1
|
Pieniążek B, Cencelewicz K, Bździuch P, Młynarczyk Ł, Lejman M, Zawitkowska J, Derwich K. Neuroblastoma-A Review of Combination Immunotherapy. Int J Mol Sci 2024; 25:7730. [PMID: 39062971 PMCID: PMC11276848 DOI: 10.3390/ijms25147730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor found in childhood and is responsible for 15% of deaths among children with cancer. Although multimodal therapies focused on surgery, chemotherapy, radiotherapy, and stem cell transplants have favorable results in many cases, the use of conventional therapies has probably reached the limit their possibility. Almost half of the patients with neuroblastoma belong to the high-risk group. Patients in this group require a combination of several therapeutic approaches. It has been shown that various immunotherapies combined with conventional methods can work synergistically. Due to the development of such therapeutic methods, we present combinations and forms of combining immunotherapy, focusing on their mechanisms and benefits but also their limitations and potential side effects.
Collapse
Affiliation(s)
- Barbara Pieniążek
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (B.P.); (K.C.); (P.B.)
| | - Katarzyna Cencelewicz
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (B.P.); (K.C.); (P.B.)
| | - Patrycja Bździuch
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (B.P.); (K.C.); (P.B.)
| | - Łukasz Młynarczyk
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (Ł.M.); (K.D.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantation, Medical University of Lublin, 20-093 Lublin, Poland
| | - Katarzyna Derwich
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (Ł.M.); (K.D.)
| |
Collapse
|
2
|
Ravirala D, Pei G, Zhao Z, Zhang X. Comprehensive characterization of tumor immune landscape following oncolytic virotherapy by single-cell RNA sequencing. Cancer Immunol Immunother 2022; 71:1479-1495. [PMID: 34716463 PMCID: PMC10992051 DOI: 10.1007/s00262-021-03084-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/04/2021] [Indexed: 10/19/2022]
Abstract
An important mechanism of oncolytic virotherapy in ameliorating cancer immunotherapy is by inducing significant changes in the immune landscape in the tumor microenvironment (TME). Despite this notion and the potential therapeutic implications, a comprehensive analysis of the immune changes in carcinomas induced by virotherapy has not yet been elucidated. We conducted single-cell RNA sequencing analysis on carcinomas treated with an HSV-2-based oncolytic virus to characterize the immunogenic changes in the TME. We specifically analyzed and compared the immune cell composition between viral treated and untreated tumors. We also applied CellChat to analyze the complex interactions among the infiltrated immune cells. Our data revealed significant infiltration of B cells in addition to other important immune cells, including CD4+, CD8+, and NK cells following virotherapy. Further analysis identified distinct subset compositions of the infiltrated immune cells and their activation status upon virotherapy. The intensive interactions among the infiltrated immune cells as revealed by CellChat analysis may further shape the immune landscape in favor of generating antitumor immunity. Our findings will facilitate the design of new strategies in incorporating immunotherapy into virotherapy for clinical translation. Moreover, the significant infiltration of B cells makes it suitable for combining virotherapy with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Divya Ravirala
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Xiaoliu Zhang
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.
- University of Houston, SERC 3004, 3517 Cullen Blvd, Houston, TX, 77204, USA.
| |
Collapse
|
3
|
de la Nava D, Selvi KM, Alonso MM. Immunovirotherapy for Pediatric Solid Tumors: A Promising Treatment That is Becoming a Reality. Front Immunol 2022; 13:866892. [PMID: 35493490 PMCID: PMC9043602 DOI: 10.3389/fimmu.2022.866892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has seen tremendous strides in the last decade, acquiring a prominent position at the forefront of cancer treatment since it has been proven to be efficacious for a wide variety of tumors. Nevertheless, while immunotherapy has changed the paradigm of adult tumor treatment, this progress has not yet been translated to the pediatric solid tumor population. For this reason, alternative curative therapies are urgently needed for the most aggressive pediatric tumors. In recent years, oncolytic virotherapy has consolidated as a feasible strategy for cancer treatment, not only for its tumor-specific effects and safety profile but also for its capacity to trigger an antitumor immune response. This review will summarize the current status of immunovirotherapy to treat cancer, focusing on pediatric solid malignancies. We will revisit previous basic, translational, and clinical research and discuss advances in overcoming the existing barriers and limitations to translate this promising therapeutic as an every-day cancer treatment for the pediatric and young adult populations.
Collapse
Affiliation(s)
- Daniel de la Nava
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
- Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Kadir Mert Selvi
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
- Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marta M. Alonso
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
- Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
4
|
Kooti W, Esmaeili Gouvarchin Ghaleh H, Farzanehpour M, Dorostkar R, Jalali Kondori B, Bolandian M. Oncolytic Viruses and Cancer, Do You Know the Main Mechanism? Front Oncol 2022; 11:761015. [PMID: 35004284 PMCID: PMC8728693 DOI: 10.3389/fonc.2021.761015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
The global rate of cancer has increased in recent years, and cancer is still a threat to human health. Recent developments in cancer treatment have yielded the understanding that viruses have a high potential in cancer treatment. Using oncolytic viruses (OVs) is a promising approach in the treatment of malignant tumors. OVs can achieve their targeted treatment effects through selective cell death and induction of specific antitumor immunity. Targeting tumors and the mechanism for killing cancer cells are among the critical roles of OVs. Therefore, evaluating OVs and understanding their precise mechanisms of action can be beneficial in cancer therapy. This review study aimed to evaluate OVs and the mechanisms of their effects on cancer cells.
Collapse
Affiliation(s)
- Wesam Kooti
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Jalali Kondori
- Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoumeh Bolandian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Chen XT, Dai SY, Zhan Y, Yang R, Chen DQ, Li Y, Zhou EQ, Dong R. Progress of oncolytic virotherapy for neuroblastoma. Front Pediatr 2022; 10:1055729. [PMID: 36467495 PMCID: PMC9716318 DOI: 10.3389/fped.2022.1055729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
As a neuroendocrine tumor derived from the neural crest, neuroblastoma (NB) is the most common extracranial solid tumor in children. The prognosis in patients with low- and intermediate-risk NB is favorable while that in high-risk patients is often detrimental. However, the management of the considerably large proportion of high-risk patients remains challenging in clinical practice. Among various new approaches, oncolytic virus (OV) therapy offers great advantages in tumor treatment, especially for high-risk NB. Genetic modified OVs can target NB specifically without affecting normal tissue and avoid the widespread drug resistance issue in anticancer monotherapy. Meanwhile, its safety profile provides great potential in combination therapy with chemo-, radio-, and immunotherapy. The therapeutic efficacy of OV for NB is impressive from bench to bedside. The effectiveness and safety of OVs have been demonstrated and reported in studies on children with NB. Furthermore, clinical trials on some OVs (Celyvir, Pexa-Vec (JX-594) and Seneca Valley Virus (NTX-010)) have reported great results. This review summarizes the latest evidence in the therapeutic application of OVs in NB, including those generated in cell lines, animal models and clinical trials.
Collapse
Affiliation(s)
- Xiao-Tong Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Shu-Yang Dai
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Ran Yang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - De-Qian Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Yi Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - En-Qing Zhou
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| |
Collapse
|
6
|
Jahan N, Ghouse SM, Martuza RL, Rabkin SD. In Situ Cancer Vaccination and Immunovirotherapy Using Oncolytic HSV. Viruses 2021; 13:v13091740. [PMID: 34578321 PMCID: PMC8473045 DOI: 10.3390/v13091740] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex virus (HSV) can be genetically altered to acquire oncolytic properties so that oncolytic HSV (oHSV) preferentially replicates in and kills cancer cells, while sparing normal cells, and inducing anti-tumor immune responses. Over the last three decades, a better understanding of HSV genes and functions, and improved genetic-engineering techniques led to the development of oHSV as a novel immunovirotherapy. The concept of in situ cancer vaccination (ISCV) was first introduced when oHSV was found to induce a specific systemic anti-tumor immune response with an abscopal effect on non-injected tumors, in the process of directly killing tumor cells. Thus, the use of oHSV for tumor vaccination in situ is antigen-agnostic. The research and development of oHSVs have moved rapidly, with the field of oncolytic viruses invigorated by the FDA/EMA approval of oHSV talimogene laherparepvec in 2015 for the treatment of advanced melanoma. Immunovirotherapy can be enhanced by arming oHSV with immunomodulatory transgenes and/or using them in combination with other chemotherapeutic and immunotherapeutic agents. This review offers an overview of the development of oHSV as an agent for ISCV against solid tumors, describing the multitude of different oHSVs and their efficacy in immunocompetent mouse models and in clinical trials.
