1
|
Xie G, Shan L, Yang C, Liu Y, Pang X, Teng S, Wu TC, Gu X. Recombinant immunotoxin induces tumor intrinsic STING signaling against head and neck squamous cell carcinoma. Sci Rep 2023; 13:18476. [PMID: 37898690 PMCID: PMC10613212 DOI: 10.1038/s41598-023-45797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023] Open
Abstract
The innate immune stimulator of interferon genes (STING) pathway is known to activate type I interferons (IFN-I) and participate in generating antitumor immunity. We previously produced hDT806, a recombinant diphtheria immunotoxin, and demonstrated its efficacy against head and neck squamous cell carcinoma (HNSCC). However, it's unknown whether the tumor-intrinsic STING plays a role in the anti-HNSCC effects of hDT806. In this study, we investigated the innate immune modulation of hDT806 on HNSCC. hDT806 significantly upregulated the level of STING and the ratio of p-TBK1/TBK1 in the HNSCC cells. Moreover, intratumoral hDT806 treatment increased the expression of STING-IFN-I signaling proteins including IFNA1, IFNB, CXCL10 and MX1, a marker of IFN-I receptor activity, in the HNSCC xenografts. Overexpression of STING mimicked the hDT806-induced upregulation of the STING-IFN-I signaling and induced apoptosis in the HNSCC cells. In the mouse xenograft models of HNSCC with STING overexpression, we observed a significant suppression of tumor growth and reduced tumor weight with increased apoptosis compared to their control xenograft counterparts without STING overexpression. Collectively, our data revealed that hDT806 may act as a stimulator of tumor-intrinsic STING-IFN-I signaling to inhibit tumor growth in HNSCC.
Collapse
Affiliation(s)
- Guiqin Xie
- Department of Oral Pathology, Howard University, 600 W Street NW, Washington, DC, 20059, USA.
- Cancer Center, Howard University, 2041 Georgia Avenue NW, Washington, DC, 20059, USA.
| | - Liang Shan
- Cancer Center, Howard University, 2041 Georgia Avenue NW, Washington, DC, 20059, USA
| | - Cuicui Yang
- Department of Oral Pathology, Howard University, 600 W Street NW, Washington, DC, 20059, USA
- Cancer Center, Howard University, 2041 Georgia Avenue NW, Washington, DC, 20059, USA
| | - Yuanyi Liu
- Angimmune LLC, Rockville, MD, 20855, USA
| | - Xiaowu Pang
- Department of Oral Pathology, Howard University, 600 W Street NW, Washington, DC, 20059, USA
| | - Shaolei Teng
- Department of Biology, Howard University, 415 College St. NW, Washington, DC, 20059, USA
| | - Tzyy-Choou Wu
- Pathology, Oncology, Obstetrics and Gynecology, and Molecular Microbiology and Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Xinbin Gu
- Department of Oral Pathology, Howard University, 600 W Street NW, Washington, DC, 20059, USA.
- Cancer Center, Howard University, 2041 Georgia Avenue NW, Washington, DC, 20059, USA.
| |
Collapse
|
2
|
Pandurangi R, Karwa A, Sagaram US, Henzler-Wildman K, Shah D. Medicago Sativa Defensin1 as a tumor sensitizer for improving chemotherapy: translation from anti-fungal agent to a potential anti-cancer agent. Front Oncol 2023; 13:1141755. [PMID: 37305575 PMCID: PMC10251204 DOI: 10.3389/fonc.2023.1141755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/12/2023] [Indexed: 06/13/2023] Open
Abstract
Plant defensins including Medicago Sativa defensin 1 (MsDef1) are cysteine-rich antifungal peptides which are known for potent broad-spectrum antifungal activity against bacterial or fungal pathogens of plants. The antimicrobial activities of these cationic defensins are attributed to their capacity to bind to cell membranes to create potentially structural defects tin the cell membranes to interact with intracellular target (s) and mediates cytotoxic effects. Our earlier work identified Glucosylceramide (GlcCer) of fungus F. graminearum as a potential target for biological activity. Multi-drug resistant (MDR) cancer cells overexpress GlcCer on the surface of plasma membrane. Hence, MsDef1 may have a potential to bind to GlcCer of MDR cancer cells to induce cell death. We have characterized the three-dimensional structure of MsDef1 and the solution dynamics using of 15N-labeled MsDef1 nuclear magnetic resonance (NMR) spectroscopy which showed that GlcCer binds MsDef1 at two specific sites on the peptide molecule. The ability of MsDef1 to permeate MDR cancer cells was demonstrated by measuring the release of apoptotic ceramide in drug resistant MCF-7R cells. It was also shown that MsDef1 activated dual cell death pathways ceramide and Apoptosis Stimulating Kinase ASK1 by disintegrating GlcCer and oxidizing tumor specific biomarker thioredoxin (Trx) respectively. As a result, MsDef1 sensitizes MDR cancer cells to evoke a better response from Doxorubicin, a front-line chemotherapy for triple negative breast cancer (TNBC) treatment. The combination of MsDef1 and Doxorubicin induced 5 to10-fold greater apoptosis in vitro MDR cells MDA-MB-231R compared to either MsDef1 or Doxorubicin alone. Confocal microscopy revealed that MsDef1 facilitates a) influx of Doxorubicin in MDR cancer cells, b) preferential uptake by MDR cells but not by normal fibroblasts and breast epithelial cells (MCF-10A). These results suggest that MsDef1 targets MDR cancer cells and may find utility as a neoadjuvant chemotherapy. Hence, the extension of antifungal properties of MsDef1 to cancer my result in addressing the MDR problems in cancer.
Collapse
Affiliation(s)
- Raghu Pandurangi
- Sci-Engi-Medco Solutions Inc (SEMCO), St Charles, MO, United States
| | - Amol Karwa
- Mallinckrodt Pharmaceuticals, Hazelwood, MO, United States
| | - Uma Shankar Sagaram
- DeLuca Biochemistry Laboratories, University of Wisconsin, Madison, WI, United States
| | | | - Dilip Shah
- Donald Danforth Plant Science Center, St Louis, MO, United States
| |
Collapse
|
3
|
Marathe S, Shadambikar G, Mehraj T, Sulochana SP, Dudhipala N, Majumdar S. Development of α-Tocopherol Succinate-Based Nanostructured Lipid Carriers for Delivery of Paclitaxel. Pharmaceutics 2022; 14:1034. [PMID: 35631620 PMCID: PMC9145488 DOI: 10.3390/pharmaceutics14051034] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 12/21/2022] Open
Abstract
The management of retinoblastoma (RB) involves the use of invasive treatment regimens. Paclitaxel (PTX), an effective antineoplastic compound used in the treatment of a wide range of malignant tumors, poses treatment challenges due to systemic toxicity, rapid elimination, and development of resistance. The goal of this work was to develop PTX-loaded, α-tocopherol succinate (αTS)-based, nanostructured lipid carrier (NLCs; αTS-PTX-NLC) and PEGylated αTS-PTX-NLC (αTS-PTX-PEG-NLC) to improve ocular bioavailability. The hot homogenization method was used to prepare the NLCs, and repeated measures ANOVA analysis was used for formulation optimization. αTS-PTX-NLC and αTS-PTX-PEG-NLC had a mean particle size, polydispersity index and zeta potential of 186.2 ± 3.9 nm, 0.17 ± 0.03, −33.2 ± 1.3 mV and 96.2 ± 3.9 nm, 0.27 ± 0.03, −39.15 ± 3.2 mV, respectively. The assay and entrapment efficiency of both formulations was >95.0%. The NLC exhibited a spherical shape, as seen from TEM images. Sterilized (autoclaved) formulations were stable for up to 60 days (last time point checked) under refrigerated conditions. PTX-NLC formulations exhibited an initial burst release and 40% drug release, overall, in 48 h. The formulations exhibited desirable physicochemical properties and could lead to an effective therapeutic option in the management of RB.
Collapse
Affiliation(s)
- Sushrut Marathe
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA; (S.M.); (G.S.); (T.M.); (S.P.S.); (N.D.)
| | - Gauri Shadambikar
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA; (S.M.); (G.S.); (T.M.); (S.P.S.); (N.D.)
| | - Tabish Mehraj
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA; (S.M.); (G.S.); (T.M.); (S.P.S.); (N.D.)
| | - Suresh P. Sulochana
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA; (S.M.); (G.S.); (T.M.); (S.P.S.); (N.D.)
| | - Narendar Dudhipala
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA; (S.M.); (G.S.); (T.M.); (S.P.S.); (N.D.)
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA; (S.M.); (G.S.); (T.M.); (S.P.S.); (N.D.)
