1
|
Eshraghi R, Shafie D, Raisi A, Goleij P, Mirzaei H. Circular RNAs: a small piece in the heart failure puzzle. Funct Integr Genomics 2024; 24:102. [PMID: 38760573 DOI: 10.1007/s10142-024-01386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Cardiovascular disease, specifically heart failure (HF), remains a significant concern in the realm of healthcare, necessitating the development of new treatments and biomarkers. The RNA family consists of various subgroups, including microRNAs, PIWI-interacting RNAs (piRAN) and long non-coding RNAs, which have shown potential in advancing personalized healthcare for HF patients. Recent research suggests that circular RNAs, a lesser-known subgroup of RNAs, may offer a novel set of targets and biomarkers for HF. This review will discuss the biogenesis of circular RNAs, their unique characteristics relevant to HF, their role in heart function, and their potential use as biomarkers in the bloodstream. Furthermore, future research directions in this field will be outlined. The stability of exosomal circRNAs makes them suitable as biomarkers, pathogenic regulators, and potential treatments for cardiovascular diseases such as atherosclerosis, acute coronary syndrome, ischemia/reperfusion injury, HF, and peripheral artery disease. Herein, we summarized the role of circular RNAs and their exosomal forms in HF diseases.
Collapse
Affiliation(s)
- Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran.
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Chen X, Wang L, Yang M, Zhao W, Tu J, Liu B, Yuan X. RUNX transcription factors: biological functions and implications in cancer. Clin Exp Med 2024; 24:50. [PMID: 38430423 PMCID: PMC10908630 DOI: 10.1007/s10238-023-01281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/10/2023] [Indexed: 03/03/2024]
Abstract
Runt-related transcription factors (RUNX) are a family of transcription factors that are essential for normal and malignant hematopoietic processes. Their most widely recognized role in malignancy is to promote the occurrence and development of acute myeloid leukemia. However, it is worth noting that during the last decade, studies of RUNX proteins in solid tumors have made considerable progress, suggesting that these proteins are directly involved in different stages of tumor development, including tumor initiation, progression, and invasion. RUNX proteins also play a role in tumor angiogenesis, the maintenance of tumor cell stemness, and resistance to antitumor drugs. These findings have led to the consideration of RUNX as a tumor biomarker. All RUNX proteins are involved in the occurrence and development of solid tumors, but the role of each RUNX protein in different tumors and the major signaling pathways involved are complicated by tumor heterogeneity and the interacting tumor microenvironment. Understanding how the dysregulation of RUNX in tumors affects normal biological processes is important to elucidate the molecular mechanisms by which RUNX affects malignant tumors.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Mu Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| |
Collapse
|
3
|
Zhang S, Li P, Li J, Gao J, Qi Q, Dong G, Liu X, Jiao Q, Wang Y, Du L, Zhan H, Xu S, Wang C. Chromatin accessibility uncovers KRAS-driven FOSL2 promoting pancreatic ductal adenocarcinoma progression through up-regulation of CCL28. Br J Cancer 2023; 129:426-443. [PMID: 37380804 PMCID: PMC10403592 DOI: 10.1038/s41416-023-02313-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/10/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND The epigenetic mechanisms involved in the progression of pancreatic ductal adenocarcinoma (PDAC) remain largely unexplored. This study aimed to identify key transcription factors (TFs) through multiomics sequencing to investigate the molecular mechanisms of TFs that play critical roles in PDAC. METHODS To characterise the epigenetic landscape of genetically engineered mouse models (GEMMs) of PDAC with or without KRAS and/or TP53 mutations, we employed ATAC-seq, H3K27ac ChIP-seq, and RNA-seq. The effect of Fos-like antigen 2 (FOSL2) on survival was assessed using the Kaplan-Meier method and multivariate Cox regression analysis for PDAC patients. To study the potential targets of FOSL2, we performed Cleavage Under Targets and Tagmentation (CUT&Tag). To explore the functions and underlying mechanisms of FOSL2 in PDAC progression, we employed several assays, including CCK8, transwell migration and invasion, RT-qPCR, Western blotting analysis, IHC, ChIP-qPCR, dual-luciferase reporter, and xenograft models. RESULTS Our findings indicated that epigenetic changes played a role in immunosuppressed signalling during PDAC progression. Moreover, we identified FOSL2 as a critical regulator that was up-regulated in PDAC and associated with poor prognosis in patients. FOSL2 promoted cell proliferation, migration, and invasion. Importantly, our research revealed that FOSL2 acted as a downstream target of the KRAS/MAPK pathway and recruited regulatory T (Treg) cells by transcriptionally activating C-C motif chemokine ligand 28 (CCL28). This discovery highlighted the role of an immunosuppressed regulatory axis involving KRAS/MAPK-FOSL2-CCL28-Treg cells in the development of PDAC. CONCLUSION Our study uncovered that KRAS-driven FOSL2 promoted PDAC progression by transcriptionally activating CCL28, revealing an immunosuppressive role for FOSL2 in PDAC.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Jie Gao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Qiuchen Qi
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Guoying Dong
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Qinlian Jiao
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, 15166 Century Avenue, 250101, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Hanxiang Zhan
- Department of General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China.
| | - Shuo Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China.
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China.
| |
Collapse
|
4
|
Wozniak M, Czyz M. lncRNAs-EZH2 interaction as promising therapeutic target in cutaneous melanoma. Front Mol Biosci 2023; 10:1170026. [PMID: 37325482 PMCID: PMC10265524 DOI: 10.3389/fmolb.2023.1170026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Melanoma is the most lethal skin cancer with increasing incidence worldwide. Despite a great improvement of diagnostics and treatment of melanoma patients, this disease is still a serious clinical problem. Therefore, novel druggable targets are in focus of research. EZH2 is a component of the PRC2 protein complex that mediates epigenetic silencing of target genes. Several mutations activating EZH2 have been identified in melanoma, which contributes to aberrant gene silencing during tumor progression. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are molecular "address codes" for EZH2 silencing specificity, and targeting lncRNAs-EZH2 interaction may slow down the progression of many solid cancers, including melanoma. This review summarizes current knowledge regarding the involvement of lncRNAs in EZH2-mediated gene silencing in melanoma. The possibility of blocking lncRNAs-EZH2 interaction in melanoma as a novel therapeutic option and plausible controversies and drawbacks of this approach are also briefly discussed.
Collapse
Affiliation(s)
- Michal Wozniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
5
|
Yakimov AM, Timechko EE, Areshkina IG, Usoltseva AA, Yakovleva KD, Kantimirova EA, Utyashev N, Ivin N, Dmitrenko DV. MicroRNAs as Biomarkers of Surgical Outcome in Mesial Temporal Lobe Epilepsy: A Systematic Review. Int J Mol Sci 2023; 24:ijms24065694. [PMID: 36982768 PMCID: PMC10052204 DOI: 10.3390/ijms24065694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Mesial temporal lobe epilepsy is the most common type of epilepsy. For most patients suffering from TLE, the only treatment option is surgery. However, there is a high possibility of relapse. Invasive EEG as a method for predicting the outcome of surgical treatment is a very complex and invasive manipulation, so the search for outcome biomarkers is an urgent task. MicroRNAs as potential biomarkers of surgical outcome are the subject of this study. For this study, a systematic search for publications in databases such as PubMed, Springer, Web of Science, Scopus, ScienceDirect, and MDPI was carried out. The following keywords were used: temporal lobe epilepsy, microRNA, biomarkers, surgery, and outcome. Three microRNAs were studied as prognostic biomarkers of surgical outcome: miR-27a-3p, miR-328-3p, and miR-654-3p. According to the results of the study, only miR-654-3p showed a good ability to discriminate between patients with poor and good surgical outcomes. MiR-654-3p is involved in the following biological pathways: ATP-binding cassette drug transporters, glutamate transporter SLC7A11, and TP53. A specific target for miR-654-3p is GLRA2, the glycine receptor subunit. MicroRNAs, which are diagnostic biomarkers of TLE, and epileptogenesis, miR-134-5p, MiR-30a, miRs-143, etc., can be considered as potential biomarkers of surgical outcome, as they can be indicators of early and late relapses. These microRNAs are involved in the processes characteristic of epilepsy: oxidative stress and apoptosis. The study of miRNAs as potential predictive biomarkers of surgical outcome is an urgent task and should be continued. However, when studying miRNA expression profiles, it is important to take into account and note a number of factors, such as the type of sample under study, the time of sampling for the study, the type and duration of the disease, and the type of antiepileptic treatment. Without taking into account all these factors, it is impossible to assess the influence and involvement of miRNAs in epileptic processes.
Collapse
Affiliation(s)
- Alexey M. Yakimov
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Elena E. Timechko
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Correspondence: (E.E.T.); (D.V.D.)
| | - Irina G. Areshkina
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Anna A. Usoltseva
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Kristina D. Yakovleva
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Elena A. Kantimirova
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Nikita Utyashev
- Federal State Budgetary Institution “National Medical and Surgical Center Named after N.I. Pirogov”, 105203 Moscow, Russia
| | - Nikita Ivin
- Federal State Budgetary Institution “National Medical and Surgical Center Named after N.I. Pirogov”, 105203 Moscow, Russia
| | - Diana V. Dmitrenko
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Correspondence: (E.E.T.); (D.V.D.)
| |
Collapse
|
6
|
A novel prognostic model for cutaneous melanoma based on an immune-related gene signature and clinical variables. Sci Rep 2022; 12:20374. [PMID: 36437242 PMCID: PMC9701680 DOI: 10.1038/s41598-022-23475-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/01/2022] [Indexed: 11/29/2022] Open
Abstract
Abundant evidence has indicated that the prognosis of cutaneous melanoma (CM) patients is highly complicated by the tumour immune microenvironment. We retrieved the clinical data and gene expression data of CM patients in The Cancer Genome Atlas (TCGA) database for modelling and validation analysis. Based on single-sample gene set enrichment analysis (ssGSEA) and consensus clustering analysis, CM patients were classified into three immune level groups, and the differences in the tumour immune microenvironment and clinical characteristics were evaluated. Seven immune-related CM prognostic molecules, including three mRNAs (SUCO, BTN3A1 and TBC1D2), three lncRNAs (HLA-DQB1-AS1, C9orf139 and C22orf34) and one miRNA (hsa-miR-17-5p), were screened by differential expression analysis, ceRNA network analysis, LASSO Cox regression analysis and univariate Cox regression analysis. Their biological functions were mainly concentrated in the phospholipid metabolic process, transcription regulator complex, protein serine/threonine kinase activity and MAPK signalling pathway. We established a novel prognostic model for CM integrating clinical variables and immune molecules that showed promising predictive performance demonstrated by receiver operating characteristic curves (AUC ≥ 0.74), providing a scientific basis for predicting the prognosis and improving the clinical outcomes of CM patients.
Collapse
|
7
|
Liu F, Li S. Non-coding RNAs in skin cancers:Biological roles and molecular mechanisms. Front Pharmacol 2022; 13:934396. [PMID: 36034860 PMCID: PMC9399465 DOI: 10.3389/fphar.2022.934396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cutaneous malignancies, including basal cell carcinoma, cutaneous squamous cell carcinoma, and cutaneous melanoma, are common human tumors. The incidence of cutaneous malignancies is increasing worldwide, and the leading cause of death is malignant invasion and metastasis. The molecular biology of oncogenes has drawn researchers’ attention because of the potential for targeted therapies. Noncoding RNAs, including microRNAs, long noncoding RNAs, and circular RNAs, have been studied extensively in recent years. This review summarizes the aspects of noncoding RNAs related to the metastasis mechanism of skin malignancies. Continuous research may facilitate the identification of new therapeutic targets and help elucidate the mechanism of tumor metastasis, thus providing new opportunities to improve the survival rate of patients with skin malignancies.