Collapse
Affiliation(s)
- Nusrat Jahan
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Shanawaz M. Ghouse
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Robert L. Martuza
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Samuel D. Rabkin
- Department of Neurosurgery, Massachusetts General Hospital, 185 Cambridge St., CPZN-3800, Boston, MA 02114, USA
- Correspondence:
| |
Collapse
|
7
|
Li Y, Shen Y, Zhao R, Samudio I, Jia W, Bai X, Liang T. Oncolytic virotherapy in hepato-bilio-pancreatic cancer: The key to breaking the log jam? Cancer Med 2020; 9:2943-2959. [PMID: 32130786 PMCID: PMC7196045 DOI: 10.1002/cam4.2949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional therapies have limited efficacy in hepatocellular carcinoma, pancreatic cancer, and biliary tract cancer, especially for advanced and refractory cancers. Through a deeper understanding of antitumor immunity and the tumor microenvironment, novel immunotherapies are becoming available for cancer treatment. Oncolytic virus (OV) therapy is an emerging type of immunotherapy that has demonstrated effective antitumor efficacy in many preclinical studies and clinical studies. Thus, it may represent a potential feasible treatment for hard to treat gastrointestinal (GI) tumors. Here, we summarize the research progress of OV therapy for the treatment of hepato-bilio-pancreatic cancers. In general, most OV therapies exhibits potent, specific oncolysis both in cell lines in vitro and the animal models in vivo. Currently, several clinical trials have suggested that OV therapy may also be effective in patients with refractory hepato-bilio-pancreatic cancer. Multiple strategies such as introducing immunostimulatory genes, modifying virus capsid and combining various other therapeutic modalities have been shown enhanced specific oncolysis and synergistic anti-cancer immune stimulation. Combining OV with other antitumor therapies may become a more effective strategy than using virus alone. Nevertheless, more studies are needed to better understand the mechanisms underlying the therapeutic effects of OV, and to design appropriate dosing and combination strategies.
Collapse
Affiliation(s)
- Yuwei Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| | - Yinan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| | | | | | - William Jia
- Virogin Biotech Canada Ltd, Vancouver, Canada
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| |
Collapse
|
8
|
Guo ZS, Liu Z, Kowalsky S, Feist M, Kalinski P, Lu B, Storkus WJ, Bartlett DL. Oncolytic Immunotherapy: Conceptual Evolution, Current Strategies, and Future Perspectives. Front Immunol 2017; 8:555. [PMID: 28555136 PMCID: PMC5430078 DOI: 10.3389/fimmu.2017.00555] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/25/2017] [Indexed: 12/17/2022] Open
Abstract
The concept of oncolytic virus (OV)-mediated cancer therapy has been shifted from an operational virotherapy paradigm to an immunotherapy. OVs often induce immunogenic cell death (ICD) of cancer cells, and they may interact directly with immune cells as well to prime antitumor immunity. We and others have developed a number of strategies to further stimulate antitumor immunity and to productively modulate the tumor microenvironment (TME) for potent and sustained antitumor immune cell activity. First, OVs have been engineered or combined with other ICD inducers to promote more effective T cell cross-priming, and in many cases, the breaking of functional immune tolerance. Second, OVs may be armed to express Th1-stimulatory cytokines/chemokines or costimulators to recruit and sustain the potent antitumor immunity into the TME to focus their therapeutic activity within the sites of disease. Third, combinations of OV with immunomodulatory drugs or antibodies that recondition the TME have proven to be highly promising in early studies. Fourth, combinations of OVs with other immunotherapeutic regimens (such as prime-boost cancer vaccines, CAR T cells; armed with bispecific T-cell engagers) have also yielded promising preliminary findings. Finally, OVs have been combined with immune checkpoint blockade, with robust antitumor efficacy being observed in pilot evaluations. Despite some expected hurdles for the rapid translation of OV-based state-of-the-art protocols, we believe that a cohort of these novel approaches will join the repertoire of standard cancer treatment options in the near future.
Collapse
Affiliation(s)
- Zong Sheng Guo
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zuqiang Liu
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacy Kowalsky
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mathilde Feist
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Surgery, CCM/CVK, Charité – Universitaetsmedizin Berlin, Berlin, Germany
| | - Pawel Kalinski
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Binfeng Lu
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J. Storkus
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L. Bartlett
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Berkey SE, Thorne SH, Bartlett DL. Oncolytic Virotherapy and the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:157-172. [PMID: 29275471 DOI: 10.1007/978-3-319-67577-0_11] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oncolytic viral therapy is a promising approach to treat many malignancies, including breast, colorectal, hepatocellular, and melanoma. The best results are seen when using "targeted and armed" viruses. These are viruses that have been genetically modified to selectively replicate within cancer cells and express specific transgenes that alter the tumor microenvironment to inhibit tumor progression. The products of these transgenes induce cell death, make the virus less virulent, compromise tumor vascularity, and are capable of modulating or enhancing the immune system-such as cytokines and chemokines. In addition, oncolytic viruses can induce anti-vascular effects and disrupt the extracellular matrix to improve viral spread within the tumor. Oncolytic viruses also improve crosstalk between fibroblasts, cytokine-induced killer cells, and cancer cells within the microenvironment, leading to enhanced tumor cell death.
Collapse
Affiliation(s)
- Sara E Berkey
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Steve H Thorne
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Fu X, Rivera A, Tao L, Zhang X. An HSV-2 based oncolytic virus can function as an attractant to guide migration of adoptively transferred T cells to tumor sites. Oncotarget 2015; 6:902-14. [PMID: 25460506 PMCID: PMC4359264 DOI: 10.18632/oncotarget.2817] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/24/2014] [Indexed: 11/25/2022] Open
Abstract
Adoptive T-cell therapy has shown promises for cancer treatment. However, for treating solid tumors, there is a need for improving the ability of the adoptively transferred T cells to home to tumor sites. We explored the possibility of using an oncolytic virus derived from HSV-2, which can actively pull T effector cells to the site of infection, as a local attractant for migration of adoptively transferred T cells. Our data show that intratumoral administration of this virus can indeed attract active migration of the adoptively transferred T cells to the treated tumor. Moreover, once attracted to the tumor site by the virus, T cells persisted in there significantly longer than in mock-treated tumor. Chemokine profiling identified significant elevation of CXCL9 and CXCL10, as well as several other chemokines belonging to the inflammatory chemokine family in the virus-treated tumors. These chemokines initially guided the T-cell migration to and then maintained their persistence in the tumor site, leading to a significantly enhanced therapeutic effect. Our data suggests that this virotherapy may be combined with adoptive T-cell therapy to potentiate its therapeutic effect against solid tumors that are otherwise difficult to manage with the treatment alone.
Collapse
Affiliation(s)
- Xinping Fu
- Department of Biology and Biochemistry and Center for Nuclear Receptors and Cell Signaling, University of Houston, Texas, USA
| | - Armando Rivera
- Department of Biology and Biochemistry and Center for Nuclear Receptors and Cell Signaling, University of Houston, Texas, USA
| | - Lihua Tao
- Department of Biology and Biochemistry and Center for Nuclear Receptors and Cell Signaling, University of Houston, Texas, USA
| | - Xiaoliu Zhang
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
11
|
Rajasekaran N, Chester C, Yonezawa A, Zhao X, Kohrt HE. Enhancement of antibody-dependent cell mediated cytotoxicity: a new era in cancer treatment. Immunotargets Ther 2015; 4:91-100. [PMID: 27471715 PMCID: PMC4918249 DOI: 10.2147/itt.s61292] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The therapeutic efficacy of some anti-tumor monoclonal antibodies (mAbs) depends on the capacity of the mAb to recognize the tumor-associated antigen and induce cytotoxicity via a network of immune effector cells. This process of antibody-dependent cell-mediated cytotoxicity (ADCC) against tumor cells is triggered by the interaction of the fragment crystallizable (Fc) portion of the mAb with the Fc receptors on effector cells like natural killer cells, macrophages, γδ T cells, and dendritic cells. By augmenting ADCC, the antitumor activity of mAbs can be significantly increased. Currently, identifying and developing therapeutic agents that enhance ADCC is a growing area of research. Combining existing tumor-targeting mAbs and ADCC-promoting agents that stimulate effector cells will translate to greater clinical responses. In this review, we discuss strategies for enhancing ADCC and emphasize the potential of combination treatments that include US Food and Drug Administration-approved mAbs and immunostimulatory therapeutics.
