1
|
Kim HY, Jung H, Kim HM, Jeong HJ. Surfactin exerts an anti-cancer effect through inducing allergic reactions in melanoma skin cancer. Int Immunopharmacol 2021; 99:107934. [PMID: 34233232 DOI: 10.1016/j.intimp.2021.107934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/31/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022]
Abstract
Surfactin is a mast cell degranulator, that increases the immune response via the degranulation of mast cells. Recently, numerous studies reported that allergic reactions play an important role in the reduction of melanoma development. So, this study aimed to investigate the anti-cancer effects of surfactin in a melanoma skin cancer in vivo model and a melanoma cell line, B16F10. Oral administration of surfactin significantly increased survival rate and reduced tumor growth and tumor weight on melanoma skin cancer in vivo model. Surfactin significantly increased infiltration of mast cells and levels of histamine. Surfactin significantly enhanced levels of IgE and immune-enhancing mediators, such as interferon-γ, interleukin (IL)-2, IL-6, IL-12, and tumor necrosis factor-α in serum and melanoma tissues. Activities of caspase-3, 8, and 9 were significantly enhanced by oral administration of surfactin. In vitro model, surfactin significantly increased B16F10 cell death via activation of caspase-3, 8, and 9 in a dose-dependent manner. Overall, our results indicate that surfactin has a significant anti-cancer effect on melanoma skin cancer through indirectly or directly inducing apoptosis of B16F10 melanoma cells. Also, these findings suggest that it will contribute to a novel perception into the role of allergic reactions in melanoma.
Collapse
Affiliation(s)
- Hee-Yun Kim
- Biochip Research Center, Hoseo University, Asan, Chungnam 31499, Republic of Korea
| | - Hanchul Jung
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyung-Min Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan, Chungnam 31499, Republic of Korea; Department of Food Science & Technology, Hoseo University, Asan 31499, Republic of Korea.
| |
Collapse
|
2
|
Breen DM, Kim H, Bennett D, Calle RA, Collins S, Esquejo RM, He T, Joaquim S, Joyce A, Lambert M, Lin L, Pettersen B, Qiao S, Rossulek M, Weber G, Wu Z, Zhang BB, Birnbaum MJ. GDF-15 Neutralization Alleviates Platinum-Based Chemotherapy-Induced Emesis, Anorexia, and Weight Loss in Mice and Nonhuman Primates. Cell Metab 2020; 32:938-950.e6. [PMID: 33207247 DOI: 10.1016/j.cmet.2020.10.023] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/06/2020] [Accepted: 10/29/2020] [Indexed: 12/28/2022]
Abstract
Platinum-based cancer therapy is restricted by dose-limiting side effects and is associated with elevation of growth differentiation factor 15 (GDF-15). But whether this elevation contributes to such side effects has been unclear. Here, we explored the effects of GDF-15 blockade on platinum-based chemotherapy-induced emesis, anorexia, and weight loss in mice and/or nonhuman primate models. We found that circulating GDF-15 is higher in subjects with cancer receiving platinum-based chemotherapy and is positively associated with weight loss in colorectal cancer (NCT00609622). Further, chemotherapy agents associated with high clinical emetic score induce circulating GDF-15 and weight loss in mice. Platinum-based treatment-induced anorexia and weight loss are attenuated in GDF-15 knockout mice, while GDF-15 neutralization with the monoclonal antibody mAB1 improves survival. In nonhuman primates, mAB1 treatment attenuates anorexia and emesis. These results suggest that GDF-15 neutralization is a potential therapeutic approach to alleviate chemotherapy-induced side effects and improve the quality of life.
Collapse
Affiliation(s)
- Danna M Breen
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA.
| | - Hanna Kim
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Donald Bennett
- Biostatistics, Early Clinical Development, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Roberto A Calle
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Susie Collins
- Biostatistics, Early Clinical Development, Pfizer R&D UK Limited, Ramsgate Road, Sandwich, Kent, UK
| | - Ryan M Esquejo
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Tao He
- Biomedicine Design, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Stephanie Joaquim
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Alison Joyce
- Biomedicine Design, Pfizer Inc., 1 Burtt Road, Andover, MA, USA
| | - Matthew Lambert
- Biomedicine Design, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Laura Lin
- Biomedicine Design, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Betty Pettersen
- Drug Safety Research and Development, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Shuxi Qiao
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Michelle Rossulek
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Gregory Weber
- Biomedicine Design, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Zhidan Wu
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Bei B Zhang
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Morris J Birnbaum
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| |
Collapse
|
3
|
Combination therapy with TiO 2 nanoparticles and cisplatin enhances chemotherapy response in murine melanoma models. Clin Transl Oncol 2020; 23:738-749. [PMID: 32734535 DOI: 10.1007/s12094-020-02463-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Despite recent progressions in the treatment of melanoma, the response to conventional therapies and the long-term survival in melanoma patients still remain poor. Recently, the use of nanoparticles (NPs) has been highlighted for promoting the chemotherapeutic effects of cytotoxic drugs in melanoma. The aim of this study is to mechanistically evaluate the potential of titanium dioxide (TiO2) nanoparticles (NPs) for enhancing chemotherapy effects in in vitro and in vivo models of murine melanoma. METHODS The F10 melanoma cells were exposed to different concentrations of TiO2 NPs and/or cisplatin, then cell growth, cell viability, and cell death were evaluated. In parallel, C57BL/6 syngeneic melanoma mice were treated by TiO2 NPs and/or cisplatin, and then drug responses, tumor size and mice's organs were studied pathologically. Autophagy was examined by evaluating the formation of autophagosomes and gene expression levels of autophagy markers (ATG5 and ATG6) by fluorescent microscopy and qPCR, respectively. RESULTS Nontoxic concentrations of TiO2 NPs (50 µg/ml) promote anti-proliferative and cytotoxic effects of cisplatin in F10 melanoma cells, which is mediated through the induction of autophagy and necrotic cell death. Whereas TiO2 NPs have no cytotoxic or metastatic effects in melanoma mice, its combination with cisplatin enhances drug responses (up to 50%), leading to higher inhibition of tumor growth compared with each monotherapy. CONCLUSION The combination of TiO2 NP with cisplatin enhances chemotherapy response in both in vitro and in vivo melanoma models. In addition, autophagy plays an essential role during sensitizing melanoma cells to chemotherapy.