Collapse
|
8
|
Sepúlveda M, Arauna D, García F, Albala C, Palomo I, Fuentes E. Frailty in Aging and the Search for the Optimal Biomarker: A Review. Biomedicines 2022; 10:1426. [PMID: 35740447 PMCID: PMC9219911 DOI: 10.3390/biomedicines10061426] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 01/09/2023] Open
Abstract
In the context of accelerated aging of the population worldwide, frailty has emerged as one of the main risk factors that can lead to loss of self-sufficiency in older people. This syndrome is defined as a reduced state of physiological reserve and functional capacity. The main diagnostic tools for frailty are based on scales that show deficits compared to their clinical application, such as the Fried frailty phenotype, among others. In this context, it is important to have one or more biomarkers with clinical applicability that can objectively and precisely determine the degree or risk of frailty in older people. The objective of this review was to analyze the biomarkers associated with frailty, classified according to the pathophysiological components of this syndrome (inflammation, coagulation, antioxidants, and liver function, among others). The evidence demonstrates that biomarkers associated with inflammation, oxidative stress, skeletal/cardiac muscle function, and platelet function represent the most promising markers of frailty due to their pathophysiological association with this syndrome. To a lesser extent but with the possibility of greater innovation, biomarkers associated with growth factors, vitamins, amino acids, and miRNAs represent alternatives as markers of this geriatric syndrome. Likewise, the incorporation of artificial intelligence represents an interesting approach to strengthening the diagnosis of frailty by biomarkers.
Collapse
Affiliation(s)
- Magdalena Sepúlveda
- Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Interuniversity Center for Healthy Aging, Universidad de Talca, Talca 3480094, Chile; (M.S.); (D.A.)
| | - Diego Arauna
- Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Interuniversity Center for Healthy Aging, Universidad de Talca, Talca 3480094, Chile; (M.S.); (D.A.)
| | - Francisco García
- Department of Geriatric Medicine, Complejo Hospitalario de Toledo, 45007 Toledo, Spain;
| | - Cecilia Albala
- Unidad de Nutrición Pública, Instituto de Nutrición y Tecnología de los Alimentos, Interuniversity Center for Healthy Aging, Universidad de Chile, Santiago 8320000, Chile;
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Interuniversity Center for Healthy Aging, Universidad de Talca, Talca 3480094, Chile; (M.S.); (D.A.)
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Interuniversity Center for Healthy Aging, Universidad de Talca, Talca 3480094, Chile; (M.S.); (D.A.)
| |
Collapse
|
9
|
Prazak L, Iwasaki Y, Kim AR, Kozlov K, King K, Gergen JP. A dual role for DNA binding by Runt in activation and repression of sloppy paired transcription. Mol Biol Cell 2021; 32:ar26. [PMID: 34432496 PMCID: PMC8693977 DOI: 10.1091/mbc.e20-08-0509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This work investigates the role of DNA binding by Runt in regulating the sloppy paired 1 (slp1) gene and in particular two distinct cis-regulatory elements that mediate regulation by Runt and other pair-rule transcription factors during Drosophila segmentation. We find that a DNA-binding-defective form of Runt is ineffective at repressing both the distal (DESE) and proximal (PESE) early stripe elements of slp1 and is also compromised for DESE-dependent activation. The function of Runt-binding sites in DESE is further investigated using site-specific transgenesis and quantitative imaging techniques. When DESE is tested as an autonomous enhancer, mutagenesis of the Runt sites results in a clear loss of Runt-dependent repression but has little to no effect on Runt-dependent activation. Notably, mutagenesis of these same sites in the context of a reporter gene construct that also contains the PESE enhancer results in a significant reduction of DESE-dependent activation as well as the loss of repression observed for the autonomous mutant DESE enhancer. These results provide strong evidence that DNA binding by Runt directly contributes to the regulatory interplay of interactions between these two enhancers in the early embryo.
Collapse
Affiliation(s)
- Lisa Prazak
- Department of Biology, Farmingdale State College, Farmingdale, NY 11735-1021.,Department of Biochemistry and Cell Biology and Center for Developmental Genetics.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Yasuno Iwasaki
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics
| | - Ah-Ram Kim
- Graduate Program in Biochemistry and Structural Biology, and
| | - Konstantin Kozlov
- Department of Applied Mathematics, St. Petersburg State Polytechnical University, St. Petersburg, Russia 195251
| | - Kevin King
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - J Peter Gergen
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics
| |
Collapse
|
10
|
Bona Fide Tumor Suppressor Genes Hypermethylated in Melanoma: A Narrative Review. Int J Mol Sci 2021; 22:ijms221910674. [PMID: 34639015 PMCID: PMC8508892 DOI: 10.3390/ijms221910674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022] Open
Abstract
Loss-of-function events in tumor suppressor genes (TSGs) contribute to the development and progression of cutaneous malignant melanoma (CMM). Epigenetic alterations are the major mechanisms of TSG inactivation, in particular, silencing by promoter CpG-island hypermethylation. TSGs are valuable tools in diagnosis and prognosis and, possibly, in future targeted therapy. The aim of this narrative review is to outline bona fide TSGs affected by promoter CpG-island hypermethylation and their functional role in the progression of CMM. We conducted a systematic literature review to identify studies providing evidence of bona fide TSGs by cell line or animal experiments. We performed a broad first search and a gene-specific second search, supplemented by reference checking. We included studies describing bona fide TSGs in CMM with promoter CpG-island hypermethylation in which inactivating mechanisms were reported. We extracted data about protein role, pathway, experiments conducted to meet the bona fide criteria and hallmarks of cancer acquired by TSG inactivation. A total of 24 studies were included, describing 24 bona fide TSGs silenced by promoter CpG-island hypermethylation in CMM. Their effect on cell proliferation, apoptosis, growth, senescence, angiogenesis, migration, invasion or metastasis is also described. These data give further insight into the role of TSGs in the progression of CMM.
Collapse
|
11
|
Xiao Y, Xia Y, Wang Y, Xue C. Pathogenic roles of long noncoding RNAs in melanoma: Implications in diagnosis and therapies. Genes Dis 2021; 10:113-125. [PMID: 37013035 PMCID: PMC10066279 DOI: 10.1016/j.gendis.2021.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Melanoma is one of the most dangerous types of cutaneous neoplasms, which are pigment-producing cells of neuroectodermal origin found all over the body. A great deal of research is focused on the mechanisms of melanoma to promote better diagnostic and treatment options for melanoma in its advanced stages. The progression of melanoma involves alteration in different levels of gene expression. With the successful implementation of next-generation sequencing technology, an increasing number of long noncoding RNAs (lncRNAs) sequences have been discovered, and a significant number of them have phenotypic effects in both in vitro and in vivo studies, implying that they play an important role in the occurrence and progression of human cancers, particularly melanoma. A number of evidence indicated that lncRNAs are important regulators in tumor cell proliferation, invasion, apoptosis, immune escape, energy metabolism, drug resistance, epigenetic regulation. To better understand the role of lncRNAs in melanoma tumorigenesis, we categorize melanoma-associated lncRNAs according to their cellular functions and associations with gene expression and signaling pathways in this review. Based on the mechanisms of lncRNA, we discuss the possibility of lncRNA-target treatments, and the application of liquid biopsies to detect lncRNAs in melanoma diagnosis and prognosis.
Collapse
|
12
|
Shang C, Li Y, He T, Liao Y, Du Q, Wang P, Qiao J, Guo H. The prognostic miR-532-5p-correlated ceRNA-mediated lipid droplet accumulation drives nodal metastasis of cervical cancer. J Adv Res 2021; 37:169-184. [PMID: 35499057 PMCID: PMC9040090 DOI: 10.1016/j.jare.2021.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/15/2022] Open
Abstract
The prognostic miR-532-5p inhibited epithelial-mesenchymal transition and lymphangiogenesis by regulating lipid droplets accumulation. miR-532-5p-correlated ceRNA network in which LINC01410 directly bound to miR-532-5p effectively functioned as a sponge for miR-532-5p to disinhibit its target gene-FASN. Combined therapy with miR-532-5p and FASN inhibitor-orlistat blocked lymph node metastasis and tumor growth.
Introduction The prognosis for cervical cancer (CC) patients with lymph node metastasis (LNM) is extremely poor. Lipid droplets (LDs) have a pivotal role in promoting tumor metastasis. The crosstalk mechanism between LDs and LNM modulated in CC remains largely unknown. Objectives This study aimed to construct a miRNA-dependent progonostic model for CC patients and investigate whether miR-532-5p has a biological impact on LNM by regualting LDs accumulation. Methods LASSO-Cox regression was applied to establish a prognostic prediction model. miR-532-5p had the lowest P-value in RNA expression (P < 0.001) and prognostic prediction (P < 0.0001) and was selected for further study. The functional role of the prognostic miR-532-5p-correlated competing endogenous RNA (ceRNA) network was investigated to clarify the crosstalk between LDs and LNM. The underlying mechanism was determined using site-directed mutagenesis, dual luciferase reporter assays, RNA immunoprecipitation assays, and rescue experiments. A xenograft LNM model was established to evaluate the effect of miR-532-5p and orlistat combination therapy on tumor growth and LNM. Results A novel 5-miRNAs prognostic signature was constructed to better predict the prognosis of CC patient. Further study demonstrated that miR-532-5p inhibited epithelial-mesenchymal transition and lymphangiogenesis by regulating LDs accumulation. Interestingly, we also found that LDs accumulation promoted cell metastasis in vitro. Mechanistically, we demonstrated a miR-532-5p-correlated ceRNA network in which LINC01410 was bound directly to miR-532-5p and effectively functioned as miR-532-5p sponge to disinhibit its target gene-fatty acid synthase (FASN). Combined therapy with miR-532-5p and FASN inhibitor-orlistat further inhibited tumor growth and LNM in vivo. Conclusion Our findings highlight a LD accumulation-dependent mechanism of miR-532-5p-modulated LNM and support treatment with miR-532-5p/orlistat as novel strategy for treating patients with LNM in CC.
Collapse
Affiliation(s)
- Chunliang Shang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 100191 Beijing, China
| | - Yuan Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 100191 Beijing, China
| | - Tianhui He
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 100191 Beijing, China
| | - Yuandong Liao
- Department of Obstetrics and Gynecology, The First Affliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China
| | - Qiqiao Du
- Department of Obstetrics and Gynecology, The First Affliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China
| | - Pan Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 100191 Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, 100191 Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, 100191 Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, 100191 Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, 100191 Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, 100191 Beijing, China
- Corresponding authors at: Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Key Laboratory of Assisted, Beijing 100191, China (J. Qiao).