Collapse
Affiliation(s)
- Narendiran Rajasekaran
- Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Cariad Chester
- Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Atsushi Yonezawa
- Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Xing Zhao
- Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Tissue Engineering and Stem Cells Research Center, Department of Immunology, Guiyang Medical University, Guiyang, Guizhou Province, People’s Republic of China
| | - Holbrook E Kohrt
- Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Antoszczyk S, Spyra M, Mautner VF, Kurtz A, Stemmer-Rachamimov AO, Martuza RL, Rabkin SD. Treatment of orthotopic malignant peripheral nerve sheath tumors with oncolytic herpes simplex virus. Neuro Oncol 2014; 16:1057-66. [PMID: 24470552 PMCID: PMC4096170 DOI: 10.1093/neuonc/not317] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUNDS Malignant peripheral nerve sheath tumors (MPNSTs) are an aggressive and often lethal sarcoma that frequently develops in patients with neurofibromatosis type 1 (NF1). We developed new preclinical MPNST models and tested the efficacy of oncolytic herpes simplex viruses (oHSVs), a promising cancer therapeutic that selectively replicates in and kills cancer cells. METHODS Mouse NF1(-) MPNST cell lines and human NF1(-) MPNST stemlike cells (MSLCs) were implanted into the sciatic nerves of immunocompetent and athymic mice, respectively. Tumor growth was followed by external measurement and sciatic nerve deficit using a hind-limb scoring system. Oncolytic HSV G47Δ as well as "armed" G47Δ expressing platelet factor 4 (PF4) or interleukin (IL)-12 were injected intratumorally into established sciatic nerve tumors. RESULTS Mouse MPNST cell lines formed tumors with varying growth kinetics. A single intratumoral injection of G47Δ in sciatic nerve tumors derived from human S462 MSLCs in athymic mice or mouse M2 (37-3-18-4) cells in immunocompetent mice significantly inhibited tumor growth and prolonged survival. Local IL-12 expression significantly improved the efficacy of G47Δ in syngeneic mice, while PF4 expression prolonged survival. Injection of G47Δ directly into the sciatic nerve of athymic mice resulted in only mild symptoms that did not differ from phosphate buffered saline control. CONCLUSIONS Two new orthotopic MPNST models are described, including in syngeneic mice, expanding the options for preclinical testing. Oncolytic HSV G47Δ exhibited robust efficacy in both immunodeficient and immunocompetent MPNST models while maintaining safety. Interleukin-12 expression improved efficacy. These studies support the clinical translation of G47Δ for patients with MPNST.
Collapse
Affiliation(s)
- Slawomir Antoszczyk
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Melanie Spyra
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Victor Felix Mautner
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Andreas Kurtz
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Anat O Stemmer-Rachamimov
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Robert L Martuza
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Samuel D Rabkin
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| |
Collapse
|
13
|
Oncolytic adenovirus armed with shRNA targeting MYCN gene inhibits neuroblastoma cell proliferation and in vivo xenograft tumor growth. J Cancer Res Clin Oncol 2013; 139:933-41. [PMID: 23443256 DOI: 10.1007/s00432-013-1406-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
PURPOSE MYCN amplification and p53 inactivation are two typical characteristics of aggressive neuroblastomas and are strongly associated with cancer progression and treatment failure. In an effort to develop new therapeutic agents to treat the aggressive neuroblastomas, we constructed ZD55-shMYCN, an oncolytic adenovirus ZD55 carrying short hairpin RNA (shRNA) targeting MYCN gene, and investigated the effects on proliferation of the p53-null and MYCN-amplified neuroblastoma cell line LA1-55N in vitro and in vivo by ZD55-shMYCN. METHODS In this study, we used ZD55-shMYCN to treat p53-null and MYCN-amplified neuroblastoma cells. To confirm the ability of selective replication of the ZD55-shMYCN, we examined the expression of E1A protein by western blotting. We used quantitative real-time PCR analysis and western blotting analysis to determine the inhibitory effect of ZD55-shMYCN on MYCN expression. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] cell proliferation assay and xenograft mouse model were used to test the antigrowth efficacy of ZD55-shMYCN. RESULTS The results showed that ZD55-shMYCN selectively replicated and significantly downregulated the MYCN expression in LA1-55N cells. ZD55-shMYCN effectively inhibited the proliferation in LA1-55N cells in vitro and significantly inhibited tumor growth in vivo xenograft tumor in nude mice. CONCLUSIONS ZD55-shMYCN provides a novel agent for treating MYCN-amplified and p53-inactive aggressive neuroblastoma, representing a promising approach for further clinical development.
Collapse
|
14
|
Abstract
Most patients with small intestinal neuroendocrine tumors (SI-NETs), also referred to as midgut carcinoids, present with systemic disease at the time of diagnosis with metastases primarily found in regional lymph nodes and the liver. Curative treatment is not available for these patients and there is a need for novel and specific therapies. Engineered oncolytic viruses may meet the need and play an important role in the future management of SI-NET liver metastases. This review focuses on adenovirus as the oncolytic anti-cancer agent and its potential curative role for SI-NET liver metastases, but it also summarizes the use of oncolytic viruses for NETs in general. It discusses how specific features of neuroendocrine cell biology can be used to engineer viruses to become selective for infection of NET cells and/or replication within NET cells. In addition, it points out the advantages and shortcomings of using replicating viruses in the treatment of cancer and addresses research fields that can increase the efficacy of virus-based therapy.
Collapse
Affiliation(s)
- Magnus Essand
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Zhang SC, Cai WS, Zhang Y, Jiang KL, Zhang KR, Wang WL. Engineered measles virus Edmonston strain used as a novel oncolytic viral system against human neuroblastoma through a CD46 and nectin 4-independent pathway. Cancer Lett 2012; 325:227-37. [PMID: 22796607 DOI: 10.1016/j.canlet.2012.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 07/04/2012] [Accepted: 07/04/2012] [Indexed: 10/28/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in children. In this study, we investigated the potential antitumor capability of the engineered Edmonston strain of the carcinoembryonic antigen-expressing measles virus (MV-CEA) against human NB. The infection of a variety of NB cell lines, including SK-N-SH, SMS-KCNR, and primary NB cells, resulted in significant cytopathic effects. None of the NB cell lines showed an overexpression of the measles virus receptor CD46 and nectin 4, but the cell lines did support robust viral replication. The efficacy of this approach was examined in murine SK-N-SH xenograft models. Flow cytometry and TUNEL assays indicated an apoptotic mechanism of cell death. In summary, MV-CEA has potent therapeutic efficacy against NB mediated by a CD46- and nectin 4-independent pathway.
Collapse
Affiliation(s)
- Shu-Cheng Zhang
- Department of Pediatric Surgery, Major Laboratory of the Chinese Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical University, Heping District, Shenyang, PR China
| | | | | | | | | | | |
Collapse
|
16
|
Lettieri CK, Hingorani P, Kolb EA. Progress of oncolytic viruses in sarcomas. Expert Rev Anticancer Ther 2012; 12:229-42. [PMID: 22316371 DOI: 10.1586/era.11.205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oncolytic virotherapy has shown exciting promise for the treatment of many types of solid tumors. Pediatric sarcomas are an aggressive type of pediatric malignancy known to show limited responsiveness to current therapies, leading to unacceptably high morbidity and mortality. Oncolytic viruses have only recently been used for the treatment of this challenging cancer, and results have been encouraging. Five clinical trials are currently open evaluating the use of oncolytic viruses in pediatric malignancies. Advances in genetic engineering of the viruses include improving the ability of the virus to infect tumor cells, engineering the virus with transgenes which improve the virus' ability to kill tumor cells and manipulating the virus to enhance concomitantly administered therapies. Further understanding of the antiviral immune response and a viral induced anti-tumor immune response will permit a maximization of oncolytic virotherapy.