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
4
|
Antitumor Efficacy of EGFR-Targeted Recombinant Immunotoxin in Human Head and Neck Squamous Cell Carcinoma. BIOLOGY 2022; 11:biology11040486. [PMID: 35453686 PMCID: PMC9027470 DOI: 10.3390/biology11040486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
Abstract
Over 90% of head and neck squamous cell carcinoma (HNSCC) overexpresses the epidermal growth factor receptor (EGFR). However, the EGFR-targeted monotherapy response rate only achieves 10-30% in HNSCC. Recombinant immunotoxin (RIT) often consists of an antibody targeting a tumor antigen and a toxin (e.g., diphtheria toxin [DT]) that kills cancer cells. We produced a humanized RIT, designated as hDT806, targeting overexpressed EGFR and investigated its effects in HNSCC. Distinct from the EGFR-targeted tyrosine kinase inhibitor erlotinib or antibody cetuximab, hDT806 effectively suppressed cell proliferation in the four HNSCC lines tested (JHU-011, -013, -022, and -029). In JHU-029 mouse xenograft models, hDT806 substantially reduced tumor growth. hDT806 decreased EGFR protein levels and disrupted the EGFR signaling downstream effectors, including MAPK/ERK1/2 and AKT, while increased proapoptotic proteins, such as p53, caspase-9, caspase-3, and the cleaved PAPR. The hDT806-induced apoptosis of HNSCC cells was corroborated by flow cytometric analysis. Furthermore, hDT806 resulted in a drastic inhibition in RNA polymerase II carboxy-terminal domain phosphorylation critical for transcription and a significant increase in the γH2A.X level, a DNA damage marker. Thus, the direct disruption of EGFR signaling, transcription inhibition, DNA damage, as well as apoptosis induced by hDT806 may contribute to its antitumor efficacy in HNSCC.
Collapse
|
5
|
Adnan M, Rasul A, Hussain G, Shah MA, Sarfraz I, Nageen B, Riaz A, Khalid R, Asrar M, Selamoglu Z, Adem Ş, Sarker SD. Physcion and Physcion 8-O-β-D-glucopyranoside: Natural Anthraquinones with Potential Anticancer Activities. Curr Drug Targets 2021; 22:488-504. [PMID: 33050858 DOI: 10.2174/1389450121999201013154542] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 11/22/2022]
Abstract
Nature has provided prodigious reservoirs of pharmacologically active compounds for drug development since times. Physcion and physcion 8-O-β-D-glucopyranoside (PG) are bioactive natural anthraquinones which exert anti-inflammatory and anticancer properties with minimum or no adverse effects. Moreover, physcion also exhibits anti-microbial and hepatoprotective properties, while PG is known to have anti-sepsis as well as ameliorative activities against dementia. This review aims to highlight the natural sources and anticancer activities of physcion and PG, along with associated mechanisms of actions. On the basis of the literature, physcion and PG regulate multitudinous cell signaling pathways through the modulation of various regulators of cell cycle, protein kinases, microRNAs, transcriptional factors, and apoptosis linked proteins resulting in the effective killing of cancerous cells in vitro as well as in vivo. Both compounds effectively suppress metastasis, furthermore, physcion acts as an inhibitor of 6PGD and also plays an important role in chemosensitization. This review article suggests that physcion and PG are potent anticancer drug candidates, but further investigations on their mechanism of action and pre-clinical trials are mandatory in order to comprehend the full potential of these natural cancer killers in anticancer remedies.
Collapse
Affiliation(s)
- Muhammad Adnan
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Bushra Nageen
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ammara Riaz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Rida Khalid
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Asrar
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Campus 51240, Turkey
| | - Şevki Adem
- Department of Chemistry, Faculty of Sciences, Cankiri Karatekin University, UluyazI Campus Cankiri, Turkey
| | - Satyajit D Sarker
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, England, United Kingdom
| |
Collapse
|
6
|
Xie G, Zhu A, Gu X. Mitogen-activated protein kinase inhibition-induced modulation of epidermal growth factor receptor signaling in human head and neck squamous cell carcinoma. Head Neck 2021; 43:1721-1729. [PMID: 33533173 DOI: 10.1002/hed.26633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/31/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) overexpression is one of the most notable characteristics in head and neck squamous cell carcinoma (HNSCC). The MAPK kinase (MEK) inhibitor trametinib has shown efficacy to treat HNSCC; however, the molecular mechanism remains unclear. METHODS HNSCC lines, mouse models, Western blot, and flow cytometry were employed to analyze the anticancer effects of trametinib. RESULTS The JHU-011, JHU-022, and JHU-029 HNSCC cells with different genetic alterations were highly susceptible to trametinib. Trametinib effectively reduced EGFR expression, which was accompanied by the reduction of pro-survival protein MYC, and the increased expression of a MYC-targeted cyclin-dependent kinase inhibitor p27kip1 and pro-apoptotic protein BIM. Trametinib resulted in G1 arrest of the cells, markedly reduced cell numbers in S phase, and significantly increased apoptosis. In mouse models, trametinib strongly inhibited tumors growth. CONCLUSIONS The MAPK-ERK signaling inhibition by trametinib may target EGFR and the downstream proteins against HNSCC.
Collapse
Affiliation(s)
- Guiqin Xie
- Department of Oral Pathology, Howard University College of Dentistry, Washington, DC, USA.,Department of Cancer Center, Howard University College of Dentistry, Washington, DC, USA
| | - Ailin Zhu
- Department of Oral Pathology, Howard University College of Dentistry, Washington, DC, USA
| | - Xinbin Gu
- Department of Oral Pathology, Howard University College of Dentistry, Washington, DC, USA.,Department of Cancer Center, Howard University College of Dentistry, Washington, DC, USA
| |
Collapse
|
7
|
Kayhan Kuştepe E, Bahar L, Zayman E, Sucu N, Gül S, Gül M. A light microscopic investigation of the renoprotective effects of α-lipoic acid and α-tocopherol in an experimental diabetic rat model. Biotech Histochem 2020; 95:305-316. [PMID: 32013590 DOI: 10.1080/10520295.2019.1695942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We investigated the effects of α-lipoic acid (AL) and α-tocopherol (AT) on renal histopathology in a streptozotocin (STZ) induced diabetic rat model. Adult male rats were divided into six groups: group 1, saline only; group 2, AL only; group 3, AT only; group 4, STZ only; group 5, STZ + AL; group 6 STZ + AT. Experimental diabetes was induced by STZ. AL and AT were administered for 15 days. Kidney sections were examined using a light microscope after hematoxylin and eosin (H & E), periodic acid-Schiff (PAS) and caspase-3 staining. Histological damage to glomeruli, tubule epithelial cells and basement membrane was observed in group 4. Administration of AT and AL reduced renal injury in the diabetic rats. Group 5 exhibited a greater curative effect on diabetic rats than group 6. AT and AL may be useful for preventing diabetic renal damage.
Collapse
Affiliation(s)
- Elif Kayhan Kuştepe
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Leyla Bahar
- Department of Medical Services and Techniques, Vocational School of Health Services, Mersin University, Mersin, Turkey
| | - Emrah Zayman
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Nehir Sucu
- Department of Cardiovascular Surgery, Medical Faculty, Mersin University, Mersin, Turkey
| | - Semir Gül
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Mehmet Gül
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
8
|
Prusinkiewicz MA, Gameiro SF, Ghasemi F, Dodge MJ, Zeng PYF, Maekebay H, Barrett JW, Nichols AC, Mymryk JS. Survival-Associated Metabolic Genes in Human Papillomavirus-Positive Head and Neck Cancers. Cancers (Basel) 2020; 12:E253. [PMID: 31968678 PMCID: PMC7017314 DOI: 10.3390/cancers12010253] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Human papillomavirus (HPV) causes an increasing number of head and neck squamous cell carcinomas (HNSCCs). Altered metabolism contributes to patient prognosis, but the impact of HPV status on HNSCC metabolism remains relatively uncharacterized. We hypothesize that metabolism-related gene expression differences unique to HPV-positive HNSCC influences patient survival. The Cancer Genome Atlas RNA-seq data from primary HNSCC patient samples were categorized as 73 HPV-positive, 442 HPV-negative, and 43 normal-adjacent control tissues. We analyzed 229 metabolic genes and identified numerous differentially expressed genes between HPV-positive and negative HNSCC patients. HPV-positive carcinomas exhibited lower expression levels of genes involved in glycolysis and higher levels of genes involved in the tricarboxylic acid cycle, oxidative phosphorylation, and β-oxidation than the HPV-negative carcinomas. Importantly, reduced expression of the metabolism-related genes SDHC, COX7A1, COX16, COX17, ELOVL6, GOT2, and SLC16A2 were correlated with improved patient survival only in the HPV-positive group. This work suggests that specific transcriptional alterations in metabolic genes may serve as predictive biomarkers of patient outcome and identifies potential targets for novel therapeutic intervention in HPV-positive head and neck cancers.
Collapse
Affiliation(s)
- Martin A. Prusinkiewicz
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Steven F. Gameiro
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Farhad Ghasemi
- Department of Surgery, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Mackenzie J. Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Peter Y. F. Zeng
- Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON N6A 3K7, Canada; (P.Y.F.Z.)
| | - Hanna Maekebay
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - John W. Barrett
- Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON N6A 3K7, Canada; (P.Y.F.Z.)
| | - Anthony C. Nichols
- Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON N6A 3K7, Canada; (P.Y.F.Z.)
- Department of Oncology, The University of Western Ontario, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON N6A 3K7, Canada; (P.Y.F.Z.)
