1
|
Payano VJH, Lopes LVDA, Peixoto LR, Silva KAD, Ortiga-Carvalho TM, Tafuri A, Vago AR, Bloise E. Immunostaining of βA-Activin and Follistatin Is Decreased in HPV(+) Cervical Pre-Neoplastic and Neoplastic Lesions. Viruses 2023; 15:v15051031. [PMID: 37243119 DOI: 10.3390/v15051031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The activin-follistatin system regulates several cellular processes, including differentiation and tumorigenesis. We hypothesized that the immunostaining of βA-activin and follistatin varies in neoplastic cervical lesions. Cervical paraffin-embedded tissues from 162 patients sorted in control (n = 15), cervical intraepithelial neoplasia (CIN) grade 1 (n = 38), CIN2 (n = 37), CIN3 (n = 39), and squamous cell carcinoma (SCC; n = 33) groups were examined for βA-activin and follistatin immunostaining. Human papillomavirus (HPV) detection and genotyping were performed by PCR and immunohistochemistry. Sixteen samples were inconclusive for HPV detection. In total, 93% of the specimens exhibited HPV positivity, which increased with patient age. The most detected high-risk (HR)-HPV type was HPV16 (41.2%) followed by HPV18 (16%). The immunostaining of cytoplasmatic βA-activin and follistatin was higher than nuclear immunostaining in all cervical epithelium layers of the CIN1, CIN2, CIN3, and SCC groups. A significant decrease (p < 0.05) in the cytoplasmic and nuclear immunostaining of βA-activin was detected in all cervical epithelial layers from the control to the CIN1, CIN2, CIN3, and SCC groups. Only nuclear follistatin immunostaining exhibited a significant reduction (p < 0.05) in specific epithelial layers of cervical tissues from CIN1, CIN2, CIN3, and SCC compared to the control. Decreased immunostaining of cervical βA-activin and follistatin at specific stages of CIN progression suggests that the activin-follistatin system participates in the loss of the differentiation control of pre-neoplastic and neoplastic cervical specimens predominantly positive for HPV.
Collapse
Affiliation(s)
- Victor Jesus Huaringa Payano
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Lara Verônica de Araújo Lopes
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Larissa Rodrigues Peixoto
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Keila Alves da Silva
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Tania Maria Ortiga-Carvalho
- Laboratório de Endocrinologia Translacional, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Alexandre Tafuri
- Laboratório de Anatomia Patológica Tafuri, Belo Horizonte 30170-133, MG, Brazil
| | - Annamaria Ravara Vago
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Enrrico Bloise
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| |
Collapse
|
2
|
Ge L, Liu SF. Lentivirus-Mediated Short Hairpin RNA for Follistatin Downregulation Suppresses Tumor Progression in Hypopharyngeal Carcinoma. Curr Med Sci 2022; 42:832-840. [DOI: 10.1007/s11596-022-2615-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022]
|
3
|
Barany N, Rozsas A, Megyesfalvi Z, Grusch M, Hegedus B, Lang C, Boettiger K, Schwendenwein A, Tisza A, Renyi-Vamos F, Schelch K, Hoetzenecker K, Hoda MA, Paku S, Laszlo V, Dome B. Clinical relevance of circulating activin A and follistatin in small cell lung cancer. Lung Cancer 2021; 161:128-135. [PMID: 34583221 DOI: 10.1016/j.lungcan.2021.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Circulating levels of activin A (ActA) and follistatin (FST) have been investigated in various disorders including malignancies. However, to date, their diagnostic and prognostic relevance is largely unknown in small cell lung cancer (SCLC). Our aim was to evaluate circulating ActA and FST levels as potential biomarkers in this devastating disease. METHODS Seventy-nine Caucasian SCLC patients and 67 age- and sex-matched healthy volunteers were included in this study. Circulating ActA and FST concentrations were measured by ELISA and correlated with clinicopathological parameters and long-term outcomes. RESULTS Plasma ActA and FST concentrations were significantly elevated in SCLC patients when compared to healthy volunteers (p < 0.0001). Furthermore, extensive-stage SCLC patients had significantly higher circulating ActA levels than those with limited-stage disease (p = 0.0179). Circulating FST concentration was not associated with disease stage (p = 0.6859). Notably, patients with high (≥548.8 pg/ml) plasma ActA concentration exhibited significantly worse median overall survival (OS) compared to those with low (<548.8 pg/ml) ActA levels (p = 0.0009). Moreover, Cox regression analysis adjusted for clinicopathological parameters revealed that high ActA concentration is an independent predictor of shorter OS (HR: 1.932; p = 0.023). No significant differences in OS have been observed with regards to plasma FST levels (p = 0.1218). CONCLUSION Blood ActA levels are elevated and correlate with disease stage in SCLC patients. Measurement of circulating ActA levels might help in the estimation of prognosis in patients with SCLC.
Collapse
Affiliation(s)
- Nandor Barany
- National Koranyi Institute of Pulmonology, Budapest, Hungary; 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Anita Rozsas
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Zsolt Megyesfalvi
- National Koranyi Institute of Pulmonology, Budapest, Hungary; Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria; Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
| | - Michael Grusch
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Balazs Hegedus
- Department of Thoracic Surgery, Ruhrlandklinik, University Clinic Essen, Essen, Germany
| | - Christian Lang
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Kristiina Boettiger
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Schwendenwein
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Tisza
- National Koranyi Institute of Pulmonology, Budapest, Hungary; 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ferenc Renyi-Vamos
- National Koranyi Institute of Pulmonology, Budapest, Hungary; Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
| | - Karin Schelch
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria; Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Sandor Paku
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Viktoria Laszlo
- National Koranyi Institute of Pulmonology, Budapest, Hungary; Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.
| | - Balazs Dome
- National Koranyi Institute of Pulmonology, Budapest, Hungary; Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria; Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
4
|
Qiu W, Kuo CY, Tian Y, Su GH. Dual Roles of the Activin Signaling Pathway in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9070821. [PMID: 34356885 PMCID: PMC8301451 DOI: 10.3390/biomedicines9070821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Activin, a member of the TGF-β superfamily, is involved in many physiological processes, such as embryonic development and follicle development, as well as in multiple human diseases including cancer. Genetic mutations in the activin signaling pathway have been reported in many cancer types, indicating that activin signaling plays a critical role in tumorigenesis. Recent evidence reveals that activin signaling may function as a tumor-suppressor in tumor initiation, and a promoter in the later progression and metastasis of tumors. This article reviews many aspects of activin, including the signaling cascade of activin, activin-related proteins, and its role in tumorigenesis, particularly in pancreatic cancer development. The mechanisms regulating its dual roles in tumorigenesis remain to be elucidated. Further understanding of the activin signaling pathway may identify potential therapeutic targets for human cancers and other diseases.
Collapse
Affiliation(s)
- Wanglong Qiu
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chia-Yu Kuo
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yu Tian
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gloria H. Su
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Otolaryngology and Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence:
| |
Collapse
|
5
|
Kähkönen TE, Halleen JM, Bernoulli J. Osteoimmuno-Oncology: Therapeutic Opportunities for Targeting Immune Cells in Bone Metastasis. Cells 2021; 10:1529. [PMID: 34204474 PMCID: PMC8233913 DOI: 10.3390/cells10061529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapies provide a potential treatment option for currently incurable bone metastases. Bone marrow is an important secondary lymphoid organ with a unique immune contexture. Even at non-disease state immune cells and bone cells interact with each other, bone cells supporting the development of immune cells and immune cells regulating bone turnover. In cancer, tumor cells interfere with this homeostatic process starting from formation of pre-metastatic niche and later supporting growth of bone metastases. In this review, we introduce a novel concept osteoimmuno-oncology (OIO), which refers to interactions between bone, immune and tumor cells in bone metastatic microenvironment. We also discuss therapeutic opportunities of targeting immune cells in bone metastases, and associated efficacy and safety concerns.
Collapse
Affiliation(s)
| | | | - Jenni Bernoulli
- Institute of Biomedicine, University of Turku, 20500 Turku, Finland;
| |
Collapse
|
6
|
Liu S, Liu B, Zhao Q, Shi J, Gu Y, Guo Y, Li Y, Liu Y, Cheng Y, Qiao Y, Liu Y. Down-regulated FST expression is involved in the poor prognosis of triple-negative breast cancer. Cancer Cell Int 2021; 21:267. [PMID: 34001106 PMCID: PMC8130405 DOI: 10.1186/s12935-021-01977-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is more commonly associated with young patients, featuring high histological grade, visceral metastasis, and distant recurrence. Follistatin (FST) is a secreted extracellular regulatory protein that antagonizes TGF-β superfamily such as activin and TGF-β related superfamily such as bone morphogenetic protein (BMP). The implication of FST in the proliferation, angiogenesis, and metastasis of solid tumors documents good or poor outcome of patients with BC. However, the role of FST in TNBC remains unclear. Methods Data of 935 patients with breast cancer (BC) were extracted from TCGA. Case–control study, Kaplan–Meier, uni-multivariate COX, and ROC curve were utilized to investigate the relationship between FST expression and the clinical characteristics and prognosis of BC. Functional studies were used to analyze the effect of FST expression on proliferation, apoptosis, migration, and invasion of TNBC cell lines. Bioinformatic methods such as volcanoplot, GO annd KEGG enrichment, and protein–protein interactions (PPI) analyses were conducted to further confirm the different roles of FST in the apoptotic pathways among mesenchymal and mesenchymal stem-like cells of TNBC. Results Data from TCGA showed that low FST expression correlated with poor prognosis (for univariate analysis, HR = 0.47, 95% CI: 0.27–0.82, p = 0.008; for multivariate analysis, HR = 0.40, 95% CI: 0.21–0.75, p = 0.004). Low FST expression provided high predicted value of poor prognosis in TNBC amongst BCs. FST knockdown promoted the proliferation, migration and invasion of BT549 and HS578T cell lines. FST inhibited the apoptosis of mesenchymal cells by targeting BMP7. Conclusions Low FST expression is associated with poor prognosis of patients with TNBC. FST expressions exhibit the anisotropic roles of apoptosis between mesenchymal and mesenchymal stem-like cells but promote the proliferation, migration, invasion in both of two subtypes of TNBC in vitro. FST may be a subtype-heterogeneous biomarker for monitoring the progress of TNBC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01977-x.
Collapse
Affiliation(s)
- Sainan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Bin Liu
- Department of Breast Surgery, Second Affiliated Hospital of Jilin University, Changchun, 130021, China
| | - Qian Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jikang Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yulu Gu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yanbo Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yunkai Liu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yi Cheng
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yichun Qiao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
7
|
Cangkrama M, Wietecha M, Mathis N, Okumura R, Ferrarese L, Al‐Nuaimi D, Antsiferova M, Dummer R, Innocenti M, Werner S. A paracrine activin A-mDia2 axis promotes squamous carcinogenesis via fibroblast reprogramming. EMBO Mol Med 2020; 12:e11466. [PMID: 32150356 PMCID: PMC7136968 DOI: 10.15252/emmm.201911466] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key regulators of tumorigenesis and promising targets for next-generation therapies. We discovered that cancer cell-derived activin A reprograms fibroblasts into pro-tumorigenic CAFs. Mechanistically, this occurs via Smad2-mediated transcriptional regulation of the formin mDia2, which directly promotes filopodia formation and cell migration. mDia2 also induces expression of CAF marker genes through prevention of p53 nuclear accumulation, resulting in the production of a pro-tumorigenic matrisome and secretome. The translational relevance of this finding is reflected by activin A overexpression in tumor cells and of mDia2 in the stroma of skin cancer and other malignancies and the correlation of high activin A/mDia2 levels with poor patient survival. Blockade of this signaling axis using inhibitors of activin, activin receptors, or mDia2 suppressed cancer cell malignancy and squamous carcinogenesis in 3D organotypic cultures, ex vivo, and in vivo, providing a rationale for pharmacological inhibition of activin A-mDia2 signaling in stratified cancer patients.
