1
|
Baharom F, Hermans D, Delamarre L, Seder RA. Vax-Innate: improving therapeutic cancer vaccines by modulating T cells and the tumour microenvironment. Nat Rev Immunol 2024:10.1038/s41577-024-01091-9. [PMID: 39433884 DOI: 10.1038/s41577-024-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
T cells have a critical role in mediating antitumour immunity. The success of immune checkpoint inhibitors (ICIs) for cancer treatment highlights how enhancing endogenous T cell responses can mediate tumour regression. However, mortality remains high for many cancers, especially in the metastatic setting. Based on advances in the genetic characterization of tumours and identification of tumour-specific antigens, individualized therapeutic cancer vaccines targeting mutated tumour antigens (neoantigens) are being developed to generate tumour-specific T cells for improved therapeutic responses. Early clinical trials using individualized neoantigen vaccines for patients with advanced disease had limited clinical efficacy despite demonstrated induction of T cell responses. Therefore, enhancing T cell activity by improving the magnitude, quality and breadth of T cell responses following vaccination is one current goal for improving outcome against metastatic tumours. Another major consideration is how T cells can be further optimized to function within the tumour microenvironment (TME). In this Perspective, we focus on neoantigen vaccines and propose a new approach, termed Vax-Innate, in which vaccination through intravenous delivery or in combination with tumour-targeting immune modulators may improve antitumour efficacy by simultaneously increasing the magnitude, quality and breadth of T cells while transforming the TME into a largely immunostimulatory environment for T cells.
Collapse
Affiliation(s)
| | - Dalton Hermans
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Robert A Seder
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Lin L, Zou X, Nong W, Ge Y, Li F, Luo B, Zhang Q, Xie X. The potential value of cancer-testis antigens in ovarian cancer: Prognostic markers and targets for immunotherapy. Immun Inflamm Dis 2024; 12:e1284. [PMID: 38896069 PMCID: PMC11186301 DOI: 10.1002/iid3.1284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Tumor immunotherapy has become an important adjuvant therapy after surgery, radiotherapy, and chemotherapy. In recent years, the role of tumor-associated antigen (TAA) in tumor immunotherapy has become increasingly prominent. Cancer-testis antigen (CTA) is a kind of TAA that is highly restricted in a variety of tumors and can induce an immune response. AIMS This review article aimed to evaluate the role of CTA on the progression of ovarian cancer, its diagnostic efficacy, and the potential for immunotherapy. METHODS We analyzed publications and outlined a comprehensive of overview the regulatory mechanism, immunogenicity, clinical expression significance, tumorigenesis, and application prospects of CTA in ovarian cancer, with a particular focus on recent progress in CTA-based immunotherapy. RESULTS The expression of CTA affects the occurrence, development, and prognosis of ovarian cancer and is closely related to tumor immunity. CONCLUSION CTA can be used as a biomarker for the diagnosis and prognosis evaluation of ovarian cancer and is an ideal target for antitumor immunotherapy. These findings provide novel insights on CTA in the improvement of diagnosis and treatment for ovarian cancer. The successes, current challenges and future prospects were also discussed to portray its significant potential.
Collapse
Affiliation(s)
- Lina Lin
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Xiaoqiong Zou
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Weixia Nong
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Yingying Ge
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Feng Li
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Bin Luo
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
- Education Department of Guangxi Zhuang Autonomous RegionKey Laboratory of Basic Research on Regional Diseases (Guangxi Medical University)NanningGuangxiPeople's Republic of China
| | - Qingmei Zhang
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
- Education Department of Guangxi Zhuang Autonomous RegionKey Laboratory of Basic Research on Regional Diseases (Guangxi Medical University)NanningGuangxiPeople's Republic of China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Basic Medicine ScienceGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
- Education Department of Guangxi Zhuang Autonomous RegionKey Laboratory of Basic Research on Regional Diseases (Guangxi Medical University)NanningGuangxiPeople's Republic of China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment of Regional High Frequency Tumor (Guangxi Medical University)NanningGuangxiPeople's Republic of China
| |
Collapse
|
3
|
Al-Hawary SIS, Jasim SA, Hjazi A, Oghenemaro EF, Kaur I, Kumar A, Al-Ani AM, Alwaily ER, Redhee AH, Mustafa YF. Nucleic acid-based vaccine for ovarian cancer cells; bench to bedside. Cell Biochem Funct 2024; 42:e3978. [PMID: 38515237 DOI: 10.1002/cbf.3978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Ovarian cancer continues to be a difficult medical issue that affects millions of individuals worldwide. Important platforms for cancer immunotherapy include checkpoint inhibitors, chimeric antigen receptor T cells, bispecific antibodies, cancer vaccines, and other cell-based treatments. To avoid numerous infectious illnesses, conventional vaccinations based on synthetic peptides, recombinant subunit vaccines, and live attenuated and inactivated pathogens are frequently utilized. Vaccine manufacturing processes, however, are not entirely safe and carry a significant danger of contaminating living microorganisms. As a result, the creation of substitute vaccinations is required for both viral and noninfectious illnesses, including cancer. Recently, there has been testing of nucleic acid vaccines, or NAVs, as a cancer therapeutic. Tumor antigens (TAs) are genetically encoded by DNA and mRNA vaccines, which the host uses to trigger immune responses against ovarian cancer cells that exhibit the TAs. Despite being straightforward, safe, and easy to produce, NAVs are not currently thought to be an ideal replacement for peptide vaccines. Some obstacles to this strategy include selecting the appropriate therapeutic agents (TAs), inadequate immunogenicity, and the immunosuppressive characteristic of ovarian cancer. We focus on strategies that have been employed to increase NAVs' effectiveness in the fight against ovarian cancer in this review.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Anbar, Iraq
- Biotechnology Department, College of Applied Science, Fallujah University, Fallujah, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Nigeria
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after The First President of Russia, Yekaterinburg, Russia
| | | | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
4
|
Zhou H, Ma Y, Liu F, Li B, Qiao D, Ren P, Wang M. Current advances in cancer vaccines targeting NY-ESO-1 for solid cancer treatment. Front Immunol 2023; 14:1255799. [PMID: 37731507 PMCID: PMC10508181 DOI: 10.3389/fimmu.2023.1255799] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
New York-esophageal cancer 1 (NY-ESO-1) belongs to the cancer testis antigen (CTA) family, and has been identified as one of the most immunogenic tumor-associated antigens (TAAs) among the family members. Given its ability to trigger spontaneous humoral and cellular immune response and restricted expression, NY-ESO-1 has emerged as one of the most promising targets for cancer immunotherapy. Cancer vaccines, an important element of cancer immunotherapy, function by presenting an exogenous source of TAA proteins, peptides, and antigenic epitopes to CD4+ T cells via major histocompatibility complex class II (MHC-II) and to CD8+ T cells via major histocompatibility complex class I (MHC-I). These mechanisms further enhance the immune response against TAAs mediated by cytotoxic T lymphocytes (CTLs) and helper T cells. NY-ESO-1-based cancer vaccines have a history of nearly two decades, starting from the first clinical trial conducted in 2003. The current cancer vaccines targeting NY-ESO-1 have various types, including Dendritic cells (DC)-based vaccines, peptide vaccines, protein vaccines, viral vaccines, bacterial vaccines, therapeutic whole-tumor cell vaccines, DNA vaccines and mRNA vaccines, which exhibit their respective benefits and obstacles in the development and application. Here, we summarized the current advances in cancer vaccines targeting NY-ESO-1 for solid cancer treatment, aiming to provide perspectives for future research.
Collapse
Affiliation(s)
- Hong Zhou
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Research and Development, Shenzhen Innovation Immunotechnology Co., Ltd, Shenzhen, China
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Yipeng Ma
- Department of Research and Development, Shenzhen Innovation Immunotechnology Co., Ltd, Shenzhen, China
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Fenglan Liu
- Department of Research and Development, Shenzhen Innovation Immunotechnology Co., Ltd, Shenzhen, China
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Bin Li
- Department of Research and Development, Shenzhen Innovation Immunotechnology Co., Ltd, Shenzhen, China
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Dongjuan Qiao
- Department of Research and Development, Shenzhen Innovation Immunotechnology Co., Ltd, Shenzhen, China
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Peigen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mingjun Wang
- Department of Research and Development, Shenzhen Innovation Immunotechnology Co., Ltd, Shenzhen, China
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| |
Collapse
|
5
|
Bhat BA, Saifi I, Khamjan NA, Hamdani SS, Algaissi A, Rashid S, Alshehri MM, Ganie SA, Lohani M, Abdelwahab SI, Dar SA. Exploring the tumor immune microenvironment in ovarian cancer: a way-out to the therapeutic roadmap. Expert Opin Ther Targets 2023; 27:841-860. [PMID: 37712621 DOI: 10.1080/14728222.2023.2259096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Despite cancer treatment strides, mortality due to ovarian cancer remains high globally. While immunotherapy has proven effective in treating cancers with low cure rates, it has limitations. Growing evidence suggests that both tumoral and non-tumoral components of the tumor immune microenvironment (TIME) play a significant role in cancer growth. Therefore, developing novel and focused therapy for ovarian cancer is critical. Studies indicate that TIME is involved in developing ovarian cancer, particularly genome-, transcriptome-, and proteome-wide studies. As a result, TIME may present a prospective therapeutic target for ovarian cancer patients. AREAS COVERED We examined several TIME-targeting medicines and the connection between TIME and ovarian cancer. The key protagonists and events in the TIME and therapeutic strategies that explicitly target these events in ovarian cancer are discussed. EXPERT OPINION We highlighted various targeted therapies against TIME in ovarian cancer, including anti-angiogenesis therapies and immune checkpoint inhibitors. While these therapies are in their infancy, they have shown promise in controlling ovarian cancer progression. The use of 'omics' technology is helping in better understanding of TIME in ovarian cancer and potentially identifying new therapeutic targets. TIME-targeted strategies could account for an additional treatment strategy when treating ovarian cancer.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bioresources, Amar Singh College Campus, Cluster University, Srinagar, India
| | - Ifra Saifi
- Department of Botany, Chaudhary Charan Singh University, Meerut India
| | - Nizar A Khamjan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Syed Suhail Hamdani
- Department of Bioresources, Amar Singh College Campus, Cluster University, Srinagar, India
| | - Abdullah Algaissi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- Medical Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Safeena Rashid
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | | | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Mohtashim Lohani
- Department of Emergency Medical Services, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
6
|
Supramolecular assembly of a trivalent peptide hydrogel vaccine for cancer immunotherapy. Acta Biomater 2023; 158:535-546. [PMID: 36632876 DOI: 10.1016/j.actbio.2022.12.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023]
Abstract
Vaccination shows great promise in cancer immunotherapy. However, the induction of robust and broad therapeutic CD8 T cell immunity against tumors is challenging due to the essential heterogenicity of tumor antigen expression. Recently, bioinspired materials have reshaped the field of cancer nanomedicine. Herein, a bioinspired nanofibrous trivalent peptide hydrogel vaccine was constructed using the spontaneous supramolecular co-assembly of three antigenic epitope-conjugated peptides, which could mimic the fibrillar structure and biological function of the extracellular matrix and naturally occurring protein assembly. The hydrogel vaccine could be accurately and flexibly adjusted to load each antigenic peptide at a defined ratio, which facilitated the antigen presentation of dendritic cells and significantly improved the initiation of CD8 T cell response and the secretion of interferon-γ (IFN-γ). C57BL/6 mice were immunized with the trivalent peptide hydrogel vaccine, where it elicited a high broad-spectrum antitumor CD8 T cell response that significantly inhibited the growth of B16 tumors in the absence of additional immunoadjuvants or delivery systems. In summary, the supramolecular assembly of triple antigenic epitope-conjugated peptides offers a simple, customizable, and versatile approach for the development of cancer vaccines with remarkable therapeutic efficacy, thereby providing a highly versatile platform for the application of personalized multivalent tumor vaccines. STATEMENT OF SIGNIFICANCE: (1) We report a feasible, versatile and bioinspired approach to manufacture a multivalent peptide-based hydrogel cancer vaccine in the absence of additional adjuvants, which closely mimics immune niches, co-delivers antigen epitopes, greatly promotes antigen presentation to DCs and their subsequent homing to dLNs and elicits a broad-spectrum antitumor CD8 T cell response, resulting in significant inhibition of B16 tumor growth. (2) This feasible and efficient co-assembly strategy provides an attractive platform for engineering a range of multivalent vaccines at defined ratios to further enhance antigen-specific T cell responses. This approach may also be used for personalized immunotherapy with neo-epitopes.
