1
|
Ghanaatgar-Kasbi S, Khorrami S, Avan A, Aledavoud SA, Ferns GA. Targeting the C-MET/HGF Signaling Pathway in Pancreatic Ductal Adenocarcinoma. Curr Pharm Des 2019; 24:4619-4625. [PMID: 30636579 DOI: 10.2174/1381612825666190110145855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/24/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023]
Abstract
The c-mesenchymal-epithelial transition factor (c-MET) is involved in the tumorigenesis of various
cancers. HGF/Met inhibitors are now attracting considerable interest due to their anti-tumor activity in multiple
malignancies such as pancreatic cancer. It is likely that within the next few years, HGF/Met inhibitors will become
a crucial component for cancer management. In this review, we summarize the role of HGF/Met pathway in
the pathogenesis of pancreatic cancer, with particular emphasize on HGF/Met inhibitors in the clinical setting,
including Cabozantinib (XL184, BMS-907351), Crizotinib (PF-02341066), MK-2461, Merestinib (LY2801653),
Tivantinib (ARQ197), SU11274, Onartuzumab (MetMab), Emibetuzumab (LY2875358), Ficlatuzumab (AV-
299), Rilotumumab (AMG 102), and NK4 in pancreatic cancer.
Collapse
Affiliation(s)
- Sadaf Ghanaatgar-Kasbi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Khorrami
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed A. Aledavoud
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| |
Collapse
|
2
|
Enhancing the cytotoxicity of chemoradiation with radiation-guided delivery of anti-MGMT morpholino oligonucleotides in non-methylated solid tumors. Cancer Gene Ther 2017; 24:348-357. [PMID: 28752860 PMCID: PMC5605678 DOI: 10.1038/cgt.2017.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/20/2017] [Indexed: 01/25/2023]
Abstract
The DNA repair enzyme O6-methylguanine DNA methyltransferase (MGMT) is epigenetically silenced in some tumors by MGMT gene promoter methylation. MGMT-hypermethylated solid tumors have enhanced susceptibility to the cytotoxic effects of alkylating chemotherapy such as temozolomide, compared with non-methylated tumors. In glioblastoma, subjects with MGMT hypermethylation have significantly longer survival rates after chemoradiotherapy. We report the first successful use of a non-ablative dose of ionizing radiation to prime human cancer cells to enhance the uptake of unmodified anti-MGMT morpholino oligonucleotide (AMON) sequences. We demonstrate >40% reduction in the in vitro proliferation index and cell viability in radiation-primed MGMT-expressing human solid tumor cells treated with a single dose of AMONs and temozolomide. We further demonstrate the feasibility of using a non-ablative dose of radiation in vivo to guide and enhance the delivery of intravenously administered AMONs to achieve 50% MGMT knockdown only at radiation-primed tumor sites in a subcutaneous tumor model. Local upregulation of physiological endocytosis after radiation may have a role in radiation-guided uptake of AMONs. This approach holds direct translational significance in glioblastoma and brain metastases where radiation is part of the standard of care; our approach to silence MGMT could overcome the significant problem of MGMT-mediated chemoresistance.