Collapse
Affiliation(s)
- Christina K Lettieri
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ 85016, USA.
| | | | | |
Collapse
|
17
|
Zhang SC, Wang WL, Cai WS, Jiang KL, Yuan ZW. Engineered measles virus Edmonston strain used as a novel oncolytic viral system against human hepatoblastoma. BMC Cancer 2012; 12:427. [PMID: 23009685 PMCID: PMC3488522 DOI: 10.1186/1471-2407-12-427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 09/23/2012] [Indexed: 12/26/2022] Open
Abstract
Background Hepatoblastoma (HB) is the most common primary, malignant pediatric liver tumor in children. The treatment results for affected children have markedly improved in recent decades. However, the prognosis for high-risk patients who have extrahepatic extensions, invasion of the large hepatic veins, distant metastases and very high alpha-fetoprotein (AFP) serum levels remains poor. There is an urgent need for the development of novel therapeutic approaches. Methods An attenuated strain of measles virus, derived from the Edmonston vaccine lineage, was genetically engineered to produce carcinoembryonic antigen (CEA). We investigated the antitumor potential of this novel viral agent against human HB both in vitro and in vivo. Results Infection of the Hep2G and HUH6 HB cell lines, at multiplicities of infection (MOIs) ranging from 0.01 to 1, resulted in a significant cytopathic effect consisting of extensive syncytia formation and massive cell death at 72–96 h after infection. Both of the HB lines overexpressed the measles virus receptor CD46 and supported robust viral replication, which correlated with CEA production. The efficacy of this approach in vivo was examined in murine Hep2G xenograft models. Flow cytometry assays indicated an apoptotic mechanism of cell death. Intratumoral administration of MV-CEA resulted in statistically significant delay of tumor growth and prolongation of survival. Conclusions The engineered measles virus Edmonston strain MV-CEA has potent therapeutic efficacy against HB cell lines and xenografts. Trackable measles virus derivatives merit further exploration in HB treatment.
Collapse
Affiliation(s)
- Shu-Cheng Zhang
- Department of Pediatric Surgery, Major Laboratory of Chinese Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical University, 36 Sanhao Street Heping District, Shenyang 110004, P.R. China.
| | | | | | | | | |
Collapse
|
18
|
Sahin TT, Kasuya H, Nomura N, Shikano T, Yamamura K, Gewen T, Kanzaki A, Fujii T, Sugae T, Imai T, Nomoto S, Takeda S, Sugimoto H, Kikumori T, Kodera Y, Nishiyama Y, Nakao A. Impact of novel oncolytic virus HF10 on cellular components of the tumor microenviroment in patients with recurrent breast cancer. Cancer Gene Ther 2011; 19:229-37. [PMID: 22193629 DOI: 10.1038/cgt.2011.80] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oncolytic viruses are a promising method of cancer therapy, even for advanced malignancies. HF10, a spontaneously mutated herpes simplex type 1, is a potent oncolytic agent. The interaction of oncolytic herpes viruses with the tumor microenvironment has not been well characterized. We injected HF10 into tumors of patients with recurrent breast carcinoma, and sought to determine its effects on the tumor microenvironment. Six patients with recurrent breast cancer were recruited to the study. Tumors were divided into two groups: saline-injected (control) and HF10-injected (treatment). We investigated several parameters including neovascularization (CD31) and tumor lymphocyte infiltration (CD8, CD4), determined by immunohistochemistry, and apoptosis, determined by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Median apoptotic cell count was lower in the treatment group (P=0.016). Angiogenesis was significantly higher in treatment group (P=0.032). Count of CD8-positive lymphocytes infiltrating the tumors was higher in the treatment group (P=0.008). We were unable to determine CD4-positive lymphocyte infiltration. An effective oncolytic viral agent must replicate efficiently in tumor cells, leading to higher viral counts, in order to aid viral penetration. HF10 seems to meet this criterion; furthermore, it induces potent antitumor immunity. The increase in angiogenesis may be due to either viral replication or the inflammatory response.
Collapse
Affiliation(s)
- T T Sahin
- Department of Surgery II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fu X, Tao L, Zhang X. A short polypeptide from the herpes simplex virus type 2 ICP10 gene can induce antigen aggregation and autophagosomal degradation for enhanced immune presentation. Hum Gene Ther 2011; 21:1687-96. [PMID: 20583863 DOI: 10.1089/hum.2010.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
It has been reported that certain polypeptides derived from aggregation-prone cellular proteins can turn soluble green fluorescent protein (GFP) into aggregates. Here we report our finding that a short peptide derived from a viral gene, ICP10 of herpes simplex virus (HSV)-2, also possesses such a property. A sequence as short as 13 amino acids from the middle region of the gene can convert GFP into an aggregation-prone toxic protein once it is fused to the C terminus. Moreover, this short peptide can direct a surrogate tumor antigen into the autophagosome/lysosome degradation pathway, drastically increasing both MHC class I and class II antigen presentation. The simultaneous induction of both arms of the T cell immune response to the tumor antigen effectively protects the immunized animals from tumor challenge. Designated VIPA (i.e., viral inducer of protein aggregation), this unique viral sequence may represent an attractive candidate as a molecular adjuvant for cancer immunotherapy and for other immunologically preventable diseases.
Collapse
Affiliation(s)
- Xinping Fu
- Department of Biology and Biochemistry, University of Houston, TX 77204, USA
| | | | | |
Collapse
|
20
|
Melcher A, Parato K, Rooney CM, Bell JC. Thunder and lightning: immunotherapy and oncolytic viruses collide. Mol Ther 2011; 19:1008-16. [PMID: 21505424 DOI: 10.1038/mt.2011.65] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For the last several decades, the development of antitumor immune-based strategies and the engineering and testing of oncolytic viruses (OVs) has occurred largely in parallel tracks. Indeed, the immune system is often thought of as an impediment to successful oncolytic virus delivery and efficacy. More recently, however, both preclinical and clinical results have revealed potential synergy between these two promising therapeutic strategies. Here, we summarize some of the evidence that supports combining OVs with immuno-therapeutics and suggest new ways to mount a multipronged biological attack against cancers.
Collapse
Affiliation(s)
- Alan Melcher
- Targeted and Biological Therapies Group, Leeds Institute of Molecular Medicine, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
| | | | | | | |
Collapse
|
21
|
Bellanti F, Kågedal B, Della Pasqua O. Do pharmacokinetic polymorphisms explain treatment failure in high-risk patients with neuroblastoma? Eur J Clin Pharmacol 2011; 67 Suppl 1:87-107. [PMID: 21287160 PMCID: PMC3112027 DOI: 10.1007/s00228-010-0966-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 11/27/2010] [Indexed: 12/30/2022]
Abstract
PURPOSE Neuroblastoma is the most common extracranial solid tumour in childhood. It accounts for 15% of all paediatric oncology deaths. In the last few decades, improvement in treatment outcome for high-risk patients has not occurred, with an overall survival rate <30-40%. Many reasons may account for such a low survival rate. The aim of this review is to evaluate whether pharmacogenetic factors can explain treatment failure in neuroblastoma. METHODS A literature search based on PubMed's database Medical Subject Headings (MeSH) was performed to retrieve all pertinent publications on current treatment options and new classes of drugs under investigation. One hundred and fifty-eight articles wer reviewed, and relevant data were extracted and summarised. RESULTS AND CONCLUSIONS Few of the large number of polymorphisms identified thus far showed an effect on pharmacokinetics that could be considered clinically relevant. Despite their clinical relevance, none of the single nucleotide polymorphisms (SNPs) investigated can explain treatment failure. These findings seem to reflect the clinical context in which anti-tumour drugs are used, i.e. in combination with multimodal therapy. In addition, many pharmacogenetic studies did not assess (differences in) drug exposure, which could contribute to explaining pharmacogenetic associations. Furthermore, it remains unclear whether the significant activity of new drugs on different neuroblastoma cell lines translates into clinical efficacy, irrespective of resistance or myelocytomatosis viral related oncogene, neuroblastoma derived (MYCN) amplification. Elucidation of the clinical role of pharmacogenetic factors in the treatment of neuroblastoma demands an integrated pharmacokinetic-pharmacodynamic approach to the analysis of treatment response data.