- Department of Oncology, The University of Western Ontario, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
9
|
Sha W, Zhou Y, Ling ZQ, Xie G, Pang X, Wang P, Gu X. Antitumor properties of Salvianolic acid B against triple-negative and hormone receptor-positive breast cancer cells via ceramide-mediated apoptosis. Oncotarget 2018; 9:36331-36343. [PMID: 30555632 PMCID: PMC6284743 DOI: 10.18632/oncotarget.26348] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/28/2018] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited treatment options. It is urgent to develop new therapeutics against this disease. Salvinolic acid B (Sal-B) is a leading bioactive component of Salvia miltiorrhiza Bunge, a well-known Chinese medicine for treating various diseases without appreciable adverse effects. To understand the antitumor properties of Sal-B against TNBC, we analyzed its effects on the cell viability, cell cycle and apoptosis of triple-negative MDA-MB-231 cells with the hormone receptor-positive MCF-7 cells as the control. The in vitro analysis showed that Sal-B could significantly reduce the cell viability and suppress the proliferation of both MDA-MB-231 and MCF-7 cells with decreased cyclin B1 expression, but with no noticeable cell cycle phase change. In mouse models, Sal-B markedly inhibited the growth, decreased the PCNA expression, and increased the cell apoptosis of MDA-MB-231 tumor xenografts. To understand the antitumor mechanisms, we analyzed the expression levels of ceramides, and anti-apoptotic (Bcl-xL and survivin) and pro-apoptotic (caspase-3 and caspase-8) proteins. We found that Sal-B enhanced the ceramide accumulation and inhibited the anti-apoptotic protein expression. Interestingly, the ceramide accumulation was accompanied by decreased expression of glucosylceramide and GM3 synthases, two key enzymes regulating ceramide metabolism. These findings indicate that Sal-B exerts its antitumor effects at least partially by inducing the ceramide accumulation and ceramide-mediated apoptosis via inhibiting the expression of glucosylceramide and GM3 synthases, which was independent of estrogen receptor α. Sal-B appears to be a promising therapeutic agent against TNBC.
Collapse
Affiliation(s)
- Wei Sha
- Departments of Oral Pathology, College of Dentistry, Howard University, Washington, D.C., USA
| | - Yanfei Zhou
- TenGen Biomedical Co., Bethesda, Maryland, USA
| | - Zhi-Qiang Ling
- Zhejiang Cancer Hospital, Zhejiang Cancer Research Institute, Hangzhou, Zhejiang, China
| | - Guiqin Xie
- Departments of Oral Pathology, College of Dentistry, Howard University, Washington, D.C., USA
| | - Xiaowu Pang
- Departments of Oral Pathology, College of Dentistry, Howard University, Washington, D.C., USA
| | - Paul Wang
- Department of Radiology, College of Medicine, Howard University, Washington, D.C., USA.,Cancer Center, Howard University, Washington, D.C., USA.,College of Science and Engineering, Fu Jen Catholic University, Taipei, Taiwan
| | - Xinbin Gu
- Departments of Oral Pathology, College of Dentistry, Howard University, Washington, D.C., USA.,Cancer Center, Howard University, Washington, D.C., USA
| |
Collapse
|
10
|
Karahaliloğlu Z, Kilicay E, Alpaslan P, Hazer B, Baki Denkbas E. Enhanced antitumor activity of epigallocatechin gallate–conjugated dual-drug-loaded polystyrene–polysoyaoil–diethanol amine nanoparticles for breast cancer therapy. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911517710811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of novel combination anticancer drug delivery systems is an important step to improve the effectiveness of anticancer treatment in metastatic breast cancer and to overcome increased toxicity of the currently used combination treatments. The aim of this study was to assess efficient targeting, therapeutic efficacy, and bioavailability of a combination of drugs (curcumin and α-tocopheryl succinate) loaded polystyrene–polysoyaoil–diethanol amine nanoparticles. Polystyrene–polysoyaoil–diethanol amine nanoparticles encapsulating two drugs, individually or in combination, were prepared by double-emulsion solvent evaporation method, resulting in particle size smaller than 250 nm with a surface negative charge between −30 and −40 mV. Entrapment efficiency of curcumin and α-tocopheryl succinate in the epigallocatechin gallate–conjugated dual-drug-loaded nanoparticles was found to be 68% and 80%, respectively. The release kinetics of curcumin and α-tocopheryl succinate from the nanoparticles exhibited a gradual and continuous profile followed by an initial burst behavior with a release over 20 days in vitro. Next, we have investigated the anticancer activity of nanoparticles encapsulating both the drugs and individually drug in human breast cancer cells (MDA-MB-231) using double-staining-based cell death analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assessment of cytotoxicity and flow cytometer. In vitro cytotoxicity studies revealed that epigallocatechin gallate–α-tocopheryl succinate/curcumin–polystyrene–polysoyaoil–diethanol amine nanoparticles are more potent than the corresponding α-tocopheryl succinate/curcumin–polystyrene–polysoyaoil–diethanol amine nanoparticles and their single-drug-loaded forms and show a synergistic and breast tumor targeting function. Thus, here, we propose epigallocatechin gallate–conjugated curcumin and α-tocopheryl succinate–loaded polystyrene–polysoyaoil–diethanol amine nanoparticles which effectively inhibit tumor growth and reduce toxicity compared to single-drug chemotherapy.
Collapse
Affiliation(s)
| | - Ebru Kilicay
- Electronic and Automation Division, Bülent Ecevit University, Zonguldak, Turkey
| | - Pınar Alpaslan
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, Turkey
| | - Baki Hazer
- Physical Chemistry Division, Bülent Ecevit University, Zonguldak, Turkey
| | | |
Collapse
|
11
|
Savitskaya MA, Onischenko GE. α-Tocopheryl Succinate Affects Malignant Cell Viability, Proliferation, and Differentiation. BIOCHEMISTRY (MOSCOW) 2017; 81:806-18. [PMID: 27677550 DOI: 10.1134/s0006297916080034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The widespread occurrence of malignant tumors motivates great attention to finding and investigating effective new antitumor preparations. Such preparations include compounds of the vitamin E family. Among them, α-tocopheryl succinate (vitamin E succinate (VES)) has the most pronounced antitumor properties. In this review, various targets and mechanisms of the antitumor effect of vitamin E succinate are characterized. It has been shown that VES has multiple intracellular targets and effects, and as a result VES is able to induce apoptosis in tumor cells, inhibit their proliferation, induce differentiation, prevent metastasizing, and inhibit angiogenesis. However, VES has minimal effects on normal cells and tissues. Due to the variety of targets and selectivity of action, VES is a promising agent against malignant neoplasms. More detailed studies in this area can contribute to development of effective and safe chemotherapeutic preparations.
Collapse
Affiliation(s)
- M A Savitskaya
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | |
Collapse
|
12
|
Gao Y, Qi X, Zheng Y, Ji H, Wu L, Zheng N, Tang J. Nanoemulsion enhances α-tocopherol succinate bioavailability in rats. Int J Pharm 2016; 515:506-514. [DOI: 10.1016/j.ijpharm.2016.10.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/26/2016] [Accepted: 10/12/2016] [Indexed: 01/30/2023]
|
13
|
Zulkapli R, Abdul Razak F, Zain RB. Vitamin E (α-Tocopherol) Exhibits Antitumour Activity on Oral Squamous Carcinoma Cells ORL-48. Integr Cancer Ther 2016; 16:414-425. [PMID: 28818030 PMCID: PMC5759939 DOI: 10.1177/1534735416675950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cancers involving the oral cavity, head, and neck regions are often treated with cisplatin. In cancer therapy, the main target is to eliminate unwanted cancerous cells. However, reports on the nonselective nature of this drug have raised few concerns. Incorrect nutritional habits and lifestyle practices have been directly linked to cancer incidence. Nutrients with antioxidant activity inhibit cancer cells development, destroying them through oxidative stress and apoptosis. α-tocopherol, the potent antioxidant form of vitamin E is a known scavenger of free radicals. In vitro study exhibited effective antitumor activity of α-tocopherol on ORL-48 at 2.5 ± 0.42 µg/mL. Cisplatin exhibited stronger activity at 1.0 ± 0.15 µg/mL, but unlike α-tocopherol it exhibited cytotoxicity on normal human epidermal keratinocytes at very low concentration (<0.1 µg/mL). Despite the lower potency of α-tocopherol, signs of apoptosis such as the shrinkage of cells and appearance of apoptotic bodies were observed much earlier than cisplatin in time lapse microscopy. No apoptotic vesicles were formed with cisplatin, instead an increased population of cells in the holoclone form which may suggest different induction mechanisms between both agents. High accumulation of cells in the G0/G1 phase were observed through TUNEL and annexin V-biotin assays, while the exhibition of ultrastructural changes of the cellular structures verified the apoptotic mode of cell death by both agents. Both cisplatin and α-tocopherol displayed cell cycle arrest at the Sub G0 phase. α-tocopherol thus, showed potential as an antitumour agent for the treatment of oral cancer and merits further research.