Collapse
Affiliation(s)
- Michael Cangkrama
- Department of BiologyInstitute of Molecular Health SciencesETH ZurichZurichSwitzerland
| | - Mateusz Wietecha
- Department of BiologyInstitute of Molecular Health SciencesETH ZurichZurichSwitzerland
| | - Nicolas Mathis
- Department of BiologyInstitute of Molecular Health SciencesETH ZurichZurichSwitzerland
| | - Rin Okumura
- Department of BiologyInstitute of Molecular Health SciencesETH ZurichZurichSwitzerland
| | - Luca Ferrarese
- Department of BiologyInstitute of Molecular Health SciencesETH ZurichZurichSwitzerland
| | - Dunja Al‐Nuaimi
- Department of BiologyInstitute of Molecular Health SciencesETH ZurichZurichSwitzerland
| | - Maria Antsiferova
- Department of BiologyInstitute of Molecular Health SciencesETH ZurichZurichSwitzerland
- Present address:
Roche Glycart AGSchlierenSwitzerland
| | - Reinhard Dummer
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
| | - Metello Innocenti
- Heidelberg University Biochemistry Center (BZH)Heidelberg UniversityHeidelbergGermany
| | - Sabine Werner
- Department of BiologyInstitute of Molecular Health SciencesETH ZurichZurichSwitzerland
| |
Collapse
|
8
|
Zhang A, Liu B, Xu D, Sun Y. Advanced intrahepatic cholangiocarcinoma treated using anlotinib and microwave ablation: A case report. Medicine (Baltimore) 2019; 98:e18435. [PMID: 31876723 PMCID: PMC6946271 DOI: 10.1097/md.0000000000018435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Intrahepatic cholangiocarcinoma (ICC) accounts for 10% to 15% of all primary hepatic carcinomas. However, there are no effective drug treatment strategies against ICC, and surgery is currently the only curative treatment. Here, we present a case of ICC successfully treated with anlotinib, a novel oral agent. PATIENT CONCERNS The patient was a 66-year-old Han Chinese woman, and she was a retired worker. The patient had no history of hepatitis B infection or hypertension. Physical examination showed no abnormalities, and the patient showed no conscious discomfort. However, ultrasound revealed liver occupation. DIAGNOSIS Liver ultrasound and enhanced computed tomography (CT) indicated liver cancer with intrahepatic metastasis. Serum carbohydrate antigen 199 and alpha fetoprotein levels were high at 4270 and 1561 ng/mL, respectively. Pathologic findings of CT-guided liver biopsy revealed an adenocarcinoma. Owing to further immunohistochemical staining and clinical results, a diagnosis of ICC was made. INTERVENTIONS The patient had received 5 cycles of transhepatic arterial chemotherapy and embolization and 1 cycle of microwave ablation. Due to rapid tumor progression and loss of liver function, systemic chemotherapy was contraindicated. As second-line therapy, she received anlotinib, a novel tyrosine kinase inhibitor that inhibits tumor angiogenesis and proliferative signaling and has been used to treat refractory advanced non-small-cell lung cancer that shows progression despite treatment with ≥2 chemotherapy regimens. OUTCOMES This patient showed a partial response after 2 cycles of treatment with anlotinib (12 mg daily, days 1-14 of a 21-day cycle). Drug-related side effects, such as hypertension and hand foot skin reaction, were observed. After 4 cycles of anlotinib, the efficacy appeared to be stable, and the patient showed a progression-free survival period of almost 4 months. However, the patient's condition worsened and she died of liver failure 6 months after treatment (overall survival, almost 6 months). CONCLUSION Some cases of ICC may be responsive to the antiangiogenic drug, anlotinib, when combined with microwave ablation. Randomized clinical studies are required to further confirm the efficacy and safety of anlotinib in the clinical treatment of ICC.
Collapse
|
9
|
Liu L, Zhang Y, Wei J, Chen Z, Yu J. VEGFR-TKIs combined with chemotherapy for advanced non-small cell lung cancer: A systematic review. J Cancer 2019; 10:799-809. [PMID: 30854085 PMCID: PMC6400799 DOI: 10.7150/jca.29643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/09/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction: To estimate the efficacy and safety of vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs) in combination with chemotherapy for patients with advanced non-small cell lung cancer (NSCLC). Methods: We searched PubMed, PMC database, EMBASE, EBSCO-Medline, Cochrane Central Register of Controlled Trials (CENTRAL), American Society of Clinical Oncology (ASCO), International Association for the Study of Lung Cancer (IASLC) and the European Society of Medical Oncology (ESMO), http://www.clinicaltrials.gov/, CNKI, and Wanfang databases to identify primary research reporting the survival outcomes and safety of VEGFR-TKIs in patients with advanced NSCLC. A meta-analysis was conducted to generate combined hazard ratios (HRs) with 95% confidence intervals (CI) for overall survival (OS), progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR), and risk ratios (RRs) with 95% CI for adverse events (AEs). Results: A total of 20 RCTs (8,366 participants) were included. The VEGFR-TKIs resulted in improved PFS (HR 0.82, 95% CI 0.78-0.87), ORR (HR 1.72, 95% CI 1.34-2.22), and DCR (1.45, 1.26-1.67) in patients with advanced NSCLC, but had no impact on OS (HR 0.94, 95% CI 0.89-1.00). The incidence of some high grade (≥ 3) AEs increased, such as hemorrhage, hypertension and neutropenia. Conclusions: Our study demonstrated that regimens with VEGFR-TKIs combined with chemotherapy improved PFS, ORR and DCR in patients with advanced NSCLC, but had no impact on OS. VEGFR-TKIs induced more frequent and serious AEs compared with control therapies.
Collapse
Affiliation(s)
- Lian Liu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Yue Zhang
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Jia Wei
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Zhaoxin Chen
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Jing Yu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| |
Collapse
|
10
|
Fahmy-Garcia S, Farrell E, Witte-Bouma J, Robbesom-van den Berge I, Suarez M, Mumcuoglu D, Walles H, Kluijtmans SGJM, van der Eerden BCJ, van Osch GJVM, van Leeuwen JPTM, van Driel M. Follistatin Effects in Migration, Vascularization, and Osteogenesis in vitro and Bone Repair in vivo. Front Bioeng Biotechnol 2019; 7:38. [PMID: 30881954 PMCID: PMC6405513 DOI: 10.3389/fbioe.2019.00038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
The use of biomaterials and signaling molecules to induce bone formation is a promising approach in the field of bone tissue engineering. Follistatin (FST) is a glycoprotein able to bind irreversibly to activin A, a protein that has been reported to inhibit bone formation. We investigated the effect of FST in critical processes for bone repair, such as cell recruitment, osteogenesis and vascularization, and ultimately its use for bone tissue engineering. In vitro, FST promoted mesenchymal stem cell (MSC) and endothelial cell (EC) migration as well as essential steps in the formation and expansion of the vasculature such as EC tube-formation and sprouting. FST did not enhance osteogenic differentiation of MSCs, but increased committed osteoblast mineralization. In vivo, FST was loaded in an in situ gelling formulation made by alginate and recombinant collagen-based peptide microspheres and implanted in a rat calvarial defect model. Two FST variants (FST288 and FST315) with major differences in their affinity to cell-surface proteoglycans, which may influence their effect upon in vivo bone repair, were tested. In vitro, most of the loaded FST315 was released over 4 weeks, contrary to FST288, which was mostly retained in the biomaterial. However, none of the FST variants improved in vivo bone healing compared to control. These results demonstrate that FST enhances crucial processes needed for bone repair. Further studies need to investigate the optimal FST carrier for bone regeneration.
Collapse
Affiliation(s)
- Shorouk Fahmy-Garcia
- Department of Orthopedics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Janneke Witte-Bouma
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | - Melva Suarez
- Institute of Tissue Engineering and Regenerative Medicine, Julius-Maximillians University Würzburg, Würzburg, Germany
| | - Didem Mumcuoglu
- Department of Orthopedics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Fujifilm Manufacturing Europe B.V., Tilburg, Netherlands
| | - Heike Walles
- Institute of Tissue Engineering and Regenerative Medicine, Julius-Maximillians University Würzburg, Würzburg, Germany
| | | | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Gerjo J V M van Osch
- Department of Orthopedics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | - Marjolein van Driel
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
11
|
Zhang P, Ruan Y, Xiao J, Chen F, Zhang X. Association of serum follistatin levels with histological types and progression of tumor in human lung cancer. Cancer Cell Int 2018; 18:162. [PMID: 30377409 PMCID: PMC6195981 DOI: 10.1186/s12935-018-0664-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/16/2018] [Indexed: 02/08/2023] Open
Abstract
Background Follistatin (FST), an activin-binding protein, inhibits activin action by interfering with activin binding to its receptor. The prognostic value of FST has been studied in various cancers. However, these studies rarely focus on lung cancer. In our study, we investigated the relationship between serum FST levels and lung cancer with histologic types, TNM staging, and recurrence. Methods A total of 150 serum samples were collected, including 91 from patients with SCLC or NSCLC, 22 from patients with benign lung diseases, and 37 from healthy subjects. Enzyme-linked immunosorbent assay was used to determine serum FST levels in healthy subjects, patients with benign lung diseases and patients with lung cancers. Results Serum FST levels in patients with LADC, SCC, LASC, LCLC, and SCLC were much higher than those in healthy subjects and in patients with lung benign disease. A ROC curve was constructed for differentiating the lung cancer from the healthy subjects and benign lung diseases. The results indicated that the area under the ROC curve (AUC) was 0.971 and 0.728 respectively. According to TNM staging, serum FST level increased significantly in patients with stage III and IV of LADC. Moreover, serum FST expression were increased in LADC patients with different TNM category. Furthermore, we found that a higher expression of serum FST was correlated with recurrence in LADC patients. Conclusions The serum FST levels gradually increased with the rise of TNM staging and category in lung cancer patients. These data suggest that serum FST levels not only can be used in auxiliary diagnosis for lung cancer but also might be associated with the disease progression and metastasis of lung cancers.