Collapse
|
7
|
Immuno-Oncology for Gynecologic Malignancies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:193-232. [PMID: 34972966 DOI: 10.1007/978-3-030-79308-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Patients with advanced and/or recurrent gynecologic cancers derive limited benefit from currently available cytotoxic and targeted therapies. Successes of immunotherapy in other difficult-to-treat malignancies such as metastatic melanoma and advanced lung cancer have led to intense interest in clinical testing of these treatments in patients with gynecologic cancers. Currently, in the realm of gynecologic oncology, the FDA-approved use of immune checkpoint inhibitors is limited to microsatellite instability-high cancers, cancers with high tumor mutational burden, and PD-L1-positive cervical cancer. However, there has been an exponential growth of clinical trials testing immunotherapy approaches both alone and in combination with chemotherapy and/or targeted agents in patients with gynecologic cancers. This chapter will review some of the major reported and ongoing immunotherapy clinical trials in patients with endometrial, cervical, and epithelial ovarian cancer.
Collapse
|
8
|
Chiang CLL, Rovelli R, Sarivalasis A, Kandalaft LE. Integrating Cancer Vaccines in the Standard-of-Care of Ovarian Cancer: Translating Preclinical Models to Human. Cancers (Basel) 2021; 13:cancers13184553. [PMID: 34572778 PMCID: PMC8469371 DOI: 10.3390/cancers13184553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The overall survival of ovarian cancer (OC) remains poor for most patients. Despite incorporation of novel therapeutic agents such as bevacizumab and PARP inhibitors to OC standard-of-care, efficacy is only observed in a subset of patients. Cancer vaccination has demonstrated effectiveness in OC patients and could be considered for potential incorporation into OC standard-of-care. This review provides an overview of the different types of cancer vaccination strategies and discusses the use of murine OC tumor models to evaluate combinatorial regimens comprising cancer vaccines and OC standard-of-care. Abstract As the majority of ovarian cancer (OC) patients are diagnosed with metastatic disease, less than 40% will survive past 5 years after diagnosis. OC is characterized by a succession of remissions and recurrences. The most promising time point for immunotherapeutic interventions in OC is following debulking surgery. Accumulating evidence shows that T cells are important in OC; thus, cancer vaccines capable of eliciting antitumor T cells will be effective in OC treatment. In this review, we discuss different cancer vaccines and propose strategies for their incorporation into the OC standard-of-care regimens. Using the murine ID8 ovarian tumor model, we provide evidence that a cancer vaccine can be effectively combined with OC standard-of-care to achieve greater overall efficacy. We demonstrate several important similarities between the ID8 model and OC patients, in terms of response to immunotherapies, and the ID8 model can be an important tool for evaluating combinatorial regimens and clinical trial designs in OC. Other emerging models, including patient-derived xenograft and genetically engineered mouse models, are continuing to improve and can be useful for evaluating cancer vaccination therapies in the near future. Here, we provide a comprehensive review of the completed and current clinical trials evaluating cancer vaccines in OC.
Collapse
Affiliation(s)
- Cheryl Lai-Lai Chiang
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, CH-1011 Lausanne, Switzerland; (R.R.); (A.S.)
- Ludwig Institute for Cancer Research, University of Lausanne, CH-1066 Lausanne, Switzerland
- Correspondence: (C.L.-L.C.); (L.E.K.)
| | - Raphaël Rovelli
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, CH-1011 Lausanne, Switzerland; (R.R.); (A.S.)
- Ludwig Institute for Cancer Research, University of Lausanne, CH-1066 Lausanne, Switzerland
| | - Apostolos Sarivalasis
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, CH-1011 Lausanne, Switzerland; (R.R.); (A.S.)
| | - Lana E. Kandalaft
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, CH-1011 Lausanne, Switzerland; (R.R.); (A.S.)
- Ludwig Institute for Cancer Research, University of Lausanne, CH-1066 Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland
- Correspondence: (C.L.-L.C.); (L.E.K.)
| |
Collapse
|
9
|
Duwa R, Jeong JH, Yook S. Immunotherapeutic strategies for the treatment of ovarian cancer: current status and future direction. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Dafni U, Martín-Lluesma S, Balint K, Tsourti Z, Vervita K, Chenal J, Coukos G, Zaman K, Sarivalasis A, Kandalaft LE. Efficacy of cancer vaccines in selected gynaecological breast and ovarian cancers: A 20-year systematic review and meta-analysis. Eur J Cancer 2020; 142:63-82. [PMID: 33221598 DOI: 10.1016/j.ejca.2020.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Therapeutic cancer vaccination is an area of interest, even though promising efficacy has not been demonstrated so far. DESIGN A systematic review and meta-analysis was conducted to evaluate vaccines' efficacy on breast cancer (BC) and ovarian cancer (OC) patients. Our search was based on the PubMed electronic database, from 1st January 2000 to 4th February 2020. OBJECTIVE response rate (ORR) was the primary end-point of interest, while progression-free survival (PFS), overall survival (OS) and toxicity were secondary end-points. Analysis was performed separately for BC and OC patients. Pooled ORRs were estimated by fixed or random effects models, depending on the detected degree of heterogeneity, for all studies with more than five patients. Subgroup analyses by vaccine type and treatment schema as well as sensitivity analyses, were implemented. RESULTS Among 315 articles initially identified, 67 were eligible for our meta-analysis (BC: 46, 1698 patients; OC: 32, 426 patients; where both BC/OC in 11). Dendritic-cell and peptide vaccines were found in more studies, 6/10 BC and 10/13 OC studies, respectively. In our primary BC analysis (21 studies; 428 patients), the pooled ORR estimate was 9% (95%CI[5%,13%]). The primary OC analysis (12 studies; 182 patients), yielded pooled ORR estimate of 4% (95%CI[1%,7%]). Similar were the results derived in sensitivity analyses. No statistically significant differences were detected by vaccine type or treatment schema. Median PFS was 2.6 months (95% confidence interval (CI)[1.9,2.9]) and 13.0 months (95%CI[8.5,16.3]) for BC and OC respectively, while corresponding median OS was 24.8 months (95%CI[15.0,46.0]) and 39.0 months (95%CI[31.0,49.0]). In almost all cases, the observed toxicity was only moderate. CONCLUSION Despite their modest results in terms of ORR, therapeutic vaccines in the last 20 years display relatively long survival rates and low toxicity. Since a plethora of different approaches have been tested, a better understanding of the underlying mechanisms is needed in order to further improve vaccine efficacy.
Collapse
Affiliation(s)
- U Dafni
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece
| | - S Martín-Lluesma
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla Del Monte, Madrid, 28668, Spain
| | - K Balint
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Z Tsourti
- Scientific Research Consulting Hellas, Statistics Center, Athens, Greece
| | - K Vervita
- Scientific Research Consulting Hellas, Statistics Center, Athens, Greece
| | - J Chenal
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - G Coukos
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - K Zaman
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - A Sarivalasis
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - L E Kandalaft
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
11
|
Development of Therapeutic Vaccines for Ovarian Cancer. Vaccines (Basel) 2020; 8:vaccines8040657. [PMID: 33167428 PMCID: PMC7711901 DOI: 10.3390/vaccines8040657] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer remains the deadliest of all gynecologic malignancies. Our expanding knowledge of ovarian cancer immunology has allowed the development of therapies that generate systemic anti-tumor immune responses. Current immunotherapeutic strategies include immune checkpoint blockade, cellular therapies, and cancer vaccines. Vaccine-based therapies are designed to induce both adaptive and innate immune responses directed against ovarian cancer associated antigens. Tumor-specific effector cells, in particular cytotoxic T cells, are activated to recognize and eliminate ovarian cancer cells. Vaccines for ovarian cancer have been studied in various clinical trials over the last three decades. Despite evidence of vaccine-induced humoral and cellular immune responses, the majority of vaccines have not shown significant anti-tumor efficacy. Recently, improved vaccine development using dendritic cells or synthetic platforms for antigen presentation have shown promising clinical benefits in patients with ovarian cancer. In this review, we provide an overview of therapeutic vaccine development in ovarian cancer, discuss proposed mechanisms of action, and summarize the current clinical experience.