Collapse
|
3
|
Bodles-Brakhop AM, Draghia-Akli R. DNA vaccination and gene therapy: optimization and delivery for cancer therapy. Expert Rev Vaccines 2014; 7:1085-101. [DOI: 10.1586/14760584.7.7.1085] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Li JM, Kao KC, Li LF, Yang TM, Wu CP, Horng YM, Jia WWG, Yang CT. MicroRNA-145 regulates oncolytic herpes simplex virus-1 for selective killing of human non-small cell lung cancer cells. Virol J 2013; 10:241. [PMID: 23876001 PMCID: PMC3734208 DOI: 10.1186/1743-422x-10-241] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/06/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide, and novel treatment modalities to improve the prognosis of patients with advanced disease are highly desirable. Oncolytic virotherapy is a promising approach for the treatment of advanced NSCLC. MicroRNAs (miRNAs) may be a factor in the regulation of tumor-specific viral replication. The purpose of this study was to investigate whether miRNA-145 regulated oncolytic herpes simplex virus-1 (HSV-1) can selectively kill NSCLC cells with reduced collateral damage to normal cells. METHODS We incorporated 4 copies of miRNA-145 target sequences into the 3'-untranslated region of an HSV-1 essential viral gene, ICP27, to create AP27i145 amplicon viruses and tested their target specificity and toxicity on normal cells and lung cancer cells in vitro. RESULTS miRNA-145 expression in normal cells was higher than that in NSCLC cells. AP27i145 replication was inversely correlated with the expression of miRNA-145 in infected cells. This oncolytic HSV-1 selectively reduced cell proliferation and prevented the colony formation of NSCLC cells. The combination of radiotherapy and AP27i145 infection was significantly more potent in killing cancer cells than each therapy alone. CONCLUSIONS miRNA-145-regulated oncolytic HSV-1 is a promising agent for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jhy-Ming Li
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kweishan, 333, Taoyuan, Taiwan
- Graduate Institute of Animal Science, College of Agriculture, National Chiayi University, Chiayi, Taiwan
| | - Kuo-Chin Kao
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kweishan, 333, Taoyuan, Taiwan
| | - Li-Fu Li
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kweishan, 333, Taoyuan, Taiwan
| | - Tsung-Ming Yang
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chean-Ping Wu
- Department of Animal Science, National Chiayi University, Chiayi, Taiwan
| | - Yan-Ming Horng
- Department of Animal Science, National Chiayi University, Chiayi, Taiwan
| | - William WG Jia
- Departments of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Cheng-Ta Yang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kweishan, 333, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
5
|
Shepelev MV, Korobko EV, Vinogradova TV, Kopantsev EP, Korobko IV. LY294002 enhances expression of proteins encoded by recombinant replication-defective adenoviruses via mTOR- and non-mTOR-dependent mechanisms. Mol Pharm 2013; 10:931-9. [PMID: 23373904 DOI: 10.1021/mp3003122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adenovirus-based drugs are efficient when combined with other anticancer treatments. Here we show that treatment with LY294002 and LY303511 upregulates expression of recombinant proteins encoded by replication-defective adenoviruses, including expression of therapeutically valuable combination of herpes simplex virus thymidine kinase controlled by human telomerase reverse transcriptase promoter (Ad-hTERT-HSVtk). In line with this, treatment with LY294002 synergized with Ad-hTERT-HSVtk infection in the presence of gancyclovir prodrug on Calu-I lung cancer cell death. The effect of LY294002 and LY303511 on adenovirus-delivered transgene expression was demonstrated in 4 human lung cancer cell lines. LY294002-induced upregulation of adenovirally delivered transgene is mediated in part by direct inhibition of mTOR protein kinase in mTORC2 signaling complex thus suggesting that anticancer drugs targeting mTOR will also enhance expression of transgenes delivered with adenoviral vectors. As both LY294002 and LY303511 are candidate prototypic anticancer drugs, and many mTOR inhibitors for cancer treatment are under development, our results have important implication for development of future therapeutic strategies with adenoviral gene delivery.
Collapse
Affiliation(s)
- Mikhail V Shepelev
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia.
