu J, Wang Q, Wang W, Yang J, Zhao Z, Lou X, Xia F, Wang S, Tang BZ. Modular Peptide Probe for Pre/Intra/Postoperative Therapeutic to Reduce Recurrence in Ovarian Cancer. ACS NANO 2020; 14:14698-14714. [PMID: 33174739 DOI: 10.1021/acsnano.9b09818] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Even with optimal surgery, 80% of patients with ovarian cancer will have recurrence. Adjuvant therapy can reduce the recurrence of tumors; however, the therapeutic effect is still not prominent. Herein, we designed a modular peptide probe (TCDTMP), which can be self-assembled into nanoparticles (NPs) by loading in miR-145-5p or VEGF-siRNA. In vivo, (1) preoperative administration of TCDTMP/miR-145-5p ensured that NPs were adequately accumulated in tumors through active targeting and increased the expression of miR-145-5p in tumors, thereby inducing tumor cell apoptosis. (2) Intraoperatively, most of the tumors were removed, while the microscopic residual tumors were largely eliminated by TCDTMP/miR-145-5p-mediated photodynamic therapy (PDT). (3) Postoperatively, TCDTMP/VEGF-siRNA were given for antiangiogenesis therapy, thus delaying the recurrence of tumors. This treatment was named a preoperative (TCDTMP/miR-145-5p)||intraoperative (surgery and PDT)||postoperative (TCDTMP/VEGF-siRNA) therapeutic system and abbreviated as the PIP therapeutic system, which reduced the recurrence of ovarian cancer in subcutaneous tumor models, intraperitoneal metastasis models, and patient-derived tumor xenograft models. Our findings provide a therapeutic system based on modular peptide probes to reduce the recurrence of ovarian cancer after surgery, which provides a perspective for the surgical management of ovarian cancer.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430032, China
| | - Yong Cheng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jun Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Quan Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430032, China
| | - Juliang Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430032, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Xu S, Bulin AL, Hurbin A, Elleaume H, Coll JL, Broekgaarden M. Photodynamic Diagnosis and Therapy for Peritoneal Carcinomatosis: Emerging Perspectives. Cancers (Basel) 2020; 12:cancers12092491. [PMID: 32899137 PMCID: PMC7563129 DOI: 10.3390/cancers12092491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Peritoneal carcinomatosis, the formation of wide-spread metastases throughout the abdominal cavity, remains challenging to diagnose and treat. Photodynamic diagnosis and photodynamic therapy are promising approaches for the diagnosis and treatment of peritoneal carcinomatosis, which use photosensitizers for fluorescence detection or photochemical treatment of (micro) metastases. With the aim of highlighting the potential of this theranostic approach, this review outlines the clinical state of the art in the use of photodynamic diagnosis and therapy for peritoneal carcinomatosis, identifies the major challenges, and provides emerging perspectives from preclinical studies to address these challenges. We conclude that the development of novel illumination strategies and targeted photonanomedicines may aid in achieving more efficient cytoreductive surgery. In addition to combination treatments with chemo-, and radiotherapy, such approaches hold significant promise to improve the outlook of patients with peritoneal carcinomatosis. Abstract Peritoneal carcinomatosis occurs frequently in patients with advanced stage gastrointestinal and gynecological cancers. The wide-spread peritoneal micrometastases indicate a poor outlook, as the tumors are difficult to diagnose and challenging to completely eradicate with cytoreductive surgery and chemotherapeutics. Photodynamic diagnosis (PDD) and therapy (PDT), modalities that use photosensitizers for fluorescence detection or photochemical treatment of cancer, are promising theranostic approaches for peritoneal carcinomatosis. This review discusses the leading clinical trials, identifies the major challenges, and presents potential solutions to advance the use of PDD and PDT for the treatment of peritoneal carcinomatosis. While PDD for fluorescence-guided surgery is practically feasible and has achieved clinical success, large randomized trials are required to better evaluate the survival benefits. Although PDT is feasible and combines well with clinically used chemotherapeutics, poor tumor specificity has been associated with severe morbidity. The major challenges for both modalities are to increase the tumor specificity of the photosensitizers, to efficiently treat peritoneal microtumors regardless of their phenotypes, and to improve the ability of the excitation light to reach the cancer tissues. Substantial progress has been achieved in (1) the development of targeted photosensitizers and nanocarriers to improve tumor selectivity, (2) the design of biomodulation strategies to reduce treatment heterogeneity, and (3) the development of novel light application strategies. The use of X-ray-activated PDT during whole abdomen radiotherapy may also be considered to overcome the limited tissue penetration of light. Integrated approaches that take advantage of PDD, cytoreductive surgery, chemotherapies, PDT, and potentially radiotherapy, are likely to achieve the most effective improvement in the management of peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Si Xu
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble-Alpes, 38700 La Tronche, France; (S.X.); (A.H.); (M.B.)
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Anne-Laure Bulin
- Synchrotron Radiation for Biomedicine, UA07 INSERM, Université Grenoble-Alpes, European Synchrotron Radiation Facility, Biomedical Beamline, 38043 Grenoble CEDEX 9, France; (A.-L.B.); (H.E.)
| | - Amandine Hurbin
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble-Alpes, 38700 La Tronche, France; (S.X.); (A.H.); (M.B.)
| | - Hélène Elleaume
- Synchrotron Radiation for Biomedicine, UA07 INSERM, Université Grenoble-Alpes, European Synchrotron Radiation Facility, Biomedical Beamline, 38043 Grenoble CEDEX 9, France; (A.-L.B.); (H.E.)
| | - Jean-Luc Coll
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble-Alpes, 38700 La Tronche, France; (S.X.); (A.H.); (M.B.)
- Correspondence:
| | - Mans Broekgaarden
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble-Alpes, 38700 La Tronche, France; (S.X.); (A.H.); (M.B.)
- Synchrotron Radiation for Biomedicine, UA07 INSERM, Université Grenoble-Alpes, European Synchrotron Radiation Facility, Biomedical Beamline, 38043 Grenoble CEDEX 9, France; (A.-L.B.); (H.E.)
| |
Collapse
|
10
|
Cramer G, Lewis R, Gymarty A, Hagan S, Mickler M, Evans S, Punekar SR, Shuman L, Simone CB, Hahn SM, Busch TM, Fraker D, Cengel KA. Preclinical Evaluation of Cetuximab and Benzoporphyrin Derivative‐Mediated Intraperitoneal Photodynamic Therapy in a Canine Model. Photochem Photobiol 2020; 96:684-691. [DOI: 10.1111/php.13247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/22/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Gwendolyn Cramer
- Department of Radiation Oncology University of Pennsylvania School of Medicine Philadelphia PA
| | - Robert Lewis
- St. Francis Hospital and Medical Center Bloomfield CT
| | - Ashley Gymarty
- Department of Radiation Oncology University of Pennsylvania School of Medicine Philadelphia PA
| | - Sarah Hagan
- Department of Radiation Oncology University of Pennsylvania School of Medicine Philadelphia PA
| | - Michela Mickler
- Department of Radiation Oncology University of Pennsylvania School of Medicine Philadelphia PA
| | - Sydney Evans
- Department of Radiation Oncology University of Pennsylvania School of Medicine Philadelphia PA
| | - Salman R. Punekar
- Department of Radiation Oncology University of Pennsylvania School of Medicine Philadelphia PA
| | - Lee Shuman
- Department of Radiation Oncology University of Pennsylvania School of Medicine Philadelphia PA
| | | | - Stephen M. Hahn
- Department of Radiation Oncology MD Anderson Cancer Center Houston TX
| | - Theresa M. Busch
- Department of Radiation Oncology University of Pennsylvania School of Medicine Philadelphia PA
| | - Douglass Fraker
- Department of Radiation Oncology University of Pennsylvania School of Medicine Philadelphia PA
| | - Keith A. Cengel
- Department of Radiation Oncology University of Pennsylvania School of Medicine Philadelphia PA
| |
Collapse
|
11
|
Dupre PJ, Ong YH, Friedberg J, Singhal S, Carter S, Simone CB, Finlay JC, Zhu TC, Cengel KA, Busch TM. Light Fluence Rate and Tissue Oxygenation (S t O 2 ) Distributions Within the Thoracic Cavity of Patients Receiving Intraoperative Photodynamic Therapy for Malignant Pleural Mesothelioma. Photochem Photobiol 2020; 96:417-425. [PMID: 32048732 DOI: 10.1111/php.13224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/29/2019] [Indexed: 01/22/2023]
Abstract
The distributions of light and tissue oxygenation (St O2 ) within the chest cavity were determined for 15 subjects undergoing macroscopic complete resection followed by intraoperative photodynamic therapy (PDT) as part of a clinical trial for the treatment of malignant pleural mesothelioma (MPM). Over the course of light delivery, detectors at each of eight different sites recorded exposure to variable fluence rate. Nevertheless, the treatment-averaged fluence rate was similar among sites, ranging from a median of 40-61 mW cm-2 during periods of light exposure to a detector. St O2 at each tissue site varied by subject, but posterior mediastinum and posterior sulcus were the most consistently well oxygenated (median St O2 >90%; interquartile ranges ~85-95%). PDT effect on St O2 was characterized as the St O2 ratio (post-PDT St O2 /pre-PDT St O2 ). High St O2 pre-PDT was significantly associated with oxygen depletion (St O2 ratio < 1), although the extent of oxygen depletion was mild (median St O2 ratio of 0.8). Overall, PDT of the thoracic cavity resulted in moderate treatment-averaged fluence rate that was consistent among treated tissue sites, despite instantaneous exposure to high fluence rate. Mild oxygen depletion after PDT was experienced at tissue sites with high pre-PDT St O2 , which may suggest the presence of a treatment effect.