Collapse
|
12
|
O’Dwyer J, O’Cearbhaill RE, Wylie R, O’Mahony S, O’Dwyer M, Duffy GP, Dolan EB. Enhancing delivery of small molecule and cell-based therapies for ovarian cancer using advanced delivery strategies. ADVANCED THERAPEUTICS 2020; 3:2000144. [PMID: 33709016 PMCID: PMC7942751 DOI: 10.1002/adtp.202000144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 12/17/2022]
Abstract
Ovarian cancer is the most lethal gynecological malignancy with a global five-year survival rate of 30-50%. First-line treatment involves cytoreductive surgery and administration of platinum-based small molecules and paclitaxel. These therapies were traditionally administered via intravenous infusion, although intraperitoneal delivery has also been investigated. Initial clinical trials of intraperitoneal administration for ovarian cancer indicated significant improvements in overall survival compared to intravenous delivery, but this result is not consistent across all studies performed. Recently cell-based immunotherapy has been of interest for ovarian cancer. Direct intraperitoneal delivery of cell-based immunotherapies might prompt local immunoregulatory mechanisms to act synergistically with the delivered immunotherapy. Based on this theory, pre-clinical in vivo studies have delivered these cell-based immunotherapies via the intraperitoneal route, with promising results. However, successful intraperitoneal delivery of cell-based immunotherapy and clinical adoption of this technique will depend on overcoming challenges of intraperitoneal delivery and finding the optimal combinations of dose, therapeutic and delivery route. We review the potential advantages and disadvantages of intraperitoneal delivery of cell-based immunotherapy for ovarian cancer and the pre-clinical and clinical work performed so far. Potential advanced delivery strategies, which might improve the efficacy and adoption of intraperitoneal delivery of therapy for ovarian cancer, are also outlined.
Collapse
Affiliation(s)
- Joanne O’Dwyer
- Department of Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland; Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland
| | - Roisin E. O’Cearbhaill
- Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland; Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Robert Wylie
- Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland
| | - Saoirse O’Mahony
- Department of Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland
| | - Michael O’Dwyer
- Apoptosis Research Centre, National University of Ireland Galway, Ireland
| | - Garry P. Duffy
- Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland
| | - Eimear B. Dolan
- Department of Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland
| |
Collapse
|
13
|
Gupta T, Gupta SK. Potential adjuvants for the development of a SARS-CoV-2 vaccine based on experimental results from similar coronaviruses. Int Immunopharmacol 2020; 86:106717. [PMID: 32585611 PMCID: PMC7301105 DOI: 10.1016/j.intimp.2020.106717] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
The extensive efforts around the globe are being made to develop a suitable vaccine against COVID-19 (Coronavirus Disease-19) caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2). An effective vaccine should be able to induce high titers of neutralizing antibodies to prevent the virus from attaching to the host cell receptors. However, to elicit the protective levels of antibodies, a vaccine may require multiple doses or assistance from other immunostimulatory molecules. Further, the vaccine should be able to induce protective levels of antibodies rapidly with the least amount of antigen used. This decreases the cost of a vaccine and makes it affordable. As the pandemic has hit most countries across the globe, there will be an overwhelming demand for the vaccine in a quick time. Incorporating a suitable adjuvant in a SARS-CoV-2 vaccine may address these requirements. This review paper will discuss the experimental results of the adjuvanted vaccine studies with similar coronaviruses (CoVs) which might be useful to select an appropriate adjuvant for a vaccine against rapidly emergingSARS-CoV-2. We also discuss the current progress in the development of adjuvanted vaccines against the disease.
Collapse
Affiliation(s)
- Tania Gupta
- Dr GC Negi College of Veterinary and Animal Sciences, Palampur 176062, Himachal Pradesh, India.
| | - Shishir K Gupta
- CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
14
|
Taherian-Esfahani Z, Dashti S. Cancer-testis antigens: An update on their roles in cancer immunotherapy. Hum Antibodies 2020; 27:171-183. [PMID: 30909205 DOI: 10.3233/hab-190366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Several recent studies have assessed suitability of tumor antigens for immunotherapy. Based on the restricted expression pattern in somatic tissues, cancer-testis antigens (CTAs) are possible candidates for cancer immunotherapy. These antigens are expressed in various tumors including gastrointestinal, breast, skin and hematologic malignancies. OBJECTIVES To find clinical trials utilizing CTAs in cancer patients. METHODS We searched PubMed, google scholar and specific websites that registers clinical trials. RESULTS A number of clinical trials have been designed to evaluate safety and efficacy of CTA-based treatments. The results of some of them have been promising. In the current literature search, we summarized the clinical trials of CTA-based therapies in cancer patients. CONCLUSIONS Based on the availability of different formulations of CTA-based vaccines, future researches should compare efficiency of these modalities.
Collapse
|
15
|
How J, Patel A, Jazaeri A. Immuno-oncology for Gynecologic Malignancies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1244:149-182. [PMID: 32301014 DOI: 10.1007/978-3-030-41008-7_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with advanced and/or recurrent gynecologic cancers derive limited benefit from currently available cytotoxic and targeted therapies. Successes of immunotherapy in other difficult-to-treat malignancies such as metastatic melanoma and advanced lung cancer have led to intense interest in clinical testing of these treatments in patients with gynecologic cancers. Currently, in the realm of gynecologic oncology, the FDA-approved use of immune checkpoint inhibitors is limited to microsatellite instable cancers and PD-L1-positive cervical cancer. However, there has been an exponential growth of clinical trials testing immunotherapy approaches, both alone and in combination with chemotherapy and/or targeted agents, in patients with gynecologic cancers. This chapter reviews some of the major reported and ongoing immunotherapy clinical trials in patients with endometrial, cervical, and epithelial ovarian cancer.
Collapse
Affiliation(s)
- Jeffrey How
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ami Patel
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amir Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
16
|
Hartl CA, Bertschi A, Puerto RB, Andresen C, Cheney EM, Mittendorf EA, Guerriero JL, Goldberg MS. Combination therapy targeting both innate and adaptive immunity improves survival in a pre-clinical model of ovarian cancer. J Immunother Cancer 2019; 7:199. [PMID: 31362778 PMCID: PMC6668091 DOI: 10.1186/s40425-019-0654-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background Despite major advancements in immunotherapy among a number of solid tumors, response rates among ovarian cancer patients remain modest. Standard treatment for ovarian cancer is still surgery followed by taxane- and platinum-based chemotherapy. Thus, there is an urgent need to develop novel treatment options for clinical translation. Methods Our approach was to analyze the effects of standard chemotherapy in the tumor microenvironment of mice harboring orthotopic, syngeneic ID8-Vegf-Defb29 ovarian tumors in order to mechanistically determine a complementary immunotherapy combination. Specifically, we interrogated the molecular and cellular consequences of chemotherapy by analyzing gene expression and flow cytometry data. Results These data show that there is an immunosuppressive shift in the myeloid compartment, with increased expression of IL-10 and ARG1, but no activation of CD3+ T cells shortly after chemotherapy treatment. We therefore selected immunotherapies that target both the innate and adaptive arms of the immune system. Survival studies revealed that standard chemotherapy was complemented most effectively by a combination of anti-IL-10, 2′3’-cGAMP, and anti-PD-L1. Immunotherapy dramatically decreased the immunosuppressive myeloid population while chemotherapy effectively activated dendritic cells. Together, combination treatment increased the number of activated T and dendritic cells as well as expression of cytotoxic factors. It was also determined that the immunotherapy had to be administered concurrently with the chemotherapy to reverse the acute immunosuppression caused by chemotherapy. Mechanistic studies revealed that antitumor immunity in this context was driven by CD4+ T cells, which acquired a highly activated phenotype. Our data suggest that these CD4+ T cells can kill cancer cells directly via granzyme B-mediated cytotoxicity. Finally, we showed that this combination therapy is also effective at delaying tumor growth substantially in an aggressive model of lung cancer, which is also treated clinically with taxane- and platinum-based chemotherapy. Conclusions This work highlights the importance of CD4+ T cells in tumor immunology. Furthermore, the data support the initiation of clinical trials in ovarian cancer that target both innate and adaptive immunity, with a focus on optimizing dosing schedules. Electronic supplementary material The online version of this article (10.1186/s40425-019-0654-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina A Hartl
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Adrian Bertschi
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Regina Bou Puerto
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Carolin Andresen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Emily M Cheney
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Elizabeth A Mittendorf
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02215, USA.,Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jennifer L Guerriero
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Michael S Goldberg
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
17
|
Abstract
The phenotype and functionalities of the major immune cell subsets including myeloid cells, macrophages, dendritic cells, and T cells are altered in the ovarian cancer microenvironment. Immunosuppressive networks including inhibitory B7 family members and regulatory T cell-associated adenosine pathway have been defined in human ovarian cancer. In this review, the authors integrate emerging information on immunosuppressive mechanisms and T cell phenotype and discuss strategies of immunotherapeutic and vaccine regimens. Finally, crucial points regarding design of immuno-oncology clinical trials are reviewed.
Collapse
Affiliation(s)
- Weimin Wang
- Department of Surgery, University of Michigan School of Medicine, BSRB 5448, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA
| | - Janice Rebecca Liu
- Department of Obstetrics and Gynecology, University of Michigan School of Medicine, L4604 WH, 1500 East Medical Center, Ann Arbor, MI 48109, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, BSRB 5071, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA.
| |
Collapse
|
18
|
Immunotherapy of gynecological cancers. Best Pract Res Clin Obstet Gynaecol 2019; 60:97-110. [PMID: 31003902 DOI: 10.1016/j.bpobgyn.2019.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 12/29/2022]
Abstract
Oncology treatments have evolved from intuitive, via empiric, to the present precision medicine, with the integration of molecular targeted therapies in our treatment arsenal. The use of the patients' powerful immune system has long been contemplated and recently led to the integration of immunotherapy to overturn the well-documented inhibitory effects of the tumor on the immune system and restore it to a state of activity against the cancer. Recent favorable results have shown the value and effectiveness of immunotherapy against gynecological cancers. In particular, the checkpoint inhibitors, targeting the programmed death-1 (PD-1) pathway, have shown durable clinical responses with manageable toxicity. Several phase II and III clinical trials testing the association of different regimen of chemotherapy and immunotherapy are ongoing in gynecological cancers, and important results are expected. In this chapter, we outline the main principles of immunotherapy for gynecological cancers and summarize the current strategies used in clinical trials.