Collapse
Affiliation(s)
- Rahayu Zulkapli
- 1 Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,2 Centre of Preclinical Science Study, Faculty of Dentistry, Universiti Teknologi Mara, Selangor, Malaysia
| | - Fathilah Abdul Razak
- 1 Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Rosnah Binti Zain
- 3 Department of Oro-maxillofacial Surgical & Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,4 Oral Cancer Research and Coordinating Centre, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Oliveira MS, Aryasomayajula B, Pattni B, Mussi SV, Ferreira LAM, Torchilin VP. Solid lipid nanoparticles co-loaded with doxorubicin and α-tocopherol succinate are effective against drug-resistant cancer cells in monolayer and 3-D spheroid cancer cell models. Int J Pharm 2016; 512:292-300. [PMID: 27568499 DOI: 10.1016/j.ijpharm.2016.08.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 12/30/2022]
Abstract
This work aimed to develop solid lipid nanoparticles (SLN) co-loaded with doxorubicin and α-tocopherol succinate (TS) and to evaluate its potential to overcome drug resistance and to increase antitumoral effect in MCF-7/Adr and NCI/Adr cancer cell lines. The SLN were prepared by a hot homogenization method and characterized for size, zeta potential, entrapment efficiency (EE), and drug loading (DL). The cytotoxicity of SLN or penetration was evaluated in MCF-7/Adr and NCI/adr as a monolayer or spheroid cancer cell model. The SLN showed a size in the range of 74-80nm, negative zeta potential, EE of 99%, and DL of 67mg/g. The SLN co-loaded with Dox and TS showed a stronger cytotoxicity against MCF-7/Adr and NCI/Adr cells. In the monolayer model, the doxorubicin co-localization as a free and encapsulated form was higher for the encapsulated drug in MCF-7/Adr and NCI/adr, suggesting a bypassing of P-glycoprotein bomb efflux. For cancer cell spheroids, the SLN co-loaded with doxorubicin and TS showed a prominent cytotoxicity and a greater penetration of doxorubicin.
Collapse
Affiliation(s)
- Mariana S Oliveira
- Department of Phamaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bhawani Aryasomayajula
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Bhushan Pattni
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Samuel V Mussi
- Department of Phamaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucas A M Ferreira
- Department of Phamaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vladmir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA.
| |
Collapse
|
15
|
The Combination of α-Tocopheryl Succinate and Sodium Selenite on Breast Cancer: A Merit or a Demerit? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4741694. [PMID: 27127548 PMCID: PMC4834195 DOI: 10.1155/2016/4741694] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 01/11/2023]
Abstract
α-Tocopheryl succinate (α-TOS), a mitochondria-targeting agent, induces apoptosis in malignant cells in vitro and in vivo. Selenite is a nutritional supplement that has been shown to stimulate apoptosis in cancer cells. This study was designed to investigate the cytotoxic effect of combined treatment of α-TOS and sodium selenite (SSe) in vitro and in vivo and to explore their effect on apoptosis and autophagy in breast cancer. The type of interaction between α-TOS and SSe was evaluated and levels of oxidative stress and apoptotic and autophagic markers were determined. SSe alone showed varying degrees of cytotoxicity on all the tested cell lines. Its combination with α-TOS was antagonistic in vitro in MCF7 and in vivo in mice bearing Ehrlich tumor compared to α-TOS-treated one. Combination of TOS with 2 μM of SSe increased the level of glutathione without changes in antiapoptotic markers Bcl-2 and Mcl-1 at 16 and 48 hrs. SSe decreased caspase 3 activity and protein level of caspases 7 and 9, while it increased autophagic markers beclin-1 and LC3B protein levels of MCF7 cells treated with α-TOS. In conclusion, SSe antagonizes α-TOS-induced apoptosis via inhibition of oxidative stress and promoting prosurvival machinery of autophagy.
Collapse
|
16
|
Sangodkar J, Farrington C, McClinch K, Galsky MD, Kastrinsky DB, Narla G. All roads lead to PP2A: exploiting the therapeutic potential of this phosphatase. FEBS J 2016; 283:1004-24. [PMID: 26507691 PMCID: PMC4803620 DOI: 10.1111/febs.13573] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/29/2015] [Accepted: 10/21/2015] [Indexed: 12/22/2022]
Abstract
Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase involved in the regulation of many cellular processes. A confirmed tumor suppressor protein, PP2A is genetically altered or functionally inactivated in many cancers highlighting a need for its therapeutic reactivation. In this review we discuss recent literature on PP2A: the elucidation of its structure and the functions of its subunits, and the identification of molecular lesions and post-translational modifications leading to its dysregulation in cancer. A final section will discuss the proteins and small molecules that modulate PP2A and how these might be used to target dysregulated forms of PP2A to treat cancers and other diseases.
Collapse
Affiliation(s)
- Jaya Sangodkar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Caroline Farrington
- Department of Medicine and Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kimberly McClinch
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D. Galsky
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David B. Kastrinsky
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Goutham Narla
- Department of Medicine and Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
17
|
Oliveira MS, Mussi SV, Gomes DA, Yoshida MI, Frezard F, Carregal VM, Ferreira LAM. α-Tocopherol succinate improves encapsulation and anticancer activity of doxorubicin loaded in solid lipid nanoparticles. Colloids Surf B Biointerfaces 2015; 140:246-253. [PMID: 26764108 DOI: 10.1016/j.colsurfb.2015.12.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/01/2015] [Accepted: 12/13/2015] [Indexed: 12/20/2022]
Abstract
This work aimed to develop solid lipid nanoparticles (SLN) co-loaded with doxorubicin and α-tocopheryl succinate (TS), a succinic acid ester of α-tocopherol that exhibits anticancer actions, evaluating the influence of TS on drug encapsulation efficiency. The SLN were characterized for size, zeta potential, entrapment efficiency (EE), and drug release. Studies of in vitro anticancer activity were also conducted. The EE was significantly improved from 30 ± 1% to 96 ± 2% for SLN without and with TS at 0.4%, respectively. In contrast, a reduction in particle size from 298 ± 1 to 79 ± 1 nm was observed for SLN without and with TS respectively. The doxorubicin release data show that SLN provide a controlled drug release. The in vitro studies showed higher cytotoxicity for doxorubicin-TS-loaded SLN than for free doxorubicin in breast cancer cells. These findings suggest that TS-doxorubicin-loaded SLN is a promising alternative for the treatment of cancer.
Collapse
Affiliation(s)
- Mariana S Oliveira
- Department of Phamaceutics, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Brazil
| | - Samuel V Mussi
- Department of Phamaceutics, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Brazil
| | - Dawidson A Gomes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Brazil
| | - Maria Irene Yoshida
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais (UFMG), Brazil
| | - Frederic Frezard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av Antônio Carlos, 6627, Campus Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Virgínia M Carregal
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av Antônio Carlos, 6627, Campus Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Lucas A M Ferreira
- Department of Phamaceutics, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Brazil.
| |
Collapse
|
18
|
Guerrero-Preston R, Ogawa T, Uemura M, Shumulinsky G, Valle BL, Pirini F, Ravi R, Sidransky D, Keidar M, Trink B. Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells. Int J Mol Med 2014; 34:941-6. [PMID: 25050490 PMCID: PMC4152136 DOI: 10.3892/ijmm.2014.1849] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/20/2014] [Indexed: 01/31/2023] Open
Abstract
The treatment of locoregional recurrence (LRR) of head and neck squamous cell carcinoma (HNSCC) often requires a combination of surgery, radiation therapy and/or chemotherapy. Survival outcomes are poor and the treatment outcomes are morbid. Cold atmospheric plasma (CAP) is an ionized gas produced at room temperature under laboratory conditions. We have previously demonstrated that treatment with a CAP jet device selectively targets cancer cells using in vitro melanoma and in vivo bladder cancer models. In the present study, we wished to examine CAP selectivity in HNSCC in vitro models, and to explore its potential for use as a minimally invasive surgical approach that allows for specific cancer cell or tumor tissue ablation without affecting the surrounding healthy cells and tissues. Four HNSCC cell lines (JHU-022, JHU-028, JHU-029, SCC25) and 2 normal oral cavity epithelial cell lines (OKF6 and NOKsi) were subjected to cold plasma treatment for durations of 10, 30 and 45 sec, and a helium flow of 20 l/min-1 for 10 sec was used as a positive treatment control. We showed that cold plasma selectively diminished HNSCC cell viability in a dose-response manner, as evidenced by MTT assays; the viability of the OKF6 cells was not affected by the cold plasma. The results of colony formation assays also revealed a cell-specific response to cold plasma application. Western blot analysis did not provide evidence that the cleavage of PARP occurred following cold plasma treatment. In conclusion, our results suggest that cold plasma application selectively impairs HNSCC cell lines through non-apoptotic mechanisms, while having a minimal effect on normal oral cavity epithelial cell lines.