Collapse
Affiliation(s)
- Pamela J Dupre
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yi Hong Ong
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph Friedberg
- Division of Thoracic Surgery, University of Maryland Medical Center, Baltimore, Maryland
| | - Sunil Singhal
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Shirron Carter
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, NY, United States
| | - Jarod C Finlay
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Timothy C Zhu
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
12
|
Lilge L, Roufaiel M, Lazic S, Kaspler P, Munegowda MA, Nitz M, Bassan J, Mandel A. Evaluation of a Ruthenium coordination complex as photosensitizer for PDT of bladder cancer: Cellular response, tissue selectivity and in vivo response. TRANSLATIONAL BIOPHOTONICS 2020. [DOI: 10.1002/tbio.201900032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Lothar Lilge
- Princess Margaret Cancer CentreUniversity Health Network Toronto Ontario Canada
- Department of Medical BiophysicsUniversity of Toronto Toronto Ontario Canada
| | | | - Savo Lazic
- Theralase Technologies Inc. Toronto Ontario Canada
| | | | | | - Mark Nitz
- Department of ChemistryUniversity of Toronto Toronto Ontario Canada
| | - Jay Bassan
- Department of ChemistryUniversity of Toronto Toronto Ontario Canada
| | | |
Collapse
|
13
|
Penjweini R, Kim MM, Ong YH, Zhu TC. 1O 2 determined from the measured PDT dose and 3O 2 predicts long-term response to Photofrin-mediated PDT. Phys Med Biol 2020; 65:03LT01. [PMID: 31751964 DOI: 10.1088/1361-6560/ab59f1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photodynamic therapy (PDT) that employs the photochemical interaction of light, photosensitizer and oxygen is an established modality for the treatment of cancer. However, dosimetry for PDT is becoming increasingly complex due to the heterogeneous photosensitizer uptake by the tumor, and complicated relationship between the tissue oxygenation ([3O2]), interstitial light distribution, photosensitizer photobleaching and PDT effect. As a result, experts argue that the failure to realize PDT's true potential is, at least partly due to the complexity of the dosimetry problem. In this study, we examine the efficacy of singlet oxygen explicit dosimetry (SOED) based on the measurements of the interstitial light fluence rate distribution, changes of [3O2] and photosensitizer concentration during Photofrin-mediated PDT to predict long-term control rates of radiation-induced fibrosarcoma tumors. We further show how variation in tissue [3O2] between animals induces variation in the treatment response for the same PDT protocol. PDT was performed with 5 mg kg-1 Photofrin (a drug-light interval of 24 h), in-air fluence rates (ϕ air) of 50 and 75 mW cm-2 and in-air fluences from 225 to 540 J cm-2. The tumor regrowth was tracked for 90 d after the treatment and Kaplan-Meier analyses for local control rate were performed based on a tumor volume ⩽100 mm3 for the two dosimetry quantities of PDT dose and SOED. Based on the results, SOED allowed for reduced subject variation and improved treatment evaluation as compared to the PDT dose.
Collapse
Affiliation(s)
- Rozhin Penjweini
- Department of Radiation Oncology, University of Pennsylvania, School of Medicine, 3400 Civic Center Boulevard TRC 4W, Philadelphia, PA 19104, United States of America. Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Building 10, Room 5D14, Bethesda, MD 20892-1412, United States of America
| | | | | | | |
Collapse
|
14
|
Kerbage Y, Canlorbe G, Estevez JP, Grabarz A, Mordon S, Uzan C, Collinet P, Azaïs H. [Microscopic peritoneal metastases of epithelial ovarian cancers. Clinical relevance, diagnostic and therapeutic tools]. ACTA ACUST UNITED AC 2018; 46:497-502. [PMID: 29656069 DOI: 10.1016/j.gofs.2018.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Indexed: 10/17/2022]
Abstract
Understanding the biology and progression mechanisms of peritoneal metastases in ovarian epithelial cancers (EOC) is important because peritoneal carcinomatosis is present or will occur during surveillance of a majority of patients. Despite the clinical remission achieved after complete macroscopic cytoreductive surgery and platinum-based chemotherapy, 60% of patients will develop peritoneal recurrence. This suggests that microscopic lesions, which are not eradicated by surgery may be present and may participate in the mechanisms leading to peritoneal recurrence. This paper discusses current available data on microscopic peritoneal metastases, their diagnosis and their treatment. We reviewed all publications dealing with microscopic peritoneal metastases of EOC between 1980 and 2017. The most recent and most relevant publications dealing with the treatment modalities of these metastases were selected. Peritoneal and epiploic microscopic localizations would occur in 1.2 to 15.1% of cases at early-stage and are not treated during conventional surgery. They could represent a potential therapeutic target. Local treatments (intraperitoneal chemotherapy, photodynamic therapy, fluorescence-guided surgery) seem to be necessary in addition to surgery and chemotherapy and may help reduce the risk of peritoneal recurrence. The place of these treatments in the management of EOC remains to be defined by subsequent researches.
Collapse
Affiliation(s)
- Y Kerbage
- Service de chirurgie gynécologique, CHU de Lille, 59000 Lille, France; Inserm, U1189, ONCO-THAI, thérapies laser assistées par l'imagerie, 59000 Lille, France
| | - G Canlorbe
- Service de chirurgie et oncologie gynécologique et mammaire, hôpitaux universitaires Pitié-Salpêtrière-Charles-Foix, Pitié-Salpêtrière, AP-HP, 47/83, boulevard de l'Hôpital, 75013 Paris, France
| | - J P Estevez
- Service de chirurgie gynécologique, CHU de Lille, 59000 Lille, France
| | - A Grabarz
- Service de chirurgie gynécologique, CHU de Lille, 59000 Lille, France; Inserm, U1189, ONCO-THAI, thérapies laser assistées par l'imagerie, 59000 Lille, France
| | - S Mordon
- Inserm, U1189, ONCO-THAI, thérapies laser assistées par l'imagerie, 59000 Lille, France
| | - C Uzan
- Service de chirurgie et oncologie gynécologique et mammaire, hôpitaux universitaires Pitié-Salpêtrière-Charles-Foix, Pitié-Salpêtrière, AP-HP, 47/83, boulevard de l'Hôpital, 75013 Paris, France
| | - P Collinet
- Service de chirurgie gynécologique, CHU de Lille, 59000 Lille, France; Inserm, U1189, ONCO-THAI, thérapies laser assistées par l'imagerie, 59000 Lille, France
| | - H Azaïs
- Inserm, U1189, ONCO-THAI, thérapies laser assistées par l'imagerie, 59000 Lille, France; Service de chirurgie et oncologie gynécologique et mammaire, hôpitaux universitaires Pitié-Salpêtrière-Charles-Foix, Pitié-Salpêtrière, AP-HP, 47/83, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
15
|
de Faria CMG, Inada NM, Vollet-Filho JD, Bagnato VS. A threshold dose distribution approach for the study of PDT resistance development: A threshold distribution approach for the study of PDT resistance. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 182:85-91. [PMID: 29627515 DOI: 10.1016/j.jphotobiol.2018.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/28/2018] [Accepted: 03/24/2018] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) is a technique with well-established principles that often demands repeated applications for sequential elimination of tumor cells. An important question concerns the way surviving cells from a treatment behave in the subsequent one. Threshold dose is a core concept in PDT dosimetry, as the minimum amount of energy to be delivered for cell destruction via PDT. Concepts of threshold distribution have shown to be an important tool for PDT results analysis in vitro. In this study, we used some of these concepts for demonstrating subsequent treatments with partial elimination of cells modify the distribution, which represents an increased resistance of the cells to the photodynamic action. HepG2 and HepaRG were used as models of tumor and normal liver cells and a protocol to induce resistance, consisted of repeated PDT sessions using Photogem® as a photosensitizer, was applied to the tumor ones. The response of these cells to PDT was assessed using a standard viability assay and the dose response curves were used for deriving the threshold distributions. The changes in the distribution revealed that the resistance protocol effectively eliminated the most sensitive cells. Nevertheless, HepaRG cell line was the most resistant one among the cells analyzed, which indicates a specificity in clinical applications that enables the use of high doses and drug concentrations with minimal damage to the surrounding normal tissue.