| | | | | | | | | |
Collapse
|
6
|
Vajda A, Marignol L, Foley R, Lynch TH, Lawler M, Hollywood D. Clinical potential of gene-directed enzyme prodrug therapy to improve radiation therapy in prostate cancer patients. Cancer Treat Rev 2011; 37:643-54. [DOI: 10.1016/j.ctrv.2011.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 03/08/2011] [Accepted: 03/16/2011] [Indexed: 11/30/2022]
|
7
|
Radiation-induced upregulation of gene expression from adenoviral vectors mediated by DNA damage repair and regulation. Int J Radiat Oncol Biol Phys 2011; 83:376-84. [PMID: 22019240 DOI: 10.1016/j.ijrobp.2011.06.1973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/07/2011] [Accepted: 06/15/2011] [Indexed: 12/26/2022]
Abstract
PURPOSE In the present study, we evaluated the combination of replication-deficient adenoviruses and radiotherapy in vitro. The purpose of the present study was to analyze the mechanism of radiation-mediated upregulation of adenoviral transgene expression. METHODS AND MATERIALS Adenoviral transgene expression (luciferase or green fluorescent protein) was studied with and without radiation in three cell lines: breast cancer M4A4-LM3, prostate cancer PC-3MM2, and lung cancer LNM35/enhanced green fluorescent protein. The effect of the radiation dose, modification of the viral capsid, and five different transgene promoters were studied. The cellular responses were studied using mass spectrometry and immunofluorescence analysis. Double strand break repair was modulated by inhibitors of heat shock protein 90, topoisomerase-I, and DNA protein kinase, and transgene expression was measured. RESULTS We found that a wide range of radiation doses increased adenoviral transgene expression regardless of the cell line, transgene, promoter, or viral capsid modification. Treatment with adenovirus, radiation, and double strand break repair inhibitors resulted in persistence of double strand breaks and subsequent increases in adenovirus transgene expression. CONCLUSIONS Radiation-induced enhancement of adenoviral transgene expression is linked to DNA damage recognition and repair. Radiation induces a global cellular response that results in increased production of RNA and proteins, including adenoviral transgene products. This study provides a mechanistic rationale for combining radiation with adenoviral gene delivery.
Collapse
|
8
|
Irradiation, cisplatin, and 5-azacytidine upregulate cytomegalovirus promoter in tumors and muscles: implementation of non-invasive fluorescence imaging. Mol Imaging Biol 2011; 13:43-52. [PMID: 20396957 PMCID: PMC3023030 DOI: 10.1007/s11307-010-0300-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Purpose The cytomegalovirus (CMV) promoter is one of the most commonly used promoters for expression of transgenes in mammalian cells. The aim of our study was to evaluate the role of methylation and upregulation of the CMV promoter by irradiation and the chemotherapeutic agent cisplatin in vivo using non-invasive fluorescence in vivo imaging. Procedures Murine fibrosarcoma LPB and mammary carcinoma TS/A cells were stably transfected with plasmids encoding CMV and p21 promoter-driven green fluorescent protein (GFP) gene. Solid TS/A tumors were induced by subcutaneous injection of fluorescent tumor cells, while leg muscles were transiently transfected with plasmid encoding GFP under the control of the CMV promoter. Cells, tumors, and legs were treated either by DNA methylation inhibitor 5-azacytidine, irradiation, or cisplatin. GFP expression was determined using a fluorescence microplate reader in vitro and by non-invasive fluorescence imaging in vivo. Results Treatment of cells, tumors, and legs with 5-azacytidine (re)activated the CMV promoter. Furthermore, treatment with irradiation or cisplatin resulted in significant upregulation of GFP expression both in vitro and in vivo. Conclusions Observed alterations in the activity of the CMV promoter limit the usefulness of this widely used promoter as a constitutive promoter. On the other hand, inducibility of CMV promoters can be beneficially used in gene therapy when combined with standard cancer treatment, such as radiotherapy and chemotherapy.
Collapse
|
9
|
Touchefeu Y, Vassaux G, Harrington KJ. Oncolytic viruses in radiation oncology. Radiother Oncol 2011; 99:262-70. [PMID: 21704402 DOI: 10.1016/j.radonc.2011.05.078] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 05/27/2011] [Accepted: 05/28/2011] [Indexed: 10/18/2022]
Abstract
Oncolytic viruses are investigational cancer treatments. They are currently being assessed as single agents or in combination with standard therapies such as external beam radiotherapy - a DNA damaging agent that is a standard of care for many tumour types. Preclinical data indicate that combinations of oncolytic viruses and radiation therapy are promising, showing additional or synergistic antitumour effects in in vitro and in vivo studies. This interaction has the potential to be multifaceted: viruses may act as radiosensitizing agents, but radiation may also enhance viral oncolysis by increasing viral uptake, replication, gene expression and cell death (apoptosis, autophagy or necrosis) in irradiated cells. Phase I and II clinical trials investigating combinations of viruses and radiation therapy have been completed, paving the way for ongoing phase III studies. The aim of this review is to focus on the therapeutic potential of these combinations and to highlight their mechanistic bases, with particular emphasis on the role of the DNA damage response.