Collapse
|
19
|
Paijens ST, Leffers N, Daemen T, Helfrich W, Boezen HM, Cohlen BJ, Melief CJM, de Bruyn M, Nijman HW. Antigen-specific active immunotherapy for ovarian cancer. Cochrane Database Syst Rev 2018; 9:CD007287. [PMID: 30199097 PMCID: PMC6513204 DOI: 10.1002/14651858.cd007287.pub4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND This is the second update of the review first published in the Cochrane Library (2010, Issue 2) and later updated (2014, Issue 9).Despite advances in chemotherapy, the prognosis of ovarian cancer remains poor. Antigen-specific active immunotherapy aims to induce tumour antigen-specific anti-tumour immune responses as an alternative treatment for ovarian cancer. OBJECTIVES Primary objective• To assess the clinical efficacy of antigen-specific active immunotherapy for the treatment of ovarian cancer as evaluated by tumour response measured by Response Evaluation Criteria In Solid Tumors (RECIST) and/or cancer antigen (CA)-125 levels, response to post-immunotherapy treatment, and survival differences◦ In addition, we recorded the numbers of observed antigen-specific humoral and cellular responsesSecondary objective• To establish which combinations of immunotherapeutic strategies with tumour antigens provide the best immunological and clinical results SEARCH METHODS: For the previous version of this review, we performed a systematic search of the Cochrane Central Register of Controlled Trials (CENTRAL; 2009, Issue 3), in the Cochrane Library, the Cochrane Gynaecological Cancer Group Specialised Register, MEDLINE and Embase databases, and clinicaltrials.gov (1966 to July 2009). We also conducted handsearches of the proceedings of relevant annual meetings (1996 to July 2009).For the first update of this review, we extended the searches to October 2013, and for this update, we extended the searches to July 2017. SELECTION CRITERIA We searched for randomised controlled trials (RCTs), as well as non-randomised studies (NRSs), that included participants with epithelial ovarian cancer, irrespective of disease stage, who were treated with antigen-specific active immunotherapy, irrespective of type of vaccine, antigen used, adjuvant used, route of vaccination, treatment schedule, and reported clinical or immunological outcomes. DATA COLLECTION AND ANALYSIS Two reviews authors independently extracted the data. We evaluated the risk of bias for RCTs according to standard methodological procedures expected by Cochrane, and for NRSs by using a selection of quality domains deemed best applicable to the NRS. MAIN RESULTS We included 67 studies (representing 3632 women with epithelial ovarian cancer). The most striking observations of this review address the lack of uniformity in conduct and reporting of early-phase immunotherapy studies. Response definitions show substantial variation between trials, which makes comparison of trial results unreliable. Information on adverse events is frequently limited. Furthermore, reports of both RCTs and NRSs frequently lack the relevant information necessary for risk of bias assessment. Therefore, we cannot rule out serious biases in most of the included trials. However, selection, attrition, and selective reporting biases are likely to have affected the studies included in this review. GRADE ratings were high only for survival; for other primary outcomes, GRADE ratings were very low.The largest body of evidence is currently available for CA-125-targeted antibody therapy (17 studies, 2347 participants; very low-certainty evidence). Non-randomised studies of CA-125-targeted antibody therapy suggest improved survival among humoral and/or cellular responders, with only moderate adverse events. However, four large randomised placebo-controlled trials did not show any clinical benefit, despite induction of immune responses in approximately 60% of participants. Time to relapse with CA-125 monoclonal antibody versus placebo, respectively, ranged from 10.3 to 18.9 months versus 10.3 to 13 months (six RCTs, 1882 participants; high-certainty evidence). Only one RCT provided data on overall survival, reporting rates of 80% in both treatment and placebo groups (three RCTs, 1062 participants; high-certainty evidence). Other small studies targeting many different tumour antigens have presented promising immunological results. As these strategies have not yet been tested in RCTs, no reliable inferences about clinical efficacy can be made. Given the promising immunological results and the limited side effects and toxicity reported, exploration of clinical efficacy in large well-designed RCTs may be worthwhile. AUTHORS' CONCLUSIONS We conclude that despite promising immunological responses, no clinically effective antigen-specific active immunotherapy is yet available for ovarian cancer. Results should be interpreted cautiously, as review authors found a significant dearth of relevant information for assessment of risk of bias in both RCTs and NRSs.
Collapse
Affiliation(s)
- Sterre T Paijens
- University Medical Center Groningen (UMCG)Obstetrics & GynaecologyGroningenNetherlands9713 GZ
| | - Ninke Leffers
- University Medical Center Groningen (UMCG)Obstetrics & GynaecologyGroningenNetherlands9713 GZ
| | - Toos Daemen
- University Medical Center Groningen (UMCG)GroningenNetherlands9713 GZ
| | - Wijnand Helfrich
- University Medical Center Groningen (UMCG)Department of Surgery. Translational Surgical OncologyGroningenNetherlands9713 GZ
| | - H Marike Boezen
- University Medical Center Groningen (UMCG)Unit Chronic Airway Diseases, Department of EpidemiologyGroningenNetherlands9713 GZ
| | - Ben J Cohlen
- Isala Clinics, Location SophiaDepartment of Obstetrics & GynaecologyDr van Heesweg 2P O Box 10400ZwolleNetherlands3515 BE
| | - Cornelis JM Melief
- Leiden University Medical CenterDepartment of Immunohaematology and Blood TransfusionPO Box 9600E3‐QLeidenNetherlands2300 RC
| | - Marco de Bruyn
- University Medical Center Groningen (UMCG)Obstetrics & GynaecologyGroningenNetherlands9713 GZ
| | - Hans W Nijman
- University Medical Center Groningen (UMCG)GroningenNetherlands9713 GZ
| | | |
Collapse
|
20
|
Affiliation(s)
- Xuedan He
- University at Buffalo; State University of New York; Buffalo NY 14260 USA
| | - Scott I. Abrams
- Roswell Park Comprehensive Cancer Center; Department of Immunology; Buffalo NY 14263 USA
| | - Jonathan F. Lovell
- University at Buffalo; State University of New York; Buffalo NY 14260 USA
| |
Collapse
|
21
|
The Tumor Microenvironment of Epithelial Ovarian Cancer and Its Influence on Response to Immunotherapy. Cancers (Basel) 2018. [PMID: 30042343 DOI: 10.3390/cancers10080242] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy as a treatment for cancer is a growing field of endeavor but reports of success have been limited for epithelial ovarian cancer. Overcoming the challenges to developing more effective therapeutic approaches lies in a better understanding of the factors in cancer cells and the surrounding tumor microenvironment that limit response to immunotherapies. This article provides an overview of some ovarian cancer cell features such as tumor-associated antigens, ovarian cancer-derived exosomes, tumor mutational burden and overexpression of immunoinhibitory molecules. Moreover, we describe relevant cell types found in epithelial ovarian tumors including immune cells (T and B lymphocytes, Tregs, NK cells, TAMs, MDSCs) and other components found in the tumor microenvironment including fibroblasts and the adipocytes in the omentum. We focus on how those components may influence responses to standard treatments or immunotherapies.
Collapse
|
22
|
The Tumor Microenvironment of Epithelial Ovarian Cancer and Its Influence on Response to Immunotherapy. Cancers (Basel) 2018. [PMID: 30042343 DOI: 10.3390/cancers10080242]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Immunotherapy as a treatment for cancer is a growing field of endeavor but reports of success have been limited for epithelial ovarian cancer. Overcoming the challenges to developing more effective therapeutic approaches lies in a better understanding of the factors in cancer cells and the surrounding tumor microenvironment that limit response to immunotherapies. This article provides an overview of some ovarian cancer cell features such as tumor-associated antigens, ovarian cancer-derived exosomes, tumor mutational burden and overexpression of immunoinhibitory molecules. Moreover, we describe relevant cell types found in epithelial ovarian tumors including immune cells (T and B lymphocytes, Tregs, NK cells, TAMs, MDSCs) and other components found in the tumor microenvironment including fibroblasts and the adipocytes in the omentum. We focus on how those components may influence responses to standard treatments or immunotherapies.
Collapse
|
23
|
Rodriguez GM, Galpin KJC, McCloskey CW, Vanderhyden BC. The Tumor Microenvironment of Epithelial Ovarian Cancer and Its Influence on Response to Immunotherapy. Cancers (Basel) 2018; 10:E242. [PMID: 30042343 PMCID: PMC6116043 DOI: 10.3390/cancers10080242] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy as a treatment for cancer is a growing field of endeavor but reports of success have been limited for epithelial ovarian cancer. Overcoming the challenges to developing more effective therapeutic approaches lies in a better understanding of the factors in cancer cells and the surrounding tumor microenvironment that limit response to immunotherapies. This article provides an overview of some ovarian cancer cell features such as tumor-associated antigens, ovarian cancer-derived exosomes, tumor mutational burden and overexpression of immunoinhibitory molecules. Moreover, we describe relevant cell types found in epithelial ovarian tumors including immune cells (T and B lymphocytes, Tregs, NK cells, TAMs, MDSCs) and other components found in the tumor microenvironment including fibroblasts and the adipocytes in the omentum. We focus on how those components may influence responses to standard treatments or immunotherapies.
Collapse
Affiliation(s)
- Galaxia M Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Kristianne J C Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
24
|
Chalan P, Di Dalmazi G, Pani F, De Remigis A, Corsello A, Caturegli P. Thyroid dysfunctions secondary to cancer immunotherapy. J Endocrinol Invest 2018; 41:625-638. [PMID: 29238906 PMCID: PMC5953760 DOI: 10.1007/s40618-017-0778-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/21/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Immunotherapy is a firmly established pillar in the treatment of cancer, alongside the traditional approaches of surgery, radiotherapy, and chemotherapy. Like every treatment, also cancer immunotherapy causes a diverse spectrum of side effects, collectively referred to as immune-related adverse events. OBJECTIVE This review will examine the main forms of immunotherapy, the proposed mechanism(s) of action, and the incidence of thyroid dysfunctions. METHODS A comprehensive MEDLINE search was performed for articles published up to March 30, 2017. RESULTS Following the pioneering efforts with administration of cytokines such as IL-2 and IFN-g, which caused a broad spectrum of thyroid dysfunctions (ranging in incidence from 1 to 50%), current cancer immunotherapy strategies comprise immune checkpoint inhibitors, oncolytic viruses, adoptive T-cell transfer, and cancer vaccines. Oncolytic viruses, adoptive T-cell transfer, and cancer vaccines cause thyroid dysfunctions only rarely. In contrast, immune checkpoint blockers (such as anti-CTLA-4, anti-PD-1, anti-PD-L1) are associated with a high risk of thyroid autoimmunity. This risk is highest for anti-PD-1 and increases further when a combination of checkpoint inhibitors is used. CONCLUSIONS Cancer patients treated with monoclonal antibodies that block immune checkpoint inhibitors are at risk of developing thyroid dysfunctions. Their thyroid status should be assessed at baseline and periodically after initiation of the immunotherapy.
