1
|
Wang R, Li M, Wu Z, Gong W, Zhang M, Liu Y, Yao Y, Ji Y. PBA alleviates cadmium-induced mouse spermatogonia apoptosis by suppressing endoplasmic reticulum stress. Toxicol In Vitro 2024; 96:105784. [PMID: 38242296 DOI: 10.1016/j.tiv.2024.105784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/17/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
OBJECTIVE Endoplasmic reticulum (ER) stress mediates Cd-caused germ cell apoptosis in testis. The effects of 4-phenylbutyric acid (PBA), a classical chaperone, were investigated on Cd-induced apoptosis in mouse GC-1 spermatogonia cells. METHODS The cells were pretreated with PBA before Cd exposure. TUNEL and flow cytometry assays were applied to determine apoptosis. Some key biomarkers of ER stress were analyzed using RT-PCR and western blot. RESULTS as expected, the apoptotic cells exposed to Cd apparently increased. The mRNA and protein expression levels of GRP78 and ATF6α, were elevated in the Cd groups. Additional experiments displayed that Cd notably increased IRE1α and JNK phosphorylation, and upregulated XBP-1 mRNA and protein expression. Moreover, p-eIF2α and CHOP expressions were clearly elevated in the Cd groups. Interestingly, PBA almost completely inhibited ER stress and protected spermatogonia against apoptosis induced by Cd. CONCLUSION PBA alleviated Cd-induced ER stress and spermatogonia apoptosis, and may have the therapeutic role in Cd-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Rong Wang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Department of Histology and Embryology, Anhui Medical University, Hefei, China
| | - Mengyuan Li
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhen Wu
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The People's Hospital of Bozhou, Anhui, China
| | - Wenjing Gong
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Mingming Zhang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yehao Liu
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics / Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University; Hefei Anhui, China
| | - Yuyou Yao
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics / Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University; Hefei Anhui, China.
| | - Yanli Ji
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics / Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University; Hefei Anhui, China.
| |
Collapse
|
2
|
Agredo A, Kasinski AL. Histone 4 lysine 20 tri-methylation: a key epigenetic regulator in chromatin structure and disease. Front Genet 2023; 14:1243395. [PMID: 37671044 PMCID: PMC10475950 DOI: 10.3389/fgene.2023.1243395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Chromatin is a vital and dynamic structure that is carefully regulated to maintain proper cell homeostasis. A great deal of this regulation is dependent on histone proteins which have the ability to be dynamically modified on their tails via various post-translational modifications (PTMs). While multiple histone PTMs are studied and often work in concert to facilitate gene expression, here we focus on the tri-methylation of histone H4 on lysine 20 (H4K20me3) and its function in chromatin structure, cell cycle, DNA repair, and development. The recent studies evaluated in this review have shed light on how H4K20me3 is established and regulated by various interacting partners and how H4K20me3 and the proteins that interact with this PTM are involved in various diseases. Through analyzing the current literature on H4K20me3 function and regulation, we aim to summarize this knowledge and highlights gaps that remain in the field.