Collapse
|
4
|
Micelles with ultralow critical micelle concentration as carriers for drug delivery. Nat Biomed Eng 2018; 2:318-325. [PMID: 30936455 DOI: 10.1038/s41551-018-0234-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 04/05/2018] [Indexed: 12/27/2022]
Abstract
Conventional micellar carriers disassemble into free surfactants when diluted at concentrations below the critical micelle concentration (CMC). This limits the bioavailability in vivo of injected hydrophobic drugs encapsulated in micellar systems. Here, we show that a micelle comprising a superhydrophilic zwitterionic polymer domain and a superhydrophobic lipid domain has an undetectable CMC below 10-6 mM-a value that is orders of magnitude lower than the CMCs (>10-3 mM) of typical micellar systems. We also show that zwitterionic moieties or zwitterionic polymers added to a micelle solution stabilize the micelles at concentrations below their inherent CMC. In a mouse model of melanoma, ultralow-CMC micelles encapsulating docetaxel led to the complete eradication of tumours, whereas conventional docetaxel micellar formulations did not reverse tumour growth. Ultralow-CMC micelles might become next-generation carriers for drug delivery.
Collapse
|
5
|
Kwak G, Jo SD, Kim D, Kim H, Kim MG, Kim K, Kwon IC, Kim SH. Synergistic antitumor effects of combination treatment with metronomic doxorubicin and VEGF-targeting RNAi nanoparticles. J Control Release 2017; 267:203-213. [DOI: 10.1016/j.jconrel.2017.08.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022]
|
6
|
Kerbel RS, Shaked Y. The potential clinical promise of 'multimodality' metronomic chemotherapy revealed by preclinical studies of metastatic disease. Cancer Lett 2017; 400:293-304. [PMID: 28202353 DOI: 10.1016/j.canlet.2017.02.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/04/2017] [Indexed: 12/24/2022]
Abstract
We present a rationale for further clinical development and assessment of metronomic chemotherapy on the basis of unexpected results obtained in translational mouse models of cancer involving treatment of advanced metastatic disease. Historically, mouse cancer therapy models have been dominated by treating established primary tumors or early stage low volume microscopic disease. Treatment of primary tumors is also almost always the case when using genetically engineered mouse models (GEMMs) of cancer or patient-derived xenografts (PDXs). Studies using such models, and others including transplanted cell lines, often yield highly encouraging results which are seldom recapitulated in the clinic, especially when assessed in randomized phase III clinical trials. While there are likely many different reasons for this discrepancy, one is likely the failure to recapitulate treatment of advanced visceral metastatic disease in mice. With this gap in mind, we have developed a number of models of metastatic human tumor xenografts (and more recently, of mouse tumors in syngeneic immunocompetent mice). A pattern of response we have observed with various targeted agents, e.g. VEGF pathway targeting antiangiogenic drugs or trastuzumab, is effective when treating primary tumors in contrast to a complete or severely reduced lack of such efficacy when treating advanced metastatic disease. Interestingly, an exception to this pattern has been observed using various continuous low-dose metronomic chemotherapy regimens, where counterintuitively, superior responses are observed in the metastatic setting, as well as superiority or equivalence of metronomic chemotherapy over standard maximum tolerated dose (MTD) chemotherapy, with lesser toxicity. The basis for these encouraging results may be related to the multiple mechanisms responsible for the anti-tumor effects and longer duration of metronomic chemotherapy regimens made possible by lesser toxicity. These include antiangiogenesis, stimulation of the immune system, stromal cell targeting in tumors, and possibly direct tumor cell targeting, including targeting cancer stem cells (CSCs). In addition, metronomic chemotherapy regimens minimize or even eliminate the problem of chemotherapy-induced host responses that may actually secondarily promote tumor growth and malignancy after causing an initial and beneficial anti-tumor response. We suggest that future preclinical studies of metronomic chemotherapy should be concentrated in the following areas: i) further comparative assessment of anti-tumor efficacy in primary vs metastatic treatment settings; ii) rigorous comparative assessment of conventional MTD chemotherapy vs metronomic chemotherapy using the same agent; iii) assessment of potential predictive biomarkers for metronomic chemotherapy, and methods to determine optimal biologic dose and schedule; and iv) a further detailed assessment of the potential of different chemotherapy drugs administered using MTD or metronomic regimens on stimulating or suppressing components of the innate or adaptive immune systems.
Collapse
Affiliation(s)
- Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Canada.
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Israel
| |
Collapse
|
7
|
Falcon BL, Chintharlapalli S, Uhlik MT, Pytowski B. Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR-2) as anti-angiogenic agents. Pharmacol Ther 2016; 164:204-25. [PMID: 27288725 DOI: 10.1016/j.pharmthera.2016.06.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interaction of numerous signaling pathways in endothelial and mesangial cells results in exquisite control of the process of physiological angiogenesis, with a central role played by vascular endothelial growth factor receptor 2 (VEGFR-2) and its cognate ligands. However, deregulated angiogenesis participates in numerous pathological processes. Excessive activation of VEGFR-2 has been found to mediate tissue-damaging vascular changes as well as the induction of blood vessel expansion to support the growth of solid tumors. Consequently, therapeutic intervention aimed at inhibiting the VEGFR-2 pathway has become a mainstay of treatment in cancer and retinal diseases. In this review, we introduce the concepts of physiological and pathological angiogenesis, the crucial role played by the VEGFR-2 pathway in these processes, and the various inhibitors of its activity that have entered the clinical practice. We primarily focus on the development of ramucirumab, the antagonist monoclonal antibody (mAb) that inhibits VEGFR-2 and has recently been approved for use in patients with gastric, colorectal, and lung cancers. We examine in-depth the pre-clinical studies using DC101, the mAb to mouse VEGFR-2, which provided a conceptual foundation for the role of VEGFR-2 in physiological and pathological angiogenesis. Finally, we discuss further clinical development of ramucirumab and the future of targeting the VEGF pathway for the treatment of cancer.