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 100191 Beijing, China
- Corresponding authors at: Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Key Laboratory of Assisted, Beijing 100191, China (J. Qiao).
| |
Collapse
|
13
|
Liu Y, Feng Z, Chen H. Integrated analysis of the expression, involved functions, and regulatory network of RUNX3 in melanoma. Comb Chem High Throughput Screen 2021; 25:1552-1564. [PMID: 34397327 DOI: 10.2174/1386207324666210816121833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND As a tumor suppressor or oncogenic gene, abnormal expression of RUNX family transcription factor 3 (RUNX3) has been reported in various cancers. <p> Introduction: This study aimed to investigate the role of RUNX3 in melanoma. <p> Methods: The expression level of RUNX3 in melanoma tissues was analyzed by immunohistochemistry and the Oncomine database. Based on microarray datasets GSE3189 and GSE7553, differentially expressed genes (DEGs) in melanoma samples were screened, followed by functional enrichment analysis. Gene Set Enrichment Analysis (GSEA) was performed for RUNX3. DEGs that co-expressed with RUNX3 were analyzed, and the transcription factors (TFs) of RUNX3 and its co-expressed genes were predicted. The protein-protein interactions (PPIs) for RUNX3 were analyzed utilizing the GeneMANIA database. MicroRNAs (miRNAs) that could target RUNX3 expression, were predicted. <p> Results: RUNX3 expression was significantly up-regulated in melanoma tissues. GSEA showed that RUNX3 expression was positively correlated with melanogenesis and melanoma pathways. Eleven DEGs showed significant co-expression with RUNX3 in melanoma, for example, TLE4 was negatively co-expressed with RUNX3. RUNX3 was identified as a TF that regulated the expression of both itself and its co-expressed genes. PPI analysis showed that 20 protein-encoding genes interacted with RUNX3, among which 9 genes were differentially expressed in melanoma, such as CBFB and SMAD3. These genes were significantly enriched in transcriptional regulation by RUNX3, RUNX3 regulates BCL2L11 (BIM) transcription, regulation of I-kappaB kinase/NF-kappaB signaling, and signaling by NOTCH. A total of 31 miRNAs could target RUNX3, such as miR-326, miR-330-5p, and miR-373-3p. <p> Conclusion: RUNX3 expression was up-regulated in melanoma and was implicated in the development of melanoma.
Collapse
Affiliation(s)
- Yanxin Liu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Zhang Feng
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Huaxia Chen
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
14
|
Upregulation of microRNA-532 enhances cardiomyocyte apoptosis in the diabetic heart. Apoptosis 2021; 25:388-399. [PMID: 32418060 DOI: 10.1007/s10495-020-01609-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes has a strong association with the development of cardiovascular disease, which is grouped as diabetic heart disease (DHD). DHD is associated with the progressive loss of cardiovascular cells through the alteration of molecular signalling pathways associated with cell death. In this study, we sought to determine whether diabetes induces dysregulation of miR-532 and if this is associated with accentuated apoptosis. RT-PCR analysis showed a significant increase in miR-532 expression in the right atrial appendage tissue of type 2 diabetic patients undergoing coronary artery bypass graft surgery. This was associated with marked downregulation of its anti-apoptotic target protein apoptosis repressor with caspase recruitment domain (ARC) and increased TUNEL positive cardiomyocytes. Further analysis showed a positive correlation between apoptosis and miR-532 levels. Time-course experiments in a mouse model of type 2 diabetes showed that diabetes-induced activation of miR-532 occurs in the later stage of the disease. Importantly, the upregulation of miR-532 preceded the activation of pro-apoptotic caspase-3/7 activity. Finally, inhibition of miR-532 activity in high glucose cultured human cardiomyocytes prevented the downregulation of ARC and attenuated apoptotic cell death. Diabetes induced activation of miR-532 plays a critical role in accelerating cardiomyocytes apoptosis. Therefore, miR-532 may serve as a promising therapeutic agent to overcome the diabetes-induced loss of cardiomyocytes.
Collapse
|
15
|
Wang N, Zhang H, Cui X, Ma C, Wang L, Liu W. Runx3 Induces a Cell Shape Change and Suppresses Migration and Metastasis of Melanoma Cells by Altering a Transcriptional Profile. Int J Mol Sci 2021; 22:2219. [PMID: 33672337 PMCID: PMC7926509 DOI: 10.3390/ijms22042219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Runt-related transcription factor-3 (Runx3) is a tumor suppressor, and its contribution to melanoma progression remains unclear. We previously demonstrated that Runx3 re-expression in B16-F10 melanoma cells changed their shape and attenuated their migration. In this study, we found that Runx3 re-expression in B16-F10 cells also suppressed their pulmonary metastasis. We performed microarray analysis and uncovered an altered transcriptional profile underlying the cell shape change and the suppression of migration and metastasis. This altered transcriptional profile was rich in Gene Ontology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) annotations relevant to adhesion and the actin cytoskeleton and included differentially expressed genes for some major extracellular matrix (ECM) proteins as well as genes that were inversely associated with the increase in the metastatic potential of B16-F10 cells compared to B16-F0 melanoma cells. Further, we found that this altered transcriptional profile could have prognostic value, as evidenced by myelin and lymphocyte protein (MAL) and vilin-like (VILL). Finally, Mal gene expression was correlated with metastatic potential among the cells and was targeted by histone deacetylase (HDAC) inhibitors in B16-F10 cells, and the knockdown of Mal gene expression in B16-F0 cells changed their shape and enhanced the migratory and invasive traits of their metastasis. Our study suggests that self-entrapping of metastatic Runx3-negative melanoma cells via adhesion and the actin cytoskeleton could be a powerful therapeutic strategy.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Genetics and Cell Biology, School of Life Sciences, Northeast Normal University, No. 5268, Renmin St., Changchun 130024, China; (N.W.); (X.C.); (C.M.); (L.W.)
| | - Haiying Zhang
- Key Laboratory of Pathobiology of Ministry of Education, Norman Bethune College of Medicine, Jilin University, No. 126, Xinmin St., Changchun 130021, China;
| | - Xiulin Cui
- Institute of Genetics and Cell Biology, School of Life Sciences, Northeast Normal University, No. 5268, Renmin St., Changchun 130024, China; (N.W.); (X.C.); (C.M.); (L.W.)
| | - Chao Ma
- Institute of Genetics and Cell Biology, School of Life Sciences, Northeast Normal University, No. 5268, Renmin St., Changchun 130024, China; (N.W.); (X.C.); (C.M.); (L.W.)
| | - Linghui Wang
- Institute of Genetics and Cell Biology, School of Life Sciences, Northeast Normal University, No. 5268, Renmin St., Changchun 130024, China; (N.W.); (X.C.); (C.M.); (L.W.)
| | - Wenguang Liu
- Institute of Genetics and Cell Biology, School of Life Sciences, Northeast Normal University, No. 5268, Renmin St., Changchun 130024, China; (N.W.); (X.C.); (C.M.); (L.W.)
| |
Collapse
|
16
|
Bellenghi M, Puglisi R, Pontecorvi G, De Feo A, Carè A, Mattia G. Sex and Gender Disparities in Melanoma. Cancers (Basel) 2020; 12:E1819. [PMID: 32645881 PMCID: PMC7408637 DOI: 10.3390/cancers12071819] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/22/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
Worldwide, the total incidence of cutaneous melanoma is higher in men than in women, with some differences related to ethnicity and age and, above all, sex and gender. Differences exist in respect to the anatomic localization of melanoma, in that it is more frequent on the trunk in men and on the lower limbs in women. A debated issue is if-and to what extent-melanoma development can be attributed to gender-specific behaviors or to biologically intrinsic differences. In the search for factors responsible for the divergences, a pivotal role of sex hormones has been observed, although conflicting results indicate the involvement of other mechanisms. The presence on the X chromosome of numerous miRNAs and coding genes playing immunological roles represents another important factor, whose relevance can be even increased by the incomplete X chromosome random inactivation. Considering the known advantages of the female immune system, a different cancer immune surveillance efficacy was suggested to explain some sex disparities. Indeed, the complexity of this picture emerged when the recently developed immunotherapies unexpectedly showed better improvements in men than in women. Altogether, these data support the necessity of further studies, which consider enrolling a balanced number of men and women in clinical trials to better understand the differences and obtain actual gender-equitable healthcare.
Collapse
Affiliation(s)
- Maria Bellenghi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| | - Rossella Puglisi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| | - Giada Pontecorvi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| | - Alessandra De Feo
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Alessandra Carè
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| | - Gianfranco Mattia
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| |
Collapse
|
17
|
Guo X, Wei S, Xu F, Cai X, Wang H, Ding R. MicroRNA-532-5p is implicated in the regulation of osteoporosis by forkhead box O1 and osteoblast differentiation. BMC Musculoskelet Disord 2020; 21:296. [PMID: 32404197 PMCID: PMC7218624 DOI: 10.1186/s12891-020-03317-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/27/2020] [Indexed: 12/31/2022] Open
Abstract
Background MicroRNAs (miRNAs) are critical regulators in osteogenesis and cartilage formation. This study was designed to investigate whether miR-532-5p plays a role in the regulation of osteoporosis. Methods Osteoporotic fractures (OP group, n = 10) or osteoarthritis without osteoporosis (control group, n = 10) were selected as subjects in this study. Quantitative analysis of gene expression was performed by RT-PCR. Western blot was used to determine the expression levels of protein forkhead O1 (FOXO1). Bioinformatics analyses and luciferase reporter assay were used to verify the downstream target of miR-532-5p. Results Compared with the non-osteoporotic controls, miR-532-5p was upregulated in osteoporotic samples, and expression of miR-532-5p was downregulated in the osteogenic C2C12 cell model. Overexpression of miR-532-5p resulted in decreased expression levels of key osteoblast markers, including alkaline phosphatase (ALP), osteocalcin (OC), and collagen type I alpha 1 (COL1A1). The inhibitory results of miR-532-5p were reversed. MiR-532-5p contained a putative FOXO1 binding site. Moreover, miR-532-5p inhibited the expression of FOXO1, and overexpression of FOXO1 inhibited the effect of miR-532-5p on osteoblast markers. Conclusions MiR-532-5p can provide references to osteoporosis by regulating the expression of FOXO1 and osteoblast differentiation. MiR-532-5p might serve as a therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Xinyu Guo
- Department of Orthopaedics, Guizhou Provincial Orthopaedic Hospital, Guiyang City, Guizhou Province, 550002, PR China
| | - Shijun Wei
- Orthopedic surgery of Wuhan General Hospital of People's Liberation Army, No.627 Wuluo Road, Wuhan City, Hubei Province, 430000, PR China
| | - Feng Xu
- Orthopedic surgery of Wuhan General Hospital of People's Liberation Army, No.627 Wuluo Road, Wuhan City, Hubei Province, 430000, PR China
| | - Xianhua Cai
- Orthopedic surgery of Wuhan General Hospital of People's Liberation Army, No.627 Wuluo Road, Wuhan City, Hubei Province, 430000, PR China
| | - Huasong Wang
- Orthopedic surgery of Wuhan General Hospital of People's Liberation Army, No.627 Wuluo Road, Wuhan City, Hubei Province, 430000, PR China
| | - Ran Ding
- Orthopedic surgery of Wuhan General Hospital of People's Liberation Army, No.627 Wuluo Road, Wuhan City, Hubei Province, 430000, PR China.
| |
Collapse
|
18
|
The miRNAs Role in Melanoma and in Its Resistance to Therapy. Int J Mol Sci 2020; 21:ijms21030878. [PMID: 32013263 PMCID: PMC7037367 DOI: 10.3390/ijms21030878] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the less common but the most malignant skin cancer. Since the survival rate of melanoma metastasis is about 10–15%, many different studies have been carried out in order to find a more effective treatment. Although the development of target-based therapies and immunotherapeutic strategies has improved chances for patient survival, melanoma treatment still remains a big challenge for oncologists. Here, we collect recent data about the emerging role of melanoma-associated microRNAs (miRNAs) currently available treatments, and their involvement in drug resistance. We also reviewed miRNAs as prognostic factors, because of their chemical stability and resistance to RNase activity, in melanoma progression. Moreover, despite miRNAs being considered small conserved regulators with the limitation of target specificity, we outline the dual role of melanoma-associated miRNAs, as oncogenic and/or tumor suppressive factors, compared to other tumors.