Collapse
Affiliation(s)
- Pengyu Zhang
- 1Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060 People's Republic of China
| | - Yingxin Ruan
- 2Department of Nephrology, General Hospital of Tianjin Medical University, Tianjin, 300052 People's Republic of China
| | - Jun Xiao
- 4Department of Immunology, Key Laboratory of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070 People's Republic of China
| | - Fangfang Chen
- 3Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130031 People's Republic of China
| | - Xuejun Zhang
- 4Department of Immunology, Key Laboratory of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070 People's Republic of China
| |
Collapse
|
12
|
Zabkiewicz C, Resaul J, Hargest R, Jiang WG, Ye L. Increased Expression of Follistatin in Breast Cancer Reduces Invasiveness and Clinically Correlates with Better Survival. Cancer Genomics Proteomics 2018. [PMID: 28647698 DOI: 10.21873/cgp.20035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/AIM Activin and its antagonist follistatin (FST) have been implicated in several solid tumours. This study investigated the role of FST in breast cancer. MATERIALS AND METHODS FST expression was examined using reverse transcription polymerase chain reaction (RT-PCR), real-time quantitative polymerase chain reaction (qPCR) and immunohistochemistry in a cohort of breast cancer samples. Expression was correlated to pathological and prognostic parameters in our patient cohort. FST was overexpressed in MCF-7 cells and assays for growth and invasion were performed. RESULTS FST is expressed in breast tissue, in the cytoplasm of mammary epithelial cells. Expression was decreased in breast cancer tissue in comparison to normal mammary tissue. Over-expression of FST in vitro led to significantly increased growth rate and reduced invasion. Higher FST associates with lower-grade tumours and better survival. CONCLUSION Our results suggest a role for FST as a suppressor of invasion and metastasis in breast cancer.
Collapse
Affiliation(s)
- Catherine Zabkiewicz
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, U.K
| | - Jeyna Resaul
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, U.K
| | - Rachel Hargest
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, U.K
| | - Wen Guo Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, U.K.
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, U.K.
| |
Collapse
|
13
|
Anlotinib as a third-line therapy in patients with refractory advanced non-small-cell lung cancer: a multicentre, randomised phase II trial (ALTER0302). Br J Cancer 2018; 118:654-661. [PMID: 29438373 PMCID: PMC5846072 DOI: 10.1038/bjc.2017.478] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Anlotinib (AL3818) is a novel multitarget tyrosine kinase inhibitor, inhibiting tumour angiogenesis and proliferative signalling. The objective of this study was to assess the safety and efficacy of third-line anlotinib for patients with refractory advanced non-small-cell lung cancer (RA-NSCLC). METHODS Eligible patients were randomised 1 : 1 to receive anlotinib (12 mg per day, per os; days 1-14; 21 days per cycle) or a placebo. The primary end point was progression-free survival (PFS). RESULTS A total of 117 eligible patients enrolled from 13 clinical centres in China were analysed in the full analysis set. No patients received immune check-point inhibitors and epidermal growth factor receptor status was unknown in 60.7% of the population. PFS was better with anlotinib compared with the placebo (4.8 vs 1.2 months; hazard ratio (HR)=0.32; 95% confidence interval (CI), 0.20-0.51; P<0.0001), as well as overall response rate (ORR) (10.0%; 95% CI, 2.4-17.6% vs 0%; 95% CI, 0-6.27%; P=0.028). The median overall survival (OS) was 9.3 months (95% CI, 6.8-15.1) for the anlotinib group and 6.3 months (95% CI, 4.3-10.5) for the placebo group (HR=0.78; 95% CI, 0.51-1.18; P=0.2316). Adverse events were more frequent in the anlotinib than the placebo group. The percentage of grade 3-4 treatment-related adverse events was 21.67% in the anlotinib group. CONCLUSIONS Anlotinib as a third-line treatment provided significant PFS benefits to patients with RA-NSCLC when compared with the placebo, and the toxicity profiles showed good tolerance.
Collapse
|
14
|
Xiong S, Klausen C, Cheng JC, Leung PCK. Activin B promotes endometrial cancer cell migration by down-regulating E-cadherin via SMAD-independent MEK-ERK1/2-SNAIL signaling. Oncotarget 2018; 7:40060-40072. [PMID: 27223076 PMCID: PMC5129992 DOI: 10.18632/oncotarget.9483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 04/24/2016] [Indexed: 01/03/2023] Open
Abstract
High-risk type II endometrial cancers account for ~30% of cases but ~75% of deaths due, in part, to their tendency to metastasize. Histopathological studies of type II endometrial cancers (non-endometrioid, mostly serous) suggest overproduction of activin B and down-regulation of E-cadherin, both of which are associated with reduced survival. Our previous studies have shown that activin B increases the migration of type II endometrial cancer cell lines. However, little is known about the relationship between activin B signaling and E-cadherin in endometrial cancer. We now demonstrate that activin B treatment significantly decreases E-cadherin expression in both a time- and concentration-dependent manner in KLE and HEC-50 cell lines. Interestingly, these effects were not inhibited by knockdown of SMAD2, SMAD3 or SMAD4. Rather, the suppressive effects of activin B on E-cadherin were mediated by MEK-ERK1/2-induced production of the transcription factor SNAIL. Importantly, activin B-induced cell migration was inhibited by forced-expression of E-cadherin or pre-treatment with the activin/TGF-β type I receptor inhibitor SB431542 or the MEK inhibitor U0126. We have identified a novel SMAD-independent pathway linking enhanced activin B signaling to reduced E-cadherin expression and increased migration in type II endometrial cancer.
Collapse
Affiliation(s)
- Siyuan Xiong
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
15
|
Hoda MA, Rozsas A, Lang E, Klikovits T, Lohinai Z, Torok S, Berta J, Bendek M, Berger W, Hegedus B, Klepetko W, Renyi-Vamos F, Grusch M, Dome B, Laszlo V. High circulating activin A level is associated with tumor progression and predicts poor prognosis in lung adenocarcinoma. Oncotarget 2017; 7:13388-99. [PMID: 26950277 PMCID: PMC4924649 DOI: 10.18632/oncotarget.7796] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/09/2016] [Indexed: 12/22/2022] Open
Abstract
Activin A (ActA)/follistatin (FST) signaling has been shown to be deregulated in different tumor types including lung adenocarcinoma (LADC). Here, we report that serum ActA protein levels are significantly elevated in LADC patients (n=64) as compared to controls (n=46, p=0.015). ActA levels also correlated with more advanced disease stage (p<0.0001) and T (p=0.0035) and N (p=0.0002) factors. M1 patients had significantly higher ActA levels than M0 patients (p<0.001). High serum ActA level was associated with poor overall survival (p<0.0001) and was confirmed as an independent prognostic factor (p=0.004). Serum FST levels were increased only in female LADC patients (vs. female controls, p=0.031). Two out of five LADC cell lines secreted biologically active ActA, while FST was produced in all of them. Transcripts of both type I and II ActA receptors were detected in all five LADC cell lines. In conclusion, our study does not only suggest that measuring blood ActA levels in LADC patients might improve the prediction of prognosis, but also indicates that this parameter might be a novel non-invasive biomarker for identifying LADC patients with organ metastases.
Collapse
Affiliation(s)
- Mir Alireza Hoda
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria.,Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Anita Rozsas
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria.,National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Elisabeth Lang
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Thomas Klikovits
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Zoltan Lohinai
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Szilvia Torok
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Judit Berta
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Matyas Bendek
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Walter Berger
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Balazs Hegedus
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria.,MTA-SE Molecular Oncology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Walter Klepetko
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Ferenc Renyi-Vamos
- Department of Thoracic Surgery, National Institute of Oncology and Semmelweis University, Budapest, Hungary
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Balazs Dome
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria.,National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, National Institute of Oncology and Semmelweis University, Budapest, Hungary.,Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Viktoria Laszlo
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Interaction with the GDF8/11 pathway reveals treatment options for adenocarcinoma of the breast. Breast 2017; 37:134-141. [PMID: 29156385 DOI: 10.1016/j.breast.2017.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 12/27/2022] Open
Abstract
Breast adenocarcinoma continues to be the most frequently diagnosed tumor entity. Despite established therapy options, mortality for breast cancer remains to be as high as 40,000 patients in the US annually. Thus, a need to develop a patient-oriented, targeted therapy exists. In this study, we investigated the interaction of breast adenocarcinoma with the ubiquitously present protein Follistatin and subsequently the GDF8/11 pathway. We analyzed primary histological samples from adenocarcinoma patients for expression of Follistatin and GDF8/11. Furthermore, expression levels of Follistatin and GDF8/11 in MCF7 were compared with MCF10a cells. From the resulting data, GDF8 and Follistatin were used as chemotherapeutic agents in MCF7 cells and their migratory, proliferative behavior and viability were measured. From the experiments, we were able to detect a significantly increased expression of Follistatin and GDF8/11 in the low malignant breast adenocarcinoma (G1) as compared to benign breast fibroadenoma. Interestingly, a decrease was demonstrated in higher grade malignancies. These findings were accompanied by the clinical observation that increased expression of Follistatin and GDF8 is associated with a higher overall survival rate of breasts cancer patients. Substitution of GDF8 and Follistatin reduces the viability of the MCF7 cells and disrupts the migrative and proliferative potential. In summary, MCF7 cells show high chemosensitivity to Follistatin and especially GDF8 and both proteins might serve as targets to improve systemic treatment in breast cancer. In contrast to most established chemotherapy regimens Follistatin and GDF8 show no cytotoxicity to other organs.
Collapse
|
17
|
Ni X, Cao X, Wu Y, Wu J. FSTL1 suppresses tumor cell proliferation, invasion and survival in non-small cell lung cancer. Oncol Rep 2017; 39:13-20. [PMID: 29115636 PMCID: PMC5783594 DOI: 10.3892/or.2017.6061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/18/2017] [Indexed: 01/07/2023] Open
Abstract
Follistatin like-1 (FSTL1) is a secreted glycoprotein involved in a series of physiological and pathological processes. However, its contribution to the development of cancer, especially the pathogenesis of NSCLC, remains to be elucidated. We explored the expression, function, and molecular mechanism of FSTL1 in NSCLC. In this study, we detected the expression of FSTL1 in a panel of NSCLC cell lines and lung normal epithelial cell line by qRT-PCR and western blot analysis and found that FSTL1 was downregulated in NSCLC cells compared with normal control. Knockdown of FSTL1 with different shRNA sequences result in increased cell proliferation and cell migration, invasion and reduced cell apoptosis in A549 cell line with high FSTL1 endogenous level. FSTL1 overexpression in H446 cell line with low FSTL1 endogenous level suppressed cell proliferation and migration, invasion and increased cell apoptosis. Knockdown and overexpression of FSTL1 caused altered cell cycle. Reduced cell apoptosis was revealed in FSTL1 knockdown cells accompanied by increased FAS expression and decreased FASL, cleaved caspase‑3 and ‑7 expression. By contrast, overexpression of FSTL1 caused reduced FAS level and increased activated caspase‑3 and ‑7 expression, which may lead to increased cell apoptosis. Moreover, the changed migration and invasion ability in FSTL1 sufficient or deficient cells may be caused by alterations in MMP2, MMP3 and MMP9 expression. Altogether, our results revealed the critical tumor-suppression function of FSTL1 in NSCLC progression, suggesting that FSTL1 might be an important factor in NSCLC progression.