Collapse
Affiliation(s)
- Alejandra Agredo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Life Sciences Interdisciplinary Program (PULSe), Purdue University, West Lafayette, IN, United States
| | - Andrea L. Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
3
|
Tang Z, Liu L, Borlak J. Combined inhibition of histone deacetylase and cytidine deaminase improves epigenetic potency of decitabine in colorectal adenocarcinomas. Clin Epigenetics 2023; 15:89. [PMID: 37208732 DOI: 10.1186/s13148-023-01500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Targeting the epigenome of cancerous diseases represents an innovative approach, and the DNA methylation inhibitor decitabine is recommended for the treatment of hematological malignancies. Although epigenetic alterations are also common to solid tumors, the therapeutic efficacy of decitabine in colorectal adenocarcinomas (COAD) is unfavorable. Current research focuses on an identification of combination therapies either with chemotherapeutics or checkpoint inhibitors in modulating the tumor microenvironment. Here we report a series of molecular investigations to evaluate potency of decitabine, the histone deacetylase inhibitor PBA and the cytidine deaminase (CDA) inhibitor tetrahydrouridine (THU) in patient derived functional and p53 null colon cancer cell lines (CCCL). We focused on the inhibition of cell proliferation, the recovery of tumor suppressors and programmed cell death, and established clinical relevance by evaluating drug responsive genes among 270 COAD patients. Furthermore, we evaluated treatment responses based on CpG island density. RESULTS Decitabine caused marked repression of the DNMT1 protein. Conversely, PBA treatment of CCCL recovered acetylation of histone 3 lysine residues, and this enabled an open chromatin state. Unlike single decitabine treatment, the combined decitabine/PBA treatment caused > 95% inhibition of cell proliferation, prevented cell cycle progression especially in the S and G2-phase and induced programmed cell death. Decitabine and PBA differed in their ability to facilitate re-expression of genes localized on different chromosomes, and the combined decitabine/PBA treatment was most effective in the re-expression of 40 tumor suppressors and 13 genes typically silenced in cancer-associated genomic regions of COAD patients. Furthermore, this treatment repressed expression of 11 survival (anti-apoptotic) genes and augmented expression of X-chromosome inactivated genes, especially the lncRNA Xist to facilitate p53-mediated apoptosis. Pharmacological inhibition of CDA by THU or its gene knockdown prevented decitabine inactivation. Strikingly, PBA treatment recovered the expression of the decitabine drug-uptake transporter SLC15A1, thus enabling high tumor drug-loads. Finally, for 26 drug responsive genes we demonstrated improved survival in COAD patients. CONCLUSION The combined decitabine/PBA/THU drug treatment improved drug potency considerably, and given their existing regulatory approval, our findings merit prospective clinical trials for the triple combination in COAD patients.
Collapse
Affiliation(s)
- Zijiao Tang
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Lu Liu
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany.
| |
Collapse
|
4
|
Elverson K, Warwicker J, Freeman S, Manson F. Tadalafil Rescues the p.M325T Mutant of Best1 Chloride Channel. Molecules 2023; 28:molecules28083317. [PMID: 37110551 PMCID: PMC10142963 DOI: 10.3390/molecules28083317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Bestrophin 1 (Best1) is a chloride channel that localises to the plasma membrane of retinal pigment epithelium (RPE) cells. Mutations in the BEST1 gene are associated with a group of untreatable inherited retinal dystrophies (IRDs) called bestrophinopathies, caused by protein instability and loss-of-function of the Best1 protein. 4PBA and 2-NOAA have been shown to rescue the function, expression, and localisation of Best1 mutants; however, it is of interest to find more potent analogues as the concentration of the drugs required is too high (2.5 mM) to be given therapeutically. A virtual docking model of the COPII Sec24a site, where 4PBA has been shown to bind, was generated and a library of 1416 FDA-approved compounds was screened at the site. The top binding compounds were tested in vitro in whole-cell patch-clamp experiments of HEK293T cells expressing mutant Best1. The application of 25 μM tadalafil resulted in full rescue of Cl- conductance, comparable to wild type Best1 levels, for p.M325T mutant Best1 but not for p.R141H or p.L234V mutants.
Collapse
Affiliation(s)
- Kathleen Elverson
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Jim Warwicker
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Sally Freeman
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Forbes Manson
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
5
|
Thompson D, Lawrentschuk N, Bolton D. New Approaches to Targeting Epigenetic Regulation in Bladder Cancer. Cancers (Basel) 2023; 15:cancers15061856. [PMID: 36980741 PMCID: PMC10046617 DOI: 10.3390/cancers15061856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Epigenetics is a growing field and in bladder cancer, it is of particular interest in advanced or metastatic disease. As opposed to genetic mutations in which the nucleotide sequence itself is altered, epigenetic alterations refer to changes to the genome that do not involve nucleotides. This is of great interest in cancer research because epigenetic alterations are reversible, making them a promising target for pharmacological agents. While chemoimmunotherapy is the mainstay for metastatic disease, there are few alternatives for patients who have progressed on first- or second-line treatment. By targeting reversible epigenetic alterations, novel epigenetic therapies are important potential treatment options for these patients. A search of clinical registries was performed in order to identify and collate epigenetic therapies currently in human trials. A literature search was also performed to identify therapies that are currently in preclinical stages, whether this be in vivo or in vitro models. Twenty-five clinical trials were identified that investigated the use of epigenetic inhibitors in patients with bladder cancer, often in combination with another agent, such as platinum-based chemotherapy or pembrolizumab. The main classes of epigenetic inhibitors studied include DNA-methyltransferase (DNMT) inhibitors, histone deacetylase (HDAC) inhibitors, and histone methyltransferase (HMT) inhibitors. At present, no phase 3 clinical trials have been registered. Few trials have published results, though DNMT inhibitors have shown the most promise thus far. Many patients with advanced or metastatic bladder cancer have limited treatment options, particularly when first- or second-line chemoimmunotherapy fails. Epigenetic alterations, which are common in bladder cancer, are potential targets for drug therapies, and these epigenetic agents are already in use for many cancers. While they have shown promise in pre-clinical trials for bladder cancer, more research is needed to assess their benefit in clinical settings.