Collapse
Affiliation(s)
- Yann Touchefeu
- The Institute of Cancer Research, Section of Cell and Molecular Biology, London, UK
| | | | | |
Collapse
|
10
|
Yasui T, Ohuchida K, Zhao M, Onimaru M, Egami T, Fujita H, Ohtsuka T, Mizumoto K, Tanaka M. Tumor-stroma interactions reduce the efficacy of adenoviral therapy through the HGF-MET pathway. Cancer Sci 2010; 102:484-91. [PMID: 21105966 DOI: 10.1111/j.1349-7006.2010.01783.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Many preclinical studies have shown the potential of adenovirus-based cancer gene therapy. However, successful translation of these promising results into the clinic has not yet been achieved. Pancreatic ductal adenocarcinoma (PDAC) is characterized by abundant desmoplastic stroma, and tumor-stromal cell interactions play a critical role in tumor progression. Therefore, we hypothesized that tumor-stroma interactions reduce the efficacy of adenoviral therapy. We investigated the effect of fibroblasts on adenovirus-based gene therapy using SUIT-2 and PANC-1 pancreatic cancer cells cultured with or without fibroblast-conditioned culture supernatant then infected with Ad-LacZ. After 48 h, the cells were stained for β-galactosidase. The results showed that the number of β-galactosidase-positive cells was significantly reduced after culture with fibroblast-conditioned supernatant (P < 0.05). Because the hepatocyte growth factor (HGF)/MET pathway plays an important role in tumor-stroma interactions we next investigated the involvement of this pathway in tumor-stroma interactions leading to the decreased efficacy of adenoviral therapy. SUIT-2 cells were cultured with or without SU11274 (a MET inhibitor) and/or fibroblast-conditioned culture supernatant, then infected with Ad-GFP. After 48 h, GFP-positive cells were counted. The number of GFP-positive cells in cultures containing fibroblast-conditioned supernatant plus SU11274 was significantly greater than in cultures without SU11274. In conclusion, our results suggest that stromal cells in PDAC reduce the efficacy of adenoviral therapy through a mechanism involving the HGF/MET pathway. Control of such tumor-stroma interactions may lead to improvements in adenoviral gene therapy for PDAC.
Collapse
Affiliation(s)
- Takaharu Yasui
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Touchefeu Y, Harrington KJ, Galmiche JP, Vassaux G. Review article: gene therapy, recent developments and future prospects in gastrointestinal oncology. Aliment Pharmacol Ther 2010; 32:953-68. [PMID: 20937041 DOI: 10.1111/j.1365-2036.2010.04424.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gene therapy consists of the introduction of genetic material into cells for a therapeutic purpose. A wide range of gene therapy vectors have been developed and used for applications in gastrointestinal oncology. AIM To review recent developments and published clinical trials concerning the application of gene therapy in the treatment of liver, colon and pancreatic cancers. METHODS Search of the literature published in English using the PubMed database. RESULTS A large variety of therapeutic genes are under investigation, such as tumour suppressor, suicide, antiangiogenesis, inflammatory cytokine and micro-RNA genes. Recent progress concerns new vectors, such as oncolytic viruses, and the synergy between viral gene therapy, chemotherapy and radiation therapy. As evidence of these basic developments, recently published phase I and II clinical trials, using both single agents and combination strategies, in adjuvant or advanced disease settings, have shown encouraging results and good safety records. CONCLUSIONS Cancer gene therapy is not yet indicated in clinical practice. However, basic and clinical advances have been reported and gene therapy is a promising, new therapeutic approach for the treatment of gastrointestinal tumours.