Collapse
Affiliation(s)
- Xiaolei Ni
- Department of Medical Oncology, The First Hospital of Longyan Affiliated to Fujian Medical University, Longyan, Fujian, P.R. China
| | - Xiaoming Cao
- Department of Respiratory Medicine, The First Hospital of Longyan Affiliated to Fujian Medical University, Longyan, Fujian, P.R. China
| | - Yongquan Wu
- Department of Respiratory Medicine, The First Hospital of Longyan Affiliated to Fujian Medical University, Longyan, Fujian, P.R. China
| | - Jian Wu
- Department of Cardiothoracic Surgery, The First Hospital of Longyan Affiliated to Fujian Medical University, Longyan, Fujian, P.R. China
| |
Collapse
|
18
|
Follistatin is a metastasis suppressor in a mouse model of HER2-positive breast cancer. Breast Cancer Res 2017; 19:66. [PMID: 28583174 PMCID: PMC5460489 DOI: 10.1186/s13058-017-0857-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022] Open
Abstract
Background Follistatin (FST) is an intrinsic inhibitor of activin, a member of the transforming growth factor-β superfamily of ligands. The prognostic value of FST and its family members, the follistatin-like (FSTL) proteins, have been studied in various cancers. However, these studies, as well as limited functional analyses of the FSTL proteins, have yielded conflicting results on the role of these proteins in disease progression. Furthermore, very few have been focused on FST itself. We assessed whether FST may be a suppressor of tumorigenesis and/or metastatic progression in breast cancer. Methods Using publicly available gene expression data, we examined the expression patterns of FST and INHBA, a subunit of activin, in normal and cancerous breast tissue and the prognostic value of FST in breast cancer metastases, recurrence-free survival, and overall survival. The functional effects of activin and FST on in vitro proliferation, migration, and invasion of breast cancer cells were also examined. FST overexpression in an autochthonous mouse model of breast cancer was then used to assess the in vivo impact of FST on metastatic progression. Results Examination of multiple breast cancer datasets revealed that FST expression is reduced in breast cancers compared with normal tissue and that low FST expression predicts increased metastasis and reduced overall survival. FST expression was also reduced in a mouse model of HER2/Neu-induced metastatic breast cancer. We found that FST blocks activin-induced breast epithelial cell migration in vitro, suggesting that its loss may promote breast cancer aggressiveness. To directly determine if FST restoration could inhibit metastatic progression, we transgenically expressed FST in the HER2/Neu model. Although FST had no impact on tumor initiation or growth, it completely blocked the formation of lung metastases. Conclusions These data indicate that FST is a bona fide metastasis suppressor in this mouse model and support future efforts to develop an FST mimetic to suppress metastatic progression. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0857-y) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Shi L, Resaul J, Owen S, Ye L, Jiang WG. Clinical and Therapeutic Implications of Follistatin in Solid Tumours. Cancer Genomics Proteomics 2017; 13:425-435. [PMID: 27807065 DOI: 10.21873/cgp.20005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/05/2016] [Indexed: 12/20/2022] Open
Abstract
Follistatin (FST), as a single-chain glycosylated protein, has two major isoforms, FST288 and FST315. The FST315 isoform is the predominant form whilst the FST288 variant accounts for less than 5% of the encoded mRNA. FST is differentially expressed in human tissues and aberrant expression has been observed in a variety of solid tumours, including gonadal, gastric and lung cancer, hepatocellular carcinoma, basal cell carcinoma and melanoma. Based on the current evidence, FST is an antagonist of transforming growth factor beta family members, such as activin and bone morphogenetic proteins (BMPs). FST plays a role in tumourigenesis, metastasis and angiogenesis of solid tumours through its interaction with activin and BMPs, thus resulting in pathophysiological function. In terms of diagnosis, prognosis and therapy, FST has shown strong promise. Through a better understanding of its biological functions, potential clinical applications may yet emerge.
Collapse
Affiliation(s)
- Lei Shi
- Urology Department, Yantai Yu Huang Ding Hospital, Yantai, Shandong Province, P.R. China.,Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Jeyna Resaul
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Sioned Owen
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K.
| |
Collapse
|
20
|
Tseng FY, Chen YT, Chi YC, Chen PL, Yang WS. Serum Levels of Follistatin Are Positively Associated With Serum-Free Thyroxine Levels in Patients With Hyperthyroidism or Euthyroidism. Medicine (Baltimore) 2016; 95:e2661. [PMID: 26844494 PMCID: PMC4748911 DOI: 10.1097/md.0000000000002661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Follistatin is a glycoprotein with various biologic functions that plays a role in adipocyte differentiation, muscle stimulation, anti-inflammation, and energy homeostasis. Thyroid hormones influence energy expenditure, glucose, and lipid metabolism. The association between serum follistatin level and thyroid function statuses has seldom been evaluated.The objectives of this study were to compare serum follistatin concentrations in different thyroid function statuses and to evaluate the associations between serum follistatin and free thyroxine (fT4) levels.In this study, 30 patients with hyperthyroidism (HY group) and 30 euthyroid individuals (EU group) were recruited. The patients of HY group were treated with antithyroid regimens as clinically indicated, whereas no medication was given to EU group. The demographic and anthropometric characteristics, biochemical data, serum levels of follistatin, and thyroid function of both groups at baseline and at the 6th month were compared. Data of all patients were pooled for the analysis of the associations between the levels of follistatin and fT4.At baseline, the HY group had significantly higher serum follistatin levels than the EU group (median [Q1, Q3]: 1.81 [1.33, 2.78] vs 1.13 [0.39, 1.45] ng/mL, P < 0.001). When treated with antithyroid regimens, the follistatin serum levels in HY group decreased to 1.54 [1.00, 1.88] ng/mL at the 6th month. In all patients, the serum levels of follistatin were positively associated with fT4 levels at baseline (β = 0.54, P = 0.005) and at the 6th month (β = 0.59, P < 0.001). The association between follistatin and fT4 levels remained significant in the stepwise multivariate regression analysis, both initially and at the 6th month.In comparison to the EU group, patients with hyperthyroidism had higher serum follistatin levels, which decreased after receiving antithyroid treatment. In addition, the serum follistatin concentrations were positively associated with serum fT4 levels in patients with hyperthyroidism or euthyroidism.
Collapse
Affiliation(s)
- Fen-Yu Tseng
- From the Division of Endocrinology & Metabolism, Department of Internal Medicine, National Taiwan University Hospital (F-YT, P-LC, W-SY); Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University (Y-TC, Y-CC, W-SY); Department of Medical Genetics, National Taiwan University Hospital, National Taiwan University (P-LC); and Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan (P-LC)
| | | | | | | | | |
Collapse
|
21
|
Carl C, Flindt A, Hartmann J, Dahlke M, Rades D, Dunst J, Lehnert H, Gieseler F, Ungefroren H. Ionizing radiation induces a motile phenotype in human carcinoma cells in vitro through hyperactivation of the TGF-beta signaling pathway. Cell Mol Life Sci 2016; 73:427-43. [PMID: 26238393 PMCID: PMC11108547 DOI: 10.1007/s00018-015-2003-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/02/2015] [Accepted: 07/24/2015] [Indexed: 12/20/2022]
Abstract
Radiotherapy, a major treatment modality against cancer, can lead to secondary malignancies but it is uncertain as to whether tumor cells that survive ionizing radiation (IR) treatment undergo epithelial-mesenchymal transition (EMT) and eventually become invasive or metastatic. Here, we have tested the hypothesis that the application of IR (10 MeV photon beams, 2-20 Gy) to lung and pancreatic carcinoma cells induces a migratory/invasive phenotype in these cells by hyperactivation of TGF-β and/or activin signaling. In accordance with this assumption, IR induced gene expression patterns and migratory responses consistent with an EMT phenotype. Moreover, in A549 cells, IR triggered the synthesis and secretion of both TGF-β1 and activin A as well as activation of intracellular TGF-β/activin signaling as evidenced by Smad phosphorylation and transcriptional activation of a TGF-β-responsive reporter gene. These responses were sensitive to SB431542, an inhibitor of type I receptors for TGF-β and activin. Likewise, specific antibody-mediated neutralization of soluble TGF-β, or dominant-negative inhibition of the TGF-β receptors, but not the activin type I receptor, alleviated IR-induced cell migration. Moreover, the TGF-β-specific approaches also blocked IR-dependent TGF-β1 secretion, Smad phosphorylation, and reporter gene activity, collectively indicating that autocrine production of TGF-β(s) and subsequent activation of TGF-β rather than activin signaling drives these changes. IR strongly sensitized cells to further increase their migration in response to recombinant TGF-β1 and this was accompanied by upregulation of TGF-β receptor expression. Our data raise the possibility that hyperactivation of TGF-β signaling during radiotherapy contributes to EMT-associated changes like metastasis, cancer stem cell formation and chemoresistance of tumor cells.
Collapse
Affiliation(s)
- Cedric Carl
- Department of Internal Medicine I, UKSH, Campus Lübeck, 23538, Lübeck, Germany
| | - Anne Flindt
- Department of Internal Medicine I, UKSH, Campus Lübeck, 23538, Lübeck, Germany
| | - Julian Hartmann
- Department of Internal Medicine I, UKSH, Campus Lübeck, 23538, Lübeck, Germany
| | - Markus Dahlke
- Department of Radiation Oncology, UKSH, Campus Lübeck, 23538, Lübeck, Germany
| | - Dirk Rades
- Department of Radiation Oncology, UKSH, Campus Lübeck, 23538, Lübeck, Germany
| | - Jürgen Dunst
- Department of Radiation Oncology, UKSH, Campus Lübeck, 23538, Lübeck, Germany
- Department of Radiation Oncology, UKSH, Campus Kiel, 24105, Kiel, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine I, UKSH, Campus Lübeck, 23538, Lübeck, Germany
| | - Frank Gieseler
- Department of Internal Medicine I, UKSH, Campus Lübeck, 23538, Lübeck, Germany
| | - Hendrik Ungefroren
- Department of Internal Medicine I, UKSH, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
22
|
Kahlert C, Fiala M, Musso G, Halama N, Keim S, Mazzone M, Lasitschka F, Pecqueux M, Klupp F, Schmidt T, Rahbari N, Schölch S, Pilarsky C, Ulrich A, Schneider M, Weitz J, Koch M. Prognostic impact of a compartment-specific angiogenic marker profile in patients with pancreatic cancer. Oncotarget 2015; 5:12978-89. [PMID: 25483099 PMCID: PMC4350362 DOI: 10.18632/oncotarget.2651] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer consists of a heterogenous bulk of tumor cells and stroma cells which contribute to tumor progression by releasing angiogenic factors. Those factors can be detected as circulating serum factors. We performed a compartment-specific analysis of tumor-derived and stroma-derived angiogenic factors to identify biomarkers and molecular targets for the treatment of pancreatic cancer. Kryo-frozen tissue from primary ductal adenocarcinomas (n = 51) was laser-microdissected to isolate tumor and stroma tissue. Expression of 17 angiogenic factors (angiopoietin-2, follistatin, GCSF, HGF, interleukin-8, leptin, PDGF-BB, PECAM-1, VEGF, matrix metalloproteinase -1, -2, -3, -7, -9, -10, -12, and -13) was analyzed using a multiplex elisa assay for tissue-derived proteins and corresponding serum. Our study reveals a compartment-specific expression profile for several angiogenic factors and matrix metalloproteinases. ROC analysis of corresponding serum samples reveals MMP-7 and MMP-12 as strong classifiers for the diagnosis of patients with pancreatic cancer vs. healthy control donors. High expression of tumor-derived PDGF-BB and MMP-1 correlates with prolonged survival in univariate and multivariate analysis. In conclusion, a distinct expression patterns for angiogenic cytokines and MMPs in pancreatic cancer and surrounding stroma may implicate them as novel targets for cancer treatment. Tumor-derived PDGF-BB and MMP-1 are significant and independent prognostic markers for poor survival.