Collapse
Affiliation(s)
- Rafael Guerrero-Preston
- Department of Otolaryngology, Division of Head and Neck Cancer Research, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Takenori Ogawa
- Department of Otolaryngology, Division of Head and Neck Cancer Research, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Mamoru Uemura
- Department of Otolaryngology, Division of Head and Neck Cancer Research, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Gary Shumulinsky
- Department of Otolaryngology, Division of Head and Neck Cancer Research, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Blanca L Valle
- Department of Otolaryngology, Division of Head and Neck Cancer Research, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Francesca Pirini
- Department of Otolaryngology, Division of Head and Neck Cancer Research, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Rajani Ravi
- Department of Otolaryngology, Division of Head and Neck Cancer Research, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David Sidransky
- Department of Otolaryngology, Division of Head and Neck Cancer Research, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC, USA
| | - Barry Trink
- Department of Otolaryngology, Division of Head and Neck Cancer Research, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
19
|
Bellezza I, Grottelli S, Gatticchi L, Mierla AL, Minelli A. α-Tocopheryl succinate pre-treatment attenuates quinone toxicity in prostate cancer PC3 cells. Gene 2014; 539:1-7. [PMID: 24530478 DOI: 10.1016/j.gene.2014.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 12/18/2022]
Abstract
UNLABELLED α-Tocopheryl succinate is one of the most effective analogues of vitamin E for inhibiting cell proliferation and inducing cell death in a variety of cancerous cell lines while sparing normal cells or tissues. αTocopheryl succinate inhibits oxidative phosphorylation at the level of mitochondrial complexes I and II, thus enhancing reactive oxygen species generation which, in turn, induces the expression of Nrf2-driven antioxidant/detoxifying genes. The cytoprotective role of Nrf2 downstream genes/proteins prompted us to investigate whether and how α-tocopheryl succinate increases resistance of PC3 prostate cancer cells to pro-oxidant damage. A 4h α-tocopheryl succinate pre-treatment increases glutathione intracellular content, indicating that the vitamin E derivative is capable of training the cells to react to an oxidative insult. We found that α-tocopheryl succinate pre-treatment does not enhance paraquat-/hydroquinone-induced cytotoxicity whereas it exhibits an additional/synergistic effect on H₂O₂₋/docetaxel-induced cytotoxicity. While glutathione and heme oxygenase-1 are not involved in α-tocopheryl succinate-induced adaptive response to paraquat, NAD(P)H quinone oxidoreductase seems to be responsible, at least in part, for the lack of the additional response. Silencing the gene and/or the inhibition of NAD(P)H quinone oxidoreductase activity counteracts the α-tocopheryl succinate-induced adaptive response. In conclusion, the adaptive response to α-tocopheryl succinate shows that the activation of Nrf2 can promote the survival of cancer cells in an unfavourable environment.
Collapse
Affiliation(s)
- Ilaria Bellezza
- Dipartimento di Medicina Sperimentale, Piazzale Gambuli, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Silvia Grottelli
- Dipartimento di Medicina Sperimentale, Piazzale Gambuli, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Leonardo Gatticchi
- Dipartimento di Medicina Sperimentale, Piazzale Gambuli, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Anna Lisa Mierla
- Dipartimento di Medicina Sperimentale, Piazzale Gambuli, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Alba Minelli
- Dipartimento di Medicina Sperimentale, Piazzale Gambuli, S. Andrea delle Fratte, 06132 Perugia, Italy.
| |
Collapse
|
20
|
Angulo-Molina A, Reyes-Leyva J, López-Malo A, Hernández J. The Role of Alpha Tocopheryl Succinate (α-TOS) as a Potential Anticancer Agent. Nutr Cancer 2013; 66:167-76. [DOI: 10.1080/01635581.2014.863367] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Kruspig B, Zhivotovsky B, Gogvadze V. Contrasting effects of α-tocopheryl succinate on cisplatin- and etoposide-induced apoptosis. Mitochondrion 2013; 13:533-8. [DOI: 10.1016/j.mito.2012.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/01/2012] [Accepted: 08/09/2012] [Indexed: 11/28/2022]
|
22
|
Xu C, Wang P, Liu Y, Zhang Y, Fan W, Upton MP, Lohavanichbutr P, Houck JR, Doody DR, Futran ND, Zhao LP, Schwartz SM, Chen C, Méndez E. Integrative genomics in combination with RNA interference identifies prognostic and functionally relevant gene targets for oral squamous cell carcinoma. PLoS Genet 2013; 9:e1003169. [PMID: 23341773 PMCID: PMC3547824 DOI: 10.1371/journal.pgen.1003169] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/29/2012] [Indexed: 12/22/2022] Open
Abstract
In oral squamous cell carcinoma (OSCC), metastasis to lymph nodes is associated with a 50% reduction in 5-year survival. To identify a metastatic gene set based on DNA copy number abnormalities (CNAs) of differentially expressed genes, we compared DNA and RNA of OSCC cells laser-microdissected from non-metastatic primary tumors (n = 17) with those from lymph node metastases (n = 20), using Affymetrix 250K Nsp single-nucleotide polymorphism (SNP) arrays and U133 Plus 2.0 arrays, respectively. With a false discovery rate (FDR)<5%, 1988 transcripts were found to be differentially expressed between primary and metastatic OSCC. Of these, 114 were found to have a significant correlation between DNA copy number and gene expression (FDR<0.01). Among these 114 correlated transcripts, the corresponding genomic regions of each of 95 transcripts had CNAs differences between primary and metastatic OSCC (FDR<0.01). Using an independent dataset of 133 patients, multivariable analysis showed that the OSCC–specific and overall mortality hazards ratio (HR) for patients carrying the 95-transcript signature were 4.75 (95% CI: 2.03–11.11) and 3.45 (95% CI: 1.84–6.50), respectively. To determine the degree by which these genes impact cell survival, we compared the growth of five OSCC cell lines before and after knockdown of over-amplified transcripts via a high-throughput siRNA–mediated screen. The expression-knockdown of 18 of the 26 genes tested showed a growth suppression ≥30% in at least one cell line (P<0.01). In particular, cell lines derived from late-stage OSCC were more sensitive to the knockdown of G3BP1 than cell lines derived from early-stage OSCC, and the growth suppression was likely caused by increase in apoptosis. Further investigation is warranted to examine the biological role of these genes in OSCC progression and their therapeutic potentials. Neck lymph node metastasis is the most important prognostic factor in oral squamous cell carcinoma (OSCC). To identify genes associated with this critical step of OSCC progression, we compared DNA copy number aberrations and gene expression differences between tumor cells found in metastatic lymph nodes versus those in non-metastatic primary tumors. We identified 95 transcripts (87 genes) with metastasis-specific genome abnormalities and gene expression. Tested in an independent cohort of 133 OSCC patients, the 95 gene signature was an independent risk factor of disease-specific and overall death, suggesting a disease progression phenotype. We knocked down the expression of over-amplified genes in five OSCC cell lines. Knockdown of 18 of the 26 tested genes suppressed the cell growth in at least one cell line. Interestingly, cell lines derived from late-stage OSCC were more sensitive to the knockdown of G3BP1 than cell lines derived from early-stage OSCC. The knockdown of G3BP1 increased programmed cell death in the p53-mutant but not wild-type OSCC cell lines. Taken together, we demonstrate that CNA–associated transcripts differentially expressed in carcinoma cells with an aggressive phenotype (i.e., metastatic to lymph nodes) can be biomarkers with both prognostic information and functional relevance. Moreover, results suggest that G3BP1 is a potential therapeutic target against late-stage p53-negative OSCC.
Collapse
Affiliation(s)
- Chang Xu
- Department of Otolaryngology–Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Pei Wang
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Yan Liu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Yuzheng Zhang
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Wenhong Fan
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Melissa P. Upton
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Pawadee Lohavanichbutr
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - John R. Houck
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David R. Doody
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Neal D. Futran
- Department of Otolaryngology–Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
| | - Lue Ping Zhao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Stephen M. Schwartz
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Chu Chen
- Department of Otolaryngology–Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Eduardo Méndez
- Department of Otolaryngology–Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Surgery and Perioperative Care Service, VA Puget Sound Health Care System, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
23
|
Topical polyethylene glycol as a novel chemopreventive agent for oral cancer via targeting of epidermal growth factor response. PLoS One 2012; 7:e38047. [PMID: 22675506 PMCID: PMC3366973 DOI: 10.1371/journal.pone.0038047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 05/02/2012] [Indexed: 12/19/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a major cause of morbidity and mortality underscoring the need for safe and effective chemopreventive strategies. Targeting epidermal growth factor receptor (EGFR) is attractive in that it is an early critical event in HNSCC pathogenesis. However, current agents lack efficacy or have unacceptable toxicity. Several groups have demonstrated that the over-the-counter medication, polyethylene glycol (PEG) has remarkable chemopreventive efficacy against colon carcinogenesis. Importantly, we reported that this effect is mediated through EGFR internalization/degradation. In the current study, we investigated the chemopreventive efficacy of this agent against HNSCC, using both the well validated animal model 4-NQO (4-nitroquinoline 1-oxide) rat model and cell culture with the human HNSCC cell line SCC-25. We demonstrated that daily topical application of 10% PEG-8000 in the oral cavity (tongue and cavity wall) post 4NQO initiation resulted in a significant reduction in tumor burden (both, tumor size and tumors/tumor bearing rat) without any evidence of toxicity. Immunohistochemical studies depicted decreased proliferation (number of Ki67-positive cells) and reduced expression of EGFR and its downstream effectors cyclin D1 in the tongue mucosa of 4NQO-rats treated with PEG. We showed that EGFR was also markedly downregulated in SCC-25 cells by PEG-8000 with a concomitant induction of G1-S phase cell-cycle arrest, which was potentially mediated through upregulated p21(cip1/waf1). In conclusion, we demonstrate, for the first time, that PEG has promising efficacy and safety as a chemopreventive efficacy against oral carcinogenesis.