Collapse
|
8
|
Previs RA, Armaiz-Pena GN, Lin YG, Davis AN, Pradeep S, Dalton HJ, Hansen JM, Merritt WM, Nick AM, Langley RR, Coleman RL, Sood AK. Dual Metronomic Chemotherapy with Nab-Paclitaxel and Topotecan Has Potent Antiangiogenic Activity in Ovarian Cancer. Mol Cancer Ther 2015; 14:2677-86. [PMID: 26516159 DOI: 10.1158/1535-7163.mct-14-0630] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/15/2015] [Indexed: 01/14/2023]
Abstract
There is growing recognition of the important role of metronomic chemotherapy in cancer treatment. On the basis of their unique antiangiogenic effects, we tested the efficacy of nab-paclitaxel, which stimulates thrombospondin-1, and topotecan, which inhibits hypoxia-inducible factor 1-α, at metronomic dosing for the treatment of ovarian carcinoma. In vitro and in vivo SKOV3ip1, HeyA8, and HeyA8-MDR (taxane-resistant) orthotopic models were used to examine the effects of metronomic nab-paclitaxel and metronomic topotecan. We examined cell proliferation (Ki-67), apoptosis (cleaved caspase-3), and angiogenesis (microvessel density, MVD) in tumors obtained at necropsy. In vivo therapy experiments demonstrated treatment with metronomic nab-paclitaxel alone and in combination with metronomic topotecan resulted in significant reductions in tumor weight (62% in the SKOV3ip1 model, P < 0.01 and 96% in the HeyA8 model, P < 0.03) compared with vehicle (P < 0.01). In the HeyA8-MDR model, metronomic monotherapy with either cytotoxic agent had modest effects on tumor growth, but combination therapy decreased tumor burden by 61% compared with vehicle (P < 0.03). The greatest reduction in MVD (P < 0.05) and proliferation was seen in combination metronomic therapy groups. Combination metronomic therapy resulted in prolonged overall survival in vivo compared with other groups (P < 0.001). Tube formation was significantly inhibited in RF-24 endothelial cells exposed to media conditioned with metronomic nab-paclitaxel alone and media conditioned with combination metronomic nab-paclitaxel and metronomic topotecan. The combination of metronomic nab-paclitaxel and metronomic topotecan offers a novel, highly effective therapeutic approach for ovarian carcinoma that merits further clinical development.
Collapse
Affiliation(s)
- Rebecca A Previs
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guillermo N Armaiz-Pena
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yvonne G Lin
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ashley N Davis
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sunila Pradeep
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heather J Dalton
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jean M Hansen
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - William M Merritt
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alpa M Nick
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert R Langley
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert L Coleman
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
9
|
Ebos JML, Mastri M, Lee CR, Tracz A, Hudson JM, Attwood K, Cruz-Munoz WR, Jedeszko C, Burns P, Kerbel RS. Neoadjuvant antiangiogenic therapy reveals contrasts in primary and metastatic tumor efficacy. EMBO Mol Med 2015; 6:1561-76. [PMID: 25361689 PMCID: PMC4287975 DOI: 10.15252/emmm.201403989] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Thousands of cancer patients are currently in clinical trials evaluating antiangiogenic therapy
in the neoadjuvant setting, which is the treatment of localized primary tumors prior to surgical
intervention. The rationale is that shrinking a tumor will improve surgical outcomes and minimize
growth of occult micrometastatic disease—thus delaying post-surgical recurrence and improving
survival. But approved VEGF pathway inhibitors have not been tested in clinically relevant
neoadjuvant models that compare pre- and post-surgical treatment effects. Using mouse models of
breast, kidney, and melanoma metastasis, we demonstrate that primary tumor responses to neoadjuvant
VEGFR TKI treatment do not consistently correlate with improved post-surgical survival, with
survival worsened in certain settings. Similar negative effects did not extend to protein-based VEGF
pathway inhibitors and could be reversed with altered dose, surgical timing, and treatment duration,
or when VEGFR TKIs are combined with metronomic ‘anti-metastatic’ chemotherapy
regimens. These studies represent the first attempt to recapitulate the complex clinical parameters
of neoadjuvant therapy in mice and identify a novel tool to compare systemic antiangiogenic
treatment effects on localized and disseminated disease.
Collapse
Affiliation(s)
- John M L Ebos
- Genitourinary Section, Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Michalis Mastri
- Genitourinary Section, Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Christina R Lee
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Amanda Tracz
- Genitourinary Section, Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - John M Hudson
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - William R Cruz-Munoz
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christopher Jedeszko
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Peter Burns
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
The receptor for advanced glycation end products influences the expression of its S100 protein ligands in melanoma tumors. Int J Biochem Cell Biol 2014; 57:54-62. [PMID: 25310905 DOI: 10.1016/j.biocel.2014.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/02/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
Abstract
Recent studies have suggested that the receptor for advanced glycation end products (RAGE) participates in melanoma progression by promoting tumor growth. However, the mechanisms of RAGE activation in melanoma tumors are not clearly understood. To get deeper insights into these mechanisms, we transfected a melanoma cell line, which was established from a human melanoma primary tumor, with RAGE, and studied the effect of RAGE overexpression on cell proliferation and migration in vitro. We observed that overexpression of RAGE in these cells not only resulted in significantly increased migration rates compared to control cells, but also in decreased proliferation rates (Meghnani et al., 2014). In the present study, we compared the growth of xenograft tumors established from RAGE overexpressing WM115 cells, to that of control cells. We observed that when implanted in mice, RAGE overexpressing cells generated tumors faster than control cells. Analysis of protein tumor extracts showed increased levels of the RAGE ligands S100B, S100A2, S100A4, S100A6 and S100A10 in RAGE overexpressing tumors compared to control tumors. We show that the tumor growth was significantly reduced when the mice were treated with anti-RAGE antibodies, suggesting that RAGE, and probably several S100 proteins, were involved in tumor growth. We further demonstrate that the anti-RAGE antibody treatment significantly enhanced the efficacy of the alkylating drug dacarbazine in reducing the growth rate of RAGE overexpressing tumors.