Collapse
Affiliation(s)
- Francesco Bellanti
- Division of Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | | | | |
Collapse
|
22
|
Sobol PT, Boudreau JE, Stephenson K, Wan Y, Lichty BD, Mossman KL. Adaptive antiviral immunity is a determinant of the therapeutic success of oncolytic virotherapy. Mol Ther 2010; 19:335-44. [PMID: 21119618 DOI: 10.1038/mt.2010.264] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oncolytic virotherapy, the selective killing of tumor cells by oncolytic viruses (OVs), has emerged as a promising avenue of anticancer research. We have previously shown that KM100, a Herpes simplex virus type-1 (HSV) deficient for infected cell protein 0 (ICP0), possesses substantial oncolytic properties in vitro and has antitumor efficacy in vivo, in part by inducing antitumor immunity. Here, we illustrate through T-cell immunodepletion studies in nontolerized tumor-associated antigen models of breast cancer that KM100 treatment promotes antiviral and antitumor CD8(+) cytotoxic T-cell responses necessary for complete tumor regression. In tolerized tumor-associated antigen models of breast cancer, antiviral CD8(+) cytotoxic T-cell responses against infected tumor cells correlated with the induction of significant tumoristasis in the absence of tumor-associated antigen-specific CD8(+) cytotoxic T-cells. To enhance oncolysis, we tested a more cytopathic ICP0-null HSV and a vesicular stomatitis virus M protein mutant and found that despite improved in vitro replication, oncolysis in vivo did not improve. These studies illustrate that the in vitro cytolytic properties of OVs are poor prognostic indicators of in vivo antitumor activity, and underscore the importance of adaptive antiviral CD8(+) cytotoxic T-cells in effective cancer virotherapy.
Collapse
Affiliation(s)
- Paul T Sobol
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Anesti AM, Simpson GR, Price T, Pandha HS, Coffin RS. Expression of RNA interference triggers from an oncolytic herpes simplex virus results in specific silencing in tumour cells in vitro and tumours in vivo. BMC Cancer 2010; 10:486. [PMID: 20836854 PMCID: PMC2944180 DOI: 10.1186/1471-2407-10-486] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 09/13/2010] [Indexed: 12/31/2022] Open
Abstract
Background Delivery of small interfering RNA (siRNA) to tumours remains a major obstacle for the development of RNA interference (RNAi)-based therapeutics. Following the promising pre-clinical and clinical results with the oncolytic herpes simplex virus (HSV) OncoVEXGM-CSF, we aimed to express RNAi triggers from oncolytic HSV, which although has the potential to improve treatment by silencing tumour-related genes, was not considered possible due to the highly oncolytic properties of HSV. Methods To evaluate RNAi-mediated silencing from an oncolytic HSV backbone, we developed novel replicating HSV vectors expressing short-hairpin RNA (shRNA) or artificial microRNA (miRNA) against the reporter genes green fluorescent protein (eGFP) and β-galactosidase (lacZ). These vectors were tested in non-tumour cell lines in vitro and tumour cells that are moderately susceptible to HSV infection both in vitro and in mice xenografts in vivo. Silencing was assessed at the protein level by fluorescent microscopy, x-gal staining, enzyme activity assay, and western blotting. Results Our results demonstrate that it is possible to express shRNA and artificial miRNA from an oncolytic HSV backbone, which had not been previously investigated. Furthermore, oncolytic HSV-mediated delivery of RNAi triggers resulted in effective and specific silencing of targeted genes in tumour cells in vitro and tumours in vivo, with the viruses expressing artificial miRNA being comprehensibly more effective. Conclusions This preliminary data provide the first demonstration of oncolytic HSV-mediated expression of shRNA or artificial miRNA and silencing of targeted genes in tumour cells in vitro and in vivo. The vectors developed in this study are being adapted to silence tumour-related genes in an ongoing study that aims to improve the effectiveness of oncolytic HSV treatment in tumours that are moderately susceptible to HSV infection and thus, potentially improve response rates seen in human clinical trials.
Collapse
Affiliation(s)
- Anna-Maria Anesti
- Oncology Group, Postgraduate Medical School, University of Surrey, Surrey, GU2 5XH, UK
| | | | | | | | | |
Collapse
|
24
|
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges.
Collapse
Affiliation(s)
- Roberto Manservigi
- Department of Experimental and Diagnostic Medicine - Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | |
Collapse
|
25
|
Manservigi R, Argnani R, Marconi P. HSV Recombinant Vectors for Gene Therapy. Open Virol J 2010; 4:123-56. [PMID: 20835362 DOI: 10.2174/1874357901004030123] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/13/2010] [Accepted: 03/31/2010] [Indexed: 12/16/2022] Open
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges.
Collapse
Affiliation(s)
- Roberto Manservigi
- Department of Experimental and Diagnostic Medicine - Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | |
Collapse
|
26
|
Filippakis H, Spandidos DA, Sourvinos G. Herpesviruses: hijacking the Ras signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:777-85. [PMID: 20303365 DOI: 10.1016/j.bbamcr.2010.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/24/2010] [Accepted: 03/10/2010] [Indexed: 12/25/2022]
Abstract
Cancer is the final result of the accumulation of several genetic alterations occurring in a cell. Several herpesviruses and especially gamma-herpesviruses have played an important role in Cancer Biology, contributing significantly to our comprehension of cell signaling and growth control pathways which lead to malignancy. Unlike other infectious agents, herpesviruses persist in the host by establishing a latent infection, so that they can reactivate periodically. Interestingly, some herpesviruses are able to either deliver or induce the expression of cellular oncogenes. Such alterations can result in the derailment of the normal cell cycle and ultimately shift the balance between continuous proliferation and programmed cell death. Herpesvirus infection employs key molecules of cellular signaling cascades mostly to enhance viral replication. However, most of these molecules are also involved in essential cellular functions, such as proliferation, cellular differentiation and migration, as well as in DNA repair mechanisms. Ras proteins are key molecules that regulate a wide range of cellular functions, including differentiation, proliferation and cell survival. A broad field of medical research is currently focused on elucidating the role of ras oncogenes in human tumor initiation as well as tumor progression and metastasis. Upon activation, Ras proteins employ several downstream effector molecules such as phosphatidylinositol 3-kinase (PI3-K) and Raf and Ral guanine nucleotide-dissociation stimulators (RALGDS) to regulate a cascade of events ranging from cell proliferation and survival to apoptosis and cellular death. In this review, we give an overview of the impact that herpesvirus infection has on the host-cell Ras signaling pathway, providing an outline of their interactions with the key cascade molecules with which they associate. Several of these interactions of viral proteins with member of the Ras signaling pathway may be crucial in determining herpesviruses' oncogenic potential or their oncomodulatory behavior. The questions that emerge concern the potential role of these molecules as therapeutic targets both for viral infections and cancer. Understanding the means by which viruses may cause oncogenesis would therefore provide a deeper knowledge of the overall oncogenic process.