Collapse
|
24
|
Huang Y, Guerrero-Preston R, Ratovitski EA. Phospho-ΔNp63α-dependent regulation of autophagic signaling through transcription and micro-RNA modulation. Cell Cycle 2012; 11:1247-59. [PMID: 22356768 DOI: 10.4161/cc.11.6.19670] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cisplatin was shown to induce the ataxia telangiectasia mutated (ATM)-dependent phosphorylation of tumor protein p63 isoform, (ΔNp63α), leading to a transcriptional regulation of specific genes implicated in the control of cell death of squamous cell carcinoma (SCC) cells. We previously observed that the cisplatin-induced phosphorylated (p)-ΔNp63α transcriptionally regulates the expression of specific microRNAs (miRNAs) in SCC cells. We found here that cisplatin exposure of SCC cells led to modulation of the members of the autophagic pathway, such as Atg1/Ulk1, Atg3, Atg4A, Atg5, Atg6/Becn1, Atg7, Atg9A and Atg10, by a direct p-ΔNp63α-dependent transcriptional regulation. We further found that specific miRNAs (miR-181a, miR-519a, miR-374a and miR-630), which are critical downstream targets of the p-ΔNp63α, modulated the protein levels of ATG5, ATG6/BECN1, ATG10, ATG12, ATG16L1 and UVRAG, adding another level of expression control for autophagic pathways in SCC cells upon cisplatin exposure. Our data support the notion that the cisplatin-induced p-ΔNp63α could regulate key pathways implicated in response of cancer cells to chemotherapeutics.
Collapse
Affiliation(s)
- Yiping Huang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
25
|
Inhibitory effects of Vitamin E on UVB-induced apoptosis of chicken embryonic fibroblasts. Cell Biol Int 2011; 35:381-9. [DOI: 10.1042/cbi20090285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
26
|
Ratovitski EA. ΔNp63α/IRF6 interplay activates NOS2 transcription and induces autophagy upon tobacco exposure. Arch Biochem Biophys 2011; 506:208-15. [PMID: 21129360 DOI: 10.1016/j.abb.2010.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/05/2010] [Accepted: 11/24/2010] [Indexed: 12/31/2022]
Abstract
Tobacco-induced oxidative stress leads to chronic inflammation and is implicated in the development of many human epithelial cancers, including head and neck cancer. Cigarette smoke exposure was shown to induce the expression of the ΔNp63α and nitric oxide synthase (NOS)-2 in head and neck squamous cell carcinoma cells and immortalized oral keratinocytes. The NOS2 promoter was found to contain various cognate sequences for several transcription factors including interferon regulatory factor (IRF)-6 and p63, which were shown in vivo binding to the NOS2 promoter in response to smoke exposure. Small interfering (si)-RNAs against both ΔNp63α and IRF6 decreased the induction of NOS2 promoter-driven reporter luciferase activity and were shown to inhibit NOS2 activity. Furthermore, both mainstream (MSE) and sidestream (SSE) smoking extracts induced changes in expression of autophagic marker, LC3B, while siRNA against ΔNp63α, IRF6 and NOS2 modulated these autophagic changes. Overall, these data support the notion that ΔNp63α/IRF6 interplay regulates NOS2 transcription, thereby underlying the autophagic-related cancer cell response to tobacco exposure.
Collapse
Affiliation(s)
- Edward A Ratovitski
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
27
|
Sen T, Sen N, Brait M, Begum S, Chatterjee A, Hoque MO, Ratovitski E, Sidransky D. DeltaNp63alpha confers tumor cell resistance to cisplatin through the AKT1 transcriptional regulation. Cancer Res 2011; 71:1167-76. [PMID: 21266360 DOI: 10.1158/0008-5472.can-10-1481] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Strategies to address resistance to platin drugs are greatly needed in human epithelial cancers (e.g., ovarian, head/neck, and lung) where platins are used widely and resistance occurs commonly. We found that upon ΔNp63α overexpression, AKT1 and phospho-AKT1 levels are upregulated in cancer cells. Investigations using gel-shift, chromatin immunoprecipitation and functional reporter assays implicated ΔNp63α in positive regulation of AKT1 transcription. Importantly, we found that ΔNp63α, AKT1, and phospho-AKT levels are greater in 2008CI3 CDDP-resistant ovarian cancer cells than in 2008 CDDP-sensitive cells. siRNA-mediated knockdown of ΔNp63α expression dramatically decreased AKT1 expression, whereas knockdown of either ΔNp63α or AKT1 decreased cell proliferation and increased death of ovarian and head/neck cancer cells. Conversely, enforced expression of ΔNp63α increased cancer cell proliferation and reduced apoptosis. Together, our findings define a novel ΔNp63α-dependent regulatory mechanism for AKT1 expression and its role in chemotherapeutic resistance of ovarian and head/neck cancer cells.
Collapse
Affiliation(s)
- Tanusree Sen
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ola MS, Nawaz M, Ahsan H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem 2011; 351:41-58. [PMID: 21210296 DOI: 10.1007/s11010-010-0709-x] [Citation(s) in RCA: 679] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 12/13/2010] [Indexed: 12/12/2022]
Abstract
Apoptosis, or programmed cell death, plays a pivotal role in the elimination of unwanted, damaged, or infected cells in multicellular organisms and also in diverse biological processes, including development, cell differentiation, and proliferation. Apoptosis is a highly regulated form of cell death, and dysregulation of apoptosis results in pathological conditions including cancer, autoimmune and neurodegenerative diseases. The Bcl-2 family proteins are key regulators of apoptosis, which include both anti- and pro-apoptotic proteins, and a slight change in the dynamic balance of these proteins may result either in inhibition or promotion of cell death. Execution of apoptosis by various stimuli is initiated by activating either intrinsic or extrinsic pathways which lead to a series of downstream cascade of events, releasing of various apoptotic mediators from mitochondria and activation of caspases, important for the cell fate. In view of recent research advances about underlying mechanism of apoptosis, this review highlights the basics concept of apoptosis and its regulation by Bcl-2 family of protein. Furthermore, this review discusses the interplay of various apoptotic mediators and caspases to decide the fate of the cell. We expect that this review will add to the pool of basic information necessary to understand the mechanism of apoptosis which may implicate in designing better strategy to develop biomedical therapy to control apoptosis.
Collapse
Affiliation(s)
- Mohammad Shamsul Ola
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, KSA
| | | | | |
Collapse
|
29
|
Abstract
Evidence has consistently indicated that activation of sphingomyelinases and/or ceramide synthases and the resulting accumulation of ceramide mediate cellular responses to stressors such as lipopolysaccharide, interleukin 1beta, tumor necrosis factor alpha, serum deprivation, irradiation and various antitumor treatments. Recent studies had identified the genes encoding most of the enzymes responsible for the generation of ceramide and ongoing research is aimed at characterizing their individual functions in cellular response to stress. This chapter discusses the seminal and more recent discoveries in regards to the pathways responsible for the accumulation of ceramide during stress and the mechanisms by which ceramide affects cell functions. The former group includes the roles of neutral sphingomyelinase 2, serine palmitoyltransferase, ceramide synthases, as well as the secretory and endosomal/lysosomal forms of acid sphingomyelinase. The latter summarizes the mechanisms by which ceramide activate its direct targets, PKCzeta, PP2A and cathepsin D. The ability of ceramide to affect membrane organization is discussed in the light of its relevance to cell signaling. Emerging evidence to support the previously assumed notion that ceramide acts in a strictly structure-specific manner are also included. These findings are described in the context of several physiological and pathophysiological conditions, namely septic shock, obesity-induced insulin resistance, aging and apoptosis of tumor cells in response to radiation and chemotherapy.
Collapse
|
30
|
Salvianolic Acid B, a potential chemopreventive agent, for head and neck squamous cell cancer. JOURNAL OF ONCOLOGY 2010; 2011:534548. [PMID: 21209716 PMCID: PMC3010684 DOI: 10.1155/2011/534548] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/21/2010] [Indexed: 11/17/2022]
Abstract
Head and neck squamous cell cancer (HNSCC) is one of the top ten cancers in the United States. The survival rate of HNSCC has only marginally improved over the last two decades. In addition, African-American men bear a disproportionate burden of this preventable disease. Therefore, a critical challenge of preventive health approaches is warranted. Salvianolic acid B (Sal-B) isolated from Salvia miltiorrhiza Bge, which is a well-know Chinese medicines has been safely used to treat and prevent aging diseases for thousand of years. Recently, the anticancer properties of Sal-B have received more attention. Sal-B significantly inhibits or delays the growth of HNSCC in both cultured HNSCC cells and HNSCC xenograft animal models. The following anticancer mechanisms have been proposed: the inhibition of COX-2/PGE-2 pathway, the promotion of apoptosis, and the modulation of angiogenesis. In conclusion, Sal-B is a potential HNSCC chemopreventive agent working through antioxidation and anti-inflammation mechanisms.