Collapse
Affiliation(s)
- Daryl Thompson
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Nathan Lawrentschuk
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Urology, The Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
- EJ Whitten Prostate Cancer Research Centre at Epworth Healthcare, Melbourne, VC 3121, Australia
| | - Damien Bolton
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia
- Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- Correspondence:
| |
Collapse
|
6
|
Zhang G, Wang Z, Song P, Zhan X. DNA and histone modifications as potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine. EPMA J 2022; 13:649-669. [PMID: 36505890 PMCID: PMC9727004 DOI: 10.1007/s13167-022-00300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Lung cancer has a very high mortality in females and males. Most (~ 85%) of lung cancers are non-small cell lung cancers (NSCLC). When lung cancer is diagnosed, most of them have either local or distant metastasis, with a poor prognosis. In order to achieve better outcomes, it is imperative to identify the molecular signature based on genetic and epigenetic variations for different NSCLC subgroups. We hypothesize that DNA and histone modifications play significant roles in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Epigenetics has a significant impact on tumorigenicity, tumor heterogeneity, and tumor resistance to chemotherapy, targeted therapy, and immunotherapy. An increasing interest is that epigenomic regulation is recognized as a potential treatment option for NSCLC. Most attention has been paid to the epigenetic alteration patterns of DNA and histones. This article aims to review the roles DNA and histone modifications play in tumorigenesis, early detection and diagnosis, and advancements and therapies of NSCLC, and also explore the connection between DNA and histone modifications and PPPM, which may provide an important contribution to improve the prognosis of NSCLC. We found that the success of targeting DNA and histone modifications is limited in the clinic, and how to combine the therapies to improve patient outcomes is necessary in further studies, especially for predictive diagnostics, targeted prevention, and personalization of medical services in the 3P medicine approach. It is concluded that DNA and histone modifications are potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine.
Collapse
Affiliation(s)
- Guodong Zhang
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Zhengdan Wang
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Pingping Song
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
7
|
Tao X, Zhu Y, Diaz-Perez Z, Yu SH, Foley JR, Stewart TM, Casero RA, Steet R, Zhai RG. Phenylbutyrate modulates polyamine acetylase and ameliorates Snyder-Robinson syndrome in a Drosophila model and patient cells. JCI Insight 2022; 7:e158457. [PMID: 35801587 PMCID: PMC9310527 DOI: 10.1172/jci.insight.158457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022] Open
Abstract
Polyamine dysregulation plays key roles in a broad range of human diseases from cancer to neurodegeneration. Snyder-Robinson syndrome (SRS) is the first known genetic disorder of the polyamine pathway, caused by X-linked recessive loss-of-function mutations in spermine synthase. In the Drosophila SRS model, altered spermidine/spermine balance has been associated with increased generation of ROS and aldehydes, consistent with elevated spermidine catabolism. These toxic byproducts cause mitochondrial and lysosomal dysfunction, which are also observed in cells from SRS patients. No efficient therapy is available. We explored the biochemical mechanism and discovered acetyl-CoA reduction and altered protein acetylation as potentially novel pathomechanisms of SRS. We repurposed the FDA-approved drug phenylbutyrate (PBA) to treat SRS using an in vivo Drosophila model and patient fibroblast cell models. PBA treatment significantly restored the function of mitochondria and autolysosomes and extended life span in vivo in the Drosophila SRS model. Treating fibroblasts of patients with SRS with PBA ameliorated autolysosome dysfunction. We further explored the mechanism of drug action and found that PBA downregulates the first and rate-limiting spermidine catabolic enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1), reduces the production of toxic metabolites, and inhibits the reduction of the substrate acetyl-CoA. Taken together, we revealed PBA as a potential modulator of SAT1 and acetyl-CoA levels and propose PBA as a therapy for SRS and potentially other polyamine dysregulation-related diseases.