Collapse
|
19
|
Carpi S, Polini B, Fogli S, Podestà A, Ylösmäki E, Cerullo V, Romanini A, Nieri P. Circulating microRNAs as biomarkers for early diagnosis of cutaneous melanoma. Expert Rev Mol Diagn 2019; 20:19-30. [PMID: 31747311 DOI: 10.1080/14737159.2020.1696194] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Cutaneous melanoma is the deadliest form of skin cancer, with a dramatic increase in the incidence rate worldwide over the past decade. Early detection has been shown to improve the outcome of melanoma patients. The identification of noninvasive biomarkers able to identify melanoma at an early stage remains an unmet clinical need. Circulating miRNAs (c-miRNAs), small non-coding RNAs, appear as potential ideal candidate biomarkers due to their stability in biological fluids and easy detectability. Moreover, c-miRNAs are reported to be heavily deregulated in cancer patients.Areas covered: This review examines evidence of the specific c-miRNAs or panels of c-miRNAs reported to be useful in discriminating melanoma from benign cutaneous lesions.Expert opinion: Although the interesting reported by published studies, the non-homogeneity of detection and normalization methods prevents the individuation of single c-miRNA or panel of c-miRNAs that are specific for early detection of cutaneous melanoma. In the future, prospective wide and well-designed clinical trials will be needed to validate the diagnostic potential of some of the c-miRNA candidates in clinical practice.
Collapse
Affiliation(s)
- Sara Carpi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Stefano Fogli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Adriano Podestà
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| | - Erkko Ylösmäki
- Drug Research program and IVTLab, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Drug Research program and IVTLab, University of Helsinki, Helsinki, Finland
| | | | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Xu K, Hu X, Sun L, Liang Q, Ouyang G, Zhang Y, Mu Q, Yan X. MicroRNA-532 exerts oncogenic functions in t(4;14) multiple myeloma by targeting CAMK2N1. Hum Cell 2019; 32:529-539. [PMID: 31452083 DOI: 10.1007/s13577-019-00276-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/15/2019] [Indexed: 01/29/2023]
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm which is characterized by widespread genetic heterogeneity. The MMs with t(4;14) translocation exhibit poor outcomes. However, the mechanism underlying has not been well dissected. Our study aimed to identify key microRNA involved in the oncogenesis of t(4;14) MM. We here performed an integrated analysis to screen important regulators in the pathogenesis of t(4;14) MM. We used real-time quantitative polymerase chain reaction and western blotting to evaluate the mRNA and protein expression of the indicated microRNA or protein. Cell proliferation assay, colony formation assay, and transwell assay were used to examine the cell growth and metastasis. More importantly, the tumor growth and metastasis were analyzed in nude mice injected with MM cells. The integrated analysis indicated that miR-532 functioned as a pivotal regulator in t(4;14) MM. miR-532 was upregulated in t(4;14) MMs and promotes cell growth and metastasis in vitro and in vivo. Notably, though combing bioinformatics analysis and functional assays, CAMK2N1 was revealed as a functional target of miR-532 in MM cells. CAMK2N1 plays an anti-proliferative and anti-migration role in MM cells, and miR-532 exerts its oncogenic role though inhibiting CAMK2N1 expression in MMs. miR-532 promotes cell proliferation and invasion in t(4;14) MMs by targeting CAMK2N1. Our study, thus, provides possible targets for t(4;14) MM therapy.
Collapse
Affiliation(s)
- Kaihong Xu
- Department of Hematology, Ningbo First Hospital, No. 59 Liuting Street, Ningbo, Zhejiang, 315000, China.
| | - Xuezhen Hu
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Laifang Sun
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qingyue Liang
- Department of Nutrition, The Second Clinical Medical College of Chengdu University of Traditional Chinese Medicine, Guangan, Sichuan, 638500, China
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital, No. 59 Liuting Street, Ningbo, Zhejiang, 315000, China
| | - Yanli Zhang
- Department of Hematology, Ningbo First Hospital, No. 59 Liuting Street, Ningbo, Zhejiang, 315000, China
| | - Qitian Mu
- Department of Hematology, Ningbo First Hospital, No. 59 Liuting Street, Ningbo, Zhejiang, 315000, China
| | - Xiao Yan
- Department of Hematology, Ningbo First Hospital, No. 59 Liuting Street, Ningbo, Zhejiang, 315000, China
| |
Collapse
|
21
|
Abstract
Exosomes are small homogenous membrane vesicles that derive from the exocytosis process of cells and can contain DNA, microRNAs (miRNAs), and/or proteins. Characterization of the content profile of exosomes may reflect the state of the cells that release them, and this could be predictive of disease. In this study, to explore the potential biomarkers for melanoma, we isolated serous exosomes from 30 patients with melanoma and 30 healthy individuals using the ultracentrifugation method. Five miRNAs were subsequently detected in each sample by quantitative reverse transcription-PCR: miRNA-532-5p, miRNA-106b, miRNA-200c, miRNA-199a-5p, and miRNA-210. Only the levels of exo-miRNA-532-5p and exo-miRNA-106b differed between the two groups (Z=-4.17 and -4.57, respectively, P<0.0001). When these two miRNAs were evaluated individually and in combination in 95 melanoma patients and 95 healthy individuals serum samples, the area under the receiver operating characteristic curve values were 0.867, 0.820, and 0.936, respectively. Furthermore, in blinded tests of samples from 25 melanoma patients and 25 healthy individuals, this panel of miRNAs identified 23/25 patients with melanoma (92.0% sensitivity) and 22/25 healthy individuals (88.0% sensitivity). Our exo-miRNA panel also distinguished patients with metastasis from those without metastasis, patients with stage I-II disease from those with stage III-IV disease, and patients who had received pembrolizumab treatment from those who were untreated. Overall, these results indicate that serum exosomal miRNAs, especially exo-miRNA-532-5p and exo-miRNA-106b, have the potential to be used for monitoring and/or a diagnosis of melanoma in a clinical setting.
Collapse
|
22
|
Xie X, Pan J, Han X, Chen W. Downregulation of microRNA-532-5p promotes the proliferation and invasion of bladder cancer cells through promotion of HMGB3/Wnt/β-catenin signaling. Chem Biol Interact 2019; 300:73-81. [PMID: 30639441 DOI: 10.1016/j.cbi.2019.01.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 01/13/2023]
Abstract
Accumulating evidence has shown that altered expression of microRNA-532-5p (miR-532-5p) is involved in the development and progression of various cancers. However, little is known about the role of miR-532-5p in bladder cancer. In this study, we aimed to investigate the expression, biological function, and regulatory mechanism of miR-532-5p in bladder cancer. Herein, we found that miR-532-5p expression was frequently downregulated in bladder cancer tissues and cell lines compared with normal controls. Functional experiments showed that overexpression of miR-532-5p inhibited the proliferation and invasion of bladder cancer cells, whereas inhibition of miR-532-5p showed opposite effects. Interestingly, bioinformatics analysis predicted high-mobility group protein B3 (HMGB3) as a potential target gene of miR-532-5p. Further experiments showed that miR-532-5p directly targeted the 3'-UTR of HMGB3 and negatively regulated its expression in bladder cancer cells. Moreover, HMGB3 expression was upregulated in bladder cancer tissues and showed inverse correlation with miR-532-5p expression. Notably, miR-532-5p regulated the nuclear expression of β-catenin and activation of Wnt/β-catenin signaling in bladder cancer cells. However, restoration of HMGB3 expression partially reversed the antitumor effect of miR-532-5p overexpression, while knockdown of HMGB3 partially abrogated the oncogenic effect of miR-532-5p inhibition. Taken together, our results demonstrated that miR-532-5p inhibited the proliferation and invasion of bladder cancer cells by targeting HMGB3 and downregulating Wnt/β-catenin signaling, suggesting a tumor suppressive role of miR-532-5p in bladder cancer. Our study highlights an importance of the miR-532-5p/HMGB3 axis in bladder cancer and suggests that targeting miR-532-5p/HMGB3 may have potential applications for development of bladder cancer therapy.
Collapse
Affiliation(s)
- Xiaojuan Xie
- Department of Clinical Laboratory, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Center for Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Jingjing Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Xi Han
- Department of Obstetrics, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Wei Chen
- Department of Clinical Laboratory, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
23
|
Mohammadpour A, Derakhshan M, Darabi H, Hedayat P, Momeni M. Melanoma: Where we are and where we go. J Cell Physiol 2018; 234:3307-3320. [PMID: 30362507 DOI: 10.1002/jcp.27286] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022]
Abstract
Melanoma is known as an aggressive tumor which shows an increasing incidence and poor prognosis in the metastatic phase. Hence, it seems that diagnosis and effective management (including early diagnosis, choosing of the effective therapeutic platform, caring, and training of patients for early detection) are major aspects of melanoma therapy. Early detection of melanoma is a key point for melanoma therapy. There are various diagnosis options such as assessing of biopsy, imaging techniques, and biomarkers (i.e., several proteins, polymorphism, and liquid biopsy). Among the various biomarkers, assessing circulating tumor cells, cell-free DNAs, cell-free RNAs, and microRNAs (miRNAs) have emerged as powerful diagnosis tools for melanoma patients. Deregulations of these molecules are associated with melanoma pathogenesis. After detection of melanoma, choosing of effective therapeutic regimen is a key step for recovery of melanoma patients. Several studies indicated that various therapeutic approaches including surgery, immunotherapy, systematic therapy, radiation therapy and antibodies therapy could be used as potential therapeutic candidates for melanoma therapy. Caring for melanoma patients is one of the important components of melanoma therapy. Caring and training for melanoma patients could contribute to better monitoring of patients in response to various therapeutic options. Here, we summarized various diagnosis approaches such as assessing biopsy, imaging techniques, and utilization of various biomarkers (i.e., proteins, CTCs, cfDNAs, and miRNAs) as a diagnostic biomarker for detection and monitoring patients with melanoma. Moreover, we highlighted various therapeutic options and caring aspects in patients with melanoma.
Collapse
Affiliation(s)
- Ali Mohammadpour
- Faculty of Nursing and Midwifery, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Maryam Derakhshan
- Department of Pathology, Medical University of Isfahan, Isfahan, Iran
| | - Hassan Darabi
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pegah Hedayat
- Department of Pathology, Medical University of Isfahan, Isfahan, Iran
| | - Mohammad Momeni
- Department of Radiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
24
|
Ross CL, Kaushik S, Valdes-Rodriguez R, Anvekar R. MicroRNAs in cutaneous melanoma: Role as diagnostic and prognostic biomarkers. J Cell Physiol 2018; 233:5133-5141. [PMID: 29226953 DOI: 10.1002/jcp.26395] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/04/2017] [Indexed: 12/28/2022]
Abstract
Melanoma is the leading cause of skin cancer deaths in the United States, and its incidence has been rising steadily for the past 30 years (Aftab, Dinger, & Perera, 2014). A more complete understanding of the molecular mechanisms that drive melanomagenesis is crucial to improve diagnosis, prognostication, and treatment of this disease. Given that melanoma survival rates are better when the disease is detected early, precise diagnostic tests for early melanoma detection would be extremely useful. In addition, as survival rates decrease drastically when the disease becomes metastatic, improved tools to more precisely identify high-risk patients as well as to predict treatment response are necessary. The role of microRNAs (miRNAs) in melanoma biology could be the key. miRNA expression profiling has identified several miRNAs that play a crucial role in melanoma cell proliferation, migration, and invasion, as well as miRNAs involved in apoptosis and in the immune response. Here we review the most current data on the miRNAs involved in melanoma as well as their potential roles as diagnostic and prognostic biomarkers of this disease.