Collapse
|
31
|
Li J, Yu W, Tiwary R, Park SK, Xiong A, Sanders BG, Kline K. α-TEA-induced death receptor dependent apoptosis involves activation of acid sphingomyelinase and elevated ceramide-enriched cell surface membranes. Cancer Cell Int 2010; 10:40. [PMID: 20974006 PMCID: PMC2976739 DOI: 10.1186/1475-2867-10-40] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alpha-tocopherol ether-linked acetic acid (α-TEA), an analog of vitamin E (RRR-alpha-tocopherol), is a potent and selective apoptosis-inducing agent for human cancer cells in vivo and in vitro. α-TEA induces apoptosis via activation of extrinsic death receptors Fas (CD95) and DR5, JNK/p73/Noxa pathways, and suppression of anti-apoptotic mediators Akt, ERK, c-FLIP and survivin in breast, ovarian and prostate cancer cells. RESULTS In this study, we demonstrate that α-TEA induces the accumulation of cell surface membrane ceramide, leading to co-localization with Fas, DR5, and FADD, followed by activation of caspases-8 and -9 and apoptosis in human MDA-MB-231 breast cancer cells. α-TEA treatment leads to increased acid sphingomyelinase (ASMase) activity by 30 min, peaking at 4 hrs, which is correlated with ASMase translocation from cytosol to the cell surface membrane. Functional knockdown of ASMase with either the chemical inhibitor, desipramine, or siRNA markedly reduces α-TEA-induced cell surface membrane accumulation of ceramide and its co-localization with Fas, DR5, and FADD, cleavage of caspases-8 and -9 and apoptosis, suggesting an early and critical role for ASMase in α-TEA-induced apoptosis. Consistent with cell culture data, immunohistochemical analyses of tumor tissues taken from α-TEA treated nude mice bearing MDA-MB-231 xenografts show increased levels of cell surface membrane ceramide in comparison to tumor tissues from control animals. CONCLUSION Taken together, these studies demonstrate that ASMase activation and membrane ceramide accumulation are early events contributing to α-TEA-induced apoptosis in vitro and perhaps in vivo.
Collapse
Affiliation(s)
- Jing Li
- School of Biological Sciences/C0900, University of Texas at Austin, Austin, TX 78712, USA
| | - Weiping Yu
- School of Biological Sciences/C0900, University of Texas at Austin, Austin, TX 78712, USA
| | - Richa Tiwary
- School of Biological Sciences/C0900, University of Texas at Austin, Austin, TX 78712, USA
| | - Sook-Kyung Park
- School of Biological Sciences/C0900, University of Texas at Austin, Austin, TX 78712, USA
| | - Ailian Xiong
- Department of Nutritional Sciences/A2703, University of Texas at Austin, Austin, TX 78712, USA
| | - Bob G Sanders
- School of Biological Sciences/C0900, University of Texas at Austin, Austin, TX 78712, USA
| | - Kimberly Kline
- Department of Nutritional Sciences/A2703, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
32
|
Apoptosis-inducing activity and tumor-specificity of antitumor agents against oral squamous cell carcinoma. JAPANESE DENTAL SCIENCE REVIEW 2010. [DOI: 10.1016/j.jdsr.2010.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
33
|
3,3′,4,5,5′-pentahydroxy-trans-stilbene, a resveratrol derivative, induces apoptosis in colorectal carcinoma cells via oxidative stress. Eur J Pharmacol 2010; 637:55-61. [DOI: 10.1016/j.ejphar.2010.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 03/15/2010] [Accepted: 04/04/2010] [Indexed: 01/20/2023]
|
34
|
Watanabe SI, Miyata Y, Kanda S, Iwata T, Hayashi T, Kanetake H, Sakai H. Expression of X-linked inhibitor of apoptosis protein in human prostate cancer specimens with and without neo-adjuvant hormonal therapy. J Cancer Res Clin Oncol 2010; 136:787-93. [PMID: 19946707 DOI: 10.1007/s00432-009-0718-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 10/22/2009] [Indexed: 11/30/2022]
Abstract
PURPOSE X-linked inhibitor of apoptosis (XIAP) has high affinity and strong inhibitory activity on apoptosis-related caspase-3. The relationships between expression of XIAP and cleaved caspase-3, and response to neo-adjuvant hormonal therapy (NHT) remain elusive. The aim was to investigate whether NHT influences with XIAP expression in prostate cancer patients. In addition, the relationship between XIAP expression and apoptosis in patients who did or did not receive NHT was also investigated. METHODS Eighty-three patients who had undergone radical prostatectomy were examined retrospectively and divided into NHT group (n = 40) and non-NHT group (n = 43). Immunohistochemistry was used to analyze the expressions of XIAP and cleaved caspase-3. The apoptotic cells reconfirmed the number of terminal deoxynucleotidyl transferase-mediated nick and labeling (TUNEL)-positive cells. RESULTS In the non-NHT group, the proportion of TUNEL-positive cells correlated with expression of cleaved caspase-3 (r = 0.592, P < 0.001), and the expression of XIAP correlated negatively with that of cleaved caspase-3 and TUNEL-positive cells (r = -0.464, P < 0.001 and r = 0.431, P = 0.002, respectively). The expression of cleaved caspase-3, but not that of XIAP, was higher in NHT group than non-NHT group (P = 0.017). In the NHT group, there was no significant correlation between XIAP expression and cleaved caspase-3 expression or the proportion of TUNEL-positive cells. CONCLUSIONS NHT did not influence XIAP expression. We speculate that the inhibition of XIAP expression may reinforce the apoptotic effect of NHT and improve the prognosis in patients with prostate cancer.
Collapse
|
35
|
Kanai K, Kikuchi E, Mikami S, Suzuki E, Uchida Y, Kodaira K, Miyajima A, Ohigashi T, Nakashima J, Oya M. Vitamin E succinate induced apoptosis and enhanced chemosensitivity to paclitaxel in human bladder cancer cells in vitro and in vivo. Cancer Sci 2010; 101:216-23. [PMID: 19824995 PMCID: PMC11158940 DOI: 10.1111/j.1349-7006.2009.01362.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
There have been several studies on the antitumor activities of vitamin E succinate (alpha-TOS) as complementary and alternative medicine. In the present study, we investigated the cytotoxic effect of alpha-TOS and the enhancement of chemosensitivity to paclitaxel by alpha-TOS in bladder cancer. KU-19-19 and 5637 bladder cancer cell lines were cultured in alpha-TOS and/or paclitaxel in vitro. Cell viability, flow cytometric analysis, and nuclear factor-kappa B (NF-kappaB) activity were analyzed. For in vivo therapeutic experiments, pre-established KU-19-19 tumors were treated with alpha-TOS and/or paclitaxel. In KU-19-19 and 5637 cells, the combination treatment resulted in a significantly higher level of growth inhibition, and apoptosis was significantly induced by the combination treatment. NF-kappaB was activated by paclitaxel; however, the activation of NF-kappaB was inhibited by alpha-TOS. Also, the combination treatment significantly inhibited tumor growth in mice. In the immunostaining of the tumors, apoptosis was induced and proliferation was inhibited by the combination treatment. Combination treatment of alpha-TOS and paclitaxel showed promising anticancer effects in terms of inhibiting bladder cancer cell growth and viability in vitro and in vivo. One of the potential mechanisms by which the combination therapy has synergistic cytotoxic effects against bladder cancer may be that alpha-TOS inhibits NF-kappaB induced by chemotherapeutic agents.
Collapse
Affiliation(s)
- Kunimitsu Kanai
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lee EJ, Oh SY, Kim MK, Ahn SH, Son BH, Sung MK. Modulatory effects of alpha- and gamma-tocopherols on 4-hydroxyestradiol induced oxidative stresses in MCF-10A breast epithelial cells. Nutr Res Pract 2009; 3:185-91. [PMID: 20090883 PMCID: PMC2808717 DOI: 10.4162/nrp.2009.3.3.185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/10/2009] [Accepted: 09/16/2009] [Indexed: 11/17/2022] Open
Abstract
The elevated level of circulating estradiol increases the risk of breast tumor development. To gain further insight into mechanisms involved in their actions, we investigated the molecular mechanisms of 4-hydroxyestradiol (4-OHE2) to initiate and/or promote abnormal cell growth, and of α- or γ-tocopherol to inhibit this process. MCF-10A, human breast epithelial cells were incubated with 0.1 µM 4-OHE2, either with or without 30 µM tocopherols for 96 h. 4-OHE2 caused the accumulation of intracellular ROS, while cellular GSH/GSSG ratio and MnSOD protein levels were decreased, indicating that there was an oxidative burden. 4-OHE2 treatment also changed the levels of DNA repair proteins, BRCA1 and PARP-1. γ-Tocopherol suppressed the 4-OHE2-induced increases in ROS, GSH/GSSG ratio, and MnSOD protein expression, while α-tocopherol up-regulated BRCA1 and PARP-1 protein expression. In conclusion, 4-OHE2 increases oxidative stress reducing the level of proteins related to DNA repair. Tocopherols suppressed oxidative stress by scavenging ROS or up-regulating DNA repair elements.