Collapse
Affiliation(s)
- Christoph Kahlert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Maria Fiala
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Gabriel Musso
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Niels Halama
- Medical Oncology, National Center for Tumor Diseases and Hamamatsu Tissue Imaging and Analysis (TIGA) Center, Institute for Medical Biometry and Informatics, University of Heidelberg, Germany
| | - Sophia Keim
- Medical Oncology, National Center for Tumor Diseases and Hamamatsu Tissue Imaging and Analysis (TIGA) Center, Institute for Medical Biometry and Informatics, University of Heidelberg, Germany
| | - Massimiliano Mazzone
- Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven 3000, Belgium. Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, Department of Oncology, KU, Leuven 3000, Belgium
| | - Felix Lasitschka
- Institute of Pathology, University of Heidelberg, Heidelberg 69120, Germany
| | - Mathieu Pecqueux
- Department of General, Visceral and Thoracic Surgery, University of Dresden, Dresden 01307, Germany
| | - Fee Klupp
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Nuh Rahbari
- Department of General, Visceral and Thoracic Surgery, University of Dresden, Dresden 01307, Germany
| | - Sebastian Schölch
- Department of General, Visceral and Thoracic Surgery, University of Dresden, Dresden 01307, Germany
| | - Christian Pilarsky
- Department of General, Visceral and Thoracic Surgery, University of Dresden, Dresden 01307, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Juergen Weitz
- Department of General, Visceral and Thoracic Surgery, University of Dresden, Dresden 01307, Germany
| | - Moritz Koch
- Department of General, Visceral and Thoracic Surgery, University of Dresden, Dresden 01307, Germany
| |
Collapse
|
23
|
Datta-Mannan A, Huang L, Pereira J, Yaden B, Korytko A, Croy JE. Insights into the Impact of Heterogeneous Glycosylation on the Pharmacokinetic Behavior of Follistatin-Fc–Based Biotherapeutics. Drug Metab Dispos 2015; 43:1882-90. [DOI: 10.1124/dmd.115.064519] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/08/2015] [Indexed: 11/22/2022] Open
|
24
|
El-Abd N, Fawzy A, Elbaz T, Hamdy S. Evaluation of annexin A2 and as potential biomarkers for hepatocellular carcinoma. Tumour Biol 2015; 37:211-6. [PMID: 26189841 DOI: 10.1007/s13277-015-3524-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/04/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks as the fifth most common malignancy worldwide. Early detection of HCC is difficult due to the lack of reliable markers. We aimed to assess the diagnostic role of annexin A2 (ANXA2) and follistatin as serum markers for HCC patients. This study included 50 patients with confirmed diagnosis of HCC, 30 patients with chronic liver disease, and 20 normal persons. Subjects performed thorough assessment and laboratory investigations. Serum levels of alpha fetoprotein (AFP), annexin A2, and follistatin were measured using ELISA technique. Annexin A2 significantly increased in the sera of HCC patients (median, 69.6 ng/ml) compared to chronic liver disease patients (median, 16.8 ng/ml) and control group (median, 9.5 ng/ml) (p < 0.001). Follistatin was higher in sera of HCC patients (median, 24.4 ng/ml) compared to the control group (median, 4.2 ng/ml) (p = 0.002) while no such significant difference was achieved between HCC and chronic liver disease patients. At a cutoff level 29.3 ng/ml, area under the receiver-operating characteristic curve for ANXA2 was 0.910 (95 % confidence interval (CI) 0.84-0.97). For follistatin, it was 0.631 (95 % confidence interval 0.52-0.74) at cutoff level 15.7 ng/ml. Combining both annexin A2 and AFP increased the diagnostic efficiency (98 % specificity, LR + 41 and 97.6 % PPV). Follistatin combined with AFP provided 92 % specificity while lower sensitivity (50 %) was observed. Serum ANXA2 is a promising biomarker for HCC, certainly when measured with AFP. Follistatin could not differentiate between HCC and chronic liver disease, but its combination with AFP improved the specificity for HCC diagnosis.
Collapse
Affiliation(s)
- Nevine El-Abd
- Department of Clinical and Chemical Pathology, Cairo University, Cairo, Egypt
| | - Amal Fawzy
- Department of Clinical and Chemical Pathology, National Cancer Institute, Cairo, Egypt
| | - Tamer Elbaz
- Department of Endemic Hepatogastroenterology, Cairo University, Cairo, Egypt.
| | - Sherif Hamdy
- Department of Endemic Hepatogastroenterology, Cairo University, Cairo, Egypt
| |
Collapse
|
25
|
Ohta N, Ishiguro S, Kawabata A, Uppalapati D, Pyle M, Troyer D, De S, Zhang Y, Becker KG, Tamura M. Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes. PLoS One 2015; 10:e0123756. [PMID: 25942583 PMCID: PMC4420498 DOI: 10.1371/journal.pone.0123756] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/24/2015] [Indexed: 12/25/2022] Open
Abstract
Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC) possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naïve UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP) and follistatin (FST), that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species' breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression.
Collapse
Affiliation(s)
- Naomi Ohta
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, 66506, United States of America
| | - Susumu Ishiguro
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, 66506, United States of America
| | - Atsushi Kawabata
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, 66506, United States of America
| | - Deepthi Uppalapati
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, 66506, United States of America
| | - Marla Pyle
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, 66506, United States of America
| | - Deryl Troyer
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, 66506, United States of America
| | - Supriyo De
- Gene Expression and Genomics Unit, NIH Biomedical Research Center, National Institute on Aging, NIH, Baltimore, MD, 21224, United States of America
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, NIH Biomedical Research Center, National Institute on Aging, NIH, Baltimore, MD, 21224, United States of America
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, NIH Biomedical Research Center, National Institute on Aging, NIH, Baltimore, MD, 21224, United States of America
| | - Masaaki Tamura
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, 66506, United States of America
- * E-mail:
| |
Collapse
|
26
|
SUV420H2 suppresses breast cancer cell invasion through down regulation of the SH2 domain-containing focal adhesion protein tensin-3. Exp Cell Res 2015; 334:90-9. [PMID: 25814362 DOI: 10.1016/j.yexcr.2015.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/12/2015] [Accepted: 03/14/2015] [Indexed: 11/20/2022]
Abstract
The genome-wide loss of histone H4 lysine 20 tri-methylation (H4K20me3) is observed in multiple types of cancer, including breast tumors. Since H4K20me3 is preferentially targeted to repetitive elements in the pericentromeric and telomeric heterochromatin and plays a role in chromatin integrity, the pathological effects of disrupted H4K20me3 in tumors have been attributed to genomic instability. However, in this report, we show that loss of H4K20me3 modulates gene expression profiles, leading to increased cell invasion. Reduced H4K20me3 levels in tumor cells are often accompanied by a decrease in the expression of the H4K20-specific methyltransferase, SUV420H2. Exogenous delivery of SUV420H2 into MDA-MB-231 human breast cancer cells induced selective and specific changes in the expression of cancer-related genes. One of the most downregulated genes in response to SUV420H2 expression was the Src substrate, tensin-3, a focal adhesion protein that contributes to cancer cell migration. Depletion of tensin-3 suppressed breast cancer cell invasiveness. Furthermore, silencing of tensin-3 was associated with enrichment of H4K20me3 immediately upstream of the tensin-3 transcription start site, suggesting that the loss of H4K20me3 in tumor cells induced the expression of cancer-promoting genes. These findings connect the loss of H4K20me3 with tumor progression, through the transcriptional activation of cancer-promoting genes.
Collapse
|
27
|
Chen F, Ren P, Feng Y, Liu H, Sun Y, Liu Z, Ge J, Cui X. Follistatin is a novel biomarker for lung adenocarcinoma in humans. PLoS One 2014; 9:e111398. [PMID: 25347573 PMCID: PMC4210220 DOI: 10.1371/journal.pone.0111398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 08/21/2014] [Indexed: 12/22/2022] Open
Abstract
Background Follistatin (FST), a single chain glycoprotein, is originally isolated from follicular fluid of ovary. Previous studies have revealed that serum FST served as a biomarker for pregnancy and ovarian mucinous tumor. However, whether FST can serve as a biomarker for diagnosis in lung adenocarcinoma of humans remains unclear. Methods and Results The study population consisted of 80 patients with lung adenocarcinoma, 40 patients with ovarian adenocarcinoma and 80 healthy subjects. Serum FST levels in patients and healthy subjects were measured using ELISA. The results showed that the positive ratio of serum FST levels was 51.3% (41/80), which was comparable to the sensitivity of FST in 40 patients with ovarian adenocarcinoma (60%, 24/40) using the 95th confidence interval for the healthy subject group as the cut-off value. FST expressions in lung adenocarcinoma were examined by immunohistochemical staining, we found that lung adenocarcinoma could produce FST and there was positive correlation between the level of FST expression and the differential degree of lung adenocarcinoma. Furthermore, the results showed that primary cultured lung adenocarcinoma cells could secrete FST, while cells derived from non-tumor lung tissues almost did not produce FST. In addition, the results of CCK8 assay and flow cytometry showed that using anti-FST monoclonal antibody to neutralize endogenous FST significantly augmented activin A-induced lung adenocarcinoma cells apoptosis. Conclusions These data indicate that lung adenocarcinoma cells can secret FST into serum, which may be beneficial to the survival of adenocarcinoma cells by neutralizing activin A action. Thus, FST can serve as a promising biomarker for diagnosis of lung adenocarcinoma and a useful biotherapy target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ping Ren
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, China
| | - Ye Feng
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Haiyan Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yang Sun
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jingyan Ge
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
- * E-mail: (CX); (GJ)
| | - Xueling Cui
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
- * E-mail: (CX); (GJ)
| |
Collapse
|
28
|
Le Bras GF, Loomans HA, Taylor C, Revetta F, Andl CD. Activin A balance regulates epithelial invasiveness and tumorigenesis. J Transl Med 2014; 94:1134-46. [PMID: 25068654 PMCID: PMC4309391 DOI: 10.1038/labinvest.2014.97] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/03/2014] [Accepted: 06/23/2014] [Indexed: 12/22/2022] Open
Abstract
Activin A (Act A) is a member of the TGFβ superfamily. Act A and TGFβ have multiple common downstream targets and have been described to merge in their intracellular signaling cascades and function. We have previously demonstrated that coordinated loss of E-cadherin and TGFβ receptor II (TβRII) results in epithelial cell invasion. When grown in three-dimensional organotypic reconstruct cultures, esophageal keratinocytes expressing dominant-negative mutants of E-cadherin and TβRII showed activated Smad2 in the absence of functional TβRII. However, we could show that increased levels of Act A secretion was able to induce Smad2 phosphorylation. Growth factor secretion can activate autocrine and paracrine signaling, which affects crosstalk between the epithelial compartment and the surrounding microenvironment. We show that treatment with the Act A antagonist Follistatin or with a neutralizing Act A antibody can increase cell invasion in organotypic cultures in a fibroblast- and MMP-dependent manner. Similarly, suppression of Act A with shRNA increases cell invasion and tumorigenesis in vivo. Therefore, we conclude that maintaining a delicate balance of Act A expression is critical for homeostasis in the esophageal microenvironment.