Collapse
Affiliation(s)
- P Chalan
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Ross Building-Room 656, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - G Di Dalmazi
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Ross Building-Room 656, 720 Rutland Avenue, Baltimore, MD, 21205, USA
- Division of Endocrinology, Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - F Pani
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Ross Building-Room 656, 720 Rutland Avenue, Baltimore, MD, 21205, USA
- Endocrinology Unit, Department of Medical Sciences and Public Health Endocrinology, University of Cagliari, Cagliari, Italy
| | - A De Remigis
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Ross Building-Room 656, 720 Rutland Avenue, Baltimore, MD, 21205, USA
- Department of Medicine, Arco Hospital, Trento, Italy
| | - A Corsello
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Ross Building-Room 656, 720 Rutland Avenue, Baltimore, MD, 21205, USA
- Endocrine Tumor Unit, Department of General Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - P Caturegli
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Ross Building-Room 656, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| |
Collapse
|
25
|
Abstract
OPINION STATEMENT Immune-targeted therapies have demonstrated durable responses in many tumor types with limited treatment options and poor overall prognosis. This has led to enthusiasm for expanding such therapies to other tumor types including gynecologic malignancies. The use of immunotherapy in gynecologic malignancies is in the early stages and is an active area of ongoing clinical research. Both cancer vaccines and immune checkpoint inhibitor therapy continue to be extensively studied in gynecologic malignancies. Immune checkpoint inhibitors, in particular, hold promising potential in specific subsets of endometrial cancer that express microsatellite instability. The key to successful treatment with immunotherapy involves identification of the subgroup of patients that will derive benefit. The number of ongoing trials in cervical, ovarian, and endometrial cancer will help to recognize these patients and make treatment more directed. Additionally, a number of studies are combining immunotherapy with standard treatment options and will help to determine combinations that will enhance responses to standard therapy. Overall, there is much enthusiasm for immunotherapy approaches in gynecologic malignancies. However, the emerging data shows that with the exception of microsatellite unstable tumors, the use of single-agent immune checkpoint inhibitors is associated with response rates of 10-15%. More effective and likely combinatorial approaches are needed and will be informed by the findings of ongoing trials.
Collapse
|
26
|
Melssen M, Slingluff CL. Vaccines targeting helper T cells for cancer immunotherapy. Curr Opin Immunol 2017; 47:85-92. [PMID: 28755541 PMCID: PMC5757837 DOI: 10.1016/j.coi.2017.07.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
Abstract
There are compelling arguments for designing cancer vaccines specifically to induce CD4+ helper T cell responses. Recent studies highlight the crucial role of proliferating, activated effector memory Th1 CD4+ T cells in effective antitumor immunity and reveal that CD4+ T cells induce more durable immune-mediated tumor control than CD8+ T cells. CD4+ T cells promote antitumor immunity by numerous mechanisms including enhancing antigen presentation, co-stimulation, T cell homing, T cell activation, and effector function. These effects are mediated at sites of T cell priming and at the tumor microenvironment. Several cancer vaccine approaches induce durable CD4+ T cell responses and have promising clinical activity. Future work should further optimize vaccine adjuvants and combination therapies incorporating helper peptide vaccines.
Collapse
Affiliation(s)
- Marit Melssen
- University of Virginia, Department of Surgery and University of Virginia Cancer Center, PO Box 800709, Charlottesville, VA, USA
| | - Craig L Slingluff
- University of Virginia, Department of Surgery and University of Virginia Cancer Center, PO Box 800709, Charlottesville, VA, USA.
| |
Collapse
|
27
|
|
28
|
Martin Lluesma S, Wolfer A, Harari A, Kandalaft LE. Cancer Vaccines in Ovarian Cancer: How Can We Improve? Biomedicines 2016; 4:biomedicines4020010. [PMID: 28536377 PMCID: PMC5344251 DOI: 10.3390/biomedicines4020010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one important cause of gynecologic cancer-related death. Currently, the mainstay of ovarian cancer treatment consists of cytoreductive surgery and platinum-based chemotherapy (introduced 30 years ago) but, as the disease is usually diagnosed at an advanced stage, its prognosis remains very poor. Clearly, there is a critical need for new treatment options, and immunotherapy is one attractive alternative. Prophylactic vaccines for prevention of infectious diseases have led to major achievements, yet therapeutic cancer vaccines have shown consistently low efficacy in the past. However, as they are associated with minimal side effects or invasive procedures, efforts directed to improve their efficacy are being deployed, with Dendritic Cell (DC) vaccination strategies standing as one of the more promising options. On the other hand, recent advances in our understanding of immunological mechanisms have led to the development of successful strategies for the treatment of different cancers, such as immune checkpoint blockade strategies. Combining these strategies with DC vaccination approaches and introducing novel combinatorial designs must also be considered and evaluated. In this review, we will analyze past vaccination methods used in ovarian cancer, and we will provide different suggestions aiming to improve their efficacy in future trials.
Collapse
Affiliation(s)
- Silvia Martin Lluesma
- Center of Experimental Therapeutics, Ludwig Center for Cancer Res, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
| | - Anita Wolfer
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
| | - Alexandre Harari
- Center of Experimental Therapeutics, Ludwig Center for Cancer Res, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
| | - Lana E Kandalaft
- Center of Experimental Therapeutics, Ludwig Center for Cancer Res, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Esfandiary A, Ghafouri-Fard S. New York esophageal squamous cell carcinoma-1 and cancer immunotherapy. Immunotherapy 2016; 7:411-39. [PMID: 25917631 DOI: 10.2217/imt.15.3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
New York esophageal squamous cell carcinoma 1 (NY-ESO-1) is a known cancer testis gene with exceptional immunogenicity and prevalent expression in many cancer types. These characteristics have made it an appropriate vaccine candidate with the potential application against various malignancies. This article reviews recent knowledge about the NY-ESO-1 biology, function, immunogenicity and expression in cancers as well as and the results of clinical trials with this antigen.
Collapse
Affiliation(s)
- Ali Esfandiary
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | | |
Collapse
|
30
|
A Nanoparticle Based Sp17 Peptide Vaccine Exposes New Immuno-Dominant and Species Cross-reactive B Cell Epitopes. Vaccines (Basel) 2015; 3:875-93. [PMID: 26529027 PMCID: PMC4693223 DOI: 10.3390/vaccines3040875] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/06/2015] [Accepted: 10/23/2015] [Indexed: 01/06/2023] Open
Abstract
Sperm protein antigen 17 (Sp17), expressed in primary as well as in metastatic lesions in >83% of patients with ovarian cancer, is a promising ovarian cancer vaccine candidate. Herein we describe the formulation of nanoparticle based vaccines based on human Sp17 (hSp17) sequence derived peptides, and map the immuno-dominant T cell and antibody epitopes induced using such formulations. The primary T and B cell immuno-dominant region within Sp17 was found to be the same when using biocompatible nanoparticle carriers or the conventional “mix-in” pro-inflammatory adjuvant CpG, both mapping to amino acids (aa) 111–142. However, delivery of hSp17111–142 as a nanoparticle conjugate promoted a number of new properties, changing the dominant antibody isotype induced from IgG2a to IgG1 and the fine specificity of the B cell epitopes within hSp17111–142, from an immuno-dominant region 134–142 aa for CpG, to region 121–138 aa for nanoparticles. Associated with this change in specificity was a substantial increase in antibody cross-reactivity between mouse and human Sp17. These results indicate conjugation of antigen to nanoparticles can have major effects on fine antigen specificity, which surprisingly could be beneficially used to increase the cross-reactivity of antibody responses.
Collapse
|
31
|
Arsenic R, Braicu EI, Letsch A, Dietel M, Sehouli J, Keilholz U, Ochsenreither S. Cancer-testis antigen cyclin A1 is broadly expressed in ovarian cancer and is associated with prolonged time to tumor progression after platinum-based therapy. BMC Cancer 2015; 15:784. [PMID: 26499264 PMCID: PMC4619521 DOI: 10.1186/s12885-015-1824-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 10/16/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cyclin A1 is essential for male gametopoiesis. In acute myeloid leukemia, it acts as a leukemia-associated antigen. Cyclin A1 expression has been reported in several epithelial malignancies, including testicular, endometrial, and epithelial ovarian cancer (EOC). We analyzed Cyclin A1 expression in EOC and its correlation with clinical features to evaluate Cyclin A1 as a T-cell target in EOC. METHODS Cyclin A1 mRNA expression in EOC and healthy tissues was quantified by microarray analysis and quantitative real-time PCR (qRT-PCR). Protein expression in clinical samples was assessed by immunohistochemistry (IHC) and was correlated to clinical features. RESULTS Cyclin A1 protein was homogeneously expressed in 43 of 62 grade 3 tumor samples and in 1 of 10 grade 2 specimens (p < 0.001). Survival analysis showed longer time to progression (TTP) among patients with at least moderate Cyclin A1 expression (univariate: p = 0.018, multivariate: p = 0.035). FIGO stage, grading, age, macroscopic residual tumor after debulking, and peritoneal carcinomatosis / distant metastasis had no impact on TTP or overall survival (OS). CONCLUSION Cyclin A1 is highly expressed in most EOCs. The mechanism behind the prolonged TTP in patients with high Cyclin A1 expression warrants further investigation. The frequent, selectively high expression of Cyclin A1 in EOC makes it a promising target for T-cell therapies.
Collapse
Affiliation(s)
- Ruza Arsenic
- Department of Pathology, Institute of Pathology, Charité - University Hospital Berlin, 10117, Berlin, Germany.
| | - Elena Ilona Braicu
- Departement of Gynecology, University Hospital Berlin, 13353, Berlin, Germany.
| | - Anne Letsch
- Department of Hematology, Oncology and Tumor Immunology - University Hospital Berlin, 12200, Berlin, Germany.
| | - Manfred Dietel
- Department of Pathology, Institute of Pathology, Charité - University Hospital Berlin, 10117, Berlin, Germany.
| | - Jalid Sehouli
- Departement of Gynecology, University Hospital Berlin, 13353, Berlin, Germany.
| | - Ulrich Keilholz
- Charité Cancer Comprehensive Center, Charité, 10117, Berlin, Germany.
| | - Sebastian Ochsenreither
- Department of Hematology, Oncology and Tumor Immunology - University Hospital Berlin, 12200, Berlin, Germany.
| |
Collapse
|
32
|
Drerup JM, Liu Y, Padron AS, Murthy K, Hurez V, Zhang B, Curiel TJ. Immunotherapy for ovarian cancer. Curr Treat Options Oncol 2015; 16:317. [PMID: 25648541 DOI: 10.1007/s11864-014-0317-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OPINION STATEMENT All work referenced herein relates to treatment of epithelial ovarian carcinomas, as their treatment differs from ovarian germ cell cancers and other rare ovarian cancers, the treatments of which are addressed elsewhere. Fallopian tube cancers and primary peritoneal adenocarcinomatosis are also generally treated as epithelial ovarian cancers. The standard of care initial treatment of advanced stage epithelial ovarian cancer is optimal debulking surgery as feasible plus chemotherapy with a platinum plus a taxane agent. If this front-line approach fails, as it too often the case, several FDA-approved agents are available for salvage therapy. However, because no second-line therapy for advanced-stage epithelial ovarian cancer is typically curative, we prefer referral to clinical trials as logistically feasible, even if it means referring patients outside our system. Immune therapy has a sound theoretical basis for treating carcinomas generally, and for treating ovarian cancer in particular. Advances in understanding the immunopathogenic basis of ovarian cancer, and the immunopathologic basis for prior failures of immunotherapy for it and other carcinomas promises to afford novel treatment approaches with potential for significant efficacy, and reduced toxicities compared with cytotoxic agents. Thus, referral to early phase immunotherapy trials for ovarian cancer patients that fail conventional treatment merits consideration.