Collapse
Affiliation(s)
- Y Touchefeu
- Institut des Maladies de l'Appareil Digestif, INSERM U, University Hospital, Nantes, France.
| | | | | | | |
Collapse
|
12
|
Li X, Liu Y, Tang Y, Roger P, Jeng MH, Kao C. Docetaxel increases antitumor efficacy of oncolytic prostate-restricted replicative adenovirus by enhancing cell killing and virus distribution. J Gene Med 2010; 12:516-27. [PMID: 20527044 PMCID: PMC9126185 DOI: 10.1002/jgm.1462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND We explored multiple molecular mechanisms of the combination of docetaxel and an oncolytic prostate-restricted replication competent adenovirus (Ad) (PRRA) in advanced prostate cancer (PCa) models. The combinational therapy has potential to overcome the therapeutic limitations of poor virus distribution inside solid tumors. METHODS We evaluated the effect of docetaxel on the antitumor efficacy and efficiency of virus transduction, transgene expression and virus distribution of PRRA in a prostate-specific antigen/prostate-specific membrane antigen-positive tumor xenograft model. We also evaluated the effect of docetaxel on apoptosis induction, cell killing and the efficiency of transgene expression and virus replication in vitro. RESULTS Tumor growth inhibition was significantly enhanced when docetaxel was administrated before intratumor injection of PRRA. In vivo dual-photon microscopy and ex vivo fluorescence microscopy and immunohistochemistry showed that docetaxel increased transgene expression and expanded virus distribution. The combination of docetaxel and PRRA also increased cell apoptosis. In vitro, docetaxel significantly increased cell killing in PRRA-treated PCa cells. Docetaxel significantly increased Ad-mediated trangene expression independent of Ad binding receptors and replication capability. Docetaxel increased the activity of cytomegalovirus (CMV) promoter but not of a chimeric prostate-specific enhancer, resulting in higher transgene expression. The enhanced CMV promoter activity resulted from activation of p38 mitogen-activated protein kinase (MAPK) because inhibition of p38 MAPK blocked the docetaxel-induced increase in CMV promoter activity. CONCLUSIONS Combining docetaxel with an oncolytic PRRA improved therapeutic potential by expanding virus distribution and enhancing cell apoptosis and killing. These studies suggested a novel mechanism for enhancing the effect of therapeutic genes delivered by a PRRA.
Collapse
Affiliation(s)
- Xiong Li
- Maine Institute for Human Genetics and Health, Bangor, ME
| | - Youhong Liu
- Maine Institute for Human Genetics and Health, Bangor, ME
| | - Yong Tang
- Medical College of Jinan University, Guangzhou, P.R.China
| | - Phipps Roger
- Maine Institute for Human Genetics and Health, Bangor, ME
| | - Meei-Huey Jeng
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN
| | - Chinghai Kao
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
13
|
Onimaru M, Ohuchida K, Egami T, Mizumoto K, Nagai E, Cui L, Toma H, Matsumoto K, Hashizume M, Tanaka M. Gemcitabine synergistically enhances the effect of adenovirus gene therapy through activation of the CMV promoter in pancreatic cancer cells. Cancer Gene Ther 2010; 17:541-9. [DOI: 10.1038/cgt.2010.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Rourke EA, Lopez MS, Monroy CM, Scheurer ME, Etzel CJ, Albrecht T, Bondy ML, El-Zein RA. Modulation of Radiation-Induced Genetic Damage by HCMV in Peripheral Blood Lymphocytes from a Brain Tumor Case-Control Study. Cancers (Basel) 2010; 2:420-35. [PMID: 24281077 PMCID: PMC3835085 DOI: 10.3390/cancers2020420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 03/26/2010] [Accepted: 04/07/2010] [Indexed: 12/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection occurs early in life and viral persistence remains through life. An association between HCMV infection and malignant gliomas has been reported, suggesting that HCMV may play a role in glioma pathogenesis and could facilitate an accrual of genotoxic damage in the presence of g-radiation; an established risk