Collapse
Affiliation(s)
- Casey L Ross
- Department of Dermatology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Shivani Kaushik
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rodrigo Valdes-Rodriguez
- Department of Dermatology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Rina Anvekar
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
25
|
Giudice V, Banaszak LG, Gutierrez-Rodrigues F, Kajigaya S, Panjwani R, Ibanez MDPF, Rios O, Bleck CK, Stempinski ES, Raffo DQ, Townsley DM, Young NS. Circulating exosomal microRNAs in acquired aplastic anemia and myelodysplastic syndromes. Haematologica 2018; 103:1150-1159. [PMID: 29674506 PMCID: PMC6029526 DOI: 10.3324/haematol.2017.182824] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
Exosomal microRNAs modulate cancer cell metabolism and the immune response. Specific exosomal microRNAs have been reported to be reliable biomarkers of several solid and hematologic malignancies. We examined the possible diagnostic and prognostic values of exosomal microRNAs in two human bone marrow failure diseases: aplastic anemia and myelodysplastic syndromes. After screening 372 microRNAs in a discovery set (n=42) of plasma exosome samples, we constructed a customized PCR plate, including 42 microRNAs, for validation in a larger cohort (n=99). We identified 25 differentially expressed exosomal microRNAs uniquely or frequently present in aplastic anemia and/or myelodysplastic syndromes. These microRNAs could be related to intracellular functions, such as metabolism, cell survival, and proliferation. Clinical parameters and progression-free survival were correlated to microRNA expression levels in aplastic anemia and myelodysplastic syndrome patients before and after six months of immunosuppressive therapy. One microRNA, mir-126-5p, was negatively correlated with a response to therapy in aplastic anemia: patients with higher relative expression of miR-126-5p at diagnosis had the shortest progression-free survival compared to those with lower or normal levels. Our findings suggest utility of exosomal microRNAs in the differential diagnosis of bone marrow failure syndromes. (Registered at clinicaltrials.gov identifiers: 00260689, 00604201, 00378534, 01623167, 00001620, 00001397, 00217594).
Collapse
Affiliation(s)
- Valentina Giudice
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lauren G Banaszak
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Fernanda Gutierrez-Rodrigues
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Reema Panjwani
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Olga Rios
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Christopher K Bleck
- Electron Microscopy Core Facility, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Erin S Stempinski
- Electron Microscopy Core Facility, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Diego Quinones Raffo
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Danielle M Townsley
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
26
|
Zhang J, Zhou W, Liu Y, Liu T, Li C, Wang L. Oncogenic role of microRNA-532-5p in human colorectal cancer via targeting of the 5'UTR of RUNX3. Oncol Lett 2018; 15:7215-7220. [PMID: 29849790 DOI: 10.3892/ol.2018.8217] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 08/17/2017] [Indexed: 12/27/2022] Open
Abstract
Previous studies have demonstrated that microRNAs (miRs) are involved in the carcinogenesis of colorectal cancer (CRC). To the best of our knowledge, the function and regulatory role of miR-532-5p in human CRC remains unknown. The aim of the present study was to determine the role and regulation of miR-532-5p in CRC. Using the reverse transcription-quantitative polymerase chain reaction, it was demonstrated that miR-532-5p was upregulated, whereas runt-related transcription factor 3 (RUNX3) was downregulated in CRC tissues. The upregulated miR-532-5p was associated with the downregulated RUNX3. Furthermore, the two biomarkers were associated with numerous clinicopathological characteristics of CRC, including tumor stage, lymph node involvement, differentiation, vessel invasion and tumor recurrence. The in vitro luciferase reporter assay demonstrated that transfection with miR-532-5p mimic markedly downregulated the RUNX3 mRNA and protein levels, via specific binding to the 5'-untranslated region of RUNX3 in human HT-29 CRC cells. In addition, an MTT assay and a colony formation assay demonstrated that miR-532-5p overexpression led to increased tumor cell viability and colony formation ability of HT-29 cells. In conclusion, the results of the present study indicate that miR-532-5p may function as an oncogenic miRNA by promoting cell growth in human CRC cells, and such promotion is associated with the targeted inhibition of RUNX3.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Colorectal and Anal Surgery, First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wenli Zhou
- Department of Neonatology, First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanyan Liu
- Department of Physiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Tao Liu
- Department of Colorectal and Anal Surgery, First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chenyao Li
- Department of Colorectal and Anal Surgery, First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Wang
- Department of Colorectal and Anal Surgery, First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
27
|
Yu X, Zheng H, Chan MTV, Wu WKK. NOVA1 acts as an oncogene in melanoma via regulating FOXO3a expression. J Cell Mol Med 2018; 22:2622-2630. [PMID: 29498217 PMCID: PMC5908123 DOI: 10.1111/jcmm.13527] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
Increasing studies have suggested that dysregulation of RNA‐binding proteins (RBPs) contributes to cancer progression. Neuro‐oncological ventral antigen 1 (NOVA1) is a novel RBP and plays an important role in tumour development. However, the expression and role of NOVA1 in melanoma remain unknown. In this study, we indicated that NOVA1 expression was up‐regulated in melanoma samples and cell lines. Moreover, we demonstrated that knockdown of NOVA1 suppressed melanoma cell proliferation, migration and invasion in both A375 and A875 cell lines. In addition, we showed that suppressed expression of NOVA1 enhanced forkhead box O3a (FOXO3a) expression while inhibited AKT expression in melanoma cell. Furthermore, we demonstrated that inhibited expression of FoxO3A rescued NOVA1‐mediated cell proliferation, migration and invasion in melanoma cell line A375. These results suggested that NOVA1 acted as an oncogene in the development of melanoma partly through regulating FoxO3A expression.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heyi Zheng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong City, Hong Kong.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| |
Collapse
|
28
|
Del Castillo Velasco‐Herrera M, van der Weyden L, Nsengimana J, Speak AO, Sjöberg MK, Bishop DT, Jönsson G, Newton‐Bishop J, Adams DJ. Comparative genomics reveals that loss of lunatic fringe (LFNG) promotes melanoma metastasis. Mol Oncol 2018; 12:239-255. [PMID: 29193607 PMCID: PMC5792739 DOI: 10.1002/1878-0261.12161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/16/2017] [Accepted: 11/07/2017] [Indexed: 12/17/2022] Open
Abstract
Metastasis is the leading cause of death in patients with advanced melanoma, yet the somatic alterations that aid tumour cell dissemination and colonisation are poorly understood. Here, we deploy comparative genomics to identify and validate clinically relevant drivers of melanoma metastasis. To do this, we identified a set of 976 genes whose expression level was associated with a poor outcome in patients from two large melanoma cohorts. Next, we characterised the genomes and transcriptomes of mouse melanoma cell lines defined as weakly metastatic, and their highly metastatic derivatives. By comparing expression data between species, we identified lunatic fringe (LFNG), among 28 genes whose expression level is predictive of poor prognosis and whose altered expression is associated with a prometastatic phenotype in mouse melanoma cells. CRISPR/Cas9-mediated knockout of Lfng dramatically enhanced the capability of weakly metastatic melanoma cells to metastasise in vivo, a phenotype that could be rescued with the Lfng cDNA. Notably, genomic alterations disrupting LFNG are found exclusively in human metastatic melanomas sequenced as part of The Cancer Genome Atlas. Using comparative genomics, we show that LFNG expression plays a functional role in regulating melanoma metastasis.
Collapse
Affiliation(s)
| | | | - Jeremie Nsengimana
- Leeds Institute of Cancer and PathologySt James's University HospitalUniversity of LeedsUK
| | - Anneliese O. Speak
- Experimental Cancer GeneticsWellcome Trust Sanger InstituteHinxtonCambridgeUK
| | - Marcela K. Sjöberg
- Experimental Cancer GeneticsWellcome Trust Sanger InstituteHinxtonCambridgeUK
- Departamento de Biología Celular y MolecularFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - David Timothy Bishop
- Leeds Institute of Cancer and PathologySt James's University HospitalUniversity of LeedsUK
| | - Göran Jönsson
- Division of Oncology and PathologyDepartment of Clinical SciencesSkåne University HospitalLund UniversitySweden
| | - Julia Newton‐Bishop
- Leeds Institute of Cancer and PathologySt James's University HospitalUniversity of LeedsUK
| | - David J. Adams
- Experimental Cancer GeneticsWellcome Trust Sanger InstituteHinxtonCambridgeUK
| |
Collapse
|
29
|
Differential microRNA expression in breast cancer with different onset age. PLoS One 2018; 13:e0191195. [PMID: 29324832 PMCID: PMC5764434 DOI: 10.1371/journal.pone.0191195] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/29/2017] [Indexed: 11/28/2022] Open
Abstract
Purpose The lower breast cancer incidence in Asian populations compared with Western populations has been speculated to be caused by environmental and genetic variation. Early-onset breast cancer occupies a considerable proportion of breast cancers in Asian populations, but the reason for this is unclear. We aimed to examine miRNA expression profiles in different age-onset groups and pathological subtypes in Asian breast cancer. Methods At the first stage, 10 samples (tumor: n = 6, normal tissue: n = 4) were analyzed with an Agilent microRNA 470 probe microarray. Candidate miRNAs with expression levels that were significantly altered in breast cancer samples or selected from a literature review were further validated by quantitative real-time PCR (qPCR) of 145 breast cancer samples at the second stage of the process. Correlations between clinicopathological parameters of breast cancer patients from different age groups and candidate miRNA expression were elucidated. Results In the present study, the tumor subtypes were significantly different in each age group, and an onset age below 40 had poor disease-free and overall survival rates. For all breast cancer patients, miR-335 and miR-145 were down-regulated, and miR-21, miR-200a, miR-200c, and miR-141 were up-regulated. In very young patients (age < 35 y/o), the expression of 3 and 8 specific miRNAs were up- and down-regulated, respectively. In young patients (36–40 y/o), 3 and 3 specific miRNAs were up- and down-regulated, respectively. miR-532-5p was up-regulated in triple-negative breast cancer. Conclusions Differential miRNA expressions between normal and tumor tissues were observed in different age groups and tumor subtypes. Evolutionarily conserved miRNA clusters, which initiate malignancy transformation, were up-regulated in the breast cancers of very young patients. None of the significantly altered miRNAs were observed in postmenopausal patients.
Collapse
|
30
|
Zhang H, Bai M, Zeng A, Si L, Yu N, Wang X. LncRNA HOXD-AS1 promotes melanoma cell proliferation and invasion by suppressing RUNX3 expression. Am J Cancer Res 2017; 7:2526-2535. [PMID: 29312805 PMCID: PMC5752692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) act as critical regulators of many malignant tumors cellular processes including cell proliferation, differentiation, apoptosis, invasion and metastasis. However, the functions and molecular mechanisms of lncRNA HOXD-AS1 in melanoma remain little known. In the present study, we observed that lncRNA HOXD-AS1 expression was remarkably higher in melanoma tissues compared to skin tissues with melanocytic nevus. Increased expression of lncRNA HOXD-AS1 correlated with poor survival of melanoma patients. Furthermore, functional experiments demonstrated that upregulated lncRNA HOXD-AS1 expression dramatically promoted cell proliferation and invasion of melanoma, while downregulation of lncRNA HOXD-AS1 showed a tumor inhibiting effects on melanoma cells in vitro. In vivo, data results showed that lncRNA HOXD-AS1 knockdown notably reduced tumor growth. Additionally, RNA immunoprecipitation (RIP) and Chromatin immunoprecipitation (ChIP) assays revealed that lncRNA HOXD-AS1 could epigenetically suppress the expression of RUNX3 via binding to EZH2. Downregulation of RUNX3 attenuated the proliferation and invasion-inhibiting effects induced by lncRNA HOXD-AS1 knockdown in melanoma cells. Therefore, these results indicated that HOXD-AS1 may serve as a potential therapeutic target of melanoma.