Collapse
Affiliation(s)
- Clara Maria Gonçalves de Faria
- São Carlos Institute of Physics, University of Sao Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil.
| | - Natalia Mayumi Inada
- São Carlos Institute of Physics, University of Sao Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil
| | - José Dirceu Vollet-Filho
- São Carlos Institute of Physics, University of Sao Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil
| | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics, University of Sao Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil
| |
Collapse
|
16
|
|
17
|
Eugenia EM, Ángel PM, Anabella G, Solange B, Carlos P, Horacio P, Mario G. Photodynamic therapy in fibrosarcoma BALB/c animal model: Observation of the rebound effect. Photodiagnosis Photodyn Ther 2018; 21:98-107. [DOI: 10.1016/j.pdpdt.2017.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/11/2017] [Accepted: 11/15/2017] [Indexed: 01/25/2023]
|
18
|
Ong YH, Kim MM, Finlay JC, Dimofte A, Singhal S, Glatstein E, Cengel KA, Zhu TC. PDT dose dosimetry for Photofrin-mediated pleural photodynamic therapy (pPDT). Phys Med Biol 2017; 63:015031. [PMID: 29106380 DOI: 10.1088/1361-6560/aa9874] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Photosensitizer fluorescence excited by photodynamic therapy (PDT) treatment light can be used to monitor the in vivo concentration of the photosensitizer and its photobleaching. The temporal integral of the product of in vivo photosensitizer concentration and light fluence is called PDT dose, which is an important dosimetry quantity for PDT. However, the detected photosensitizer fluorescence may be distorted by variations in the absorption and scattering of both excitation and fluorescence light in tissue. Therefore, correction of the measured fluorescence for distortion due to variable optical properties is required for absolute quantification of photosensitizer concentration. In this study, we have developed a four-channel PDT dose dosimetry system to simultaneously acquire light dosimetry and photosensitizer fluorescence data. We measured PDT dose at four sites in the pleural cavity during pleural PDT. We have determined an empirical optical property correction function using Monte Carlo simulations of fluorescence for a range of physiologically relevant tissue optical properties. Parameters of the optical property correction function for Photofrin fluorescence were determined experimentally using tissue-simulating phantoms. In vivo measurements of photosensitizer fluorescence showed negligible photobleaching of Photofrin during the PDT treatment, but large intra- and inter-patient heterogeneities of in vivo Photofrin concentration are observed. PDT doses delivered to 22 sites in the pleural cavity of 8 patients were different by 2.9 times intra-patient and 8.3 times inter-patient.
Collapse
Affiliation(s)
- Yi Hong Ong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States of America. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Azaïs H, Canlorbe G, Kerbage Y, Grabarz A, Collinet P, Mordon S. Image-guided surgery in gynecologic oncology. Future Oncol 2017; 13:2321-2328. [PMID: 29121779 DOI: 10.2217/fon-2017-0253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Image-guided surgery is a relevant way to reduce surgical morbidity and maximize cytoreductive surgery approach especially in ovarian cancer. Sentinel lymph node detection is a promising approach to avoid radical lymph node dissection and is slightly becoming standard in daily practice in endometrial and cervical cancer surgery even if it needs to be evaluated more precisely. Regarding carcinomatosis of ovarian origin, detection and treatment of microscopic disease could be appropriate to avoid local recurrences. Photodiagnosis and photodynamic therapy are innovative techniques that allow to precise limits of excision (fluorescence-guided surgery) and to treat microscopic disease. Further developments of those strategies are necessary to become standard diagnosis tools and treatment options.
Collapse
Affiliation(s)
- Henri Azaïs
- Department of Gynecological & Breast Surgery & Oncology, AP-HP, Pitié-Salpêtrière, 83 Boulevard de l'Hôpital, 75013 Paris, France; Pierre et Marie Curie University, Paris 6, France.,INSERM, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000 Lille, France
| | - Geoffroy Canlorbe
- Department of Gynecological & Breast Surgery & Oncology, AP-HP, Pitié-Salpêtrière, 83 Boulevard de l'Hôpital, 75013 Paris, France; Pierre et Marie Curie University, Paris 6, France
| | - Yohan Kerbage
- INSERM, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000 Lille, France.,Department of Gynecologic Surgery, CHU Lille, F-59000 Lille, France
| | - Anne Grabarz
- INSERM, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000 Lille, France.,Department of Gynecologic Surgery, CHU Lille, F-59000 Lille, France
| | - Pierre Collinet
- INSERM, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000 Lille, France.,Department of Gynecologic Surgery, CHU Lille, F-59000 Lille, France
| | - Serge Mordon
- INSERM, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000 Lille, France
| |
Collapse
|
20
|
Almerie MQ, Gossedge G, Wright KE, Jayne DG. Treatment of peritoneal carcinomatosis with photodynamic therapy: Systematic review of current evidence. Photodiagnosis Photodyn Ther 2017; 20:276-286. [PMID: 29111390 DOI: 10.1016/j.pdpdt.2017.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/11/2017] [Accepted: 10/26/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Peritoneal carcinomatosis results when tumour cells implant and grow within the peritoneal cavity. Treatment and prognosis vary based on the primary cancer. Although therapy with intention-to-cure is offered to selective patients using cytoreductive surgery with chemotherapy, the prognosis remains poor for most of the patients. Photodynamic therapy (PDT) is a cancer-therapeutic modality where a photosensitiser is administered to patients and exerts a cytotoxic effect on cancer cells when excited by light of a specific wavelength. It has potential application in the treatment of peritoneal carcinomatosis. METHODS We systematically reviewed the evidence of using PDT to treat peritoneal carcinomatosis in both animals and humans (Medline/EMBASE searched in June 2017). RESULTS Three human and 25 animal studies were included. Phase I and II human trials using first-generation photosensitisers showed that applying PDT after surgical debulking in patients with peritoneal carcinomatosis is feasible with some clinical benefits. The low tumour-selectivity of the photosensitisers led to significant toxicities mainly capillary leak syndrome and bowel perforation. In animal studies, PDT improved survival by 15-300%, compared to control groups. PDT led to higher tumour necrosis values (categorical values 0-4 [4=highest]: PDT 3.4±1.0 vs. control 0.4±0.6, p<0.05) and reduced tumour size (residual tumour size is 10% of untreated controls, p<0.001). CONCLUSION PDT has potential in treating peritoneal carcinomatosis, but is limited by its narrow therapeutic window and possible serious side effects. Recent improvement in tumour-selectivity and light delivery systems is promising, but further development is needed before PDT can be routinely applied for peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Muhammad Qutayba Almerie
- Section of Translational Anaesthesia and Surgical Sciences, Leeds Institute of Biomedical & Clinical Sciences (LIBACS), St James's University Hospital, Leeds LS9 7TF, UK.
| | - Gemma Gossedge
- Section of Translational Anaesthesia and Surgical Sciences, Leeds Institute of Biomedical & Clinical Sciences (LIBACS), St James's University Hospital, Leeds LS9 7TF, UK.
| | - Kathleen E Wright
- Section of Translational Anaesthesia and Surgical Sciences, Leeds Institute of Biomedical & Clinical Sciences (LIBACS), St James's University Hospital, Leeds LS9 7TF, UK.
| | - David G Jayne
- Section of Translational Anaesthesia and Surgical Sciences, Leeds Institute of Biomedical & Clinical Sciences (LIBACS), St James's University Hospital, Leeds LS9 7TF, UK.
| |
Collapse
|
21
|
Azaïs H, Mordon S, Collinet P. [Intraperitoneal photodynamic therapy for peritoneal metastasis of epithelial ovarian cancer. Limits and future prospects]. ACTA ACUST UNITED AC 2017; 45:249-256. [PMID: 28373041 DOI: 10.1016/j.gofs.2017.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/10/2017] [Indexed: 01/29/2023]
Abstract
High peritoneal recurrence rate in advanced epithelial ovarian cancer after complete macroscopic cytoreductive surgery and platinum-based chemotherapy, raises the issue of peritoneal microscopic disease management and requires the development of additional locoregional treatment strategies. Photodynamic therapy is an effective treatment already applied in other medical and surgical indications. After administration of a photosensitizer which accumulates in cancer cells, illumination with a light of adequate wavelength may induce photochemical reaction between photosensitizer and tissue oxygen which lead to reactive oxygen species production and cytotoxic phenomenon. Photodynamic therapy's ability to treat superficial lesions disseminated on large area makes it an excellent candidate to insure destruction of microscopic peritoneal metastases in addition to macroscopic cytoreductive surgery in order to decrease peritoneal recurrence rate. Development of intraperitoneal photodynamic therapy has been limited by its poor tolerance related to the lack of specificity of photosensitizers and the location of the metastases in proximity to adjacent intraperitoneal organs. Our aim is to review clinical data concerning intraperitoneal photodynamic therapy and epithelial ovarian cancer to identify the limits of this strategy and to provide solutions which may be applied to solve these barriers and enable safe and effective treatment. Targeted photosensitizers and innovative illumination solutions are mandatory to continue research in this field and to consider the feasibility of clinical trials.