factor for gliomas. We tested the hypothesis that HCMV infection modifies the sensitivity of cells to γ-radiation-induced genetic damage. We used peripheral blood lymphocytes (PBLs) from 110 glioma patients and 100 controls to measure the level of chromosome damage and cell death. We evaluated baseline, HCMV-, γ-radiation and HCMV + γ-radiation induced genetic instability with the comprehensive Cytokinesis-Blocked Micronucleus Cytome (CBMN-CYT). HCMV, similar to radiation, induced a significant increase in aberration frequency among cases and controls. PBLs infected with HCMV prior to challenge with γ-radiation led to a significant increase in aberrations as compared to baseline, γ-radiation and HCMV alone. With regards to apoptosis, glioma cases showed a lower percentage of induction following in vitro exposure to γ-radiation and HCMV infection as compared to controls. This strongly suggests that, HCMV infection enhances the sensitivity of PBLs to γ-radiation-induced genetic damage possibly through an increase in chromosome damage and decrease in apoptosis.
Collapse
Affiliation(s)
- Elizabeth A. Rourke
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; E-Mails: (E.A.R.); (M.S.L.); (C.M.M.); (C.J.E.)
| | - Mirtha S. Lopez
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; E-Mails: (E.A.R.); (M.S.L.); (C.M.M.); (C.J.E.)
| | - Claudia M. Monroy
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; E-Mails: (E.A.R.); (M.S.L.); (C.M.M.); (C.J.E.)
| | - Michael E. Scheurer
- Department of Pediatrics and Dan L. Duncan Cancer Center, The Baylor College of Medicine, Houston, TX 77030, USA; E-Mail: (M.E.S.)
| | - Carol J. Etzel
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; E-Mails: (E.A.R.); (M.S.L.); (C.M.M.); (C.J.E.)
| | - Thomas Albrecht
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; E-Mail: (T.A.)
| | - Melissa L. Bondy
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; E-Mails: (E.A.R.); (M.S.L.); (C.M.M.); (C.J.E.)
| | - Randa A. El-Zein
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; E-Mails: (E.A.R.); (M.S.L.); (C.M.M.); (C.J.E.)
| |
Collapse
|
15
|
Liu C, Zhang Y, Liu MM, Zhou H, Chowdhury W, Lupold SE, Deweese TL, Rodriguez R. Evaluation of continuous low dose rate versus acute single high dose rate radiation combined with oncolytic viral therapy for prostate cancer. Int J Radiat Biol 2010; 86:220-9. [PMID: 20201650 DOI: 10.3109/09553000903419338] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Conditionally Replicative Adenovirus (CRAd) has been previously demonstrated to augment the activity of radiation, resulting in synergy of cell kill. However, previous models combining radiation with CRAd have not focused on the methods of radiation delivery. MATERIALS AND METHODS We model the combination of a novel prostate-specific CRAd, Ad5 PSE/PBN E1A-AR (Ad5: adenovirus 5; PSE: prostate-specific enhancer; PBN: rat probasin promoter; E1A: early region 1A; AR: androgen receptor), with radiation delivered both acutely and continuously, in an effort to better mimic the potential clinical modes of prostate cancer radiotherapy. RESULTS We demonstrate that pre-treatment of cells with acute single high dose rate (HDR) radiation 24 hours prior to viral infection results in significantly enhanced viral replication and virus-mediated cell death. In addition, this combination causes increased level of gamma-H2AX (Phosphorylated histone protein H2AX on serine 139), a marker of double-stranded DNA damage and an indirect measure of nuclear fragmentation. In contrast, continuous low dose rate (LDR) radiation immediately following infection of the same CRAd results in no enhancement of viral replication, and only additive effects in virus-mediated cell death. CONCLUSIONS These data provide the first direct assessment of the real-time impact of radiation on viral replication and the first comparison of the effect of radiation delivery on the efficacy of CRAd virotherapy. Our data demonstrate substantial differences in CRAd efficacy based on the mode of radiation delivery.