Collapse
Affiliation(s)
- Hailin Zhang
- Department of Plastic Surgery, Peking Union Medical College HospitalBeijing 100730, China
| | - Ming Bai
- Department of Plastic Surgery, Peking Union Medical College HospitalBeijing 100730, China
| | - Ang Zeng
- Department of Plastic Surgery, Peking Union Medical College HospitalBeijing 100730, China
| | - Loubin Si
- Department of Plastic Surgery, Peking Union Medical College HospitalBeijing 100730, China
| | - Nanze Yu
- Department of Plastic Surgery, Peking Union Medical College HospitalBeijing 100730, China
| | - Xiaojun Wang
- Department of Plastic Surgery, Peking Union Medical College HospitalBeijing 100730, China
| |
Collapse
|
31
|
Zhang X, Wang L, Zeng X, Fujita T, Liu W. Runx3 inhibits melanoma cell migration through regulation of cell shape change. Cell Biol Int 2017; 41:1048-1055. [PMID: 28699302 DOI: 10.1002/cbin.10824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/05/2017] [Indexed: 01/10/2023]
Abstract
The transcription factor Runx3 is a known tumor suppressor gene, and its expression is frequently lost in melanoma. However, the potential contribution of the loss of Runx3 expression to melanoma development and progression remains unclear. In this in vitro study, we demonstrated that ectopic Runx3 re-expression in B16-F10 melanoma cells changed the cell shape from elongated and branched to spread and unbranched, which enhanced stress fiber formation, increased the number of mature and fibrillar focal adhesions, and up-regulated fibronectin expression. In association with the cell shape change, the Runx3 re-expression in B16-F10 melanoma cells inhibited cell migration. Moreover, the phenotype of the Runx3 induced cell shape change was partially resembled when the melanoma cells were cultured on a fibronectin-coated coverslip, suggesting that fibronectin may mediate the Runx3 induced cell shape change of the melanoma cells. Taken together, our findings suggest that Runx3 may regulate cell shape to inhibit melanoma cell migration partly through enhancing stress fiber formation and ECM protein production. Our present study provides further evidence for the idea that cell shape change is potentially correlated with melanoma development and progression.
Collapse
Affiliation(s)
- Xin Zhang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Linghui Wang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Takashi Fujita
- Department of Pharmaceutical Sciences, Molecular Toxicology Lab, Ritsumeikan University, Shiga 525-8577, Japan
| | - Wenguang Liu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
32
|
Griesing S, Kajino T, Tai MC, Liu Z, Nakatochi M, Shimada Y, Suzuki M, Takahashi T. Thyroid transcription factor-1-regulated microRNA-532-5p targets KRAS and MKL2 oncogenes and induces apoptosis in lung adenocarcinoma cells. Cancer Sci 2017; 108:1394-1404. [PMID: 28474808 PMCID: PMC5497805 DOI: 10.1111/cas.13271] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/18/2017] [Accepted: 05/01/2017] [Indexed: 11/30/2022] Open
Abstract
Thyroid transcription factor‐1 (TTF‐1), also known as NKX2‐1, plays a role as a lineage‐survival oncogene in lung adenocarcinoma that possesses double‐edged sword characteristics. Although evidence from previous studies has steadily accumulated regarding the roles of TTF‐1 in transcriptional regulation of protein‐coding genes, little is known about its regulatory relationship with microRNAs. Here, we utilized an integrative approach designed to extract maximal information from expression profiles of both patient tumors in vivo and TTF‐1‐inducible cell lines in vitro, which identified microRNA (miR)‐532‐5p as a novel transcriptional target of TTF‐1. We found that miR‐532‐5p is directly regulated by TTF‐1 through its binding to a genomic region located 8 kb upstream of miR‐532‐5p, which appears to impose transcriptional regulation independent of that of CLCN5, a protein‐coding gene harboring miR‐532‐5p in its intron 3. Furthermore, our results identified KRAS and MKL2 as novel direct targets of miR‐532‐5p. Introduction of miR‐532‐5p mimics markedly induced apoptosis in KRAS‐mutant as well as KRAS wild‐type lung adenocarcinoma cell lines. Interestingly, miR‐532‐5p showed effects on MEK‐ERK pathway signaling, specifically in cell lines sensitive to siKRAS treatment, whereas those miR‐532‐5p‐mediated effects were clearly rendered as phenocopies by repressing expression or inhibiting the function of MKL2 regardless of KRAS mutation status. In summary, our findings show that miR‐532‐5p is a novel transcriptional target of TTF‐1 that plays a tumor suppressive role by targeting KRAS and MKL2 in lung adenocarcinoma.
Collapse
Affiliation(s)
- Sebastian Griesing
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taisuke Kajino
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mei Chee Tai
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Zhuoran Liu
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Nakatochi
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Yukako Shimada
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motoshi Suzuki
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Takahashi
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
33
|
Hosseini M, Kasraian Z, Rezvani HR. Energy metabolism in skin cancers: A therapeutic perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:712-722. [PMID: 28161328 DOI: 10.1016/j.bbabio.2017.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 12/13/2022]
Abstract
Skin cancers are the most common cancers worldwide. The incidence of common skin cancers, including basal cell carcinomas (BCCs), squamous cell carcinomas (SCCs) and melanomas, continues to rise by 5 to 7% per year, mainly due to ultraviolet (UV) exposure and partly because of aging. This suggests an urgent necessity to improve the level of prevention and protection for skin cancers as well as developing new prognostic and diagnostic markers of skin cancers. Moreover, despite innovative therapies especially in the fields of melanoma and carcinomas, new therapeutic options are needed to bypass resistance to targeted therapies or treatment's side effects. Since reprogramming of cellular metabolism is now considered as a hallmark of cancer, some of the recent findings on the role of energy metabolism in skin cancer initiation and progression as well as its effect on the response to targeted therapies are discussed in this review. This article is part of a Special Issue entitled Mitochondria in cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- Mohsen Hosseini
- Inserm U 1035, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Zeinab Kasraian
- Inserm U 1035, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Hamid Reza Rezvani
- Inserm U 1035, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, France.
| |
Collapse
|
34
|
|
35
|
Runx3 and Cell Fate Decisions in Pancreas Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:333-352. [PMID: 28299667 DOI: 10.1007/978-981-10-3233-2_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The RUNX family transcription factors are critical regulators of development and frequently dysregulated in cancer. RUNX3, the least well characterized of the three family members, has been variously described as a tumor promoter or suppressor, sometimes with conflicting results and opinions in the same cancer and likely reflecting a complex role in oncogenesis. We recently identified RUNX3 expression as a crucial determinant of the predilection for pancreatic ductal adenocarcinoma (PDA) cells to proliferate locally or promulgate throughout the body. High RUNX3 expression induces the production and secretion of soluble factors that support metastatic niche construction and stimulates PDA cells to migrate and invade, while simultaneously suppressing proliferation through increased expression of cell cycle regulators such as CDKN1A/p21 WAF1/CIP1 . RUNX3 expression and function are coordinated by numerous transcriptional and post-translational inputs, and interactions with diverse cofactors influence whether the resulting RUNX3 complexes enact tumor suppressive or tumor promoting programs. Understanding these exquisitely context-dependent tumor cell behaviors has the potential to inform clinical decision-making including the most appropriate timing and sequencing of local vs. systemic therapies.
Collapse
|
36
|
Jili S, Eryong L, Lijuan L, Chao Z. RUNX3 inhibits laryngeal squamous cell carcinoma malignancy under the regulation of miR-148a-3p/DNMT1 axis. Cell Biochem Funct 2016; 34:597-605. [PMID: 27859417 DOI: 10.1002/cbf.3233] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Su Jili
- Department of Otorhinolaryngology, Head and Neck Surgery; The first Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology; Luoyang 471003 China
| | - Lu Eryong
- Department of Otorhinolaryngology, Head and Neck Surgery; The first Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology; Luoyang 471003 China
| | - Lu Lijuan
- Department of Obstetrics and Gynecology; The first Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology; Luoyang 471003 China
| | - Zhang Chao
- Department of Otorhinolaryngology, Head and Neck Surgery; The first Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology; Luoyang 471003 China
| |
Collapse
|
37
|
Surges R, Kretschmann A, Abnaof K, van Rikxoort M, Ridder K, Fröhlich H, Danis B, Kaminski RM, Foerch P, Elger CE, Weinsberg F, Pfeifer A. Changes in serum miRNAs following generalized convulsive seizures in human mesial temporal lobe epilepsy. Biochem Biophys Res Commun 2016; 481:13-18. [PMID: 27833019 DOI: 10.1016/j.bbrc.2016.11.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/07/2016] [Indexed: 01/25/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression and are involved in the pathomechanisms of epilepsy. MiRNAs may also serve as peripheral biomarkers of epilepsy. We investigated the miRNA profile in the blood serum of patients suffering from mesial temporal lobe epilepsy (mTLE) following a single focal seizure evolving to a bilateral convulsive seizure (BCS) during video-EEG monitoring. Data of 15 patients were included in the final analysis. MiRNA expression was determined using Real Time-PCR followed by thorough bioinformatical analysis of expression levels. We found that more than 200 miRNAs were differentially expressed in the serum of patients within 30 min after a single seizure. Validation of the 20 top miRNA candidates confirmed that 4 miRNAs (miR-143, miR-145, miR-532, miR-365a) were significantly deregulated. Interestingly, in a sub-group of patients with seizures occurring during sleep, we found 10 miRNAs to be deregulated up to 20-28 h after the seizure. In this group of patients, miR-663b was significantly deregulated. We conclude that single seizures are associated with detectable transient miRNA alterations in blood serum in the early postictal phase. The significant upregulation of miR-663b following BCS arising during sleep indicates potential suitability of this miRNA as a potential biomarker for seizure diagnostics.
Collapse
Affiliation(s)
- Rainer Surges
- Department of Epileptology, University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Anita Kretschmann
- Institute of Pharmacology and Toxicology, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Khalid Abnaof
- Bonn-Aachen International Center for Information Technology (B-IT), Algorithmic Bioinformatics, University of Bonn, Dahlmannstr. 2, 53113, Bonn, Germany
| | - Marijke van Rikxoort
- Institute of Pharmacology and Toxicology, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Kirsten Ridder
- Institute of Pharmacology and Toxicology, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Holger Fröhlich
- Bonn-Aachen International Center for Information Technology (B-IT), Algorithmic Bioinformatics, University of Bonn, Dahlmannstr. 2, 53113, Bonn, Germany
| | - Bénédicte Danis
- UCB Pharma GmbH, Alfred-Nobel-Straße 10, 40789, Monheim, Germany
| | - Rafal M Kaminski
- UCB Pharma GmbH, Alfred-Nobel-Straße 10, 40789, Monheim, Germany
| | - Patrik Foerch
- UCB Pharma GmbH, Alfred-Nobel-Straße 10, 40789, Monheim, Germany
| | - Christian E Elger
- Department of Epileptology, University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Frank Weinsberg
- UCB Pharma GmbH, Alfred-Nobel-Straße 10, 40789, Monheim, Germany.