Collapse
Affiliation(s)
- H Azaïs
- Service de chirurgie et cancérologie gynécologique et mammaire, hôpitaux universitaires Pitié Salpêtrière-Charles-Foix, AP-HP, 47/83, boulevard de l'Hôpital, 75013 Paris, France; U1189-ONCO THAI-Image Assisted Laser Therapy for Oncology, Inserm, CHU de Lille, 59000 Lille, France.
| | - S Mordon
- U1189-ONCO THAI-Image Assisted Laser Therapy for Oncology, Inserm, CHU de Lille, 59000 Lille, France
| | - P Collinet
- U1189-ONCO THAI-Image Assisted Laser Therapy for Oncology, Inserm, CHU de Lille, 59000 Lille, France; Service de gynécologie medicochirurgicale, centre hospitalier régional et universitaire, 59000 Lille, France
| |
Collapse
|
22
|
Influence of iron oxide nanoparticles (Fe 3O 4) on erythrocyte photohemolysis via photofrin and Rose Bengal sensitization. Photodiagnosis Photodyn Ther 2017; 18:111-118. [PMID: 28232076 DOI: 10.1016/j.pdpdt.2017.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Iron oxide (Fe3O4) nanoparticles (IO-NP) were recently employed in medical applications as a diagnostic tool and drug carrier. Photofrin (PF) is a photosensitizer that clinically is used in Photodynamic therapy (PDT). STUDY DESIGN The photosensitivity of PF and Rose Bengal (RB) mixed with (IO-NP) on red blood cells (RBCs) lysis was investigated. Second, Photohemolysis for post-irradiation (delayed) and during irradiation (continuous) with PF, RB and IO-NP combinations at different concentrations was investigated. Third, the photohemolysis rate, relative lysis steepness and power-concentration dependant parameter were evaluated by modeling and fitting the data using Gompertz function and power law. METHODS RBCs were isolated from healthy male human volunteer. Washed cells (7.86×106 cells/mm3) were incubated with PF only or with IO-NP for 45min at 37°C then irradiated to a range of temperatures (4-41°C). CPH results were recorded and evaluated using Gompertz function. RESULTS The relative steepness of the photohemolysis curves was approximately independent on light dose for delayed irradiation. The presence of IO-NP increases the rupturing time for 50% of the RBCs. Photohemolysis rate for delayed irradiation using the power law, led to 1.7 and 2.3 power dependence, respectively, for PF only and PF mixed with IO-NP. The power dependence of continuous irradiation measurements showed inverse proportionality for different concentrations of IO-NP combined with 2μg/ml PF concentration and 1.5μg/ml for RB concentration. CONCLUSION Photosensitization of RBC with PF or RB mixed with IO-NP inhibited rupturing erythrocyte membrane and therefore a consideration should be taken against their combination in clinical applications.
Collapse
|
23
|
Azaïs H, Estevez JP, Foucher P, Kerbage Y, Mordon S, Collinet P. Dealing with microscopic peritoneal metastases of epithelial ovarian cancer. A surgical challenge. Surg Oncol 2017; 26:46-52. [PMID: 28317584 DOI: 10.1016/j.suronc.2017.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/01/2017] [Accepted: 01/05/2017] [Indexed: 12/31/2022]
Abstract
Understanding biology and progression mechanisms of peritoneal metastases of epithelial ovarian cancer (EOC) is a cornerstone in the knowledge and the comprehensive management of the disease. Despite clinical remission after the association of complete cytoreductive surgery and platinum-based chemotherapy, peritoneal recurrence still occurs in 60% of patients. Eligible studies, published from 1980 to June 2016, were retrieved through ClinicalTrials.gov, MEDLINE, Cochrane databases and bibliography searches. We reviewed all publications that deals with microscopic peritoneal metastases of EOC in French and English. To discuss expected benefits of intraperitoneal (IP) chemotherapy, fluorescence-guided surgery or IP photodynamic therapy, we reviewed most recent and relevant studies. The final reference list was generated on the basis of originality and relevance to the broad scope of this review. Published data concerning early-stage ovarian cancer suggest that occult peritoneal or epiploic metastases are present in 1.2%-15.1% of cases. In the frequent case of advanced-stage disease, residual microscopic lesions are ignored by conventional surgery. We are convinced that microscopic peritoneal metastases are a relevant surgical therapeutic target. This article discusses existing data on microscopic peritoneal metastases, the treatment indications, the diagnostic and therapeutic surgical approaches to be developed and their expected benefits. A local therapeutic strategy to target microscopic lesions is needed in addition to complete macroscopic cytoreductive surgery to decrease the rate of peritoneal recurrence. Intraperitoneal chemotherapy, and targeted photodynamic therapy could play a role in this new paradigm. The roles of these different options must be defined by future researches.
Collapse
Affiliation(s)
- Henri Azaïs
- AP-HP, Pitié-Salpêtrière Hospital, Department of Gynecologic and Breast Surgery, F-75013 Paris, France; Univ. Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000 Lille, France.
| | | | - Périne Foucher
- CHU Lille, Department of Gynecology, F-59000 Lille, France
| | - Yohan Kerbage
- Univ. Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000 Lille, France; CHU Lille, Department of Gynecology, F-59000 Lille, France
| | - Serge Mordon
- Univ. Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000 Lille, France
| | - Pierre Collinet
- Univ. Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000 Lille, France; CHU Lille, Department of Gynecology, F-59000 Lille, France
| |
Collapse
|
24
|
Kim MM, Penjweini R, Gemmell NR, Veilleux I, McCarthy A, Buller GS, Hadfield RH, Wilson BC, Zhu TC. A Comparison of Singlet Oxygen Explicit Dosimetry (SOED) and Singlet Oxygen Luminescence Dosimetry (SOLD) for Photofrin-Mediated Photodynamic Therapy. Cancers (Basel) 2016; 8:E109. [PMID: 27929427 PMCID: PMC5187507 DOI: 10.3390/cancers8120109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 11/16/2022] Open
Abstract
Accurate photodynamic therapy (PDT) dosimetry is critical for the use of PDT in the treatment of malignant and nonmalignant localized diseases. A singlet oxygen explicit dosimetry (SOED) model has been developed for in vivo purposes. It involves the measurement of the key components in PDT-light fluence (rate), photosensitizer concentration, and ground-state oxygen concentration ([³O₂])-to calculate the amount of reacted singlet oxygen ([¹O₂]rx), the main cytotoxic component in type II PDT. Experiments were performed in phantoms with the photosensitizer Photofrin and in solution using phosphorescence-based singlet oxygen luminescence dosimetry (SOLD) to validate the SOED model. Oxygen concentration and photosensitizer photobleaching versus time were measured during PDT, along with direct SOLD measurements of singlet oxygen and triplet state lifetime (τΔ and τt), for various photosensitizer concentrations to determine necessary photophysical parameters. SOLD-determined cumulative [¹O₂]rx was compared to SOED-calculated [¹O₂]rx for various photosensitizer concentrations to show a clear correlation between the two methods. This illustrates that explicit dosimetry can be used when phosphorescence-based dosimetry is not feasible. Using SOED modeling, we have also shown evidence that SOLD-measured [¹O₂]rx using a 523 nm pulsed laser can be used to correlate to singlet oxygen generated by a 630 nm laser during a clinical malignant pleural mesothelioma (MPM) PDT protocol by using a conversion formula.
Collapse
Affiliation(s)
- Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Rozhin Penjweini
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Nathan R Gemmell
- Department of Electronic and Nanoscale Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| | - Israel Veilleux
- Princess Margaret Cancer Centre, University of Toronto, ON M5G 1L7, Canada.
| | - Aongus McCarthy
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Gerald S Buller
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Robert H Hadfield
- Department of Electronic and Nanoscale Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| | - Brian C Wilson
- Princess Margaret Cancer Centre, University of Toronto, ON M5G 1L7, Canada.
| | - Timothy C Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Gao H, Shi L, Yin H, Wang H, Shen J, Wang C, Niu Q, Li Y, Li W, Dong M, Lu Y. Evaluation of the effect of photodynamic therapy with hematoporphyrin monomethyl ether on VX2 tumors implanted in the rectal submucosa of rabbits. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:162-9. [DOI: 10.1016/j.jphotobiol.2016.08.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022]
|
26
|
Azaïs H, Betrouni N, Mordon S, Collinet P. Targeted approaches and innovative illumination solutions: A new era for photodynamic therapy applications in gynecologic oncology? Photodiagnosis Photodyn Ther 2016. [DOI: 10.1016/j.pdpdt.2015.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Azaïs H, Schmitt C, Tardivel M, Kerdraon O, Stallivieri A, Frochot C, Betrouni N, Collinet P, Mordon S. Assessment of the specificity of a new folate-targeted photosensitizer for peritoneal metastasis of epithelial ovarian cancer to enable intraperitoneal photodynamic therapy. A preclinical study. Photodiagnosis Photodyn Ther 2015. [PMID: 26200606 DOI: 10.1016/j.pdpdt.2015.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Ovarian cancer's prognosis remains dire after primary therapy. Recurrence rate is disappointingly high as 60% of women with epithelial ovarian cancer considered in remission will develop recurrent disease within 5 years. Special attention to undetected peritoneal metastasis during surgery is necessary as they are the main predictive factors of recurrences. Folate Receptor α (FRα) shows promising prospects in targeting ovarian cancerous cells and intraperitoneal photodynamic therapy (PDT) could be a solution in addition to macroscopic cytoreductive surgery to treat peritoneal micrometastasis. The aim of this preclinical study is to assess the specificity of a folate-targeted photosensitizer for ovarian peritoneal micrometastasis. METHODS We used the NuTu-19 epithelial ovarian cancer cell line to induce peritoneal carcinomatosis in female Fischer 344 rats. Three groups of 6 rats were studied (Control (no photosensitizer)/Non-conjugated photosensitizer (Porph)/Folate-conjugated photosensitizer (Porph-s-FA)). Four hours after the administration of the photosensitizer, animals were sacrificed and intraperitoneal organs tissues were sampled. FRα tissue expression was evaluated by immunohistochemistry. Tissue incorporation of photosensitizers was assessed by confocal microscopy and tissue quantification. RESULTS FRα is overexpressed in tumor, ovary, and liver whereas, peritoneum, colon, small intestine, and kidney do not express it. Cytoplasmic red endocytosis vesicles observed by confocal microscopy are well correlated to FRα tissue expression. Photosensitizer tissue quantification shows a mean tumor-to-normal tissue ratio of 9.6. CONCLUSION We demonstrated that this new generation folate-targeted photosensitizer is specific of epithelial ovarian peritoneal metastasis and may allow the development of efficient and safe intraperitoneal PDT procedure.