Collapse
Affiliation(s)
- Xianzun Tao
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Zoraida Diaz-Perez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Seok-Ho Yu
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Jackson R. Foley
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Tracy Murray Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Robert A. Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Richard Steet
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - R. Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
8
|
Meghani K, Folgosa Cooley L, Piunti A, Meeks JJ. Role of Chromatin Modifying Complexes and Therapeutic Opportunities in Bladder Cancer. Bladder Cancer 2022; 8:101-112. [PMID: 35898580 PMCID: PMC9278011 DOI: 10.3233/blc-211609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/14/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Chromatin modifying enzymes, mainly through post translational modifications, regulate chromatin architecture and by extension the underlying transcriptional kinetics in normal and malignant cells. Muscle invasive bladder cancer (MIBC) has a high frequency of alterations in chromatin modifiers, with 76% of tumors exhibiting mutation in at least one chromatin modifying enzyme [1]. Additionally, clonal expansion of cells with inactivating mutations in chromatin modifiers has been identified in the normal urothelium, pointing to a currently unknown role of these proteins in normal bladder homeostasis. OBJECTIVE To review current knowledge of chromatin modifications and enzymes regulating these processes in Bladder cancer (BCa). METHODS By reviewing current literature, we summarize our present knowledge of external stimuli that trigger loss of equilibrium in the chromatin accessibility landscape and emerging therapeutic interventions for targeting these processes. RESULTS Genetic lesions in BCa lead to altered function of chromatin modifying enzymes, resulting in coordinated dysregulation of epigenetic processes with disease progression. CONCLUSION Mutations in chromatin modifying enzymes are wide-spread in BCa and several promising therapeutic targets for modulating activity of these genes are currently in clinical trials. Further research into understanding how the epigenetic landscape evolves as the disease progresses, could help identify patients who might benefit the most from these targeted therapies.
Collapse
Affiliation(s)
- Khyati Meghani
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL, USA
| | - Lauren Folgosa Cooley
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL, USA
| | - Andrea Piunti
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL, USA
| | - Joshua J. Meeks
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago IL, USA
| |
Collapse
|
9
|
Bajbouj K, Al-Ali A, Ramakrishnan RK, Saber-Ayad M, Hamid Q. Histone Modification in NSCLC: Molecular Mechanisms and Therapeutic Targets. Int J Mol Sci 2021; 22:ijms222111701. [PMID: 34769131 PMCID: PMC8584007 DOI: 10.3390/ijms222111701] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer mortality in both genders, with non-small cell lung cancer (NSCLC) accounting for about 85% of all lung cancers. At the time of diagnosis, the tumour is usually locally advanced or metastatic, shaping a poor disease outcome. NSCLC includes adenocarcinoma, squamous cell carcinoma, and large cell lung carcinoma. Searching for novel therapeutic targets is mandated due to the modest effect of platinum-based therapy as well as the targeted therapies developed in the last decade. The latter is mainly due to the lack of mutation detection in around half of all NSCLC cases. New therapeutic modalities are also required to enhance the effect of immunotherapy in NSCLC. Identifying the molecular signature of NSCLC subtypes, including genetics and epigenetic variation, is crucial for selecting the appropriate therapy or combination of therapies. Epigenetic dysregulation has a key role in the tumourigenicity, tumour heterogeneity, and tumour resistance to conventional anti-cancer therapy. Epigenomic modulation is a potential therapeutic strategy in NSCLC that was suggested a long time ago and recently starting to attract further attention. Histone acetylation and deacetylation are the most frequently studied patterns of epigenetic modification. Several histone deacetylase (HDAC) inhibitors (HDIs), such as vorinostat and panobinostat, have shown promise in preclinical and clinical investigations on NSCLC. However, further research on HDIs in NSCLC is needed to assess their anti-tumour impact. Another modification, histone methylation, is one of the most well recognized patterns of histone modification. It can either promote or inhibit transcription at different gene loci, thus playing a rather complex role in lung cancer. Some histone methylation modifiers have demonstrated altered activities, suggesting their oncogenic or tumour-suppressive roles. In this review, patterns of histone modifications in NSCLC will be discussed, focusing on the molecular mechanisms of epigenetic modifications in tumour progression and metastasis, as well as in developing drug resistance. Then, we will explore the therapeutic targets emerging from studying the NSCLC epigenome, referring to the completed and ongoing clinical trials on those medications.