Collapse
Affiliation(s)
- Justin M Drerup
- Department of Cellular and Structural Biology, School of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Peper JK, Stevanović S. A combined approach of human leukocyte antigen ligandomics and immunogenicity analysis to improve peptide-based cancer immunotherapy. Cancer Immunol Immunother 2015; 64:1295-303. [PMID: 25822767 PMCID: PMC11029747 DOI: 10.1007/s00262-015-1682-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/10/2015] [Indexed: 11/30/2022]
Abstract
The breakthrough development of immune checkpoint inhibitors as clinically effective novel therapies demonstrates the potential of cancer immunotherapy. The identification of suitable targets for specific immunotherapy, however, remains a challenging task. Most peptides previously used for vaccination in clinical trials were able to elicit strong immunological responses but failed with regard to clinical benefit. This might, at least partly, be caused by an inadequate peptide selection, usually derived from established tumor-associated antigens which are not necessarily presented as human leukocyte antigen (HLA) ligands. Recently, HLA ligandome analysis revealed cancer-associated peptides, which have been used in clinical trials showing encouraging impact on survival. To improve peptide-based cancer immunotherapy, our group established a combined approach of HLA ligandomics and immunogenicity analysis for the identification of vaccine peptides. This approach is based on the identification of naturally presented HLA ligands on tumor samples, the selection of tumor-associated/tumor-specific HLA ligands and their subsequent testing for immunogenicity in vitro. In this review, we want to present our pipeline for the identification of vaccine peptides, focusing on ovarian cancer, and want to discuss differences to other approaches. Furthermore, we want to give a short outlook of a potential multi-peptide vaccination trial using the novel identified peptides.
Collapse
Affiliation(s)
- Janet Kerstin Peper
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany,
| | | |
Collapse
|
34
|
Xiang SD, Gao Q, Wilson KL, Heyerick A, Plebanski M. Mapping T and B cell epitopes in sperm protein 17 to support the development of an ovarian cancer vaccine. Vaccine 2015; 33:5950-9. [PMID: 26263201 DOI: 10.1016/j.vaccine.2015.07.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/13/2015] [Accepted: 07/23/2015] [Indexed: 11/29/2022]
Abstract
Ovarian cancer (OC) is the seventh most common cancer in women worldwide, and the leading cause of death from gynaecological malignancy. Immunotherapeutic strategies including cancer vaccines are considered less toxic and more specific than current treatments. Sperm surface protein (Sp17) is a protein aberrantly expressed in primary as well as in metastatic lesions in >83% of ovarian cancer patients. Vaccines based on the Sp17 protein are immunogenic and protective in animal models. To map the immunogenic regions and support the development of human Sp17 peptide based vaccines, we used 6 overlapping peptides of the human Sp17 sequence adjuvanted with CpG to immunise humanised HLA-A2.1 transgenic C57BL/6 mice, and assessed immunogenicity by ELISPOT and ELISA. No CD8 T cells were found to be induced to a comprehensive panel of 10 HLA-A2.1 or H-2K(b) binding predicted epitopes. However, one of the 6 peptides, hSp17111-142, induced high levels of antibodies and IFN-γ producing T cells (but not IL-17 or IL-4) both in C57BL/6 and in C57BL/6-HLA-A2.1 transgenic mice. C57BL/6 mice immunised with CpG adjuvanted hSp17111-142 significantly prolonged the life-span of the mice bearing the ovarian carcinoma ID8 cell line. We further mapped the immuno-dominant B and T cell epitope regions within hSp17111-142 using ELISPOT and competition ELISA. Herein, we report the identification of a single immuno-dominant B cell (134-142 aa) epitope and 2 T helper 1 (Th1) cell epitopes (111-124 aa and 124-138 aa). These result together support further exploration of hSp17111-142 peptide formulations as vaccines against ovarian cancer.
Collapse
Affiliation(s)
- Sue D Xiang
- Department of Immunology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, 89 Commercial Rd, Melbourne 3004, VIC, Australia.
| | - Qian Gao
- Department of Immunology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, 89 Commercial Rd, Melbourne 3004, VIC, Australia.
| | - Kirsty L Wilson
- Department of Immunology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, 89 Commercial Rd, Melbourne 3004, VIC, Australia.
| | - Arne Heyerick
- PX Biosolutions Pty Ltd, PO Box 290, South Melbourne 3205, VIC, Australia.
| | - Magdalena Plebanski
- Department of Immunology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, 89 Commercial Rd, Melbourne 3004, VIC, Australia.
| |
Collapse
|
35
|
Peper JK, Bösmüller HC, Schuster H, Gückel B, Hörzer H, Roehle K, Schäfer R, Wagner P, Rammensee HG, Stevanović S, Fend F, Staebler A. HLA ligandomics identifies histone deacetylase 1 as target for ovarian cancer immunotherapy. Oncoimmunology 2015; 5:e1065369. [PMID: 27467910 PMCID: PMC4910750 DOI: 10.1080/2162402x.2015.1065369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 10/28/2022] Open
Abstract
The recent approval of clincially effective immune checkpoint inhibitors illustrates the potential of cancer immunotherapy. A challenging task remains the identification of specific targets guiding immunotherapy. Facilitated by technical advances, the direct identification of physiologically relevant targets is enabled by analyzing the HLA ligandome of cancer cells. Since recent publications demonstrate the immunogenicity of ovarian cancer (OvCa), immunotherapies, including peptide-based cancer vaccines, represent a promising treatment approach. To identify vaccine peptides, we employed a combined strategy of HLA ligandomics in high-grade serous OvCa samples and immunogenicity analysis. Only few proteins were naturally presented as HLA ligands on all samples analyzed, including histone deacetylase (HDAC) 1 and 2. In vitro priming of CD8(+) T cells demonstrated that two HDAC1/2-derived HLA ligands can induce T-cell responses, capable of killing HLA-matched tumor cells. High HDAC1 expression shown by immunohistochemistry in 136 high-grade serous OvCa patients associated with significantly reduced overall survival (OS), whereas patients with high numbers of CD3(+) tumor-infiltrating lymphocytes (TILs) in the tumor epithelium and CD8(+) TILs in the tumor stroma showed improved OS. However, correlating HDAC1 expression with TILs, high levels of TILs abrogated the impact of HDAC1 on OS. This study strengthens the role of HDAC1/2 as an important tumor antigen in OvCa, demonstrating its impact on OS in a large cohort of OvCa patients. We further identified two immunogenic HDAC1-derived peptides, which frequently induce multi-functional T-cell responses in many donors, suitable for future multi-peptide vaccine trials in OvCa patients.
Collapse
Affiliation(s)
- Janet Kerstin Peper
- Department of Immunology, Institute of Cell Biology, University of Tübingen , Tübingen, Germany
| | | | - Heiko Schuster
- Department of Immunology, Institute of Cell Biology, University of Tübingen , Tübingen, Germany
| | - Brigitte Gückel
- Department of Obstetrics and Gynecology, University Hospital of Tübingen , Tübingen, Germany
| | - Helen Hörzer
- Department of Obstetrics and Gynecology, University Hospital of Tübingen , Tübingen, Germany
| | - Kevin Roehle
- Department of Immunology, Institute of Cell Biology, University of Tübingen , Tübingen, Germany
| | - Richard Schäfer
- Department of Clinical and Experimental Transfusion Medicine, University Hospital of Tübingen , Tübingen, Germany
| | - Philipp Wagner
- Department of Obstetrics and Gynecology, University Hospital of Tübingen , Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| | - Falko Fend
- Institute of Pathology, University Hospital of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| | - Annette Staebler
- Institute of Pathology, University Hospital of Tübingen , Tübingen, Germany
| |
Collapse
|
36
|
Cellular immunotherapy in ovarian cancer: Targeting the stem of recurrence. Gynecol Oncol 2015; 137:335-42. [PMID: 25727651 DOI: 10.1016/j.ygyno.2015.02.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/18/2015] [Indexed: 12/17/2022]
Abstract
Ovarian cancer is a devastating disease with a high relapse rate. Due to a mostly asymptomatic early stage and lack of early diagnostic tools, the disease is usually diagnosed in a late stage. Surgery and chemotherapy with taxanes and platinum compounds are very effective in reducing tumor burden. However, relapses occur frequently and there is a lack of credible second-line options. Therefore, new treatment modalities are eagerly awaited. The presence and influx of immune cells in the ovarian cancer tumor microenvironment are correlated with survival. High numbers of infiltrating T cells correlate with improved progression free and overall survival, while the presence of regulatory T cells and expression of T cell inhibitory molecules is correlated with a poor prognosis. These data indicate that immunotherapy, especially cell-based immunotherapy could be a promising novel addition to the treatment of ovarian cancer. Here, we review the available data on the immune contexture surrounding ovarian cancer and discuss novel strategies and targets for immunotherapy in ovarian cancer. In the end the addition of immunotherapy to existing therapeutic options could lead to a great improvement in the outcome of ovarian cancer, especially when targeting cancer stem cells.