Collapse
Affiliation(s)
- Harilaos Filippakis
- Department of Clinical Virology, Faculty of Medicine, University of Crete, Heraklion 71003, Crete, Greece
| | | | | |
Collapse
|
27
|
Castelo-Branco P, Passer BJ, Buhrman JS, Antoszczyk S, Marinelli M, Zaupa C, Rabkin SD, Martuza RL. Oncolytic herpes simplex virus armed with xenogeneic homologue of prostatic acid phosphatase enhances antitumor efficacy in prostate cancer. Gene Ther 2010; 17:805-10. [PMID: 20220784 DOI: 10.1038/gt.2010.20] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prostate cancer is one of the most prevalent cancers in men. Replication-competent oncolytic herpes simplex virus (oHSV) vectors are a powerful antitumor therapy that can exert at least two effects: direct cytocidal activity that selectively kills cancer cells and induction of antitumor immunity. In addition, oHSV vectors can also function as a platform to deliver transgenes of interest. In these studies, we have examined the expression of a xenogeneic homologue of the prostate cancer antigen, prostatic acid phosphatase (PAP), with the goal of enhancing virotherapy against PAP-expressing tumors. PAP has already been used for cancer vaccination in patients with prostate cancer. Here we show that treatment with oHSV bPDelta6 expressing xenogeneic human PAP (hPAP) significantly reduces tumor growth and increases survival of C57/BL6 mice bearing mouse TRAMP-C2 prostate tumors, whereas expression of syngeneic mouse PAP (mPAP) from the same oHSV vector did not enhance antitumor activity. Treatment of mice bearing metastatic TRAMP-C2 lung tumors with oHSV-expressing hPAP resulted in fewer tumor nodules. To our knowledge, this is the first report of oncolytic viruses being used to express xenoantigens. These data lend support to the concept of combining oncolytic and immunogenic therapies as a way to improve therapy of metastatic prostate cancer.
Collapse
Affiliation(s)
- P Castelo-Branco
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lacroix J, Leuchs B, Li J, Hristov G, Deubzer HE, Kulozik AE, Rommelaere J, Schlehofer JR, Witt O. Parvovirus H1 selectively induces cytotoxic effects on human neuroblastoma cells. Int J Cancer 2010; 127:1230-9. [DOI: 10.1002/ijc.25168] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Abstract
It is well documented that immunotherapy has a great potential for cancer treatment. The ideal cancer immunotherapeutic strategies should be relatively simple, but able to trick the host's immune system to elicit a robust immune response to the tumor target. Herpes Simplex Virus (HSV) has been engineered for the purpose of oncolysis. These so-called oncolytic HSVs can selectively replicate within tumor cells, resulting in their destruction and in the production of progeny virions that can spread to adjacent tumor cells. In addition to their direct oncolytic effect, tumor lysis by oncolytic viruses releases tumor antigens in their native form and configuration in an individualized way. Immune responses thus generated would be more likely to recognize the original tumor than would tumor vaccines produced by other methods, most of which require extensive in vitro modification and manipulation. Several recently published studies have shown that HSV-elicited antitumor immune responses are an essential part of the overall antitumor effect produced by oncolytic HSVs, not only for controlling primary tumor growth, but also for preventing long distance metastases. In this chapter several key methods will be illustrated to monitor the immune response elicited by oncolytic HSVs.
Collapse
|
30
|
Ottolino-Perry K, Diallo JS, Lichty BD, Bell JC, McCart JA. Intelligent design: combination therapy with oncolytic viruses. Mol Ther 2009; 18:251-63. [PMID: 20029399 DOI: 10.1038/mt.2009.283] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Metastatic cancer remains an incurable disease in the majority of cases and thus novel treatment strategies such as oncolytic virotherapy are rapidly advancing toward clinical use. In order to be successful, it is likely that some type of combination therapy will be necessary to have a meaningful impact on this disease. Although it may be tempting to simply combine an oncolytic virus with the existing standard radiation or chemotherapeutics, the long-term goal of such treatments must be to have a rational, potentially synergistic combination strategy that can be safely and easily used in the clinical setting. The combination of oncolytic virotherapy with existing radiotherapy and chemotherapy modalities is reviewed along with novel biologic therapies including immunotherapies, in order to help investigators make intelligent decisions during the clinical development of these products.
Collapse
Affiliation(s)
- Kathryn Ottolino-Perry
- Division of Experimental Therapeutics, Toronto General Research Institute, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
31
|
Prestwich RJ, Errington F, Diaz RM, Pandha HS, Harrington KJ, Melcher AA, Vile RG. The case of oncolytic viruses versus the immune system: waiting on the judgment of Solomon. Hum Gene Ther 2009; 20:1119-32. [PMID: 19630549 PMCID: PMC2829276 DOI: 10.1089/hum.2009.135] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 07/24/2009] [Indexed: 02/07/2023] Open
Abstract
The three-way interaction between oncolytic viruses, the tumor microenvironment, and the immune system is critical to the outcome of antitumor therapy. Classically, the immune system is thought to limit the efficacy of therapy, leading to viral clearance. However, preclinical and clinical data suggest that in some cases virotherapy may in fact act as cancer immunotherapy. In this review we discuss the ability of oncolytic viruses to alter the immunogenic milieu of the tumor microenvironment, and the role of innate and adaptive immunity in both restricting and augmenting therapy. Strategies to improve virotherapy by immunomodulation, including suppression or enhancement of the innate and adaptive responses, are discussed.
Collapse
Affiliation(s)
- Robin J. Prestwich
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Fiona Errington
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Rosa M. Diaz
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | - Hardev S. Pandha
- Postgraduate Medical School, University of Surrey, Guildford GU2 7XX, United Kingdom
| | - Kevin J. Harrington
- Targeted Therapy Laboratory, Institute of Cancer Research, Cancer Research UK, Chester Beatty Laboratories, London SW3 6JB, United Kingdom
| | - Alan A. Melcher
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Richard G. Vile
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
32
|
Chuang CM, Monie A, Wu A, Pai SI, Hung CF. Combination of viral oncolysis and tumor-specific immunity to control established tumors. Clin Cancer Res 2009; 15:4581-8. [PMID: 19584165 DOI: 10.1158/1078-0432.ccr-08-2685] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Advanced-stage cancers are extremely difficult to treat and rarely result in a cure. The application of oncolytic viruses is a potential strategy for controlling advanced-stage cancer because intratumoral (i.t.) injection of an oncolytic virus, such as vaccinia virus, results in tumor cell lysis and subsequent release of tumor antigens into the microenvironment. Furthermore, the viruses can serve as a vehicle for delivering genes of interest to cancer cells. EXPERIMENTAL DESIGN In the current study, we hypothesize that in tumor-bearing mice primed with DNA encoding an immunogenic foreign antigen, ovalbumin (OVA) followed by a boost with i.t. administration of vaccinia virus encoding the same foreign antigen, OVA, can generate enhanced antitumor effects through the combination of viral oncolysis and tumor-specific immunity. RESULTS We observed that tumor-bearing mice primed with OVA DNA and boosted with vaccinia encoding OVA (Vac-OVA) generated significant therapeutic antitumor effects as well as induced significant levels of OVA-specific CD8+ T cells in two different tumor models. Furthermore, treatment with Vac-OVA not only kills the tumor and stromal cells directly but also renders the tumor cells and surrounding stromal cells susceptible to OVA-specific CD8+ T-cell killing, resulting in enhanced antitumor therapeutic effects. CONCLUSIONS Thus, the current study may provide a novel therapeutic strategy for the control of advanced-stage cancers.