Collapse
Affiliation(s)
- Henri Azaïs
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000 Lille, France; Department of Gynecology, University of Lille, 59000 Lille, France.
| | - Caroline Schmitt
- Centre Français des Porphyries, Assistance Publique - Hôpitaux de Paris, Hôpital Louis Mourier, Colombes, France and INSERM U1149, Paris Diderot University, 75018 Paris, France
| | - Meryem Tardivel
- Plate-Forme D'imagerie Cellulaire BICEL - IFR 114, Pôle Recherche, University of Lille, 59000 Lille, France
| | - Olivier Kerdraon
- Centre de Biologie-Pathologie, University of Lille, 59000 Lille, France
| | - Aurélie Stallivieri
- Laboratoire Réactions et Génie des Procédés, UMR 7274CNRS - University of Lorraine, France
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés, UMR 7274CNRS - University of Lorraine, France
| | - Nacim Betrouni
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000 Lille, France
| | - Pierre Collinet
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000 Lille, France; Department of Gynecology, University of Lille, 59000 Lille, France
| | - Serge Mordon
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000 Lille, France
| |
Collapse
|
28
|
Li Z, Sun L, Lu Z, Su X, Yang Q, Qu X, Li L, Song K, Kong B. Enhanced effect of photodynamic therapy in ovarian cancer using a nanoparticle drug delivery system. Int J Oncol 2015; 47:1070-6. [PMID: 26165140 DOI: 10.3892/ijo.2015.3079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/29/2015] [Indexed: 11/06/2022] Open
Abstract
Nanoparticles are promising novel drug delivery carriers that allow tumor targeting and controlled drug release. In the present study, we prepared poly butyl-cyanoacrylate nanoparticles (PBCA-NP) entrapped with hypocrellin B (HB) to improve the effect of photodynamic therapy (PDT) in ovarian cancer. An ovarian cancer ascites model using Fischer 344 rats and PBCA-NP entrapped with HB (HB-PBCA-NP) were formed successfully. The pharmacodynamic characteristics and biodistribution of the HB-PBCA-NP system were evaluated by comparison with HB dimethyl sulfoxide (HB-DMSO) and testing at various time-points following intraperitoneal drug administration. HB-PBCA-NP-based PDT combined with cytoreductive surgery was then administrated to the tumor-bearing animals. Kaplan-Meier survival analysis was performed to assess the therapeutic effect of the nanoparticle system. The serum HB concentration peaked 4 h after drug administration in the nanoparticle system, and 1 h with HB-DMSO. The peak exposure time of tumor tissues was also extended (4 vs. 2 h), and PBCA-NP remained present for much longer than HB-DMSO. Although PDT combined with surgery prolonged the survival time significantly compared with surgery alone (84 days, P<0.05), there was no significant difference in the survival time of animals that received either HB-PBCA-NP- or HB-DMSO-based PDT after cytoreductive surgery (99 vs. 95 days, P=0.293). PBCA-NP exhibited potential advantages in controlled drug release and tumor targeting, which was beneficial for HB-based PDT. PDT combined with surgery prolonged the survival time, suggesting that this might be an alternative treatment option for ovarian cancer.
Collapse
Affiliation(s)
- Zhao Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Liping Sun
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zaijun Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xuantao Su
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, P.R. China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xun Qu
- Department of Basic Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Li Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
29
|
Photodynamic therapy in colorectal cancer treatment: the state of the art in clinical trials. Photodiagnosis Photodyn Ther 2015; 12:545-53. [PMID: 25930668 DOI: 10.1016/j.pdpdt.2015.04.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/10/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is used in many different oncologic fields. Also in gastroenterology, where have been a few attempts to treat both the premalignant lesion and advanced colorectal cancer. This review aims to give a general overview of the PDT application to colorectal cancer in the field of clinical trials to emphasize its curative, and insufficiently exploited potential. MATERIALS AND METHODS Literature on PDT for colorectal cancer with the following medical subject headings search terms: colorectal cancer, photodynamic therapy, clinical trials was reviewed. The articles were selected by their relevance to the topic. RESULTS There are many positive and promising trial results from I to II/III phase for the use of PDT in colorectal cancer both in less advanced tumors as well as in the palliative therapy of advanced lesions. CONCLUDING REMARKS PDT seems to be a safe and a feasible treatment option for colorectal cancer. Theoretical assumptions confirmed by many results of preclinical studies taking into consideration an increasing number of analyzed clinical trials, should lead to the development of optimized standards by using PDT in colorectal cancer treatment.
Collapse
|
30
|
Toussaint M, Barberi-Heyob M, Pinel S, Frochot C. How Nanoparticles Can Solve Resistance and Limitation in PDT Efficiency. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-12730-9_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Abstract
Photodynamic therapy (PDT) is a light-based intervention with a long and successful clinical track record for both oncology and non-malignancies. In cancer patients, a photosensitizing agent is intravenously, orally or topically applied and allowed time to preferentially accumulate in the tumor region. Light of the appropriate wavelength and intensity to activate the particular photosensitizer employed is then introduced to the tumor bed. The light energy will activate the photosensitizer, which in the presence of oxygen should allow for creation of the toxic photodynamic reaction generating reactive oxygen species. The photodynamic reaction creates a cascading series of events including initiation of apoptotic and necrotic pathways both in tumor and neovasculature, leading to permanent lesion destruction often with upregulation of the immune system. Cutaneous phototoxicity from unintentional sunlight exposure remains the most common morbidity from PDT. This paper will highlight current research and outcomes from the basic science and clinical applications of oncologic PDT and interpret how these findings may lead to enhanced and refined future PDT.
Collapse
Affiliation(s)
- Ron R Allison
- 21st Century Oncology, 801 WH Smith Boulevard, Greenville, NC 27834, USA.
| |
Collapse
|
32
|
Guyon L, Farine MO, Lesage JC, Gevaert AM, Simonin S, Schmitt C, Collinet P, Mordon S. Photodynamic therapy of ovarian cancer peritoneal metastasis with hexaminolevulinate: a toxicity study. Photodiagnosis Photodyn Ther 2014; 11:265-74. [PMID: 24784431 DOI: 10.1016/j.pdpdt.2014.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 04/12/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
Abstract
CONTEXT While photodynamic therapy (PDT) is a promising treatment for peritoneal carcinomatosis, its use is often limited because of the toxicity of photosensitizers. In this study, safety of PDT with hexaminoevulinate (HAL), a second generation photosensitizer, is assessed. METHODS PDT of the peritoneal cavity was performed in a rat model of peritoneal carcinomatosis. Rats were treated according to different protocols: with full or half HAL dose, after intraperitoneal or oral administration of HAL, 4 or 8h after its injection, using red or green light, after protection of the liver or cooling of the abdominal wall. Toxicity was assessed by blood tests quantifying hematocrit, liver and muscular enzymes and by pathological examination of abdominal and intrathoracic organs after treatment. The results were analyzed in the light of quantification of fluorescence and protoporphyrin IX (PPIX) content of the same organs. RESULTS PDT with HAL induced rhabdomyolysis, intestinal necrosis and liver function test anomalies, leading to death in 2 out of 34 rats. The liver and the intestine contained high levels of PPIX (3-5 times more than tumor nodules). CONCLUSION HAL PDT lacked specificity. However, the strategy associating diagnosis, treatment and evaluation of the results in one single procedure was effective and should be tested with other photosensitizers.
Collapse
Affiliation(s)
- Laurie Guyon
- Department of Gynaecology and Obstetrics, Lille University Hospital, Lille, France; INSERM U703, Univ Lille Nord de France, Lille University Hospital, Lille, France
| | | | - Jean Claude Lesage
- INSERM U703, Univ Lille Nord de France, Lille University Hospital, Lille, France
| | | | - Sylvie Simonin
- Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France; INSERM U773, Paris Diderot University, Paris, France
| | - Caroline Schmitt
- Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France; INSERM U773, Paris Diderot University, Paris, France
| | - Pierre Collinet
- Department of Gynaecology and Obstetrics, Lille University Hospital, Lille, France; INSERM U703, Univ Lille Nord de France, Lille University Hospital, Lille, France
| | - Serge Mordon
- INSERM U703, Univ Lille Nord de France, Lille University Hospital, Lille, France; GDR 3049 Médicaments Photoactivables - Photochimiothérapie (PHOTOMED), France.
| |
Collapse
|
33
|
Bartusik D, Aebisher D, Ghogare A, Ghosh G, Abramova I, Hasan T, Greer A. A fiberoptic (photodynamic therapy type) device with a photosensitizer and singlet oxygen delivery probe tip for ovarian cancer cell killing. Photochem Photobiol 2013; 89:936-41. [PMID: 23495787 DOI: 10.1111/php.12072] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 03/08/2013] [Indexed: 01/18/2023]
Abstract
A portable "fiber optic-based sensitizer delivery" (FOSD) device has been developed and studied. Before there might be success in photodynamic therapy (PDT) and antibacterial ambitions, an understanding of basic factors on device performance was needed. Thus, the device was examined for the localized delivery of sensitizer molecules in ovarian cancer cells and production of high concentrations of singlet oxygen for their eradication in vitro. The device tip releases stored pheophorbide by attack of singlet oxygen from sensitized oxygen gas delivered through the hollow fiber using 669 nm laser light. The performance of the device was enhanced when configured with a fluorosilane tip by virtue of its Teflon-like property compared with a conventional glass tip (greater sensitizer quantities were photoreleased and laterally diffused, and greater amounts of ovarian OVCAR-5 cancer cells were killed). No cell damage was observed at 2.2 N of force applied by the probe tip itself, an amount used for many of the experiments described here.