Collapse
|
11
|
Liu Q, Wang C, Meng Q, Huo X, Sun H, Peng J, Ma X, Sun P, Liu K. MDR1 and OAT1/OAT3 mediate the drug-drug interaction between puerarin and methotrexate. Pharm Res 2014; 31:1120-1132. [PMID: 24242937 DOI: 10.1007/s11095-013-1235-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 10/14/2013] [Indexed: 11/25/2022]
Abstract
PURPOSE To conduct in vivo and in vitro experiments to investigate puerarin (PUR), an isoflavone C-glyoside, and elucidate its ability to alter methotrexate (MTX) transport and pharmacokinetics. METHODS In vivo absorption studies, in vitro everted intestinal sac preparation, kidney slices in rats and bi-directional transport assay with mock-/MDCK-MDR1 cells, uptake studies in HEK293-OAT1/3 cells were employed to evaluate the interaction. RESULTS In vivo and in vitro MTX absorption in rats were enhanced in combination with PUR. PUR inhibited digoxin efflux transport in MDCK-MDR1 monolayers with an IC50 value of 1.6 ± 0.3 μM, suggesting that the first target of drug interaction was MDR1 in the intestine during the absorption process. MTX renal clearance decreased significantly after simultaneous intravenous administration. MTX uptake in rat kidney slices and HEK293-OAT1/3 cells were markedly inhibited by PUR, suggesting that the second target of drug interaction was OATs located in the kidney. Moreover, concomitant administration of PUR reduced renal MTX accumulation and plasma levels of creatinine and BUN. CONCLUSIONS Co-administration of PUR enhanced MTX exposure by inhibition of intestinal MDR1 and renal OAT1/3. Although the renal damage of MTX was improved by PUR, the high level exposure of MTX should be cautious in the clinical usage.
Collapse
Affiliation(s)
- Qi Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road Lvshunkou District, Dalian, 116044, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
OBJECTIVES We have previously demonstrated activity of Apo2L/TRAIL against patient pancreatic tumor xenografts. Here, we have examined the influence of the tumor implantation site on therapeutic response of orthotopic tumors and their metastases to Apo2L/TRAIL. METHODS Sensitivity of 6 patient pancreatic tumor xenografts to Apo2L/TRAIL was determined in a subcutaneous model. To compare the response of orthotopic tumors, cells from subcutaneous xenografts were injected into the pancreas. Tumor growth was confirmed by histological examination of selected mice, and then treatment was started. When all control mice developed externally palpable tumors, the experiment was terminated, and pancreatic weights compared between control and treated groups. Magnetic resonance imaging was used to quantitate the response of orthotopic and metastatic tumors. RESULTS The sensitivity to Apo2L/TRAIL observed in subcutaneous tumors was maintained in orthotopic tumors. Metastatic spread was observed with orthotopic tumor implantation. In an orthotopic model of a sensitive tumor, primary and metastatic tumor burden was significantly reduced, and median survival significantly extended by Apo2L/TRAIL therapy. CONCLUSIONS Our data provide evidence that the site of tumor engraftment does not alter the inherent sensitivity of patient xenografts to Apo2L/TRAIL, and these results highlight the potential of Apo2L/TRAIL therapy against primary and metastatic pancreatic cancer.
Collapse
|
13
|
Dye DE, Medic S, Ziman M, Coombe DR. Melanoma biomolecules: independently identified but functionally intertwined. Front Oncol 2013; 3:252. [PMID: 24069584 PMCID: PMC3781348 DOI: 10.3389/fonc.2013.00252] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/09/2013] [Indexed: 01/31/2023] Open
Abstract
The majority of patients diagnosed with melanoma present with thin lesions and generally these patients have a good prognosis. However, 5% of patients with early melanoma (<1 mm thick) will have recurrence and die within 10 years, despite no evidence of local or metastatic spread at the time of diagnosis. Thus, there is a need for additional prognostic markers to help identify those patients that may be at risk of recurrent disease. Many studies and several meta-analyses have compared gene and protein expression in melanocytes, naevi, primary, and metastatic melanoma in an attempt to find informative prognostic markers for these patients. However, although a large number of putative biomarkers have been described, few of these molecules are informative when used in isolation. The best approach is likely to involve a combination of molecules. We believe one approach could be to analyze the expression of a group of interacting proteins that regulate different aspects of the metastatic pathway. This is because a primary lesion expressing proteins involved in multiple stages of metastasis may be more likely to lead to secondary disease than one that does not. This review focuses on five putative biomarkers – melanoma cell adhesion molecule (MCAM), galectin-3 (gal-3), matrix metalloproteinase 2 (MMP-2), chondroitin sulfate proteoglycan 4 (CSPG4), and paired box 3 (PAX3). The goal is to provide context around what is known about the contribution of these biomarkers to melanoma biology and metastasis. Although each of these molecules have been independently identified as likely biomarkers, it is clear from our analyses that each are closely linked with each other, with intertwined roles in melanoma biology.