Collapse
Affiliation(s)
- Grégoire F. Le Bras
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
| | - Holli A. Loomans
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
| | - Chase Taylor
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
| | - Frank Revetta
- Department of Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
- Department of Vanderbilt Digestive Disease Center, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
| | - Claudia D. Andl
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
- Department of Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
- Department of Vanderbilt Digestive Disease Center, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
| |
Collapse
|
29
|
Gao X, Dong H, Lin C, Sheng J, Zhang F, Su J, Xu Z. Reduction of AUF1-mediated follistatin mRNA decay during glucose starvation protects cells from apoptosis. Nucleic Acids Res 2014; 42:10720-30. [PMID: 25159612 PMCID: PMC4176339 DOI: 10.1093/nar/gku778] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Follistatin (FST) performs several vital functions in the cells, including protection from apoptosis during stress. The expression of FST is up-regulated in response to glucose deprivation by an unknown mechanism. We herein showed that the induction of FST by glucose deprivation was due to an increase in the half-life of its mRNA. We further identified an AU-rich element (ARE) in the 3′UTR of FST mRNA that mediated its decay. The expression of FST was elevated after knocking down AUF1 and reduced when AUF1 was further expressed. In vitro binding assays and RNA pull-down assays revealed that AUF1 interacted with FST mRNA directly via its ARE. During glucose deprivation, a majority of AUF1 shuttled from cytoplasm to nucleus, resulting in dissociation of AUF1 from FST mRNA and thus stabilization of FST mRNA. Finally, knockdown of AUF1 decreased whereas overexpression of AUF1 increased glucose deprivation-induced apoptosis. The apoptosis promoting effect of AUF1 was eliminated in FST expressing cells. Collectively, this study provided evidence that AUF1 is a negative regulator of FST expression and participates in the regulation of cell survival under glucose deprivation.
Collapse
Affiliation(s)
- Xiangwei Gao
- Institute of Environmental Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Haojie Dong
- Institute of Environmental Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Chen Lin
- Institute of Environmental Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jinghao Sheng
- Institute of Environmental Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Fan Zhang
- Institute of Environmental Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jinfeng Su
- Institute of Environmental Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhengping Xu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
30
|
Fazilaty H, Mehdipour P. Genetics of breast cancer bone metastasis: a sequential multistep pattern. Clin Exp Metastasis 2014; 31:595-612. [PMID: 24493024 DOI: 10.1007/s10585-014-9642-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/26/2014] [Indexed: 02/05/2023]
Abstract
Bone metastasis accounts for the vast majority of breast cancer (BC) metastases, and is related to a high rate of morbidity and mortality. A number of seminal studies have uncovered gene expression signatures involved in BC development and bone metastasis; each of them points at a distinct step of the 'invasion-metastasis cascade'. In this review, we provide most recently discovered functions of sets of genes that are selected from widely accepted gene signatures that are implicate in BC progression and bone metastasis. We propose a possible sequential pattern of gene expression that may lead a benign primary breast tumor to get aggressiveness and progress toward bone metastasis. A panel of genes which primarily deal with features like DNA replication, survival, proliferation, then, angiogenesis, migration, and invasion has been identified. TGF-β, FGF, NFκB, WNT, PI3K, and JAK-STAT signaling pathways, as the key pathways involved in breast cancer development and metastasis, are evidently regulated by several genes in all three signatures. Epithelial to mesenchymal transition that is also an important mechanism in cancer stem cell generation and metastasis is evidently regulated by these genes. This review provides a comprehensive insight regarding breast cancer bone metastasis that may lead to a better understanding of the disease and take step toward better treatments.
Collapse
Affiliation(s)
- Hassan Fazilaty
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Pour Sina Street, P.O. Box: 14176-13151, Keshavarz Boulevard, Tehran, Iran
| | | |
Collapse
|
31
|
Tomoda T, Nouso K, Miyahara K, Kobayashi S, Kinugasa H, Toyosawa J, Hagihara H, Kuwaki K, Onishi H, Nakamura S, Ikeda F, Miyake Y, Shiraha H, Takaki A, Yamamoto K. Prognotic impact of serum follistatin in patients with hepatocellular carcinoma. J Gastroenterol Hepatol 2013; 28:1391-6. [PMID: 23432377 DOI: 10.1111/jgh.12167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIM Follistatin (FST) is a glycoprotein expressed in most organs, which interacts with activins or other members of the transforming growth factor beta family. Recently, several reports have shown that FST regulates a variety of processes during tumor progression. Here, serum FST in patients with liver diseases was measured, and its clinical utility as a biomarker was assessed. METHODS Serum was collected from 162 patients (91 hepatocellular carcinoma [HCC], 43 liver cirrhosis, and 28 chronic hepatitis) as well as from 16 healthy volunteers. FST was quantified by enzyme-linked immunosorbent assays, and levels were compared with clinical parameters including survival of the HCC patients. RESULTS Median serum FST levels in HCC, liver cirrhosis, chronic hepatitis, and healthy volunteers were 1168, 1606, 1324, and 1661 pg/mL, respectively, not significantly different. In HCC patients, higher serum FST was associated with greater age, hepatitis C virus antibody-negativity, large tumor size, g-glutamyl transpeptidase, des-gamma carboxyprothrombin and presence of portal vein tumor thrombus. Survival of HCC patients with high FST levels was significantly shorter than for those with low levels (P = 0.004). Multivariate analysis revealed that in addition to large tumor size and presence of portal vein thrombus, high FST levels were independently correlated with poor prognosis (hazard ratio = 2.41, 95% confidence interval = 1.16-5.00, P = 0.02). CONCLUSIONS Serum FST levels are significantly associated with HCC prognosis and could represent a predictive biomarker in this disease.
Collapse
Affiliation(s)
- Takeshi Tomoda
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama City, Okayama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sepporta MV, Tumminello FM, Flandina C, Crescimanno M, Giammanco M, La Guardia M, di Majo D, Leto G. Follistatin as potential therapeutic target in prostate cancer. Target Oncol 2013; 8:215-23. [PMID: 23456439 DOI: 10.1007/s11523-013-0268-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/05/2013] [Indexed: 01/04/2023]
Abstract
Follistatin is a single-chain glycosylated protein whose primary function consists in binding and neutralizing some members of the transforming growth factor-β superfamily such as activin and bone morphogenic proteins. Emerging evidence indicates that this molecule may also play a role in the malignant progression of several human tumors including prostate cancer. In particular, recent findings suggest that, in this tumor, follistatin may also contribute to the formation of bone metastasis through multiple mechanisms, some of which are not related to its specific activin or bone morphogenic proteins' inhibitory activity. This review provides insight into the most recent advances in understanding the role of follistatin in the prostate cancer progression and discusses the clinical and therapeutic implications related to these findings.
Collapse
Affiliation(s)
- Maria Vittoria Sepporta
- Operative Unit of Physiology and Pharmacology, University of Palermo, via Augusto Elia, 3, 90127, Palermo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Dy GK, Mandrekar SJ, Nelson GD, Meyers JP, Adjei AA, Ross HJ, Ansari RH, Lyss AP, Stella PJ, Schild SE, Molina JR, Adjei AA. A randomized phase II study of gemcitabine and carboplatin with or without cediranib as first-line therapy in advanced non-small-cell lung cancer: North Central Cancer Treatment Group Study N0528. J Thorac Oncol 2013; 8:79-88. [PMID: 23232491 PMCID: PMC4193613 DOI: 10.1097/jto.0b013e318274a85d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The purpose of this study was to assess the safety and efficacy of gemcitabine and carboplatin with (arm A) or without (arm B) daily oral cediranib as first-line therapy for advanced non-small-cell lung cancer. METHODS A lead-in phase to determine the tolerability of gemcitabine 1000 mg/m on days 1 and 8, and carboplatin on day 1 at area under curve 5 administered every 21 days with cediranib 45 mg once daily was followed by a 2 (A):1 (B) randomized phase II study. The primary end point was confirmed overall response rate (ORR) with 6-month progression-free survival (PFS6) rate in arm A as secondary end point. Polymorphisms in genes encoding cediranib targets and transport were correlated with treatment outcome. RESULTS On the basis of the safety assessment, cediranib 30 mg daily was used in the phase II portion. A total of 58 and 29 evaluable patients were accrued to arms A and B. Patients in A experienced more grade 3+ nonhematologic adverse events, 71% versus 45% (p = 0.01). The ORR was 19% (A) versus 20% (B) (p = 1.0). PFS6 in A was 48% (95% confidence interval: 35%-62%), thus meeting the protocol-specified threshold of at least 40%. The median overall survival was 12.0 versus 9.9 months (p = 0.10). FGFR1 rs7012413, FGFR2 rs2912791, and VEGFR3 rs11748431 polymorphisms were significantly associated with decreased overall survival (hazard ratio 2.78-5.01, p = 0.0002-0.0095). CONCLUSIONS The trial did not meet its primary end point of ORR but met its secondary end point of PFS6. The combination with cediranib 30 mg daily resulted in increased toxicity. Pharmacogenetic analysis revealed an association of FGFR and VEGFR variants with survival.
Collapse
|
34
|
Posch C, Pinney E, Ortiz-Urda S, Montes-Camacho M, Naughton GK. Human Multipotent Stem Cell Proteins Induce Apoptosis in Skin Cancer Cells. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jct.2013.46a1001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Fields SZ, Parshad S, Anne M, Raftopoulos H, Alexander MJ, Sherman ML, Laadem A, Sung V, Terpos E. Activin receptor antagonists for cancer-related anemia and bone disease. Expert Opin Investig Drugs 2012; 22:87-101. [PMID: 23127248 DOI: 10.1517/13543784.2013.738666] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Antagonists of activin receptor signaling may be beneficial for cancer-related anemia and bone disease caused by malignancies such as multiple myeloma and solid tumors. AREAS COVERED We review evidence of dysregulated signaling by activin receptor pathways in anemia, myeloma-associated osteolysis, and metastatic bone disease, as well as potential involvement in carcinogenesis. We then review properties of activin receptor antagonists in clinical development. EXPERT OPINION Sotatercept is a novel receptor fusion protein that functions as a soluble trap to sequester ligands of activin receptor type IIA (ActRIIA). Preclinically, the murine version of sotatercept increased red blood cells (RBC) in a model of chemotherapy-induced anemia, inhibited tumor growth and metastasis, and exerted anabolic effects on bone in diverse models of multiple myeloma. Clinically, sotatercept increases RBC markedly in healthy volunteers and patients with multiple myeloma. With a rapid onset of action differing from erythropoietin, sotatercept is in clinical development as a potential first-in-class therapeutic for cancer-related anemia, including those characterized by ineffective erythropoiesis as in myelodysplastic syndromes. Anabolic bone activity in early clinical studies and potential antitumor effects make sotatercept a promising therapeutic candidate for multiple myeloma and malignant bone diseases. Antitumor activity has been observed preclinically with small-molecule inhibitors of transforming growth factor-β receptor type I (ALK5) that also antagonize the closely related activin receptors ALK4 and ALK7. LY-2157299, the first such inhibitor to enter clinical studies, has shown an acceptable safety profile so far in patients with advanced cancer. Together, these data identify activin receptor antagonists as attractive therapeutic candidates for multiple diseases.