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.
| |
Collapse
|
38
|
Varamo C, Occelli M, Vivenza D, Merlano M, Lo Nigro C. MicroRNAs role as potential biomarkers and key regulators in melanoma. Genes Chromosomes Cancer 2016; 56:3-10. [PMID: 27561079 DOI: 10.1002/gcc.22402] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/16/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma (MM) is a highly aggressive skin cancer with high incidence worldwide. It originates from melanocytes and is characterized by invasion, early metastasis and despite the use of new drugs it is still characterized by high mortality. Since an early diagnosis determines a better prognosis, it is important to explore novel prognostic markers in the management of patients with MM. microRNAs (miRNAs) are small (∼22 nucleotides) single-stranded non-coding RNAs that negatively regulate the expression of more than 60% of human genes.miRNAs alterations are involved in several cancers, including MM, where a differential expression for some of them has been reported between healthy controls and MM patients. Moreover, since miRNAs are stable and easily detectable in body fluids, they might be considered as robust candidate biomarkers useful to identify risk of MM, to diagnose an early lesion and/or an early metastatic disease. This review highlights the importance of miRNAs as risk factors, prognostic factors and their role as molecular regulator in the development and progression of MM. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chiara Varamo
- Laboratory of Cancer Genetics and Translational Oncology, Oncology Department, S. Croce and Carle Teaching Hospital, Cuneo, 12100, Italy
| | - Marcella Occelli
- Medical Oncology, Oncology Department, S. Croce and Carle Teaching Hospital, Cuneo, 12100, Italy
| | - Daniela Vivenza
- Laboratory of Cancer Genetics and Translational Oncology, Oncology Department, S. Croce and Carle Teaching Hospital, Cuneo, 12100, Italy
| | - Marco Merlano
- Medical Oncology, Oncology Department, S. Croce and Carle Teaching Hospital, Cuneo, 12100, Italy
| | - Cristiana Lo Nigro
- Laboratory of Cancer Genetics and Translational Oncology, Oncology Department, S. Croce and Carle Teaching Hospital, Cuneo, 12100, Italy
| |
Collapse
|
39
|
Chen Y, Wang X, Cheng J, Wang Z, Jiang T, Hou N, Liu N, Song T, Huang C. MicroRNA-20a-5p targets RUNX3 to regulate proliferation and migration of human hepatocellular cancer cells. Oncol Rep 2016; 36:3379-3386. [DOI: 10.3892/or.2016.5144] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/17/2016] [Indexed: 11/05/2022] Open
|
40
|
Lee SH, Jung YD, Choi YS, Lee YM. Targeting of RUNX3 by miR-130a and miR-495 cooperatively increases cell proliferation and tumor angiogenesis in gastric cancer cells. Oncotarget 2016; 6:33269-78. [PMID: 26375442 PMCID: PMC4741764 DOI: 10.18632/oncotarget.5037] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/25/2015] [Indexed: 12/31/2022] Open
Abstract
Mature microRNAs (miRNAs) are 21 to 23 nucleotide noncoding RNA molecules that can downregulate multiple gene expression by mRNA degradation or translational repression. miRNAs are considered to play important roles in cell proliferation, apoptosis, and differentiation during mammalian development. The Runt-related transcription factor 3 (RUNX3) expression and activity are frequently downregulated by various mechanisms in gastric cancer. We have reported that RUNX3 inactivation is crucial for early tumorigenesis. In this study, we investigated the role of miRNAs targeting RUNX3 in early tumorigenesis. miR-130a and miR-495 upregulated under hypoxic conditions that bind to the RUNX3 3′-untranslated region (3′-UTR) were identified in gastric cancer cells by using microarray analysis and bioinformatics programs. Combination of miR-130a and miR-495 inhibited RUNX3 expression at the protein level, but not at the mRNA level. miR-130a and miR-495 significantly inhibited the RUNX3–3′UTR-luciferase activity. Combination of miR-130a and miR-495 significantly decreased apoptosis determined by Annexin V-FITC/propidium iodide staining and flow cytometric analysis, and the expression of Bim in SNU484 gastric cancer cells. In addition, p21 and Bim, RUNX3 target genes, were completely downregulated by the combination of miR-130a and miR-495. Using matrigel plug assay, we found that antagomiRs specific for miR-130a and miR-495 significantly reduced angiogenesis in vivo. In conclusion, targeting miR-130a and miR-495 could be a potential therapeutics to recover RUNX3 expression under hypoxic conditions and in early tumorigenic progression.
Collapse
Affiliation(s)
- Sun Hee Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Daegu, 702-701, Republic of Korea
| | - Yuk Dong Jung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Daegu, 702-701, Republic of Korea
| | - Young Sun Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Daegu, 702-701, Republic of Korea
| | - You Mie Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Daegu, 702-701, Republic of Korea
| |
Collapse
|
41
|
Larsen AC. Conjunctival malignant melanoma in Denmark: epidemiology, treatment and prognosis with special emphasis on tumorigenesis and genetic profile. Acta Ophthalmol 2016; 94 Thesis 1:1-27. [PMID: 27192168 DOI: 10.1111/aos.13100] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conjunctival malignant melanoma is a rare disease associated with considerable mortality. Most published data have been based on case reports or series of referred patients. In addition, very little is known about the genetic and epigenetic profile of conjunctival melanoma and the resemblance to uveal, cutaneous and mucosal melanoma. The aim was to determine the incidence rate of conjunctival melanoma, and to relate clinicopathological features and treatment to prognosis. A further aim was to determine the prevalence of BRAF mutations in conjunctival melanoma, to determine whether BRAF mutations are early events in pathogenesis, and relate clinicopathological features and prognosis to BRAF-mutation status. Finally, we wanted to identify tumour-specific and prognostic microRNAs in conjunctival melanoma, and to compare these with the microRNA expression of other melanoma subtypes. In order to investigate these rare tumours, we studied all the conjunctival melanomas that had been surgically removed in Denmark over a period of 52 years (1960-2012). Tissue samples, clinical files, pathology reports and follow-up data were collected and re-evaluated. Using droplet digital polymerase chain reaction and immunohistochemistry, we investigated BRAF mutations; and using microRNA expression profiling, we investigated differentially expressed microRNAs. The overall incidence of conjunctival melanoma was 0.5/1 000 000/year, and it increased in Denmark over 52 years. The increase was mainly caused by an increase in older patients (>65 years) and bulbar lesions. Clinicopathological features significantly associated with a poor prognosis were extrabulbar location, involvement of adjacent tissue structures, tumour thickness exceeding 2 mm and local tumour recurrence. Patients undergoing incisional biopsy and/or treatment involving excision without adjuvant therapy fared worse than patients treated with excision and any type of adjuvant treatment. We found that 35% (39/110) of conjunctival melanomas were BRAF-mutated, and the incidence of BRAF mutations was constant over time. BRAF-mutation status corresponded in conjunctival melanoma and paired premalignant lesions. BRAF mutations were more frequent in males, in young patients, and in tumours with a sun-exposed tumour location (bulbar conjunctiva or caruncle), with a mixed or non-pigmented colour, with absence of primary acquired melanosis, and with origin in a nevus. Immunohistochemistry was able to accurately detect BRAF V600E mutations. In univariate analysis, distant metastatic disease was associated with BRAF mutations. No prognostic associations with BRAF mutations were identified in multivariate analyses. MicroRNA expression analysis revealed 25 tumour-specific microRNAs in conjunctival melanoma. Five possibly oncogenic miRNAs (miR-20b-5p, miR-146b-5p, miR-146a-5p, miR-506-3p and miR-509-3p) were up-regulated. Seven microRNAs (miR-30d-5p, miR-138-5p, miR-146a-5p, miR-500a-5p, miR-501-3p, miR-501-5p and miR-502-3p) were significantly and simultaneously up-regulated in both stage T1 and stage T2 tumours, and were associated with increased tumour thickness. The expression of the 25 tumour-specific microRNAs did not differ significantly between conjunctival melanoma and oral or nasal mucosal melanoma. In conclusion, the incidence of conjunctival melanoma increased in the Danish population from 1960 to 2012. From our findings of a distinct pattern of BRAF mutations and differentially expressed microRNAs, it is evident that conjunctival melanoma is closely related to cutaneous and other mucosal melanomas and bears less resemblance to uveal melanomas. This means that conjunctival melanoma patients may benefit from therapies that are effective for cutaneous and mucosal melanoma. Additionally, the identification of several up-regulated microRNAs may prove to be useful as prognostic or therapeutic targets in conjunctival melanoma.
Collapse
Affiliation(s)
- Ann-Cathrine Larsen
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
42
|
Sengupta D, Byrum SD, Avaritt NL, Davis L, Shields B, Mahmoud F, Reynolds M, Orr LM, Mackintosh SG, Shalin SC, Tackett AJ. Quantitative Histone Mass Spectrometry Identifies Elevated Histone H3 Lysine 27 (Lys27) Trimethylation in Melanoma. Mol Cell Proteomics 2016; 15:765-75. [PMID: 26621846 PMCID: PMC4813699 DOI: 10.1074/mcp.m115.053363] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/30/2015] [Indexed: 01/08/2023] Open
Abstract
Normal cell growth is characterized by a regulated epigenetic program that drives cellular activities such as gene transcription, DNA replication, and DNA damage repair. Perturbation of this epigenetic program can lead to events such as mis-regulation of gene transcription and diseases such as cancer. To begin to understand the epigenetic program correlated to the development of melanoma, we performed a novel quantitative mass spectrometric analysis of histone post-translational modifications mis-regulated in melanoma cell culture as well as patient tumors. Aggressive melanoma cell lines as well as metastatic melanoma were found to have elevated histone H3 Lys(27) trimethylation (H3K27me3) accompanied by overexpressed methyltransferase EZH2 that adds the specific modification. The altered epigenetic program that led to elevated H3K27me3 in melanoma cell culture was found to directly silence transcription of the tumor suppressor genes RUNX3 and E-cadherin. The EZH2-mediated silencing of RUNX3 and E-cadherin transcription was also validated in advanced stage human melanoma tissues. This is the first study focusing on the detailed epigenetic mechanisms leading to EZH2-mediated silencing of RUNX3 and E-cadherin tumor suppressors in melanoma. This study underscores the utility of using high resolution mass spectrometry to identify mis-regulated epigenetic programs in diseases such as cancer, which could ultimately lead to the identification of biological markers for diagnostic and prognostic applications.
Collapse
Affiliation(s)
| | | | | | - Lauren Davis
- From the ‡Department of Biochemistry and Molecular Biology
| | | | - Fade Mahmoud
- ¶Department of Hematology Oncology and Internal Medicine, and
| | | | - Lisa M Orr
- From the ‡Department of Biochemistry and Molecular Biology
| | | | - Sara C Shalin
- ‖Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Alan J Tackett
- From the ‡Department of Biochemistry and Molecular Biology, ‖Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
43
|
Wang F, Chang JTH, Kao CJ, Huang RS. High Expression of miR-532-5p, a Tumor Suppressor, Leads to Better Prognosis in Ovarian Cancer Both In Vivo and In Vitro. Mol Cancer Ther 2016; 15:1123-31. [PMID: 26873729 DOI: 10.1158/1535-7163.mct-15-0943] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/01/2016] [Indexed: 12/19/2022]
Abstract
Ovarian cancer is the leading cause of death for gynecologic cancers, ranking fifth overall for cancer-related death among women. The identification of biomarkers and the elucidation of molecular mechanisms for improving treatment options have received extensive efforts in ovarian cancer research. miRNAs have high potential to act as both ovarian cancer biomarkers and as critical regulators of ovarian tumor behavior. We comprehensively analyzed global mRNA, miRNA expression, and survival data for ovarian cancer from The Cancer Genome Atlas (TCGA) to pinpoint miRNAs that play critical roles in ovarian cancer survival through their effect on mRNA expression. We performed miRNA overexpression and gene knockdown experiments to confirm mechanisms predicted in our bioinformatics approach. We established that overexpression of miR-532-5p in OVCAR-3 cells resulted in a significant decrease in cell viability over a 96-hour time period. In the TCGA ovarian cancer dataset, we found 67 genes whose expression levels were negatively correlated with miR-532-5p expression and correlated with patient survival, such as WNT9A, CSNK2A2, CHD4, and SH3PXD2A The potential miR-532-5p-regulated gene targets were found to be enriched in the Wnt pathway. Overexpression of miR-532-5p through miRNA mimic caused downregulation of CSNK2A2, CHD4, and SH3PXD2A in the OVCAR-3 cell line. We have discovered and validated the tumor-suppressing capabilities of miR-532-5p both in vivo through TCGA analysis and in vitro through ovarian cancer cell lines. Our work highlights the potential clinical importance of miR-532-5p expression in ovarian cancer patients. Mol Cancer Ther; 15(5); 1123-31. ©2016 AACR.