Collapse
Affiliation(s)
- Dorota Bartusik
- Department of Chemistry, Graduate Center, City University of New York Brooklyn College, Brooklyn, NY, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Abd-Elgaliel WR, Cruz-Monserrate Z, Wang H, Logsdon CD, Tung CH. Pancreatic cancer-associated Cathepsin E as a drug activator. J Control Release 2013; 167:221-7. [PMID: 23422726 DOI: 10.1016/j.jconrel.2013.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/25/2013] [Accepted: 02/09/2013] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is challenging to treat, and better means to detect and/or treat pancreatic cancer are urgently needed to save lives. Cathepsin E (Cath E) is a proteolytic enzyme highly expressed in PDAC. In this study, a novel approach using Cath E activation of a Cath E-specific prodrug was demonstrated. Specific activation of the prodrug is expected to kill pancreatic cancer cells without harming normal pancreatic cells. A novel 5-aminolevulinic acid (5-ALA) prodrug was custom-designed to be activated selectively by endogenous Cath E within the PDAC cells. The 5-ALA prodrug was incubated with Cath E-positive and -negative tumor cells and illuminated with various doses of light. In addition, mice genetically engineered to develop PDAC were injected intravenously with the 5-ALA prodrug, and the pancreas was treated with light irradiation. One day after treatment, PDAC tissue was assessed for apoptosis. The 5-ALA prodrug was activated within the Cath E-positive tumor but not in the normal pancreatic tissue. When used in combination with light treatment, it allowed delivery of selective photodynamic therapy (PDT) to the cancerous tissues, with minimal harm to the adjacent normal tissues. With this novel Cath E activation approach, it is possible to detect pancreatic cancer cells accurately and specifically impair their viability, while sparing normal cells. This treatment could result in fewer side effects than the non-specific treatments currently in use. Cath E is a specific and effective drug activator for PDAC treatment.
Collapse
Affiliation(s)
- Wael R Abd-Elgaliel
- Department of Translational Imaging, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, USA
| | | | | | | | | |
Collapse
|
35
|
Qumseya BJ, David W, Wolfsen HC. Photodynamic Therapy for Barrett's Esophagus and Esophageal Carcinoma. Clin Endosc 2013; 46:30-7. [PMID: 23423151 PMCID: PMC3572348 DOI: 10.5946/ce.2013.46.1.30] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/14/2013] [Accepted: 01/14/2013] [Indexed: 01/14/2023] Open
Abstract
This paper reviews the use of photodynamic therapy (PDT) in patients with Barrett's esophagus and esophageal carcinoma. We describe the history of PDT, mechanics, photosensitizers for PDT in patients with esophageal disease. Finally, we discuss its utility and limitations in this setting.
Collapse
Affiliation(s)
- Bashar J Qumseya
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | | | | |
Collapse
|
36
|
Edmonds C, Hagan S, Gallagher-Colombo SM, Busch TM, Cengel KA. Photodynamic therapy activated signaling from epidermal growth factor receptor and STAT3: Targeting survival pathways to increase PDT efficacy in ovarian and lung cancer. Cancer Biol Ther 2012; 13:1463-70. [PMID: 22986230 DOI: 10.4161/cbt.22256] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Patients with serosal (pleural or peritoneal) spread of malignancy have few definitive treatment options and consequently have a very poor prognosis. We have previously shown that photodynamic therapy (PDT) can be an effective treatment for these patients, but that the therapeutic index is relatively narrow. Here, we test the hypothesis that EGFR and STAT3 activation increase survival following PDT, and that inhibiting these pathways leads to increased PDT-mediated direct cellular cytotoxicity by examining BPD-PDT in OvCa and NSCLC cells. We found that BPD-mediated PDT stimulated EGFR tyrosine phosphorylation and nuclear translocation, and that EGFR inhibition by erlotinib resulted in reduction of PDT-mediated EGFR activation and nuclear translocation. Nuclear translocation and PDT-mediated activation of EGFR were also observed in response to BPD-mediated PDT in multiple cell lines, including OvCa, NSCLC and head and neck cancer cells, and was observed to occur in response to porfimer sodium-mediated PDT. In addition, we found that PDT stimulates nuclear translocation of STAT3 and STAT3/EGFR association and that inhibiting STAT3 signaling prior to PDT leads to increased PDT cytotoxicity. Finally, we found that inhibition of EGFR signaling leads to increased PDT cytotoxicity through a mechanism that involves increased apoptotic cell death. Taken together, these results demonstrate that PDT stimulates the nuclear accumulation of both EGFR and STAT3 and that targeting these survival pathways is a potentially promising strategy that could be adapted for clinical trials of PDT for patients with serosal spread of malignancy.
Collapse
Affiliation(s)
- Christine Edmonds
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
37
|
Grossman CE, Pickup S, Durham A, Wileyto EP, Putt ME, Busch TM. Photodynamic therapy of disseminated non-small cell lung carcinoma in a murine model. Lasers Surg Med 2012; 43:663-75. [PMID: 22057494 DOI: 10.1002/lsm.21102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Photodynamic therapy (PDT) of thoracic malignancies involving the pleural surfaces is an active area of clinical investigation. The present report aims to characterize a model for PDT of disseminated non-small cell lung carcinoma (NSCLC) grown orthotopically in nude mice, and to evaluate the effect of PDT on tumor and normal tissues. STUDY DESIGN H460 human NSCLC cells were injected percutaneously into the thoracic cavity of nude mice. HPPH-PDT (1 mg/kg, 24 hours) was performed via the interstitial delivery (150 mW/cm) of 661 nm light to the thoracic cavity at fluences of 25-200 J/cm. RESULTS H460 tumors exhibited exponential growth within the thoracic cavity consisting of diffuse, gross nodular disease within 9 days after intrathoracic injection. Tumor volume, measured by magnetic resonance imaging (MRI), was highly correlated with the aggregate tumor mass extracted from the corresponding animal. Intrathoracic PDT at fluences of ≥50 J/cm produced significant decreases in tumor burden as compared to untreated controls, however, mortality increased with rising fluence. Accordingly, 50 J/cm was selected for MRI studies to measure intra-animal PDT effects. Tumor distribution favored the ventral (vs. dorsal), caudal (vs. cranial), and right (vs. left) sides of the thoracic cavity by MRI; PDT did not change this spatial pattern despite an overall effect on tumor burden. Histopathology revealed edema and fibrin deposition within the pulmonary interstitium and alveoli of the PDT-treated thoracic cavity, as well as occasional evidence of vascular disruption. Prominent neutrophil infiltration with a concomitant decline in the lymphocyte compartment was also noted in the lung parenchyma within 24 hours after PDT. CONCLUSION HPPH-PDT of an orthotopic model of disseminated NSCLC is both feasible and effective using intracavitary light delivery. We establish this animal model, together with the treatment and monitoring approaches, as novel and valuable methods for the pre-clinical investigation of intrathoracic PDT of disseminated pleural malignancies.
Collapse
Affiliation(s)
- Craig E Grossman
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6072, USA
| | | | | | | | | | | |
Collapse
|
38
|
Mesquita RC, Han SW, Miller J, Schenkel SS, Pole A, Esipova TV, Vinogradov SA, Putt ME, Yodh AG, Busch TM. Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy. PLoS One 2012; 7:e37322. [PMID: 22624014 PMCID: PMC3356280 DOI: 10.1371/journal.pone.0037322] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/18/2012] [Indexed: 12/25/2022] Open
Abstract
Fluctuations in tumor blood flow are common and attributed to factors such as vasomotion or local vascular structure, yet, because vessel structure and physiology are host-derived, animal strain of tumor propagation may further determine blood flow characteristics. In the present report, baseline and stress-altered tumor hemodynamics as a function of murine strain were studied using radiation-induced fibrosacomas (RIF) grown in C3H or nude mice. Fluctuations in tumor blood flow during one hour of baseline monitoring or during vascular stress induced by photodynamic therapy (PDT) were measured by diffuse correlation spectroscopy. Baseline monitoring revealed fluctuating tumor blood flow highly correlated with heart rate and with similar median periods (i.e., ∼9 and 14 min in C3H and nudes, respectively). However, tumor blood flow in C3H animals was more sensitive to physiologic or stress-induced perturbations. Specifically, PDT-induced vascular insults produced greater decreases in blood flow in the tumors of C3H versus nude mice; similarly, during baseline monitoring, fluctuations in blood flow were more regular and more prevalent within the tumors of C3H mice versus nude mice; finally, the vasoconstrictor L-NNA reduced tumor blood flow in C3H mice but did not affect tumor blood flow in nudes. Underlying differences in vascular structure, such as smaller tumor blood vessels in C3H versus nude animals, may contribute to strain-dependent variation in vascular function. These data thus identify clear effects of mouse strain on tumor hemodynamics with consequences to PDT and potentially other vascular-mediated therapies.