Collapse
Affiliation(s)
- Danielle E Dye
- School of Biomedical Science & Curtin Health Innovation Research Institute, Faculty of Health, Curtin University , Perth, WA , Australia
| | | | | | | |
Collapse
|
14
|
Milsom CC, Lee CR, Hackl C, Man S, Kerbel RS. Differential post-surgical metastasis and survival in SCID, NOD-SCID and NOD-SCID-IL-2Rγ(null) mice with parental and subline variants of human breast cancer: implications for host defense mechanisms regulating metastasis. PLoS One 2013; 8:e71270. [PMID: 23967178 PMCID: PMC3743873 DOI: 10.1371/journal.pone.0071270] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/03/2013] [Indexed: 01/06/2023] Open
Abstract
We compare for the first time, the metastatic aggressiveness of the parental MDA-MB-231 breast cancer cell line and two luciferase-tagged in vivo-derived and selected pro-metastatic variants (LM2-4/luc+ and 164/8-1B/luc+) in SCID, NOD-SCID and NOD-SCID-IL-2Rγnull (NSG) mice following orthotopic implantation and primary tumour resection. The variants are known to be more aggressively metastatic in SCID mice, compared to the parental line which has limited spontaneous metastatic competence in these mice. When 2×106 cells were injected into the mammary fat pad, the growth of the resultant primary tumours was identical for the various cell lines in the three strains of mice. However, metastatic spread of all three cell lines, including the MDA-MB-231 parental cell line, was strikingly more aggressive in the highly immunocompromised NSG mice compared to both NOD-SCID and SCID mice, resulting in extensive multi-organ metastases and a significant reduction in overall survival. While these studies were facilitated by monitoring post-surgical spontaneous metastases using whole body bioluminescence imaging, we observed that the luciferase-tagged parental line showed altered growth and diminished metastatic properties compared to its untagged counterpart. Our results are the first to show that host immunity can have a profound impact on the spread of spontaneous visceral metastases and survival following resection of a primary tumour in circumstances where the growth of primary tumours is not similarly affected; as such they highlight the importance of immunity in the metastatic process, and by extension, suggest certain therapeutic strategies that may have a significant impact on reducing metastasis.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic
- Female
- Gene Deletion
- Humans
- Luciferases, Firefly/genetics
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/surgery
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Grading
- Neoplasm Metastasis
- Receptors, Interleukin-2/deficiency
- Receptors, Interleukin-2/genetics
- Survival Analysis
Collapse
Affiliation(s)
- Chloe C. Milsom
- Department of Medical Biophysics, University of Toronto and Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- * E-mail: (RSK); (CCM)
| | - Christina R. Lee
- Department of Medical Biophysics, University of Toronto and Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Christina Hackl
- Department of Medical Biophysics, University of Toronto and Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Shan Man
- Department of Medical Biophysics, University of Toronto and Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Robert S. Kerbel
- Department of Medical Biophysics, University of Toronto and Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- * E-mail: (RSK); (CCM)
| |
Collapse
|
15
|
Choisunirachon N, Jaroensong T, Yoshida K, Saeki K, Mochizuki M, Nishimura R, Sasaki N, Nakagawa T. Effects of low-dose cyclophosphamide with piroxicam on tumour neovascularization in a canine oral malignant melanoma-xenografted mouse model. Vet Comp Oncol 2013; 13:424-32. [DOI: 10.1111/vco.12059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- N. Choisunirachon
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
- Department of Veterinary Surgery; Faculty of Veterinary Science, Chulalongkorn University; Bangkok Thailand
| | - T. Jaroensong
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
- Department of Companion Animal Clinical Sciences; Faculty of Veterinary Medicine, Kasetsart University; Bangkok Thailand
| | - K. Yoshida
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - K. Saeki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - M. Mochizuki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - R. Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - N. Sasaki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - T. Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| |
Collapse
|
16
|
Mainetti LE, Rico MJ, Fernández-Zenobi MV, Perroud HA, Roggero EA, Rozados VR, Scharovsky OG. Therapeutic efficacy of metronomic chemotherapy with cyclophosphamide and doxorubicin on murine mammary adenocarcinomas. Ann Oncol 2013; 24:2310-6. [PMID: 23666914 DOI: 10.1093/annonc/mdt164] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Metronomic chemotherapy (MCT) refers to the chronic and equally spaced administration of low doses of different chemotherapy drugs, without extended rest periods. Herein, we investigated the therapeutic efficacy of metronomic cyclophosphamide (Cy) combined with doxorubicin (Dox) in two mouse mammary adenocarcinoma models. MATERIALS AND METHODS Mice were s.c. challenged with M-234p or M-406 mammary tumors, and when the tumors reached ∼150 mm(3), they were treated with: (I) no treatment (controls); (II) Cy in the drinking water (30 mg/kg body weight/day); (III) Dox (0.5 mg/kg body weight i.p. three times/week); (IV) treated as (II) + (III). Mice challenged i.v. with M-234p or M-406 tumor cells received, on day 3, the same treatments. RESULTS We found that MCT with Cy plus Dox inhibited tumor growth, decreased lung metastases, and increased the median survival time, while having low toxic effect. Combined MCT was more effective than each monotherapy causing decrease in VEGF serum concentration and tumor proliferation rate plus increase in tumor apoptosis. CONCLUSION(S) The therapeutic benefits of combined MCT with Cy and Dox on mammary adenocarcinomas together with its low toxic effect profile suggest the possibility of future translation into the clinic.
Collapse
Affiliation(s)
- L E Mainetti
- Institute of Experimental Genetics, School of Medical Sciences, National University of Rosario, Rosario, Argentina
| | | | | | | | | | | | | |
Collapse
|
17
|
Fokas E, Steinbach JP, Rödel C. Biology of brain metastases and novel targeted therapies: time to translate the research. Biochim Biophys Acta Rev Cancer 2012; 1835:61-75. [PMID: 23142311 DOI: 10.1016/j.bbcan.2012.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 01/23/2023]
Abstract
Brain metastases (BM) occur in 20% to 40% of patients with cancer and result in significant morbidity and poor survival. The main therapeutic options include surgery, whole brain radiotherapy, stereotactic radiosurgery and chemotherapy. Although significant progress has been made in diagnostic and therapeutic methods, the prognosis in these patients remains poor. Furthermore, the poor penetrability of chemotherapy agents through the blood brain barrier (BBB) continues to pose a challenge in the management of this disease. Preclinical evidence suggests that new targeted treatments can improve local tumor control but our clinical experience with these agents remains limited. In addition, several clinical studies with these novel agents have produced disappointing results. This review will examine the knowledge of targeted therapies in BM. The preclinical and clinical evidence of their use in BM induced by breast cancer, non-small cell lung cancer and melanoma will be presented. In addition, we will discuss the role of antiangiogenic and radiosensitising agents in the treatment of BM and the current strategies available to increase BBB permeability. A better understanding of the mechanism of action of these agents will help us to identify the best targets for testing in future clinical studies.