Collapse
Affiliation(s)
- Chi-Mu Chuang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| | | | | | | | | |
Collapse
|
33
|
Prestwich RJ, Ilett EJ, Errington F, Diaz RM, Steele LP, Kottke T, Thompson J, Galivo F, Harrington KJ, Pandha HS, Selby PJ, Vile RG, Melcher AA. Immune-mediated antitumor activity of reovirus is required for therapy and is independent of direct viral oncolysis and replication. Clin Cancer Res 2009; 15:4374-4381. [PMID: 19509134 DOI: 10.1158/1078-0432.ccr-09-0334] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Reovirus is a naturally occurring oncolytic virus in clinical trials. Although tumor infection by reovirus can generate adaptive antitumor immunity, its therapeutic importance versus direct viral oncolysis is undefined. This study addresses the requirement for viral oncolysis and replication, and the relative importance of antitumor immunity and direct oncolysis in therapy. EXPERIMENTAL DESIGN Nonantigen specific T cells loaded with reovirus were delivered i.v. to C57BL/6 and severe combined immunodeficient mice bearing lymph node and splenic metastases from the murine melanoma, B16ova, with assessment of viral replication, metastatic clearance by tumor colony outgrowth, and immune priming. Human cytotoxic lymphocyte priming assays were done with dendritic cells loaded with Mel888 cells before the addition of reovirus. RESULTS B16ova was resistant to direct oncolysis in vitro, and failed to support reovirus replication in vitro or in vivo. Nevertheless, reovirus purged lymph node and splenic metastases in C57BL/6 mice and generated antitumor immunity. In contrast, reovirus failed to reduce tumor burden in severe combined immunodeficient mice bearing either B16ova or reovirus-sensitive B16tk metastases. In the human system, reovirus acted solely as an adjuvant when added to dendritic cells already loaded with Mel888, supporting priming of specific antitumor cytotoxic lymphocyte, in the absence of significant direct tumor oncolysis; UV-treated nonreplicating reovirus was similarly immunogenic. CONCLUSION The immune response is critical in mediating the efficacy of reovirus, and does not depend upon direct viral oncolysis or replication. The findings are of direct relevance to fulfilling the potential of this novel anticancer agent.
Collapse
Affiliation(s)
- Robin J Prestwich
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - Elizabeth J Ilett
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - Fiona Errington
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - Rosa M Diaz
- Molecular Medicine Program, Mayo Clinic, Rochester, Minnesota
| | - Lynette P Steele
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - Tim Kottke
- Molecular Medicine Program, Mayo Clinic, Rochester, Minnesota
| | - Jill Thompson
- Molecular Medicine Program, Mayo Clinic, Rochester, Minnesota
| | - Feorillo Galivo
- Molecular Medicine Program, Mayo Clinic, Rochester, Minnesota
| | - Kevin J Harrington
- Targeted Therapy Laboratory, Institute of Cancer Research, Cancer Research UK, Chester Beatty Laboratories, London, United Kingdom
| | - Hardev S Pandha
- Postgraduate Medical School, University of Surrey, Guildford, United Kingdom
| | - Peter J Selby
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - Richard G Vile
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom.,Molecular Medicine Program, Mayo Clinic, Rochester, Minnesota.,Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Alan A Melcher
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
34
|
Friedman GK, Pressey JG, Reddy AT, Markert JM, Gillespie GY. Herpes simplex virus oncolytic therapy for pediatric malignancies. Mol Ther 2009; 17:1125-35. [PMID: 19367259 DOI: 10.1038/mt.2009.73] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Despite improving survival rates for children with cancer, a subset of patients exist with disease resistant to traditional therapies such as surgery, chemotherapy, and radiation. These patients require newer, targeted treatments used alone or in combination with more traditional approaches. Oncolytic herpes simplex virus (HSV) is one of these newer therapies that offer promise for several difficult to treat pediatric malignancies. The potential benefit of HSV therapy in pediatric solid tumors including brain tumors, neuroblastomas, and sarcomas is reviewed along with the many challenges that need to be addressed prior to moving oncolytic HSV therapy from the laboratory to the beside in the pediatric population.
Collapse
Affiliation(s)
- Gregory K Friedman
- Department of Pediatrics, Children's Hospital of Alabama, University of Alabama at Birmingham, USA.
| | | | | | | | | |
Collapse
|
35
|
Prestwich RJ, Harrington KJ, Pandha HS, Vile RG, Melcher AA, Errington F. Oncolytic viruses: a novel form of immunotherapy. Expert Rev Anticancer Ther 2009; 8:1581-8. [PMID: 18925850 DOI: 10.1586/14737140.8.10.1581] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oncolytic viruses are novel anticancer agents, currently under investigation in Phase I-III clinical trials. Until recently, most studies have focused on the direct antitumor properties of these viruses, although there is now an increasing body of evidence that the host immune response may be critical to the efficacy of oncolytic virotherapy. This may be mediated via innate immune effectors, adaptive antiviral immune responses eliminating infected cells or adaptive antitumor immune responses. This report summarizes preclinical and clinical evidence for the importance of immune interactions, which may be finely balanced between viral and tumor elimination. On this basis, oncolytic viruses represent a promising novel immunotherapy strategy, which may be optimally combined with existing therapeutic modalities.
Collapse
Affiliation(s)
- Robin J Prestwich
- Cancer Research UK Clinical Centre, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus. PLoS One 2009; 4:e4235. [PMID: 19156211 PMCID: PMC2626279 DOI: 10.1371/journal.pone.0004235] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 12/10/2008] [Indexed: 12/14/2022] Open
Abstract
Background Although disease remission can frequently be achieved for patients with neuroblastoma, relapse is common. The cancer stem cell theory suggests that rare tumorigenic cells, resistant to conventional therapy, are responsible for relapse. If true for neuroblastoma, improved cure rates may only be achieved via identification and therapeutic targeting of the neuroblastoma tumor initiating cell. Based on cues from normal stem cells, evidence for tumor populating progenitor cells has been found in a variety of cancers. Methodology/Principal Findings Four of eight human neuroblastoma cell lines formed tumorspheres in neural stem cell media, and all contained some cells that expressed neurogenic stem cell markers including CD133, ABCG2, and nestin. Three lines tested could be induced into multi-lineage differentiation. LA-N-5 spheres were further studied and showed a verapamil-sensitive side population, relative resistance to doxorubicin, and CD133+ cells showed increased sphere formation and tumorigenicity. Oncolytic viruses, engineered to be clinically safe by genetic mutation, are emerging as next generation anticancer therapeutics. Because oncolytic viruses circumvent typical drug-resistance mechanisms, they may represent an effective therapy for chemotherapy-resistant tumor initiating cells. A Nestin-targeted oncolytic herpes simplex virus efficiently replicated within and killed neuroblastoma tumor initiating cells preventing their ability to form tumors in athymic nude mice. Conclusions/Significance These results suggest that human neuroblastoma contains tumor initiating cells that may be effectively targeted by an oncolytic virus.
Collapse
|
37
|
Prestwich RJ, Errington F, Ilett EJ, Morgan RSM, Scott KJ, Kottke T, Thompson J, Morrison EE, Harrington KJ, Pandha HS, Selby PJ, Vile RG, Melcher AA. Tumor infection by oncolytic reovirus primes adaptive antitumor immunity. Clin Cancer Res 2009; 14:7358-66. [PMID: 19010851 DOI: 10.1158/1078-0432.ccr-08-0831] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Early clinical trials are under way exploring the direct oncolytic potential of reovirus. This study addresses whether tumor infection by reovirus is also able to generate bystander, adaptive antitumor immunity. EXPERIMENTAL DESIGN Reovirus was delivered intravenously to C57BL/6 mice bearing lymph node metastases from the murine melanoma, B16-tk, with assessment of nodal metastatic clearance, priming of antitumor immunity against the tumor-associated antigen tyrosinase-related protein-2, and cytokine responses. In an in vitro human system, the effect of reovirus infection on the ability of Mel888 melanoma cells to activate and load dendritic cells for cytotoxic lymphocyte (CTL) priming was investigated. RESULTS In the murine model, a single intravenous dose of reovirus reduced metastatic lymph node burden and induced antitumor immunity (splenocyte response to tyrosinase-related protein-2 and interleukin-12 production in disaggregated lymph nodes). In vitro human assays revealed that uninfected Mel888 cells failed to induce dendritic cell maturation or support priming of an anti-Mel888 CTL response. In contrast, reovirus-infected Mel888 cells (reo-Mel) matured dendritic cells in a reovirus dose-dependent manner. When cultured with autologous peripheral blood lymphocytes, dendritic cells loaded with reo-Mel induced lymphocyte expansion, IFN-gamma production, specific anti-Mel888 cell cytotoxicity, and cross-primed CD8+ T cells specific against the human tumor-associated antigen MART-1. CONCLUSION Reovirus infection of tumor cells reduces metastatic disease burden and primes antitumor immunity. Future clinical trials should be designed to explore both direct cytotoxic and immunotherapeutic effects of reovirus.