Collapse
Affiliation(s)
- Fan Wang
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Jeremy T-H Chang
- Biological Sciences Collegiate Division, University of Chicago, Chicago, Illinois
| | | | | |
Collapse
|
44
|
Chen F, Liu X, Bai J, Pei D, Zheng J. The emerging role of RUNX3 in cancer metastasis (Review). Oncol Rep 2015; 35:1227-36. [PMID: 26708741 DOI: 10.3892/or.2015.4515] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/11/2015] [Indexed: 11/06/2022] Open
Abstract
Metastasis remains the major driver of mortality in patients with cancer. The multistep metastatic process starts with the dissemination of tumor cells from a primary site and leading to secondary tumor development in an anatomically distant location. Although significant progress has been made in understanding the molecular characteristics of metastasis, many questions remain regarding the intracellular mechanisms governing transition through the various metastatic stages. The runt-related transcription factor 3 (RUNX3) is a downstream effector of the transforming growth factor-β (TGF-β) signaling pathway, and has critical roles in the regulation of cell death by apoptosis, and in angiogenesis, epithelial-to-mesenchymal transition (EMT), cell migration and invasion. RUNX3 functions as a bona fide initiator of carcinogenesis by linking the Wnt oncogenic and TGF-β tumor suppressive pathways. RUNX3 is frequently inactivated in human cancer cell lines and cancer samples by hemizygous deletion of the Runx3 gene, hypermethylation of the Runx3 promoter, or cytoplasmic sequestration of RUNX3 protein. Inactivation of RUNX3 makes it a putative tumor suppressor in human neoplasia. In the present review, we summarize the proposed roles of RUNX3 in metastasis and, when applicable, highlight the mechanism by which they function.
Collapse
Affiliation(s)
- Feifei Chen
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xin Liu
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Dongsheng Pei
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
45
|
Mirzaei H, Gholamin S, Shahidsales S, Sahebkar A, Jaafari MR, Mirzaei HR, Hassanian SM, Avan A. MicroRNAs as potential diagnostic and prognostic biomarkers in melanoma. Eur J Cancer 2015; 53:25-32. [PMID: 26693896 DOI: 10.1016/j.ejca.2015.10.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022]
Abstract
Melanoma is a life-threatening malignancy with poor prognosis and a relatively high burden of mortality in advanced stages. The efficacy of current available therapeutic strategies is limited, with a survival rate of less than 10%. Despite rapid advances in biomarker-guided drug development in different tumour types, including melanoma, only a very small number of biomarkers have been identified. Recently, microRNAs (miRNAs) have emerged as a molecular regulator in the development and progression of melanoma. Aberrant activation of some known miRNAs, e.g. let-7a and b, miR-148, miR-155, miR-182, miR-200c, miR-211, miR-214, miR-221 and 222, has been recognised to be linked with melanoma-associated genes such as NRAS, microphthalmia-associated transcription factor, receptor tyrosine kinase c-KIT, AP-2 transcription factor, etc. There is accumulating evidence suggesting the potential impact of circulating miRNAs as diagnostic and therapeutic markers in diseases. In addition, miRNAs have turned out to play important roles in drug-resistance mechanisms; suggesting their modulation as a potential approach to overcome chemoresistance. This review highlights recent preclinical and clinical studies on circulating miRNAs and their potential role as diagnosis, and therapeutic targets in melanoma.
Collapse
Affiliation(s)
- Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sharareh Gholamin
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Soodabeh Shahidsales
- Cancer Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Hassanian
- Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Molecular Medicine Group, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
46
|
Song X, Wang Z, Jin Y, Wang Y, Duan W. Loss of miR-532-5p in vitro promotes cell proliferation and metastasis by influencing CXCL2 expression in HCC. Am J Transl Res 2015; 7:2254-2261. [PMID: 26807173 PMCID: PMC4697705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/31/2015] [Indexed: 06/05/2023]
Abstract
MicroRNAs (miRNAs) have been widely reported, which play important roles in cancer development. CXCL2 acts as an oncogene, however, its regulation by miRNAs is not clear in hepatocellular carcinoma (HCC). In our research, it is aimed to study the role of CXCL2 in HCC and the regulation of its expression by miRNAs. Firstly, we found that CXCL2 was up-regulated in the blood of patients with HCC and cell lines compared with the normal controls. CXCL2 could enhance HCC cell proliferation and metastasis. miR-532-5p was predicted as a regulatory miRNA of CXCL2 in HCC, and negatively associated with CXCL2 in HCC samples. It was also verified that miR-532-5p inhibited cell proliferation and metastasis of HCC cells by inhibition CXCL2. Collectively, our findings suggested that miR-532-5p may function as a tumor suppressor in HCC by targeting CXCL2.
Collapse
Affiliation(s)
- Xiaofei Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affliated to Shandong Uiniversty Jinan, China
| | - Zie Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affliated to Shandong Uiniversty Jinan, China
| | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affliated to Shandong Uiniversty Jinan, China
| | - Yong Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affliated to Shandong Uiniversty Jinan, China
| | - Wenbing Duan
- Department of Clinical Laboratory, Shandong Provincial Hospital Affliated to Shandong Uiniversty Jinan, China
| |
Collapse
|
47
|
Xu X, Zhang Y, Liu Z, Zhang X, Jia J. miRNA-532-5p functions as an oncogenic microRNA in human gastric cancer by directly targeting RUNX3. J Cell Mol Med 2015; 20:95-103. [PMID: 26515139 PMCID: PMC4717862 DOI: 10.1111/jcmm.12706] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022] Open
Abstract
Accumulating data reveal that microRNAs are involved in gastric carcinogenesis. To date, no information was reported about the function and regulatory mechanism of miR‐532‐5p in human gastric cancer (GC). Thus, our study aims to determine the role and regulation of miR‐532‐5p in GC. Here, we found that transient and stable overexpression of miR‐532‐5p dramatically increased the potential of colony formation and migration of GC cells, decreased the percentage of cells in G1 phase and cell apoptosis in vitro, and increased the weight of mice lungs and number of lung xenografts in vivo. Gain‐of‐function, loss‐of‐function and luciferase activity assays demonstrated that miR‐532‐5p negatively regulated the expression of RUNX3 and its targets directly. We also found that miR‐532‐5p level was negatively correlated with RUNX3 gene expression in various GC cell lines. Our results indicate that miR‐532‐5p functions as an oncogenic miRNA by promoting cell growth, migration and invasion in human GC cells.
Collapse
Affiliation(s)
- Xia Xu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Yingjie Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, China
| | - Zhifang Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Xinchao Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Jihui Jia
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, China
| |
Collapse
|
48
|
Elton TS, Yalowich JC. Experimental procedures to identify and validate specific mRNA targets of miRNAs. EXCLI JOURNAL 2015; 14:758-90. [PMID: 27047316 PMCID: PMC4817421 DOI: 10.17179/excli2015-319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/20/2015] [Indexed: 12/14/2022]
Abstract
Functionally matured microRNAs (miRNAs) are small single-stranded non-coding RNA molecules which are emerging as important post-transcriptional regulators of gene expression and consequently are central players in many physiological and pathological processes. Since the biological roles of individual miRNAs will be dictated by the mRNAs that they regulate, the identification and validation of miRNA/mRNA target interactions is critical for our understanding of the regulatory networks governing biological processes. We promulgate the combined use of prediction algorithms, the examination of curated databases of experimentally supported miRNA/mRNA interactions, manual sequence inspection of cataloged miRNA binding sites in specific target mRNAs, and review of the published literature as a reliable practice for identifying and prioritizing biologically important miRNA/mRNA target pairs. Once a preferred miRNA/mRNA target pair has been selected, we propose that the authenticity of a functional miRNA/mRNA target pair be validated by fulfilling four well-defined experimental criteria. This review summarizes our current knowledge of miRNA biology, miRNA/mRNA target prediction algorithms, validated miRNA/mRNA target data bases, and outlines several experimental methods by which miRNA/mRNA targets can be authenticated. In addition, a case study of human endoglin is presented as an example of the utilization of these methodologies.
Collapse
Affiliation(s)
- Terry S Elton
- College of Pharmacy, Division of Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Jack C Yalowich
- College of Pharmacy, Division of Pharmacology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
49
|
Marzese DM, Hoon DS. Emerging technologies for studying DNA methylation for the molecular diagnosis of cancer. Expert Rev Mol Diagn 2015; 15:647-64. [PMID: 25797072 DOI: 10.1586/14737159.2015.1027194] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA methylation is an epigenetic mechanism that plays a key role in regulating gene expression and other functions. Although this modification is seen in different sequence contexts, the most frequently detected DNA methylation in mammals involves cytosine-guanine dinucleotides. Pathological alterations in DNA methylation patterns are described in a variety of human diseases, including cancer. Unlike genetic changes, DNA methylation is heavily influenced by subtle modifications in the cellular microenvironment. In all cancers, aberrant DNA methylation is involved in the alteration of a large number of oncological pathways with relevant theranostic utility. Several technologies for DNA methylation mapping have been developed recently and successfully applied in cancer studies. The scope of these technologies varies from assessing a single cytosine-guanine locus to genome-wide distribution of DNA methylation. Here, we review the strengths and weaknesses of these approaches in the context of clinical utility for the molecular diagnosis of human cancers.
Collapse
Affiliation(s)
- Diego M Marzese
- Department of Molecular Oncology, Saint John's Health Center, John Wayne Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | | |
Collapse
|
50
|
Differential expression of miRNAs and their relation to active tuberculosis. Tuberculosis (Edinb) 2015; 95:395-403. [PMID: 25936536 DOI: 10.1016/j.tube.2015.02.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/19/2015] [Indexed: 01/10/2023]
Abstract
The aim of this work was to screen miRNA signatures dysregulated in tuberculosis to improve our understanding of the biological role of miRNAs involved in the disease. Datasets deposited in publically available databases from microarray studies on infectious diseases and malignancies were retrieved, screened, and subjected to further analysis. Effect sizes were combined using the inverse-variance model and between-study heterogeneity was evaluated by the random effects model. 35 miRNAs were differentially expressed (12 up-regulated, 23 down-regulated; p < 0.05) by combining 15 datasets of tuberculosis and other infectious diseases. 15 miRNAs were found to be significantly differentially regulated (7 up-regulated, 8 down-regulated; p < 0.05) by combining 53 datasets of tuberculosis and malignancies. Most of the miRNA signatures identified in this study were found to be involved in immune responses and metabolism. Expression of these miRNA signatures in serum samples from TB subjects (n = 11) as well as healthy controls (n = 10) was examined by TaqMan miRNA array. Taken together, the results revealed differential expression of miRNAs in TB, but available datasets are limited and these miRNA signatures should be validated in future studies.
Collapse
|