Collapse
Affiliation(s)
- Eun-Ju Lee
- Department of Food and Nutrition, Sookmyung Women's University, 52 Hyochangwon-gil, Yongsan-gu, Seoul 140-742, Korea
| | | | | | | | | | | |
Collapse
|
37
|
Lu CY, Li CC, Liu KL, Tsai CW, Lii CK, Chen HW. Docosahexaenoic acid down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes via the sphingomyelinase/ceramide pathway. J Nutr Biochem 2009; 21:338-44. [PMID: 19427778 DOI: 10.1016/j.jnutbio.2009.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 11/29/2022]
Abstract
Docosahexaenoic acid (DHA) regulates the expression of cytochrome P450 2B1 (CYP 2B1) in rat primary hepatocytes in response to xenobiotics. Ceramide, a lipid signaling molecule, is involved in various physiological processes and can be generated by the hydrolysis of sphingomyelin via sphingomyelinase (SMase). DHA activates SMase and increases ceramide formation in vitro. Ceramides differentially enhance adenylyl cyclase activity in vitro depending on the chain length of their fatty acids. In addition, the cAMP-dependent PKA pathway down-regulates CYP 2B1 expression induced by phenobarbital (PB). In the present study, we determined the effect of DHA on SMase transactivation and the downstream pathway in CYP 2B1 expression induced by PB. SMase was activated by DHA 2 h after treatment, and D609 (an SMase inhibitor) attenuated the inhibition of PB-induced CYP 2B1 expression by DHA. Ceramide formation reached a maximum 3 h after DHA administration. C2-ceramide dose-dependently inhibited PB-induced CYP 2B1 expression and increased intracellular cAMP concentrations. SQ22536 (an adenylyl cyclase inhibitor) and H89 (a PKA-specific inhibitor) partially reversed the inhibition of PB-induced CYP 2B1 expression by C2-ceramide. These results suggest that stimulation of SMase, generation of ceramide and activation of the cAMP-dependent PKA pathway are involved in the inhibition exerted by DHA.
Collapse
Affiliation(s)
- Chia-Yang Lu
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan
| | | | | | | | | | | |
Collapse
|
38
|
Huang PH, Wang D, Chuang HC, Wei S, Kulp SK, Chen CS. alpha-Tocopheryl succinate and derivatives mediate the transcriptional repression of androgen receptor in prostate cancer cells by targeting the PP2A-JNK-Sp1-signaling axis. Carcinogenesis 2009; 30:1125-31. [PMID: 19420015 DOI: 10.1093/carcin/bgp112] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As part of our effort to understand the mechanism underlying alpha-tocopheryl succinate [vitamin E succinate (VES)]-mediated antitumor effects, we investigated the signaling pathway by which VES suppresses androgen receptor (AR) expression in prostate cancer cells. VES and, to a greater extent, its truncated derivative TS-1 mediated transcriptional repression of AR in prostate cancer cells but not in normal prostate epithelial cells; a finding that underscores the differential susceptibility of normal versus malignant cells to the antiproliferative effect of these agents. This AR repression was attributable to the ability of VES and TS-1 to facilitate the proteasomal degradation of the transcription factor Sp1. This mechanistic link was corroborated by the finding that proteasome inhibitors or ectopic expression of Sp1 protected cells against drug-induced AR ablation. Furthermore, evidence suggests that the destabilization of Sp1 by VES and TS-1 resulted from the inactivation of Jun N-terminal kinases (JNKs) as a consequence of increased phosphatase activity of protein phosphatase 2A (PP2A). Stable transfection of LNCaP cells with the dominant-negative JNK1 plasmid mimicked drug-induced Sp1 repression, whereas constitutive activation of JNK kinase activity or inhibition of PP2A activity by okadaic acid protected Sp1 from VES- and TS-1-induced degradation. From a mechanistic perspective, the ability of VES and TS-1 to activate PP2A activity underscores their broad spectrum of effects on multiple signaling mechanisms, including those mediated by Akt, mitogen-activated protein kinases, nuclear factor kappaB, Sp1 and AR. This pleiotropic effect in conjunction with low toxicity suggests the translational potential for developing TS-1 into potent PP2A-activating agents for cancer therapy.
Collapse
Affiliation(s)
- Po-Hsien Huang
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
39
|
Hao Y, Xie T, Korotcov A, Zhou Y, Pang X, Shan L, Ji H, Sridhar R, Wang P, Califano J, Gu X. Salvianolic acid B inhibits growth of head and neck squamous cell carcinoma in vitro and in vivo via cyclooxygenase-2 and apoptotic pathways. Int J Cancer 2009; 124:2200-9. [PMID: 19123475 PMCID: PMC2849633 DOI: 10.1002/ijc.24160] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Overexpression of cyclooxygenase-2 (COX-2) in oral mucosa has been associated with increased risk of head and neck squamous cell carcinoma (HNSCC). Celecoxib is a nonsteroidal anti-inflammatory drug, which inhibits COX-2 but not COX-1. This selective COX-2 inhibitor holds promise as a cancer preventive agent. Concerns about cardiotoxicity of celecoxib, limits its use in long-term chemoprevention and therapy. Salvianolic acid B (Sal-B) is a leading bioactive component of Salvia miltiorrhiza Bge, which is used for treating neoplastic and chronic inflammatory diseases in China. The purpose of this study was to investigate the mechanisms by which Sal-B inhibits HNSCC growth. Sal-B was isolated from S. miltiorrhiza Bge by solvent extraction followed by 2 chromatographic steps. Pharmacological activity of Sal-B was assessed in HNSCC and other cell lines by estimating COX-2 expression, cell viability and caspase-dependent apoptosis. Sal-B inhibited growth of HNSCC JHU-022 and JHU-013 cells with IC(50) of 18 and 50 microM, respectively. Nude mice with HNSCC solid tumor xenografts were treated with Sal-B (80 mg/kg/day) or celecoxib (5 mg/kg/day) for 25 days to investigate in vivo effects of the COX-2 inhibitors. Tumor volumes in Sal-B treated group were significantly lower than those in celecoxib treated or untreated control groups (p < 0.05). Sal-B inhibited COX-2 expression in cultured HNSCC cells and in HNSCC cells isolated from tumor xenografts. Sal-B also caused dose-dependent inhibition of prostaglandin E(2) synthesis, either with or without lipopolysaccharide stimulation. Taken together, Sal-B shows promise as a COX-2 targeted anticancer agent for HNSCC prevention and treatment.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Benzofurans/pharmacology
- Blotting, Western
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Caspases/metabolism
- Cells, Cultured
- Colony-Forming Units Assay
- Cyclooxygenase 2/chemistry
- Cyclooxygenase 2/metabolism
- Cyclooxygenase 2 Inhibitors/pharmacology
- Dinoprostone/metabolism
- Drugs, Chinese Herbal/pharmacology
- Female
- Flow Cytometry
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Humans
- In Vitro Techniques
- Keratinocytes/cytology
- Keratinocytes/drug effects
- Keratinocytes/metabolism
- Magnetic Resonance Imaging
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mouth Mucosa/cytology
- Mouth Mucosa/drug effects
- Mouth Mucosa/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Salvia miltiorrhiza/chemistry
- Survival Rate
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Yubin Hao
- Department of Oral Diagnostic Service, Howard University, Washington, District of Columbia
| | - Tianpei Xie
- Shanghai TenGen Biomedical Co. Ltd, Shanghai
| | - Alexandru Korotcov
- Department of Cancer Center, Howard University, Washington, District of Columbia
- Department of Radiology, Howard University, Washington, District of Columbia
| | - Yanfei Zhou
- Department of Oral Diagnostic Service, Howard University, Washington, District of Columbia
| | - Xiaowu Pang
- Department of Oral Diagnostic Service, Howard University, Washington, District of Columbia
| | - Liang Shan
- Department of Cancer Center, Howard University, Washington, District of Columbia
- Department of Radiology, Howard University, Washington, District of Columbia
| | | | - Rajagopalan Sridhar
- Department of Cancer Center, Howard University, Washington, District of Columbia
- Department of Radiation Oncology, Howard University, Washington, District of Columbia
| | - Paul Wang
- Department of Cancer Center, Howard University, Washington, District of Columbia
- Department of Radiology, Howard University, Washington, District of Columbia
| | - Joseph Califano
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Xinbin Gu
- Department of Oral Diagnostic Service, Howard University, Washington, District of Columbia
- Department of Cancer Center, Howard University, Washington, District of Columbia
| |
Collapse
|
40
|
Wong KK. Oral-specific chemical carcinogenesis in mice: an exciting model for cancer prevention and therapy. Cancer Prev Res (Phila) 2009; 2:10-3. [PMID: 19139012 DOI: 10.1158/1940-6207.capr-08-0234] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kwong-Kwok Wong
- Department of Gynecologic Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|