Collapse
Affiliation(s)
- Robin J Prestwich
- Cancer Research UK Clinical Centre, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Effect of preexisting immunity on oncolytic adenovirus vector INGN 007 antitumor efficacy in immunocompetent and immunosuppressed Syrian hamsters. J Virol 2008; 83:2130-9. [PMID: 19073718 DOI: 10.1128/jvi.02127-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Immune responses against adenovirus (Ad) vectors pose a possible concern for the outcome of treatment efficacy. To address the role of preexisting immunity in oncolytic Ad vector antitumor efficacy following intratumoral injection of vector as well as tumor-to-tissue spread of the vector, we employed the Syrian hamster model. These animals are immunocompetent, and their tumors and tissues are permissive for replication of Ad type 5 (Ad5). We used the adenovirus death protein-overexpressing Ad5-based vector INGN 007. Subcutaneous tumors were established in groups of hamsters that were or were not immunized with Ad5. Half of the hamsters in these groups were immunosuppressed with cyclophosphamide. For all groups, tumors injected with INGN 007 grew significantly more slowly than those injected with buffer. Under immunocompetent conditions, there was no significant effect of preexisting immunity on vector antitumor efficacy. Soon after the tumors in naïve animals were injected with vector, the hamsters developed neutralizing antibody (NAb) and the difference in NAb titers between the naïve and immunized groups diminished. Under immunosuppressed conditions, preexisting NAb did significantly reduce vector efficacy. Thus, NAb do reduce vector efficacy to some extent, but immunosuppression is required to observe the effect. Regarding vector toxicity, there was spillover of vector from the tumor to the liver and lungs in naïve immunocompetent hamsters, and this was nearly eliminated in the immunized hamsters. Thus, preexisting immunity to Ad5 does not affect INGN 007 antitumor efficacy following intratumoral injection, but immunity prevents vector spillover from the tumor to the liver and lungs.
Collapse
|
39
|
Li QX, Liu G, Wong-Staal F. Oncolytic virotherapy as a personalized cancer vaccine. Int J Cancer 2008; 123:493-9. [PMID: 18500742 DOI: 10.1002/ijc.23692] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Oncolytic virotherapy has demonstrated multimodal antitumor mechanisms in both preclinical and clinical settings for cancer treatment, including antitumor immunity. Compared with conventional immunotherapy, oncolytic viruses have the advantages of simultaneous cytoreduction and conferring personalized anticancer immunity, but without the need of personalized manufacture. Additionally, oncolytic viruses can be further engineered to delete immunosuppressive viral components and to insert transgenes that enhance antitumor immunity. Finally, combination with new immunomodulating agents (e.g., cyclophosphamide) or cell therapy approaches will likely further augment specific antitumor immunity of virotherapy. Virotherapy could become a new paradigm for potent, safe and practical therapeutic vaccines for cancer.
Collapse
Affiliation(s)
- Qi-Xiang Li
- iTherX Pharmaceuticals, Inc., 10790 Roselle Street, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
40
|
Mahller YY, Vaikunth SS, Ripberger MC, Baird WH, Saeki Y, Cancelas JA, Crombleholme TM, Cripe TP. Tissue inhibitor of metalloproteinase-3 via oncolytic herpesvirus inhibits tumor growth and vascular progenitors. Cancer Res 2008; 68:1170-9. [PMID: 18281493 DOI: 10.1158/0008-5472.can-07-2734] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Malignant solid tumors remain a significant clinical challenge, necessitating innovative therapeutic approaches. Oncolytic viral therapy is a nonmutagenic, biological anticancer therapeutic shown to be effective against human cancer in early studies. Because matrix metalloproteinases (MMP) play important roles in the pathogenesis and progression of cancer, we sought to determine if "arming" an oncolytic herpes simplex virus (oHSV) with an MMP-antagonizing transgene would increase virus-mediated antitumor efficacy. We generated oHSVs that express human tissue inhibitor of metalloproteinases 3 (TIMP3) or firefly luciferase and designated them rQT3 and rQLuc, respectively. We evaluated the antitumor efficacy of these viruses against neuroblastoma and malignant peripheral nerve sheath tumor (MPNST) xenografts. Relative to rQLuc, rQT3-infected primary human MPNST and neuroblastoma cells exhibited equivalent virus replication but increased cytotoxicity and reduced MMP activity. In vivo, rQT3-treated tumors showed delayed tumor growth, increased peak levels of infectious virus, immature collagen extracellular matrix, and reduced tumor vascular density. Remarkably, rQT3 treatment reduced circulating endothelial progenitors, suggesting virus-mediated antivasculogenesis. We conclude that rQT3 enhanced antitumor efficacy through multiple mechanisms, including direct cytotoxicity, elevated virus titer, and reduced tumor neovascularization. These findings support the further development of combined TIMP-3 and oncolytic virotherapy for cancer.
Collapse
Affiliation(s)
- Yonatan Y Mahller
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Prestwich RJ, Errington F, Harrington KJ, Pandha HS, Selby P, Melcher A. Oncolytic viruses: do they have a role in anti-cancer therapy? Clin Med Oncol 2008; 2:83-96. [PMID: 21892269 PMCID: PMC3161683 DOI: 10.4137/cmo.s416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Oncolytic viruses are replication competent, tumor selective and lyse cancer cells. Their potential for anti-cancer therapy is based upon the concept that selective intratumoral replication will produce a potent anti-tumor effect and possibly bystander or remote cell killing, whilst minimizing normal tissue toxicity. Viruses may be naturally oncolytic or be engineered for oncolytic activity, and possess a host of different mechanisms to provide tumor selectivity. Clinical use of live replicating viruses is associated with a unique set of safety issues. Clinical experience has so far provided evidence of limited efficacy and a favourable toxicity profile. The interaction with the host immune system is complex. An anti-viral immune response may limit efficacy by rapidly clearing the virus. However, virally-induced cell lysis releases tumor associated antigens in a 'dangerous' context, and limited evidence suggests that this can lead to the generation of a specific anti-tumor immune response. Combination therapy with chemotherapy or radiotherapy represents a promising avenue for ongoing translation of oncolytic viruses into clinical practice. Obstacles to therapy include highly effective non-specific host mechanisms to clear virus following systemic delivery, immune-mediated clearance, and intratumoral barriers limiting virus spread. A number of novel strategies are now under investigation to overcome these barriers. This review provides an overview of the potential role of oncolytic viruses, highlighting recent progress towards developing effective therapy and asks if they are a realistic therapeutic option at this stage.
Collapse
Affiliation(s)
- Robin J Prestwich
- Cancer Research UK, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | | | | | | | | | | |
Collapse
|
42
|
Li H, Zeng Z, Fu X, Zhang X. Coadministration of a Herpes Simplex Virus-2–Based Oncolytic Virus and Cyclophosphamide Produces a Synergistic Antitumor Effect and Enhances Tumor-Specific Immune Responses. Cancer Res 2007; 67:7850-5. [PMID: 17699791 DOI: 10.1158/0008-5472.can-07-1087] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite their unique property of selective replication and propagation in tumor tissues, oncolytic viruses have had only limited antitumor effects in cancer patients. One of the major reasons is probably the host's immune defense mechanisms, which can restrict the ability of the virus to replicate and spread within tumors. The innate immune system, which can be rapidly activated during virus infection, likely plays a more pivotal antiviral role than does acquired immunity, as the antitumor effect of an oncolytic virus is mainly generated during the acute phase of virus replication. To exploit the potential of cyclophosphamide, a cancer chemotherapeutic drug that also inhibits innate immune responses, to enhance the activity of oncolytic viruses, we evaluated the effect of coadministration of this drug with a herpes simplex virus-2-based oncolytic virus (FusOn-H2) against Lewis lung carcinoma, which is only semipermissive to infection with FusOn-H2. This strategy synergistically enhanced the antitumor effect against lung carcinoma growing in mice. It also potentiated the ability of FusOn-H2 to induce tumor-specific immune responses. Together, our results suggest that coadministration of FusOn-H2 with cyclophosphamide would be a feasible way to enhance the antitumor effects of this oncolytic virus in future clinical trials.
Collapse
Affiliation(s)
- Hongtao Li
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|