Collapse
|
37
|
Leffers N, Daemen T, Helfrich W, Boezen HM, Cohlen BJ, Melief CJM, Nijman HW. Antigen-specific active immunotherapy for ovarian cancer. Cochrane Database Syst Rev 2014:CD007287. [PMID: 25229990 DOI: 10.1002/14651858.cd007287.pub3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Despite advances in chemotherapy, prognosis of ovarian cancer remains poor. Antigen-specific active immunotherapy aims to induce tumour-antigen-specific anti-tumour immune responses as an alternative treatment for ovarian cancer. OBJECTIVES To assess the feasibility of antigen-specific active immunotherapy for ovarian cancer. Primary outcomes are clinical efficacy and antigen-specific immunogenicity with carrier-specific immunogenicity and side effects as secondary outcomes. SEARCH METHODS For the previous version of this review, a systematic search of the Cochrane Central Register of Controlled Trials (CENTRAL) 2009, Issue 3, Cochrane Gynaecological Cancer Group Specialized Register, MEDLINE and EMBASE databases and clinicaltrials.gov was performed (1966 to July 2009). We conducted handsearches of the proceedings of relevant annual meetings (1996 to July 2009).For this update of the review the searches were extended to October 2013. SELECTION CRITERIA Randomised controlled trials (RCTs), as well as non-randomised non-controlled studies that included participants with epithelial ovarian cancer, irrespective of stage of disease, and treated with antigen-specific active immunotherapy, irrespective of type of vaccine, antigen used, adjuvant used, route of vaccination, schedule, and reported clinical or immunological outcomes. DATA COLLECTION AND ANALYSIS Two reviews authors independently performed the data extraction. Risk of bias was evaluated for RCTs according to standard methodological procedures expected by The Cochrane Collabororation or for non-RCTs using a selection of quality domains deemed best applicable to the non-randomised non-controlled studies. MAIN RESULTS Fifty-five studies were included (representing 3051 women with epithelial ovarian cancer). Response definitions showed substantial variation between trials, which makes comparison of trial results unreliable. Information on adverse events was frequently limited. Furthermore, reports of both RCTs and non-RCTs frequently lacked the relevant information necessary to assess risk of bias. Serious biases in most of the included trials can therefore not be ruled out.The largest body of evidence is currently available for CA-125 targeted antibody therapy (16 studies: 2339 participants). Non-RCTs of CA-125 targeted antibody therapy suggests increased survival in humoral and/or cellular responders. However, four large randomised placebo-controlled trials did not show any clinical benefit despite induction of immune responses in approximately 60% of participants.Other small studies targeting many different tumour antigens showed promising immunological results. As these strategies have not yet been tested in RCTs, no reliable inferences about clinical efficacy can be made. Given the promising immunological results, limited side effects and toxicity exploration of clinical efficacy in large well-designed RCTs may be worthwhile. AUTHORS' CONCLUSIONS We conclude that despite promising immunological responses, no clinically effective antigen-specific active immunotherapy is yet available for ovarian cancer. Results should be interpreted cautiously as there was a significant lack of relevant information for the assessment of risk of bias in both RCTs and non-RCTs.
Collapse
Affiliation(s)
- Ninke Leffers
- Obstetrics & Gynecology CB30, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30.001, Groningen, Netherlands, 9700 RB
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Despite major advances in the treatment of ovarian cancer over the past two decades, it is still an incurable disease and requires the development of better treatment strategies. In recent years, we have developed a greater understanding of tumor immunology and the interactions between tumors and the immune system. This has led to the emergence of cancer immunotherapy as the fourth treatment modality in cancer. In this article, we address the principles of immunotherapy and different approaches that have been investigated over the past decade and discuss the future of immune therapy in ovarian cancer.
Collapse
Affiliation(s)
- Yousef Zakharia
- a Georgia Regents University Cancer Center, Augusta, Georgia; and
| | | | | |
Collapse
|
39
|
Kawano K, Tsuda N, Matsueda S, Sasada T, Watanabe N, Ushijima K, Yamaguchi T, Yokomine M, Itoh K, Yamada A, Kamura T. Feasibility study of personalized peptide vaccination for recurrent ovarian cancer patients. Immunopharmacol Immunotoxicol 2014; 36:224-36. [PMID: 24773550 DOI: 10.3109/08923973.2014.913617] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CONTEXT To develop a personalized peptide vaccine (PPV) for recurrent ovarian cancer patients and evaluate its efficacy from the point of view of overall survival (OS), Phase II study of PPV was performed. PATIENTS AND METHODS Forty-two patients, 17 with platinum-sensitive and 25 with platinum-resistant recurrent ovarian cancer, were enrolled in this study and received a maximum of four peptides based on HLA-A types and IgG responses to the peptides in pre-vaccination plasma. RESULTS Expression of 13 of the 15 parental tumor-associated antigens encoding the vaccine peptides, with the two prostate-related antigens being the exceptions, was confirmed in the ovarian cancer tissues. No vaccine-related systemic severe adverse events were observed in any patients. Boosting of cytotoxic T lymphocytes or IgG responses specific for the peptides used for vaccination was observed in 18 or 13 of 42 cases at 6th vaccination, and 19 or 29 of 30 cases at 12th vaccination, respectively. The median survival time (MST) values of the platinum-sensitive- and platinum-resistant recurrent cases were 39.3 and 16.2 months, respectively. The MST of PPV monotherapy or PPV in combination with any chemotherapy during the 1st to 12th vaccination of platinum-sensitive cases was 39.3 or 32.2 months, and that of platinum-resistant cases was 16.8 or 16.1 months, respectively. Importantly, lymphocyte frequency and epitope spreading were significantly prognostic of OS. DISCUSSION AND CONCLUSION Because of the safety and possible prolongation of OS, a clinical trial of PPV without chemotherapy during the 1st to 12th vaccination in recurrent ovarian cancer patients is merited.
Collapse
|
40
|
Abstract
In an attempt to significantly enhance immunogenicity of peptide cancer vaccines, we developed a novel non-emulsion depot-forming vaccine platform called DepoVax™ (DPX). Human leukocyte antigen (HLA)-A2 restricted peptides naturally presented by cancer cells were used as antigens to create a therapeutic cancer vaccine, DPX-0907. In a phase I clinical study, the safety and immune-activating potential of DPX-0907 in advanced-stage breast, ovarian, and prostate cancer patients were examined, following encouraging results in HLA-A2 transgenic mice. The DPX-0907 vaccine was shown to be safe and well tolerated, with injection-site reactions being the most commonly reported adverse event. Vaccinated cancer patients exhibited a 61% immune response rate, with higher response rates in the breast and ovarian cancer patient cohorts. In keeping with the higher immune efficacy of this vaccine platform, antigen-specific responses were detected in 73% of immune responders after just one vaccination. In 83% of responders, peptide-specific T-cells were detected at two or more time points post-vaccination, with 64% of these patients showing evidence of immune persistence. Immune monitoring also demonstrated the generation of antigen-specific T-cell memory, with the ability to secrete multiple type 1 cytokines. The novel DPX formulation promotes multifunctional effector/memory responses to peptide-based tumor-associated antigens. The data support the capacity of DPX-0907 to elicit type-1 biased immune responses, warranting further clinical development of the vaccine. In this review, we discuss the rationale for developing DPX-based therapeutic cancer vaccine(s), with a focus on DPX-0907, aimed at inducing efficient anti-tumor immunity that may eventually be shown to prolong patient survival.
Collapse
Affiliation(s)
- Mohan Karkada
- ImmunoVaccine Inc, Dalhousie University, Halifax, NS, Canada ; Department of Microbiology/Immunology, Dalhousie University, Halifax, NS, Canada
| | | | - Marc Mansour
- ImmunoVaccine Inc, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
41
|
Abstract
BACKGROUND Immunotherapies and targeted therapies are frequently associated with thyroid dysfunction, which is in contrast with the rare thyroid abnormalities induced by cytotoxic agents. Immunotherapy with NY-ESO-1, a tumor-associated antigen expressed by a number of malignancies, was reported to trigger hyperthyroidism or hypothyroidism in two HLA-A2 patients with ovarian cancer. We describe now a case of Graves' disease triggered by NY-ESO-1 in a HLA-A2-negative woman. PATIENT FINDINGS A 32-year-old woman with a synovial sarcoma received radiotherapy, chemotherapy, and finally NY-ESO-1 vaccine. The patient was found to have HLA A11/A33(19), B13/B56(22), Cw3/-. One month after the beginning of immunotherapy, thyroid dysfunction was clinically suspected and Graves' disease was biochemically confirmed. Fearful of the antithyroid drugs' side effects, the patient was treated with a beta-blocker (propranolol, 80-20 mg/day). As hyperthyroidism progressively worsened, the patient underwent total thyroidectomy. We hypothesized that NY-ESO-1 shared partial homology with thyroid autoantigens (the so-called molecular mimicry mechanism) and that at least one pair of homologous sequences contained amino acid sequence binding motifs to a restricted number of HLA molecules. We used BLAST software to search amino acid sequence homologies between NY-ESO-1 and thyroid autoantigens (thyrotropin receptor [TSH-R], thyroperoxidase, and thyroglobulin), and the HLA ligand/motif database to look for HLA/T-cell receptor binding motifs in the regions of NY-ESO-1 and thyroid autoantigens that were homologous. We found 15 epitopic regions of NY-ESO-1 homologous to 15 regions of thyroid autoantigens, some of which epitopic: 5 of TSH-R, 8 of thyroglobulin, and 2 of thyroperoxidase. These homologous sequences contain binding motifs belonging to several HLA class I antigens, including HLA A2 and the patient's A11 and A33. SUMMARY Genetically predisposed patients who receive NY-ESO-1 vaccination are at risk to develop thyroid dysfunction. CONCLUSIONS Considering the increasing use of NY-ESO-1, thyroid dysfunctions induced by NY-ESO-1 are expected to increase in cancer patients over the next years.
Collapse
Affiliation(s)
- Roberto Vita
- Section of Endocrinology, University of Messina, Messina, Italy
| | - Fabrizio Guarneri
- Section of Dermatology, Department of Clinical & Experimental Medicine, University of Messina, Messina, Italy
| | - Ravin Agah
- Internal Medicine, Palo Alto Medical Foundation, Mountain View, California
| | - Salvatore Benvenga
- Section of Endocrinology, University of Messina, Messina, Italy
- Section of Master's Program on Childhood, Adolescence & Women's Endocrine Health, University of Messina, Messina, Italy
- Interdepartmental Program of Molecular & Clinical Endocrinology and Women's Endocrine Health, A.O.U. Policlinico G. Martino, Messina, Italy
| |
Collapse
|
42
|
Scarlett UK, Conejo-Garcia JR. Modulating the tumor immune microenvironment as an ovarian cancer treatment strategy. ACTA ACUST UNITED AC 2014; 7:413-419. [PMID: 24039628 DOI: 10.1586/eog.12.41] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
After more than 30 years of iterations of surgical debulking plus chemotherapy, the need for complementary ovarian cancer treatments has become clear. In the ovarian cancer microenvironment, myeloid immunosuppressive leukocytes, lymphocytes, fibroblasts and endothelial cells, as well as their secreted products, surface molecules and paracrine survival factors, all provide opportunities for novel interventions. The potential of targeting microenvironmental elements in ovarian cancer patients is underscored by recently successful anti-angiogenic therapies. The compartmentalized nature of ovarian cancer, its immunogenicity and its accessibility make it an ideal disease for targeting non-tumor host cells. This review discusses the 'state-of-the-art' of the field, with an emphasis on the potential of modulating the activity of abundant microenvironmental immune cells, which govern both angiogenesis and immunosuppression.