Collapse
Affiliation(s)
- Emmanouil Fokas
- Department of Radiation Therapy and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | | | |
Collapse
|
18
|
Alcazar O, Achberger S, Aldrich W, Hu Z, Negrotto S, Saunthararajah Y, Triozzi P. Epigenetic regulation by decitabine of melanoma differentiation in vitro and in vivo. Int J Cancer 2012; 131:18-29. [PMID: 21796622 PMCID: PMC3454528 DOI: 10.1002/ijc.26320] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 06/07/2011] [Accepted: 07/01/2011] [Indexed: 01/20/2023]
Abstract
Apoptosis genes, such as TP53 and p16/CDKN2A, that mediate responses to cytotoxic chemotherapy, are frequently nonfunctional in melanoma. Differentiation may be an alternative to apoptosis for inducing melanoma cell cycle exit. Epigenetic mechanisms regulate differentiation, and DNA methylation alterations are associated with the abnormal differentiation of melanoma cells. The effects of the deoxycytidine analogue decitabine (5-aza-2'-deoxycytidine), which depletes DNA methyl transferase 1 (DNMT1), on melanoma differentiation were examined. Treatment of human and murine melanoma cells in vitro with concentrations of decitabine that did not cause apoptosis inhibited proliferation accompanied by cellular differentiation. A decrease in promoter methylation, and increase in expression of the melanocyte late-differentiation driver SOX9, was followed by increases in cyclin-dependent kinase inhibitors (CDKN) p27/CDKN1B and p21/CDKN1A that mediate cell cycle exit with differentiation. Effects were independent of the TP53, p16/CDKN2A and also the BRAF status of the melanoma cells. Resistance, when observed, was pharmacologic, characterized by diminished ability of decitabine to deplete DNMT1. Treatment of murine melanoma models in vivo with intermittent, low-dose decitabine, administered sub-cutaneously to limit high peak drug levels that cause cytotoxicity and increase exposure time for DNMT1 depletion, and with tetrahydrouridine to decrease decitabine metabolism and further increase exposure time, inhibited tumor growth and increased molecular and tumor stromal factors implicated in melanocyte differentiation. Modification of decitabine dose, schedule and formulation for differentiation rather than cytotoxic objectives inhibits the growth of melanoma cells in vitro and in vivo.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis
- Azacitidine/administration & dosage
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Base Sequence
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cyclin-Dependent Kinase Inhibitor Proteins/biosynthesis
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- DNA (Cytosine-5-)-Methyltransferase 1
- DNA (Cytosine-5-)-Methyltransferases/analysis
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation
- Decitabine
- Epigenesis, Genetic
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/genetics
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins B-raf/biosynthesis
- SOX9 Transcription Factor/biosynthesis
- Sequence Analysis, DNA
- Tetrahydrouridine/pharmacology
- Tumor Suppressor Protein p53/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Oscar Alcazar
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Susan Achberger
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Wayne Aldrich
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Zhenbo Hu
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Soledad Negrotto
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | | |
Collapse
|
19
|
Penel N, Adenis A, Bocci G. Cyclophosphamide-based metronomic chemotherapy: After 10 years of experience, where do we stand and where are we going? Crit Rev Oncol Hematol 2012; 82:40-50. [DOI: 10.1016/j.critrevonc.2011.04.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 04/07/2011] [Accepted: 04/21/2011] [Indexed: 02/08/2023] Open
|
20
|
Abstract
Abstract
The IDIBELL Cancer Conference (ICC) on Metastasis and Angiogenesis was held in Barcelona, Spain, on May 26–27, 2011. The program content was developed by Dr. Manel Esteller, director of the Cancer Epigenetics and Biology Program (PEBC-IDIBELL), Dr. Oriol Casanovas and Dr. Francesc Viñals Canals of the Catalan Institute of Oncology (ICO-IDIBELL), and Dr. Danny R. Welch from the University of Kansas Cancer Center. The topics discussed during the meeting included the latest advances in epigenetic control of metastasis and tumor cell invasion, and molecular mechanisms of angiogenesis and tumoral angiogenesis, and were presented by invited keynote speakers. One issue that recurred throughout the meeting was the increased appreciation of tumor–stromal/microenvironment interactions and how the tumor cells respond to these signals in the cancer dissemination process. Cancer Res; 71(19); 6097–101. ©2011 AACR.
Collapse
Affiliation(s)
- F. Javier Carmona
- Authors' Affiliations: 1Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL); 2Department of Physiological Sciences II, School of Medicine, University of Barcelona; and 3Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Manel Esteller
- Authors' Affiliations: 1Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL); 2Department of Physiological Sciences II, School of Medicine, University of Barcelona; and 3Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Authors' Affiliations: 1Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL); 2Department of Physiological Sciences II, School of Medicine, University of Barcelona; and 3Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Authors' Affiliations: 1Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL); 2Department of Physiological Sciences II, School of Medicine, University of Barcelona; and 3Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
21
|
Hatiboglu MA, Kong LY, Wei J, Wang Y, McEnery KA, Fuller GN, Qiao W, Davies MA, Priebe W, Heimberger AB. The tumor microenvironment expression of p-STAT3 influences the efficacy of cyclophosphamide with WP1066 in murine melanoma models. Int J Cancer 2011; 131:8-17. [PMID: 21792892 DOI: 10.1002/ijc.26307] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/28/2011] [Indexed: 02/04/2023]
Abstract
Melanoma is a common and deadly tumor that upon metastasis to the central nervous system (CNS) has median survival duration of less than 5 months. Activation of the signal transducer and activator of transcription 3 (STAT3) has been identified as a key mediator that drives the fundamental components of melanoma. We hypothesized that WP1066, a novel inhibitor of STAT3 signaling, would enhance the antitumor activity of cyclophosphamide (CTX) against melanoma, including disease within the CNS. The mechanisms of efficacy were investigated by tumor- and immune-mediated cytotoxic assays, in vivo evaluation of the reduction of regulatory T cells (Tregs) and by determining intratumoral p-STAT3 expression by immunohistochemistry. Combinational therapy of WP1066, with both metronomic and cytotoxic dosing of CTX, was investigated in a model system of systemic and intracerebral melanoma in syngeneic mice. Inhibition of p-STAT3 by WP1066 was enhanced with CTX in a dose-dependent manner. However, in mice with intracerebral melanoma, the greatest therapeutic benefit was seen in animals treated with cytotoxic CTX dosing and WP1066, whose median survival time was 120 days, an increase of 375%, with 57% long-term survivors. This treatment efficacy correlated with p-STAT3 expression levels within the tumor microenvironment. The efficacy of the combination of cytotoxic dosing of CTX with WP1066 is attributed to the direct tumor cytotoxic effects of the agents and has the greatest therapeutic potential for the treatment of CNS melanoma.