Collapse
Affiliation(s)
- Scott Z Fields
- Monter Cancer Center, Hofstra North Shore-LIJ School of Medicine, Lake Success, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Antsiferova M, Werner S. The bright and the dark sides of activin in wound healing and cancer. J Cell Sci 2012; 125:3929-37. [PMID: 22991378 DOI: 10.1242/jcs.094789] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activin was initially described as a protein that stimulates release of follicle stimulating hormone from the pituitary, and it is well known for its important roles in different reproductive functions. In recent years, this multifunctional factor has attracted the attention of researchers in other fields, as new functions of activin in angiogenesis, inflammation, immunity, fibrosis and cancer have been discovered. Studies from our laboratory have identified activin as a crucial regulator of wound healing and skin carcinogenesis. On the one hand, it strongly accelerates the healing process of skin wounds but, on the other hand, it enhances scar formation and the susceptibility to skin tumorigenesis. Finally, results from several laboratories have revealed that activin enhances tumour formation and/or progression in some other organs, in particular through its effect on the tumour microenvironment, and that it also promotes cancer-induced bone disruption and muscle wasting. These findings provide the basis for the use of activin or its downstream targets for the improvement of impaired wound healing, and of activin antagonists for the prevention and treatment of fibrosis and of malignant tumours that overexpress activin. Here, we summarize the previously described roles of activin in wound healing and scar formation and discuss functional studies that revealed different functions of activin in the pathogenesis of cancer. The relevance of these findings for clinical applications will be highlighted.
Collapse
Affiliation(s)
- Maria Antsiferova
- Department of Biology, Institute of Molecular Health Sciences, ETH Honggerberg, HPL E12, 8093, Zurich, Switzerland.
| | | |
Collapse
|
37
|
Bilezikjian LM, Justice NJ, Blackler AN, Wiater E, Vale WW. Cell-type specific modulation of pituitary cells by activin, inhibin and follistatin. Mol Cell Endocrinol 2012; 359:43-52. [PMID: 22330643 PMCID: PMC3367026 DOI: 10.1016/j.mce.2012.01.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 01/01/2023]
Abstract
Activins are multifunctional proteins and members of the TGF-β superfamily. Activins are expressed locally in most tissues and, analogous to the actions of other members of this large family of pleiotropic factors, play prominent roles in the regulation of diverse biological processes in both differentiated and embryonic stem cells. They have an essential role in maintaining tissue homeostasis in the adult and are known to contribute to the developmental programs in the embryo. Activins are further implicated in the growth and metastasis of tumor cells. Through distinct modes of action, inhibins and follistatins function as antagonists of activin and several other TGF-β family members, including a subset of BMPs/GDFs, and modulate cellular responses and the signaling cascades downstream of these ligands. In the pituitary, the activin pathway is known to regulate key aspects of gonadotrope functions and also exert effects on other pituitary cell types. As in other tissues, activin is produced locally by pituitary cells and acts locally by exerting cell-type specific actions on gonadotropes. These local actions of activin on gonadotropes are modulated by the autocrine/paracrine actions of locally secreted follistatin and by the feedback actions of gonadal inhibin. Knowledge about the mechanism of activin, inhibin and follistatin actions is providing information about their importance for pituitary function as well as their contribution to the pathophysiology of pituitary adenomas. The aim of this review is to highlight recent findings and summarize the evidence that supports the important functions of activin, inhibin and follistatin in the pituitary.
Collapse
Affiliation(s)
- Louise M Bilezikjian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
38
|
Karve TM, Preet A, Sneed R, Salamanca C, Li X, Xu J, Kumar D, Rosen EM, Saha T. BRCA1 regulates follistatin function in ovarian cancer and human ovarian surface epithelial cells. PLoS One 2012; 7:e37697. [PMID: 22685544 PMCID: PMC3365892 DOI: 10.1371/journal.pone.0037697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 04/26/2012] [Indexed: 11/19/2022] Open
Abstract
Follistatin (FST), a folliculogenesis regulating protein, is found in relatively high concentrations in female ovarian tissues. FST acts as an antagonist to Activin, which is often elevated in human ovarian carcinoma, and thus may serve as a potential target for therapeutic intervention against ovarian cancer. The breast cancer susceptibility gene 1 (BRCA1) is a known tumor suppressor gene in human breast cancer; however its role in ovarian cancer is not well understood. We performed microarray analysis on human ovarian carcinoma cell line SKOV3 that stably overexpress wild-type BRCA1 and compared with the corresponding empty vector-transfected clones. We found that stable expression of BRCA1 not only stimulates FST secretion but also simultaneously inhibits Activin expression. To determine the physiological importance of this phenomenon, we further investigated the effect of cellular BRCA1 on the FST secretion in immortalized ovarian surface epithelial (IOSE) cells derived from either normal human ovaries or ovaries of an ovarian cancer patient carrying a mutation in BRCA1 gene. Knock-down of BRCA1 in normal IOSE cells demonstrates down-regulation of FST secretion along with the simultaneous up-regulation of Activin expression. Furthermore, knock-down of FST in IOSE cell lines as well as SKOV3 cell line showed significantly reduced cell proliferation and decreased cell migration when compared with the respective controls. Thus, these findings suggest a novel function for BRCA1 as a regulator of FST expression and function in human ovarian cells.
Collapse
Affiliation(s)
- Tejaswita M. Karve
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
- Department of Biochemistry and Cellular and Molecular Biology, Georgetown University School of Medicine, Washington, D.C., United States of America
| | - Anju Preet
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Rosie Sneed
- University of District of Columbia, Washington, D.C., United States of America
| | - Clara Salamanca
- Canadian Ovarian Tissue Bank, BC Cancer Research Centre, Vancouver, B.C., Canada
| | - Xin Li
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University School of Medicine, Washington, D.C., United States of America
| | - Jingwen Xu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Deepak Kumar
- University of District of Columbia, Washington, D.C., United States of America
| | - Eliot M. Rosen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Tapas Saha
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
- * E-mail: (TS)
| |
Collapse
|
39
|
The effect of down regulation of calcineurin Aα by lentiviral vector-mediated RNAi on the biological behavior of small-cell lung cancer and its bone metastasis. Clin Exp Metastasis 2011; 28:765-78. [DOI: 10.1007/s10585-011-9408-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 07/07/2011] [Indexed: 10/18/2022]
|
40
|
Inhibin/activin betaE-subunit in uterine endometrioid adenocarcinoma and endometrial cancer cell lines: From immunohistochemistry to clinical testing? Gynecol Oncol 2011; 122:132-40. [DOI: 10.1016/j.ygyno.2011.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/11/2011] [Accepted: 03/18/2011] [Indexed: 01/07/2023]
|
41
|
Abstract
Activins are the members of transforming growth factor β superfamily and act as secreted proteins; they were originally identified with a reproductive function, acting as endocrine-derived regulators of pituitary follicular stimulating hormone. In recent years, additional functions of activins have been discovered, including a regulatory role during crucial phases of growth, differentiation, and development such as wound healing, tissue repair, and regulation of branching morphogenesis. The functions of activins through activin receptors are pleiotrophic, while involving in the etiology and pathogenesis of a variety of diseases and being cell type-specific, they have been identified as important players in cancer metastasis, immune responses, inflammation, and are most likely involved in cell migration. In this chapter, we highlight the current knowledge of activin signaling and discuss the potential physiological and pathological roles of activins acting on the migration of various cell types.
Collapse
|
42
|
Pinney E, Zimber M, Schenone A, Montes-Camacho M, Ziegler F, Naughton GK. Human Embryonic-like ECM (hECM) Stimulates Proliferation and Differentiation in Stem Cells While Killing Cancer Cells. Int J Stem Cells 2011; 4:70-5. [PMID: 24298336 PMCID: PMC3840969 DOI: 10.15283/ijsc.2011.4.1.70] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2011] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND OBJECTIVES There are a number of unique processes seen in the developing fetus that cease post-partum including that tumors rarely form, and scar-less wound healing and digit regeneration occur. In addition, cancer lines have been "reprogrammed" by co-culture with embryonic extracellular matrix (ECM). METHODS AND RESULTS We have developed a naturally secreted human ECM (hECM) with embryonic-like characteristics which is secreted by neonatal fibroblasts grown in microcarrier suspension cultures under hypoxia. This upregulates a number of substances associated with stem cell niches in the body including various laminins, Collagen 4, CXCL12, NID1, NID2, and NOTCH2. hECM has been shown to support proliferation of hESCs and MSCs and diminish or eliminate tumor load in melanoma (B16), adenocarcinoma (MDA-MB-435), colon cancer (HT29) and glioma (C6) in both in vitro and in vivo animal studies. In the tumor chorioallantoic membrane (tumcam) model hECM significantly inhibited tumor growth and in subcutaneous mouse xenograft experiments, tumor growth was inhibited from 70∼90%. Co-cultures of fibroblasts and mesothelioma show support of fibroblast expansion with a concurrent inhibition of mesothelioma. The inhibitory affect is selective for cancer cells and cancer stem cells through the upregulation of Caspase 9 which forces the cells into apoptosis. CONCLUSIONS These data show that hECM has the potential to show benefit in the treatment of various cancers as a coating for biopsy needle, tissue filler post tumor removal, and as an injectable into the tumor site.
Collapse
|
43
|
Bilezikjian LM, Vale WW. The Local Control of the Pituitary by Activin Signaling and Modulation. OPEN NEUROENDOCRINOLOGY JOURNAL (ONLINE) 2011; 4:90-101. [PMID: 21927629 PMCID: PMC3173763 DOI: 10.2174/1876528901104010090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pituitary gland plays a prominent role in the control of many physiological processes. This control is achieved through the actions and interactions of hormones and growth factors that are produced and secreted by the endocrine cell types and the non-endocrine constituents that collectively and functionally define this complex organ. The five endocrine cell types of the anterior lobe of the pituitary, somatotropes, lactotropes, corticotropes, thyrotropes and gonadotropes, are defined by their primary product, growth hormone (GH), prolactin (PRL), adrenocorticotropic hormone (ACTH), thyroid-stimulating hormone (TSH) and follicle stimulating hormone (FSH)/luteinizing hormone (LH). They are further distinguishable by the presence of cell surface receptors that display high affinity and selectivity for specific hypothalamic hormones and couple to appropriate downstream signaling pathways involved in the control of cell type specific responses, including the release and/or synthesis of pituitary hormones. Central control of the pituitary via the hypothalamus is further fine-tuned by the positive or negative actions of peripheral feedback signals and of a variety of factors that originate from sources within the pituitary. The focus of this review is the latter category of intrinsic factors that exert local control. Special emphasis is given to the TGF-β family of growth factors, in particular activin effects on the gonadotrope population, because a considerable body of evidence supports their contribution to the local modulation of the embryonic and postnatal pituitary as well as pituitary pathogenesis. A number of other substances, including members of the cytokine and FGF families, VEGF, IGF1, PACAP, Ghrelin, adenosine and nitric oxide have also been shown or implicated to function as autocrine/paracrine factors, though, definitive proof remains lacking in some cases. The ever-growing list of putative autocrine/paracrine factors of the pituitary nevertheless has highlighted the complexity of the local network and its impact on pituitary functions.
Collapse
Affiliation(s)
- Louise M Bilezikjian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, California, USA
| | | |
Collapse
|
44
|
Zhang DF, Li XG, Su LJ, Meng QL. Expression of activin A and follistatin in glioblastoma and their effects on U87 in vitro. J Int Med Res 2010; 38:1343-53. [PMID: 20926007 DOI: 10.1177/147323001003800416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In some cancer cell lines, the gene encoding activin A (inhibin βA [INHBA]) is over-expressed and enhances cancer proliferation. Protein levels of activin A and follistatin were assessed in glioblastoma and normal brain tissues in this study, and the effect of activin A and follistatin treatment on the proliferation of U87 human glioblastoma cells in vitro was also studied. High levels of activin A were observed in glioblastomas compared with normal brain tissue. In contrast, follistatin levels were similar between the two tissues. [(3)H]Thymidine assay showed that activin A (3 - 30 ng/ml) produced a dose-dependent increase in DNA synthesis of U87 cells compared with controls. Flow cytometric analyses showed that activin A increased the proliferative index of U87 cells compared with controls. Activin A also induced up-regulation of p-SMAD2/3 in a dose-dependent manner. Treatment of U87 cells with follistatin blocked these activin A-induced effects. The disequilibrium between activin A and follistatin may play a role in the development of glioblastoma.