Collapse
Affiliation(s)
- Uciane K Scarlett
- Tumor Microenvironment and Metastasis Program. The Wistar Institute. Philadelphia, PA 19104, USA
| | | |
Collapse
|
43
|
Lavoué V, Foucher F, Henno S, Bauville E, Catros V, Cabillic F, Levêque J. [Immunotherapy in epithelial ovarian carcinoma: hope and reality]. ACTA ACUST UNITED AC 2013; 43:198-210. [PMID: 24230482 DOI: 10.1016/j.jgyn.2013.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Epithelial ovarian carcinoma (EOC) has a worst prognosis with little progress in terms of survival for the last two decades. Immunology received little interest in EOC in the past, but now appears very important in the natural history of this cancer. This review is an EOC immunology state of art and focuses on the place of immunotherapy in future. MATERIAL AND METHODS A systematic review of published studies was performed. Medline baseline interrogation was performed with the following keywords: "Ovarian carinoma, immunotherapy, T-lymphocyte, regulator T-lymphocyte, dendritic cells, macrophage, antigen, chemotherapy, surgery, clinical trials". Identified publications (English or French) were assessed for the understanding of EOC immunology and the place of conventional treatment and immunotherapy strategy. RESULTS Intratumoral infiltration by immune cells is a strong prognotic factor in EOC. Surgery and chemotherapy in EOC decrease imunosuppression in patients. The antitumoral immunity is a part of the therapeutic action of surgery and chemotherapy. Until now, immunotherapy gave some disappointing results, but the new drugs that target the tolerogenic tumoral microenvironnement rise and give a new hope in the treatment of cancer. CONCLUSION Immunology controls the EOC natural history. The modulation of immunosuppressive microenvironment associated with the stimulation of antitumoral immunity could be the next revolution in the treatment of cancer.
Collapse
Affiliation(s)
- V Lavoué
- Service de chirurgie gynécologique, centre hospitalier universitaire de Rennes, 35000 Rennes, France; Faculté de médecine, université de Rennes 1, 35000 Rennes, France; Inserm, UMR991, 35000 Rennes, France.
| | - F Foucher
- Service de chirurgie gynécologique, centre hospitalier universitaire de Rennes, 35000 Rennes, France
| | - S Henno
- Service d'anatomo-pathologie, centre hospitalier universitaire de Rennes, 35000 Rennes, France
| | - E Bauville
- Service de chirurgie gynécologique, centre hospitalier universitaire de Rennes, 35000 Rennes, France
| | - V Catros
- Faculté de médecine, université de Rennes 1, 35000 Rennes, France; Inserm, UMR991, 35000 Rennes, France; Service de biologie cellulaire, centre hospitalier universitaire de Rennes, 35000 Rennes, France
| | - F Cabillic
- Faculté de médecine, université de Rennes 1, 35000 Rennes, France; Inserm, UMR991, 35000 Rennes, France; Service de biologie cellulaire, centre hospitalier universitaire de Rennes, 35000 Rennes, France
| | - J Levêque
- Service de chirurgie gynécologique, centre hospitalier universitaire de Rennes, 35000 Rennes, France; Faculté de médecine, université de Rennes 1, 35000 Rennes, France
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW In this article, we will consider the failure of thyroid hormone replacement therapy to normalize serum thyroid stimulating hormone concentrations. We will review circumstances and causes for failures, discuss pertinent unpublished personal cases of didactical value, and provide practical suggestions for providers encountering patients with similar presentations. RECENT FINDINGS Recent data are available on the benefit of novel formulations of levothyroxine therapy on malabsorption. SUMMARY Most frequently, reasons for ineffectiveness are noncompliance, inappropriate administration of levothyroxine, gastrointestinal disorders, and drug interactions. The diagnostic work-up should include careful history to elucidate the potential reasons for the ineffective therapy.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| |
Collapse
|
45
|
Abstract
While therapeutic vaccines for ovarian cancer represent only a small fraction of active clinical trials, growing interest in this area and the accumulated data supporting the use of vaccines in cancer treatment portend further expansion of trials incorporating these strategies. This review explores the rationale for the use of vaccines for the treatment of ovarian cancer. It examines vaccine platforms that have been investigated and reviews the data from these studies. We also highlight recently reported phase 2 and 3 clinical trials with clinical outcomes as endpoints. Finally, we consider directions for the next generation of vaccines in light of these findings and our emerging understanding of agents that may augment vaccine responses by targeting the immunosuppressive impact of the tumor microenvironment.
Collapse
|
46
|
Lavoué V, Thédrez A, Levêque J, Foucher F, Henno S, Jauffret V, Belaud-Rotureau MA, Catros V, Cabillic F. Immunity of human epithelial ovarian carcinoma: the paradigm of immune suppression in cancer. J Transl Med 2013; 11:147. [PMID: 23763830 PMCID: PMC3683338 DOI: 10.1186/1479-5876-11-147] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/27/2013] [Indexed: 12/21/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a significant cause of cancer-related mortality in women, and there has been no substantial decrease in the death rates due to EOC in the last three decades. Thus, basic knowledge regarding ovarian tumor cell biology is urgently needed to allow the development of innovative treatments for EOC. Traditionally, EOC has not been considered an immunogenic tumor, but there is evidence of an immune response to EOC in patients. Clinical data demonstrate that an antitumor immune response and immune evasion mechanisms are correlated with a better and lower survival, respectively, providing evidence for the immunoediting hypothesis in EOC. This review focuses on the immune response and immune suppression in EOC. The immunological roles of chemotherapy and surgery in EOC are also described. Finally, we detail pilot data supporting the efficiency of immunotherapy in the treatment of EOC and the emerging concept that immunomodulation aimed at counteracting the immunosuppressive microenvironment must be associated with immunotherapy strategies.
Collapse
Affiliation(s)
- Vincent Lavoué
- Lady Davis Institut, Jewish General Hospital, McGill University, Montreal QC H3T 1E2, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Stiff PJ, Czerlanis C, Drakes ML. Dendritic cell immunotherapy in ovarian cancer. Expert Rev Anticancer Ther 2013; 13:43-53. [PMID: 23259426 DOI: 10.1586/era.12.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is one of the most frequent gynecological malignancies. However, as there is no effective screening method to detect early disease, it is usually only diagnosed when already widespread in the abdomen. The majority of patients diagnosed with advanced-stage disease will relapse and require additional therapy. In the search for additional effective treatments for the management of recurrent disease, researchers have focused on the potential usefulness of immunotherapeutic modulation by administering autologous immune cells, such as dendritic cells (DCs), to stimulate antitumor host responses. With the ultimate goal of improved survival, this review addresses mechanisms in ovarian cancer that may limit the expansion of antitumor immunity, discusses the parameters to be considered for optimal DC immunotherapy, outlines evaluation methodology used to monitor the success of treatment regimens and reviews reported DC immunotherapy trials in ovarian cancer.
Collapse
Affiliation(s)
- Patrick J Stiff
- Department of Medicine, Division of Hematology & Oncology, Cardinal Bernardin Cancer Center, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | | | | |
Collapse
|
48
|
Affiliation(s)
- Rachel Lubong Sabado
- NYU Langone Medical Center Cancer Institute; New York University School of Medicine, New York; New York
| | - Nina Bhardwaj
- NYU Langone Medical Center Cancer Institute; New York University School of Medicine, New York; New York
| |
Collapse
|
49
|
Agarwal S, Saini S, Parashar D, Verma A, Sinha A, Jagadish N, Batra A, Suri S, Gupta A, Ansari AS, Lohiya NK, Suri A. The novel cancer-testis antigen A-kinase anchor protein 4 (AKAP4) is a potential target for immunotherapy of ovarian serous carcinoma. Oncoimmunology 2013; 2:e24270. [PMID: 23762804 PMCID: PMC3667910 DOI: 10.4161/onci.24270] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is one of the neoplasms affecting the reproductive tract associated with high mortality rate because of limited therapeutic options and an elevated incidence of chemoresistance and recurrence. In this context, immunotherapy may constitute a promising approach to improve survival rates and clinical outcome, raising the need for specific target antigens. Cancer-testis antigens (CTAs) are considered promising candidates in this sense because they are aberrant expressed by various malignancies but not by non-transformed tissue, with the exception of testes. Here, we examined the expression and potential to promote humoral immune responses of a novel CTA, A-kinase anchor protein 4 (AKAP4), among 38 ovarian carcinoma patients. Our results reveal that AKAP4 was expressed at both the mRNA and protein levels in 89% (34/38) of ovarian carcinoma tissue specimens but not in 21 matched adjacent non-cancerous tissues. In addition, a humoral response against AKAP4 was detected in 58% (22/38) of ovarian carcinoma patients by ELISA. In particular, 65% (22/34) patients bearing an AKAP4-expressing tumor exhibited circulating anti-AKAP4 antibodies. Interestingly, the majority of specimens were categorized as ovarian serous adenocarcinoma and serous papillary carcinoma, of which 93% (28/30) and 100% (6/6), respectively, expressed AKAP4. A humoral response against AKAP4 was detected in 79% (19/24) and 67% (4/6) of ovarian serous adenocarcinoma and serous papillary carcinoma patients, respectively. The presence of circulating anti-AKAP4 antibodies suggests the AKAP4 is highly immunogenic in ovarian serous carcinoma patients. Our study lays the foundations for exploring AKAP4 as a potential target for the immunotherapy of ovarian cancer.
Collapse
Affiliation(s)
- Sumit Agarwal
- Cancer Microarray; Genes and Proteins Laboratory; National Institute of Immunology; Aruna Asaf Ali Marg; New Delhi, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sabbatini P, Tsuji T, Ferran L, Ritter E, Sedrak C, Tuballes K, Jungbluth AA, Ritter G, Aghajanian C, Bell-McGuinn K, Hensley ML, Konner J, Tew W, Spriggs DR, Hoffman EW, Venhaus R, Pan L, Salazar AM, Diefenbach CM, Old LJ, Gnjatic S. Phase I Trial of Overlapping Long Peptides from a Tumor Self-Antigen and Poly-ICLC Shows Rapid Induction of Integrated Immune Response in Ovarian Cancer Patients. Clin Cancer Res 2012; 18:6497-508. [DOI: 10.1158/1078-0432.ccr-12-2189] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|