Collapse
Affiliation(s)
- Mustafa Aziz Hatiboglu
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Marchetti V, Giorgi M, Fioravanti A, Finotello R, Citi S, Canu B, Orlandi P, Di Desidero T, Danesi R, Bocci G. First-line metronomic chemotherapy in a metastatic model of spontaneous canine tumours: a pilot study. Invest New Drugs 2011; 30:1725-30. [PMID: 21509468 DOI: 10.1007/s10637-011-9672-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 04/13/2011] [Indexed: 11/26/2022]
Affiliation(s)
- Veronica Marchetti
- Department of Veterinary Clinics, Veterinary Teaching Hospital, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Francia G, Cruz-Munoz W, Man S, Xu P, Kerbel RS. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer 2011; 11:135-41. [PMID: 21258397 PMCID: PMC4540342 DOI: 10.1038/nrc3001] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An enduring problem in cancer research is the failure to reproduce highly encouraging preclinical therapeutic findings using transplanted or spontaneous primary tumours in mice in clinical trials of patients with advanced metastatic disease. There are several reasons for this, including the failure to model established, visceral metastatic disease. We therefore developed various models of aggressive multi-organ spontaneous metastasis after surgical resection of orthotopically transplanted human tumour xenografts. In this Opinion article we provide a personal perspective summarizing the prospect of their increased clinical relevance. This includes the reduced efficacy of certain targeted anticancer drugs, the late emergence of spontaneous brain metastases and the clinical trial results evaluating a highly effective therapeutic strategy previously tested using such models.
Collapse
Affiliation(s)
- Giulio Francia
- The Molecular & Cellular Biology Research, Sunnybrook Health Science Centre, Toronto, Ontario M4N 3M5, Canada.
| | | | | | | | | |
Collapse
|
24
|
Current World Literature. Curr Opin Support Palliat Care 2010; 4:293-304. [DOI: 10.1097/spc.0b013e328340e983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Tran Cao HS, Bouvet M, Kaushal S, Keleman A, Romney E, Kim G, Fruehauf J, Imagawa DK, Hoffman RM, Katz MH. Metronomic gemcitabine in combination with sunitinib inhibits multisite metastasis and increases survival in an orthotopic model of pancreatic cancer. Mol Cancer Ther 2010; 9:2068-78. [PMID: 20606044 PMCID: PMC4383085 DOI: 10.1158/1535-7163.mct-10-0201] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metronomic chemotherapy suppresses growth of primary tumors and established metastases. However, its effect on metastatic progression is essentially unknown. We report the treatment of a metastatically competent model of pancreatic cancer with metronomic gemcitabine and sunitinib. Mice with orthotopic, red fluorescent protein-expressing, pancreatic cancer tumorgrafts were treated with gemcitabine on a metronomic (1 mg/kg daily, METG) or maximum tolerated dose (150 mg/kg twice weekly, MTDG) schedule with or without sunitinib (SU). Rates of primary tumor growth, metastasis, ascites, and survival were calculated. Gemcitabine at a daily dose of 2 mg or greater led to toxicity within 1 month in mice without tumors but METG at 1 mg/kg/d was well tolerated. Mice with pancreatic cancer tumorgrafts died with metastatic disease at a median of 25 days. METG/SU significantly prolonged median overall survival (44 days) compared with control or either regimen alone (P < 0.05). Primary tumor growth was inhibited by METG/SU (P = 0.03) but neither METG nor sunitinib alone. In contrast, treatment with METG suppressed metastasis at multiple sites, an effect enhanced by sunitinib. MTDG with or without sunitinib had the most favorable effect on primary tumor growth and survival, but its antimetastatic efficacy was similar to that of METG/SU. von Willebrand factor expression was inhibited by METG. Antimetastatic activity approaching that of MTDG is achieved with a total dose reduced 42 times using METG and is further enhanced by sunitinib. Our results suggest the potential of this therapeutic paradigm against pancreatic cancer in the adjuvant and maintenance settings.