Collapse
Affiliation(s)
- D F Zhang
- Department of Neurosurgery, Qilu Hospital, Medical College of Shandong University, Jinan, China
| | | | | | | |
Collapse
|
45
|
Dozmorov MG, Azzarello JT, Wren JD, Fung KM, Yang Q, Davis JS, Hurst RE, Culkin DJ, Penning TM, Lin HK. Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: implications for prostate cancer progression. BMC Cancer 2010; 10:672. [PMID: 21134280 PMCID: PMC3013086 DOI: 10.1186/1471-2407-10-672] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 12/06/2010] [Indexed: 11/23/2022] Open
Abstract
Background Aldo-keto reductase (AKR) 1C family member 3 (AKR1C3), one of four identified human AKR1C enzymes, catalyzes steroid, prostaglandin, and xenobiotic metabolism. In the prostate, AKR1C3 is up-regulated in localized and advanced prostate adenocarcinoma, and is associated with prostate cancer (PCa) aggressiveness. Here we propose a novel pathological function of AKR1C3 in tumor angiogenesis and its potential role in promoting PCa progression. Methods To recapitulate elevated AKR1C3 expression in cancerous prostate, the human PCa PC-3 cell line was stably transfected with an AKR1C3 expression construct to establish PC3-AKR1C3 transfectants. Microarray and bioinformatics analysis were performed to identify AKR1C3-mediated pathways of activation and their potential biological consequences in PC-3 cells. Western blot analysis, reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and an in vitro Matrigel angiogenesis assays were applied to validate the pro-angiogenic activity of PC3-AKR1C3 transfectants identified by bioinformatics analysis. Results Microarray and bioinformatics analysis suggested that overexpression of AKR1C3 in PC-3 cells modulates estrogen and androgen metabolism, activates insulin-like growth factor (IGF)-1 and Akt signaling pathways, as well as promotes tumor angiogenesis and aggressiveness. Levels of IGF-1 receptor (IGF-1R) and Akt activation as well as vascular endothelial growth factor (VEGF) expression and secretion were significantly elevated in PC3-AKR1C3 transfectants in comparison to PC3-mock transfectants. PC3-AKR1C3 transfectants also promoted endothelial cell (EC) tube formation on Matrigel as compared to the AKR1C3-negative parental PC-3 cells and PC3-mock transfectants. Pre-treatment of PC3-AKR1C3 transfectants with a selective IGF-1R kinase inhibitor (AG1024) or a non-selective phosphoinositide 3-kinases (PI3K) inhibitor (LY294002) abolished ability of the cells to promote EC tube formation. Conclusions Bioinformatics analysis followed by functional genomics demonstrated that AKR1C3 overexpression promotes angiogenesis and aggressiveness of PC-3 cells. These results also suggest that AKR1C3-mediated tumor angiogenesis is regulated by estrogen and androgen metabolism with subsequent IGF-1R and Akt activation followed by VEGF expression in PCa cells.
Collapse
Affiliation(s)
- Mikhail G Dozmorov
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 N,E, 13th Street, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chantry AD, Heath D, Mulivor AW, Pearsall S, Baud'huin M, Coulton L, Evans H, Abdul N, Werner ED, Bouxsein ML, Key ML, Seehra J, Arnett TR, Vanderkerken K, Croucher P. Inhibiting activin-A signaling stimulates bone formation and prevents cancer-induced bone destruction in vivo. J Bone Miner Res 2010; 25:2633-46. [PMID: 20533325 DOI: 10.1002/jbmr.142] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/06/2010] [Accepted: 05/24/2010] [Indexed: 01/10/2023]
Abstract
Cancers that grow in bone, such as myeloma and breast cancer metastases, cause devastating osteolytic bone destruction. These cancers hijack bone remodeling by stimulating osteoclastic bone resorption and suppressing bone formation. Currently, treatment is targeted primarily at blocking bone resorption, but this approach has achieved only limited success. Stimulating osteoblastic bone formation to promote repair is a novel alternative approach. We show that a soluble activin receptor type IIA fusion protein (ActRIIA.muFc) stimulates osteoblastogenesis (p < .01), promotes bone formation (p < .01) and increases bone mass in vivo (p < .001). We show that the development of osteolytic bone lesions in mice bearing murine myeloma cells is caused by both increased resorption (p < .05) and suppression of bone formation (p < .01). ActRIIA.muFc treatment stimulates osteoblastogenesis (p < .01), prevents myeloma-induced suppression of bone formation (p < .05), blocks the development of osteolytic bone lesions (p < .05), and increases survival (p < .05). We also show, in a murine model of breast cancer bone metastasis, that ActRIIA.muFc again prevents bone destruction (p < .001) and inhibits bone metastases (p < .05). These findings show that stimulating osteoblastic bone formation with ActRIIA.muFc blocks the formation of osteolytic bone lesions and bone metastases in models of myeloma and breast cancer and paves the way for new approaches to treating this debilitating aspect of cancer.
Collapse
Affiliation(s)
- Andrew D Chantry
- Mellanby Centre for Bone Research, Department of Human Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Burges A, Shabani N, Brüning A, Mylonas I. Inhibin-betaA and -betaB subunits in normal and malignant glandular epithelium of uterine cervix and HeLa cervical cancer cell line. Arch Gynecol Obstet 2010; 284:981-8. [PMID: 21082187 DOI: 10.1007/s00404-010-1734-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 10/18/2010] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Inhibins, dimeric peptide hormones composed of an alpha-subunit and one of two possible beta-subunits (betaA or betaB), exhibit substantial roles in human reproduction and in endocrine-responsive tumors. However, it is still unclear if normal and cancerous cervical glandular epithelial cells as well as cervical cancer cell lines of glandular origin express the inhibin-betaA and -betaB subunits. MATERIALS AND METHODS Normal cervical tissue samples and a total of 10 specimens of well-differentiated adenocarcinomas of the human cervix were analyzed for inhibin-betaA and -betaB subunit expression by immunohistochemical analysis. Additionally, the cervical carcinoma cell line HeLa was analyzed by immunofluorescence and RT-PCR analysis for the expression of inhibin subunits. RESULTS Immunolabeling of normal and malignant glandular epithelium of human cervical tissue revealed a positive staining reaction for the inhibin-betaA and -betaB subunits. Additionally, the cancer cell line HeLa synthesized both inhibin subunits. When compared to the normal cervical glandular epithelium, the expression of the inhibin beta subunits became significantly reduced in cervical adenocarcinoma tissues. DISCUSSION In conclusion, we demonstrated a strong, though differential expression pattern of inhibin-betaA and -betaB subunits in normal and malignant glandular epithelial cells of the human uterine cervix. Although the physiological role of inhibins is still quite unclear in cervical tissue, the expression of inhibin-beta-subunits might play an important role in cervical cancer carcinogenesis, since they are significantly down-regulated during pathogenesis in cervical adenocarcinomas.
Collapse
Affiliation(s)
- Alexander Burges
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University Munich, Campus Großhadern, Munich, Germany
| | | | | | | |
Collapse
|
48
|
Kim H, Watkinson J, Varadan V, Anastassiou D. Multi-cancer computational analysis reveals invasion-associated variant of desmoplastic reaction involving INHBA, THBS2 and COL11A1. BMC Med Genomics 2010; 3:51. [PMID: 21047417 PMCID: PMC2988703 DOI: 10.1186/1755-8794-3-51] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 11/03/2010] [Indexed: 11/25/2022] Open
Abstract
Background Despite extensive research, the details of the biological mechanisms by which cancer cells acquire motility and invasiveness are largely unknown. This study identifies an invasion associated gene signature shedding light on these mechanisms. Methods We analyze data from multiple cancers using a novel computational method identifying sets of genes whose coordinated overexpression indicates the presence of a particular phenotype, in this case high-stage cancer. Results We conclude that there is one shared "core" metastasis-associated gene expression signature corresponding to a specific variant of stromal desmoplastic reaction, present in a large subset of samples that have exceeded a threshold of invasive transition specific to each cancer, indicating that the corresponding biological mechanism is triggered at that point. For example this threshold is reached at stage IIIc in ovarian cancer and at stage II in colorectal cancer. Therefore, its presence indicates that the corresponding stage has been reached. It has several features, such as coordinated overexpression of particular collagens, mainly COL11A1 and other genes, mainly THBS2 and INHBA. The composition of the overexpressed genes indicates invasion-facilitating altered proteolysis in the extracellular matrix. The prominent presence in the signature of INHBA in all cancers strongly suggests a biological mechanism centered on activin A induced TGF-β signaling, because activin A is a member of the TGF-β superfamily consisting of an INHBA homodimer. Furthermore, we establish that the signature is predictive of neoadjuvant therapy response in at least one breast cancer data set. Conclusions Therefore, these results can be used for developing high specificity biomarkers sensing cancer invasion and predicting response to neoadjuvant therapy, as well as potential multi-cancer metastasis inhibiting therapeutics targeting the corresponding biological mechanism.
Collapse
Affiliation(s)
- Hoon Kim
- Center for Computational Biology and Bioinformatics and Department of Electrical Engineering, Columbia University, New York, NY, USA
| | | | | | | |
Collapse
|
49
|
Inhibin-βA subunit immunolabeling as a prognostic factor in endometrioid adenocarcinomas: a matter of evaluation? Arch Gynecol Obstet 2010; 284:467-76. [DOI: 10.1007/s00404-010-1680-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/09/2010] [Indexed: 02/05/2023]
|
50
|
Gao X, Wei S, Lai K, Sheng J, Su J, Zhu J, Dong H, Hu H, Xu Z. Nucleolar follistatin promotes cancer cell survival under glucose-deprived conditions through inhibiting cellular rRNA synthesis. J Biol Chem 2010; 285:36857-64. [PMID: 20843798 DOI: 10.1074/jbc.m110.144477] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Solid tumor development is frequently accompanied by energy-deficient conditions such as glucose deprivation and hypoxia. Follistatin (FST), a secretory protein originally identified from ovarian follicular fluid, has been suggested to be involved in tumor development. However, whether it plays a role in cancer cell survival under energy-deprived conditions remains elusive. In this study, we demonstrated that glucose deprivation markedly enhanced the expression and nucleolar localization of FST in HeLa cells. The nucleolar localization of FST relied on its nuclear localization signal (NLS) comprising the residues 64-87. Localization of FST to the nucleolus attenuated rRNA synthesis, a key process for cellular energy homeostasis and cell survival. Overexpression of FST delayed glucose deprivation-induced apoptosis, whereas down-regulation of FST exerted the opposite effect. These functions depended on the presence of an intact NLS because the NLS-deleted mutant of FST lost the rRNA inhibition effect and the cell protective effect. Altogether, we identified a novel nucleolar function of FST, which is of importance in the modulation of cancer cell survival in response to glucose deprivation.
Collapse
Affiliation(s)
- Xiangwei Gao
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | |
Collapse
|