Collapse
Affiliation(s)
- Rickson C Mesquita
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Guyon L, Ascencio M, Collinet P, Mordon S. Photodiagnosis and photodynamic therapy of peritoneal metastasis of ovarian cancer. Photodiagnosis Photodyn Ther 2012; 9:16-31. [DOI: 10.1016/j.pdpdt.2011.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/16/2011] [Accepted: 08/22/2011] [Indexed: 12/27/2022]
|
40
|
Maas AL, Carter SL, Wileyto EP, Miller J, Yuan M, Yu G, Durham AC, Busch TM. Tumor vascular microenvironment determines responsiveness to photodynamic therapy. Cancer Res 2012; 72:2079-88. [PMID: 22374982 DOI: 10.1158/0008-5472.can-11-3744] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The efficacy of photodynamic therapy (PDT) depends upon the delivery of both photosensitizing drug and oxygen. In this study, we hypothesized that local vascular microenvironment is a determinant of tumor response to PDT. Tumor vascularization and its basement membrane (collagen) were studied as a function of supplementation with basement membrane matrix (Matrigel) at the time of tumor cell inoculation. Effects on vascular composition with consequences to tumor hypoxia, photosensitizer uptake, and PDT response were measured. Matrigel-supplemented tumors developed more normalized vasculature, composed of smaller and more uniformly spaced blood vessels than their unsupplemented counterparts, but these changes did not affect tumor oxygenation or PDT-mediated direct cytotoxicity. However, PDT-induced vascular damage increased in Matrigel-supplemented tumors, following an affinity of the photosensitizer Photofrin for collagen-containing vascular basement membrane coupled with increased collagen content in these tumors. The more highly collagenated tumors showed more vascular congestion and ischemia after PDT, along with a higher probability of curative outcome that was collagen dependent. In the presence of photosensitizer-collagen localization, PDT effects on collagen were evidenced by a decrease in its association with vessels. Together, our findings show that photosensitizer localization to collagen increases vascular damage and improves treatment efficacy in tumors with greater collagen content. The vascular basement membrane is thus identified to be a determinant of therapeutic outcome in PDT of tumors.
Collapse
Affiliation(s)
- Amanda L Maas
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Uchoa AF, Oliveira CS, Baptista MS. Relationship between structure and photoactivity of porphyrins derived from protoporphyrin IX. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s108842461000263x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protoporphyrin (Pp IX) derivatives were prepared to study the relationship between photosensitizer structure and photoactivity, with an emphasis on understanding the role of membrane interactions in the efficiency of photosensitizers used in photodynamic therapy (PDT). The synthetic strategies described here aimed at changing protoporphyrin periferic groups, varying overall charge and oil/water partition, while maintaining their photochemical properties. Three synthetic routes were used: (1) modification of Pp IX at positions 31 and 81 by addition of alkyl amine groups of different lengths (compounds 2–5), (2) change of Pp IX at positions 133 and 173, generating alkyl amines (compounds 6 and 7, a phosphate amine (compound 8, and quarternary ammonium compounds (compounds 9 and 10), and (3) amine-alkylation of Hematoporphyrin IX (Hp IX) at positions 31, 81, 133 and 173(compound 12). Strategy 1 leads to hydrophobic compounds with low photocytotoxicity. Strategy 2 leads to compounds 6–10 that have high levels of binding/incorporation in vesicles, mitochondria and cells, which are indicative of high bioavailability. Addition of the phosphate group (compound 8), generates an anionic compound that has low liposome and cell incorporation, plus low photocytotoxicity. Compound 12 has intermediate incorporation and photocytotoxic properties. Compound modification is also associated with changes in their sub-cellular localization: 30% of 8 (anionic) is found in mitochondria as compared to 95% of compound 10 (cationic). Photocytotoxicity was shown to be highly correlated with membrane affinity, which depends on the asymmetrical and amphiphilic characters of sens, as well as with sub-cellular localization.
Collapse
Affiliation(s)
- Adjaci F. Uchoa
- Instituto de Química, Departamento de Bioquímica e Departmamento de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo SP 05508-900, Brazil
| | - Carla S. Oliveira
- Department of Morphophysiology, Center of Biological Sciences and of Health, Biochemistry Laboratory, Universidade do Mato Grosso do Sul, Cidade Universitária, Campo Grande MS 79070-900, Brazil
| | - Mauricio S. Baptista
- Instituto de Química, Departamento de Bioquímica e Departmamento de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo SP 05508-900, Brazil
| |
Collapse
|
42
|
Awuah SG, You Y. Boron dipyrromethene (BODIPY)-based photosensitizers for photodynamic therapy. RSC Adv 2012. [DOI: 10.1039/c2ra21404k] [Citation(s) in RCA: 479] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
43
|
Karwa AS, Poreddy AR, Asmelash B, Lin TS, Dorshow RB, Rajagopalan R. Type 1 phototherapeutic agents, part I: preparation and cancer cell viability studies of novel photolabile sulfenamides. ACS Med Chem Lett 2011; 2:828-33. [PMID: 24900271 DOI: 10.1021/ml2001483] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/13/2011] [Indexed: 11/30/2022] Open
Abstract
Novel type 1 phototherapeutic agents based on compounds containing S-N bonds (sulfenamides) were synthesized, assessed for free radical generation, and evaluated in vitro for cell death efficacy in four cancer cell lines (U937, HTC11, KB, and HT29). All of the compounds were found to produce copious free radicals upon photoexcitation with UV-A and/or UV-B light, as determined by electron spin resonance spectroscopy. Among the sulfenamides, the most potent compounds were derived from dibenzazepine 7b and dihydroacridine 8b as determined in all of the four cancer cell lines.
Collapse
Affiliation(s)
- Amolkumar S. Karwa
- Covidien Pharmaceuticals, 675 McDonnell Boulevard, Hazelwood, Missouri 63042, United States
| | - Amruta R. Poreddy
- Covidien Pharmaceuticals, 675 McDonnell Boulevard, Hazelwood, Missouri 63042, United States
| | - Bethel Asmelash
- Covidien Pharmaceuticals, 675 McDonnell Boulevard, Hazelwood, Missouri 63042, United States
| | - Tien-Sung Lin
- Department of Chemistry, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Richard B. Dorshow
- Covidien Pharmaceuticals, 675 McDonnell Boulevard, Hazelwood, Missouri 63042, United States
| | - Raghavan Rajagopalan
- Covidien Pharmaceuticals, 675 McDonnell Boulevard, Hazelwood, Missouri 63042, United States
| |
Collapse
|
44
|
Tracy EC, Bowman MJ, Pandey RK, Henderson BW, Baumann H. Cell-type selective phototoxicity achieved with chlorophyll-a derived photosensitizers in a co-culture system of primary human tumor and normal lung cells. Photochem Photobiol 2011; 87:1405-18. [PMID: 21883244 DOI: 10.1111/j.1751-1097.2011.00992.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The ATP-dependent transporter ABCG2 exports certain photosensitizers (PS) from cells, implying that the enhanced expression of ABCG2 by cancer cells may confer resistance to photodynamic therapy (PDT) mediated by those PS. In 35 patient-derived primary cultures of lung epithelial and stromal cells, PS with different subcellular localization and affinity for ABCG2 displayed cell-type specific retention both independent and dependent on ABCG2. In the majority of cases, the ABCG2 substrate 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH) was lost from fibroblastic cells more rapidly than from their epithelial counterparts, even in the absence of detectable ABCG2 expression, facilitating selective eradication by PDT of epithelial over fibroblastic cells in tumor/stroma co-cultures. Pairwise comparison of normal and transformed epithelial cells also identified tumor cells with elevated or reduced retention of HPPH, depending on ABCG2. Enhanced ABCG2 expression led to the selective PDT survival of tumor cells in tumor/stroma co-cultures. This survival pattern was reversible through HPPH derivatives that are not ABCG2 substrates or the ABCG2 inhibitor imatinib mesylate. PS retention, not differences in subcellular distribution or cell signaling responses, was determining cell type selective death by PDT. These data suggest that up-front knowledge of tumor characteristics, specifically ABCG2 status, could be helpful in individualized PDT treatment design.
Collapse
Affiliation(s)
- Erin C Tracy
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | | | |
Collapse
|
45
|
Weyergang A, Selbo PK, Berstad MEB, Bostad M, Berg K. Photochemical internalization of tumor-targeted protein toxins. Lasers Surg Med 2011; 43:721-33. [DOI: 10.1002/lsm.21084] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Quon H, Grossman CE, Finlay JC, Zhu TC, Clemmens CS, Malloy KM, Busch TM. Photodynamic therapy in the management of pre-malignant head and neck mucosal dysplasia and microinvasive carcinoma. Photodiagnosis Photodyn Ther 2011; 8:75-85. [PMID: 21497298 DOI: 10.1016/j.pdpdt.2011.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/24/2010] [Accepted: 01/06/2011] [Indexed: 12/25/2022]
Abstract
The management of head and neck mucosal dysplasia and microinvasive carcinoma is an appealing strategy to prevent the development of invasive carcinomas. While surgery remains the standard of care, photodynamic therapy (PDT) offers several advantages including the ability to provide superficial yet wide field mucosal ablative treatment. This is particularly attractive where defining the extent of the dysplasia can be difficult. PDT can also retreat the mucosa without any cumulative fibrotic complications affecting function. To date, clinical experience suggests that this treatment approach can be effective in obtaining a complete response for the treated lesion but long term follow-up is limited. Further research efforts are needed to define not only the risk of malignant transformation with PDT but also to develop site specific treatment recommendations that include the fluence, fluence rate and light delivery technique.