Collapse
Affiliation(s)
- Chunyan Liu
- James Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ottolino-Perry K, Diallo JS, Lichty BD, Bell JC, McCart JA. Intelligent design: combination therapy with oncolytic viruses. Mol Ther 2009; 18:251-63. [PMID: 20029399 DOI: 10.1038/mt.2009.283] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Metastatic cancer remains an incurable disease in the majority of cases and thus novel treatment strategies such as oncolytic virotherapy are rapidly advancing toward clinical use. In order to be successful, it is likely that some type of combination therapy will be necessary to have a meaningful impact on this disease. Although it may be tempting to simply combine an oncolytic virus with the existing standard radiation or chemotherapeutics, the long-term goal of such treatments must be to have a rational, potentially synergistic combination strategy that can be safely and easily used in the clinical setting. The combination of oncolytic virotherapy with existing radiotherapy and chemotherapy modalities is reviewed along with novel biologic therapies including immunotherapies, in order to help investigators make intelligent decisions during the clinical development of these products.
Collapse
Affiliation(s)
- Kathryn Ottolino-Perry
- Division of Experimental Therapeutics, Toronto General Research Institute, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
17
|
Egami T, Ohuchida K, Yasui T, Mizumoto K, Onimaru M, Toma H, Sato N, Matsumoto K, Tanaka M. Up-regulation of integrin beta3 in radioresistant pancreatic cancer impairs adenovirus-mediated gene therapy. Cancer Sci 2009; 100:1902-7. [PMID: 19604247 PMCID: PMC11158494 DOI: 10.1111/j.1349-7006.2009.01245.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Adenovirus-mediated gene therapy is a promising approach for the treatment of pancreatic cancer. We previously reported that radiation enhanced adenovirus-mediated gene expression in pancreatic cancer, suggesting that adenoviral gene therapy might be more effective in radioresistant pancreatic cancer cells. In the present study, we compared the transduction efficiency of adenovirus-delivered genes in radiosensitive and radioresistant cells, and investigated the underlying mechanisms. We used an adenovirus expressing the hepatocyte growth factor antagonist, NK4 (Ad-NK4), as a representative gene therapy. We established two radioresistant human pancreatic cancer cell lines using fractionated irradiation. Radiosensitive and radioresistant pancreatic cancer cells were infected with Ad-NK4, and NK4 levels in the cells were measured. In order to investigate the mechanisms responsible for the differences in the transduction efficiency between these cells, we measured expression of the genes mediating adenovirus infection and endocytosis. The results revealed that NK4 levels in radioresistant cells were significantly lower (P < 0.01) than those in radiosensitive cells, although there were no significant differences in adenovirus uptake between radiosensitive cells and radioresistant cells. Integrin beta3 was up-regulated and the Coxsackie virus and adenovirus receptor was down-regulated in radioresistant cells, and inhibition of integrin beta3 promoted adenovirus gene transfer. These results suggest that inhibition of integrin beta3 in radioresistant pancreatic cancer cells could enhance adenovirus-mediated gene therapy.