Collapse
Affiliation(s)
- Hop S. Tran Cao
- Department of Surgery, University of California at San Diego
| | - Michael Bouvet
- Department of Surgery, University of California at San Diego
| | | | - Alex Keleman
- Department of Surgery, University of California at Irvine, Orange, California
| | - Eric Romney
- Department of Surgery, University of California at Irvine, Orange, California
| | - Ginna Kim
- Department of Surgery, University of California at Irvine, Orange, California
| | - John Fruehauf
- Department of Medicine, University of California at Irvine, Orange, California
| | - David K. Imagawa
- Department of Surgery, University of California at Irvine, Orange, California
| | - Robert M. Hoffman
- Department of Surgery, University of California at San Diego
- AntiCancer Incorporated, San Diego, California
| | - Matthew H.G. Katz
- Department of Surgery, University of California at Irvine, Orange, California
| |
Collapse
|
26
|
Impact of metronomic UFT/cyclophosphamide chemotherapy and antiangiogenic drug assessed in a new preclinical model of locally advanced orthotopic hepatocellular carcinoma. Neoplasia 2010; 12:264-74. [PMID: 20234820 DOI: 10.1593/neo.91872] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/08/2009] [Accepted: 12/09/2009] [Indexed: 01/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an intrinsically chemotherapy refractory malignancy. Development of effective therapeutic regimens would be facilitated by improved preclinical HCC models. Currently, most models consist of subcutaneous human tumor transplants in immunodeficient mice; however, these do not reproduce the extensive liver disease associated with HCC or metastasize. To address this deficiency, we developed an orthotopic model. Human HCC cells were transfected with the gene encoding secretable beta-subunit human choriogonadotropin (beta-hCG), which was used as a surrogate marker of tumor burden. The HCC cells were implanted into the left liver lobe of severe combined immunodeficient (SCID) mice, after which the efficacy of different therapies was evaluated on established, but liver-confined human Hep3B cell line HCC. Treatments included sorafenib or metronomic chemotherapy using cyclophosphamide (CTX), UFT, an oral 5-fluorouracil prodrug, or doxorubicin either alone or in various combinations, with or without an antiangiogenic agent, DC101, an anti-vascular endothelial growth factor receptor-2 antibody. Sorafenib inhibited tumor growth in a dose-dependent manner but caused severe weight loss in SCID mice, thus necessitating use of DC101 in subsequent experiments. Although less toxicity was observed using either single or doublet metronomic chemotherapy without any added antiangiogenic agent, none, provided survival benefit. In contrast, significantly improved overall survival was observed using various combinations of metronomic chemotherapy regimens such as UFT + CTX with DC101. In conclusion, using this model of liver-confined but advanced HCC suggests that the efficacy of a targeted antiangiogenic drug or metronomic chemotherapy can be mutually enhanced by concurrent combination treatment.
Collapse
|
27
|
de Oliveira SI, Andrade LNS, Onuchic AC, Nonogaki S, Fernandes PD, Pinheiro MC, Rohde CBS, Chammas R, Jancar S. Platelet-activating factor receptor (PAF-R)-dependent pathways control tumour growth and tumour response to chemotherapy. BMC Cancer 2010; 10:200. [PMID: 20465821 PMCID: PMC2881890 DOI: 10.1186/1471-2407-10-200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 05/13/2010] [Indexed: 01/07/2023] Open
Abstract
Background Phagocytosis of apoptotic cells by macrophages induces a suppressor phenotype. Previous data from our group suggested that this occurs via Platelet-activating factor receptor (PAF-R)-mediated pathways. In the present study, we investigated the impact of apoptotic cell inoculation or induction by a chemotherapeutic agent (dacarbazine, DTIC) on tumour growth, microenvironmental parameters and survival, and the effect of treatment with a PAF-R antagonist (WEB2170). These studies were performed in murine tumours: Ehrlich Ascitis Tumour (EAT) and B16F10 melanoma. Methods Tumour growth was assessed by direct counting of EAT cells in the ascitis or by measuring the volume of the solid tumour. Parameters of the tumour microenvironment, such as the frequency of cells expressing cyclo-oxygenase-2 (COX-2), caspase-3 and galectin-3, and microvascular density, were determined by immunohistochemistry. Levels of vascular endothelium growth factor (VEGF) and prostaglandin E2 (PGE2) were determined by ELISA, and levels of nitric oxide (NO) by Griess reaction. PAF-R expression was analysed by immunohistochemistry and flow cytometry. Results Inoculation of apoptotic cells before EAT implantation stimulated tumour growth. This effect was reversed by in vivo pre-treatment with WEB2170. This treatment also reduced tumour growth and modified the microenvironment by reducing PGE2, VEGF and NO production. In B16F10 melanoma, WEB2170 alone or in association with DTIC significantly reduced tumour volume. Survival of the tumour-bearing mice was not affected by WEB2170 treatment but was significantly improved by the combination of DTIC with WEB2170. Tumour microenvironment elements were among the targets of the combination therapy since the relative frequency of COX-2 and galectin-3 positive cells and the microvascular density within the tumour mass were significantly reduced by treatment with WEB2170 or DTIC alone or in combination. Antibodies to PAF-R stained the cells from inside the tumour, but not the tumour cells grown in vitro. At the tissue level, a few cells (probably macrophages) stained positively with antibodies to PAF-R. Conclusions We suggest that PAF-R-dependent pathways are activated during experimental tumour growth, modifying the microenvironment and the phenotype of the tumour macrophages in such a way as to favour tumour growth. Combination therapy with a PAF-R antagonist and a chemotherapeutic drug may represent a new and promising strategy for the treatment of some tumours.
Collapse
Affiliation(s)
- Soraya I de Oliveira
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Emmenegger U, Francia G, Shaked Y, Kerbel RS. Metronomic chemotherapy: principles and lessons learned from applications in the treatment of metastatic prostate cancer. Recent Results Cancer Res 2010; 180:165-183. [PMID: 20033383 DOI: 10.1007/978-3-540-78281-0_10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
By frequent and protracted administration of conventional cytotoxic drugs without prolonged interruptions, the primary treatment target shifts from the tumor cell population to the tumor vasculature. This "metronomic" way of chemotherapy administration results in antivascular effects, the mechanistic basis of which remains to be fully elucidated. We outline the basic aspects of the metronomic concept, describe the results of clinical applications of such chemotherapy by focusing on studies in metastatic prostate cancer, and discuss certain shortcomings. Based on preclinical findings, we finally point to the possible ways to address these shortcomings in order to bring this novel and promising use of conventional anticancer agents to full fruition.
Collapse
Affiliation(s)
- Urban Emmenegger
- Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, 2075, Bayview Avenue, Toronto, ON, Canada, M4N3M5.
| | | | | | | |
Collapse
|