Collapse
Affiliation(s)
- Harry Quon
- Department of Radiation Oncology, United States.
| | | | | | | | | | | | | |
Collapse
|
47
|
Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J. Photodynamic therapy of cancer: an update. CA Cancer J Clin 2011; 61:250-81. [PMID: 21617154 PMCID: PMC3209659 DOI: 10.3322/caac.20114] [Citation(s) in RCA: 3360] [Impact Index Per Article: 258.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells. The procedure involves administration of a photosensitizing agent followed by irradiation at a wavelength corresponding to an absorbance band of the sensitizer. In the presence of oxygen, a series of events lead to direct tumor cell death, damage to the microvasculature, and induction of a local inflammatory reaction. Clinical studies revealed that PDT can be curative, particularly in early stage tumors. It can prolong survival in patients with inoperable cancers and significantly improve quality of life. Minimal normal tissue toxicity, negligible systemic effects, greatly reduced long-term morbidity, lack of intrinsic or acquired resistance mechanisms, and excellent cosmetic as well as organ function-sparing effects of this treatment make it a valuable therapeutic option for combination treatments. With a number of recent technological improvements, PDT has the potential to become integrated into the mainstream of cancer treatment.
Collapse
Affiliation(s)
- Patrizia Agostinis
- Department of Molecular Cell Biology, Cell Death Research & Therapy Laboratory, Catholic University of Leuven, B-3000 Leuven, Belgium,
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway, ;
| | - Keith A. Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19004, USA, ;
| | - Thomas H. Foster
- Department of Imaging Sciences, University of Rochester, Rochester, NY 14642, USA,
| | - Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226-3548, USA,
| | - Sandra O. Gollnick
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Sts, Buffalo, NY, 14263, USA,
| | - Stephen M. Hahn
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19004, USA, ;
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114-2696, USA, ;
- Department of Dermatology, Harvard Medical School, Boston MA 02115
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway, ;
| | - David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit MI 48201, USA,
| | | | - Johan Moan
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway, ;
- Institute of Physics, University of Oslo, Blindern 0316 Oslo, Norway;
| | - Pawel Mroz
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114-2696, USA, ;
- Department of Dermatology, Harvard Medical School, Boston MA 02115
| | - Dominika Nowis
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Poland, ;
| | - Jacques Piette
- GIGA-Research, Laboratory of Virology & Immunology, University of Liège, B-4000 Liège Belgium,
| | - Brian C. Wilson
- Ontario Cancer Institute/University of Toronto, Toronto, ON M5G 2M9, Canada,
| | - Jakub Golab
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Poland, ;
- Institute of Physical Chemistry, Polish Academy of Sciences, Department 3, Warsaw, Poland
| |
Collapse
|
48
|
Ceroni P, Lebedev AY, Marchi E, Yuan M, Esipova TV, Bergamini G, Wilson DF, Busch TM, Vinogradov SA. Evaluation of phototoxicity of dendritic porphyrin-based phosphorescent oxygen probes: an in vitro study. Photochem Photobiol Sci 2011; 10:1056-65. [PMID: 21409208 PMCID: PMC3607943 DOI: 10.1039/c0pp00356e] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 02/19/2011] [Indexed: 01/21/2023]
Abstract
Biological oxygen measurements by phosphorescence quenching make use of exogenous phosphorescent probes, which are introduced directly into the medium of interest (e.g. blood or interstitial fluid) where they serve as molecular sensors for oxygen. The byproduct of the quenching reaction is singlet oxygen, a highly reactive species capable of damaging biological tissue. Consequently, potential probe phototoxicity is a concern for biological applications. Herein, we compared the ability of polyethyleneglycol (PEG)-coated Pd tetrabenzoporphyrin (PdTBP)-based dendritic nanoprobes of three successive generations to sensitize singlet oxygen. It was found that the size of the dendrimer has practically no effect on the singlet oxygen sensitization efficiency in spite of the strong attenuation of the triplet quenching rate with an increase in the dendrimer generation. This unexpected result is due to the fact that the lifetime of the PdTBP triplet state in the absence of oxygen increases with dendritic generation, thus compensating for the concomitant decrease in the rate of quenching. Nevertheless, in spite of their ability to sensitize singlet oxygen, the phosphorescent probes were found to be non-phototoxic when compared with the commonly used photodynamic drug Photofrin in a standard cell-survival assay. The lack of phototoxicity is presumably due to the inability of PEGylated probes to associate with cell surfaces and/or penetrate cellular membranes. In contrast, conventional photosensitizers bind to cell components and act by generating singlet oxygen inside or in the immediate vicinity of cellular organelles. Therefore, PEGylated dendritic probes are safe to use for tissue oxygen measurements as long as the light doses are less than or equal to those commonly employed in photodynamic therapy.
Collapse
Affiliation(s)
- Paola Ceroni
- Department of Chemistry G. Ciamician, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zamadar M, Ghosh G, Mahendran A, Minnis M, Kruft BI, Ghogare A, Aebisher D, Greer A. Photosensitizer drug delivery via an optical fiber. J Am Chem Soc 2011; 133:7882-91. [PMID: 21539365 PMCID: PMC3329778 DOI: 10.1021/ja200840p] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An optical fiber has been developed with a maneuverable mini-probe tip that sparges O(2) gas and photodetaches pheophorbide (sensitizer) molecules. Singlet oxygen is produced at the probe tip surface which reacts with an alkene spacer group releasing sensitizer upon fragmentation of a dioxetane intermediate. Optimal sensitizer photorelease occurred when the probe tip was loaded with 60 nmol sensitizer, where crowding of the pheophorbide molecules and self-quenching were kept to a minimum. The fiber optic tip delivered pheophorbide molecules and singlet oxygen to discrete locations. The 60 nmol sensitizer was delivered into petrolatum; however, sensitizer release was less efficient in toluene-d(8) (3.6 nmol) where most had remained adsorbed on the probe tip, even after the covalent alkene spacer bond had been broken. The results open the door to a new area of fiber optic-guided sensitizer delivery for the potential photodynamic therapy of hypoxic structures requiring cytotoxic control.
Collapse
Affiliation(s)
- Matibur Zamadar
- Department of Chemistry and Graduate Center, City University of New York, Brooklyn College, Brooklyn, New York 11210
| | - Goutam Ghosh
- Department of Chemistry and Graduate Center, City University of New York, Brooklyn College, Brooklyn, New York 11210
| | - Adaickapillai Mahendran
- Department of Chemistry and Graduate Center, City University of New York, Brooklyn College, Brooklyn, New York 11210
| | - Mihaela Minnis
- Department of Chemistry and Graduate Center, City University of New York, Brooklyn College, Brooklyn, New York 11210
| | - Bonnie I. Kruft
- Department of Chemistry and Graduate Center, City University of New York, Brooklyn College, Brooklyn, New York 11210
| | - Ashwini Ghogare
- Department of Chemistry and Graduate Center, City University of New York, Brooklyn College, Brooklyn, New York 11210
| | - David Aebisher
- Department of Chemistry and Graduate Center, City University of New York, Brooklyn College, Brooklyn, New York 11210
| | - Alexander Greer
- Department of Chemistry and Graduate Center, City University of New York, Brooklyn College, Brooklyn, New York 11210
| |
Collapse
|
50
|
Pereira SP, Ayaru L, Ackroyd R, Mitton D, Fullarton G, Zammit M, Grzebieniak Z, Messmann H, Ortner MA, Gao L, Trinh MM, Spénard J. The pharmacokinetics and safety of porfimer after repeated administration 30-45 days apart to patients undergoing photodynamic therapy. Aliment Pharmacol Ther 2010; 32:821-7. [PMID: 20629974 PMCID: PMC2978022 DOI: 10.1111/j.1365-2036.2010.04400.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Porfimer is an intravenous (i.v.) injectable photosensitizing agent used in the photodynamic treatment of tumours and of high-grade dysplasia in Barrett's oesophagus. AIM To assess the pharmacokinetics as well as the safety profiles of porfimer after a first and a second dose administered 30-45 days apart in patients undergoing photodynamic therapy. METHODS Nineteen patients (16 with cholangiocarcinoma) were enrolled. Porfimer sodium was administered by i.v. injection over 3-5 min. Blood samples were collected prior to starting i.v. drug injection and postdose at different time points after the first and second administrations. RESULTS Porfimer exposure values after the second administration were statistically higher than those observed after the first administration, suggesting a slight accumulation of porfimer following repeated administration. The apparent mean elimination half-life of porfimer increased from 410 h after the first administration to 725 h after the second administration. The safety profiles of porfimer after a first and a second administration were similar and did not raise additional concern. Eight patients experienced nine serious adverse events. Only photosensitivity was deemed study-drug related. CONCLUSION Porfimer appears to display a safe and tolerable profile when used in patients requiring a second photodynamic therapy within 45 days.
Collapse
Affiliation(s)
- S. P. Pereira
- UCL Division of Surgery & Interventional Science, London, UK
| | - L. Ayaru
- UCL Division of Surgery & Interventional Science, London, UK
| | - R. Ackroyd
- Royal Hallamshire Hospital, Sheffield, UK
| | - D. Mitton
- Royal Hallamshire Hospital, Sheffield, UK
| | | | - M. Zammit
- Gartnavel General Hospital, Glasgow, UK
| | - Z. Grzebieniak
- II Katedra i Klinika Chirurgii Ogólnej i Onkologicznej, Wrocław, Poland
| | | | - M.-A. Ortner
- Division Gastro-Entérologie/Hépatologie, University Hospital Inselspital, Bern, Switzerland
| | - L. Gao
- Formerly with Charles River Laboratory, Worcester, MA, USA
| | | | - J. Spénard
- Axcan Pharma Inc., Mont-Saint-Hilaire, and Department Pharmacology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|