Collapse
Affiliation(s)
- Takuya Egami
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Egami T, Ohuchida K, Miyoshi K, Mizumoto K, Onimaru M, Toma H, Sato N, Matsumoto K, Tanaka M. Chemotherapeutic agents potentiate adenoviral gene therapy for pancreatic cancer. Cancer Sci 2009; 100:722-9. [PMID: 19302285 PMCID: PMC11158724 DOI: 10.1111/j.1349-7006.2009.01101.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/24/2008] [Accepted: 12/26/2008] [Indexed: 12/27/2022] Open
Abstract
Adenovirus-mediated gene therapy combined with chemotherapeutic agents is expected to represent a new approach for treating pancreatic cancer. However, there have been no reports of definitive effects of chemotherapeutic agents on adenovirus-mediated gene therapies. In the present study, we investigated the effects of chemotherapeutic agents on the transduction efficiency of an adenovirus-based gene therapy. Adenovirus (Ad-NK4) expressing NK4, which acts as a hepatocyte growth factor antagonist, was used as a representative gene therapy. Pancreatic cancer cells infected with Ad-NK4 were treated with chemotherapeutic agents (5-fluorouracil [5FU], cisplatin or etoposide), and the NK4 levels in their culture media were measured. To examine the effects of chemotherapeutic agents in vivo, Ad-NK4 was administered to subcutaneous tumors in mice after treatment with the agents, and the tumor NK4 levels were measured. The NK4 levels in culture media from cells treated with 5FU, cisplatin and etoposide were 5.2-fold (P = 0.026), 6-fold (P < 0.001) and 4.3-fold (P < 0.001) higher than those of untreated cells, respectively. The chemotherapeutic agents also increased Ad-NK4 uptake. The NK4 levels in tumors treated with 5FU, cisplatin and etoposide were 5.4-fold (P = 0.006), 11.8-fold (P < 0.001) and 4.9-fold (P = 0.017) higher than those in untreated tumors, respectively. The present findings suggest that chemotherapeutic agents significantly improve the efficiency of adenovirus-mediated gene transfer in pancreatic cancer. Furthermore, they will contribute to decreases in the adenovirus doses required for gene transfer, thereby controlling the side-effects of adenovirus infection in normal tissues.
Collapse
Affiliation(s)
- Takuya Egami
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hingorani M, White CL, Merron A, Peerlinck I, Gore ME, Slade A, Scott SD, Nutting CM, Pandha HS, Melcher AA, Vile RG, Vassaux G, Harrington KJ. Inhibition of repair of radiation-induced DNA damage enhances gene expression from replication-defective adenoviral vectors. Cancer Res 2009; 68:9771-8. [PMID: 19047156 DOI: 10.1158/0008-5472.can-08-1911] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiation has been shown to up-regulate gene expression from adenoviral vectors in previous studies. In the current study, we show that radiation-induced dsDNA breaks and subsequent signaling through the mitogen-activated protein kinase (MAPK) pathway are responsible, at least in part, for this enhancement of transgene expression both in vitro and in vivo. Inhibitors of ataxia-telangiectasia-mutated, poly(ADP-ribose) polymerase-mutated, and DNA-dependent protein kinase (DNA-PK)-mediated DNA repair were shown to maintain dsDNA breaks (gammaH2AX foci) by fluorescence-activated cell sorting and microscopy. Inhibition of DNA repair was associated with increased green fluorescent protein (GFP) expression from a replication-defective adenoviral vector (Ad-CMV-GFP). Radiation-induced up-regulation of gene expression was abrogated by inhibitors of MAPK (PD980059 and U0126) and phosphatidylinositol 3-kinase (LY294002) but not by p38 MAPK inhibition. A reporter plasmid assay in which GFP was under the transcriptional control of artificial Egr-1 or cytomegalovirus promoters showed that the DNA repair inhibitors increased GFP expression only in the context of the Egr-1 promoter. In vivo administration of a water-soluble DNA-PK inhibitor (KU0060648) was shown to maintain luciferase expression in HCT116 xenografts after intratumoral delivery of Ad-RSV-Luc. These data have important implications for therapeutic strategies involving multimodality use of radiation, targeted drugs, and adenoviral gene delivery and provide a framework for evaluating potential advantageous combinatorial effects.
Collapse
Affiliation(s)
- Mohan Hingorani
- Targeted Therapy Team, The Institute of Cancer Research, Queen Mary's School of Medicine and Dentistry, Royal Marsden Hospital, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|