Collapse
Affiliation(s)
- Khuloud Bajbouj
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Abeer Al-Ali
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Rakhee K. Ramakrishnan
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Faculty of Medicine, Cairo University, Cairo 11559, Egypt
- Correspondence: ; Tel.: +971-6-505-7219; Fax: +971-5-558-5879
| | - Qutayba Hamid
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
10
|
Marques-Magalhães Â, Graça I, Miranda-Gonçalves V, Henrique R, Lopez M, Arimondo PB, Jerónimo C. Anti-neoplastic and demethylating activity of a newly synthetized flavanone-derived compound in Renal Cell Carcinoma cell lines. Biomed Pharmacother 2021; 141:111681. [PMID: 34139552 DOI: 10.1016/j.biopha.2021.111681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Renal Cell Carcinoma (RCC) is on the top 10 of the most incident cancers worldwide, being a third of patients diagnosed with advanced disease, for which no curative therapies are currently available. Thus, new effective therapeutic strategies are urgently needed. Herein, we tested the antineoplastic effect of newly synthesized 3-nitroflavanones (MLo1302) on RCC cell lines. 786-O, Caki2, and ACHN cell lines were cultured and treated with newly synthesized 3-nitroflavanones. IC50 values were calculated based on the effect on cell viability assessed by MTT assay, after 72 h of exposure. MLo1302 displayed antineoplastic properties in RCC cell lines through marked reduction of cell viability, increased apoptosis and DNA damage, and morphometric alterations indicating a less aggressive phenotype. MLo1302 induced a significant reduction of global DNA methylation and DNMT mRNA levels, increasing global DNA hydroxymethylation and TET expression. Moreover, MLo1302 decreased DNMT3A activity in RCC cell lines, demethylated and re-expressed hypermethylated genes in CAM-generated tumors. A marked in vivo decrease in tumor growth and angiogenesis was also disclosed. MLo1302 disclosed antineoplastic and demethylating activity in RCC cell lines, constituting a potential therapeutic agent for RCC patients.
Collapse
Affiliation(s)
- Ângela Marques-Magalhães
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto 4200-072, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Inês Graça
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto 4200-072, Portugal
| | - Vera Miranda-Gonçalves
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto 4200-072, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto 4200-072, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto 4200-072, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto 4050-313, Portugal
| | - Marie Lopez
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM UMR 5247, Montpellier 34296, France
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR3523, Paris 75724, France
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto 4200-072, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto 4050-313, Portugal.
| |
Collapse
|
11
|
Wu D, Qiu Y, Jiao Y, Qiu Z, Liu D. Small Molecules Targeting HATs, HDACs, and BRDs in Cancer Therapy. Front Oncol 2020; 10:560487. [PMID: 33262941 PMCID: PMC7686570 DOI: 10.3389/fonc.2020.560487] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Evidence for research over the past decade shows that epigenetic regulation mechanisms run through the development and prognosis of tumors. Therefore, small molecular compounds targeting epigenetic regulation have become a research hotspot in the development of cancer therapeutic drugs. According to the obvious abnormality of histone acetylation when tumors occur, it suggests that histone acetylation modification plays an important role in the process of tumorigenesis. Currently, as a new potential anti-cancer therapeutic drugs, many active small molecules that target histone acetylation regulatory enzymes or proteins such as histone deacetylases (HDACs), histone acetyltransferase (HATs) and bromodomains (BRDs) have been developed to restore abnormal histone acetylation levels to normal. In this review, we will focus on summarizing the changes of histone acetylation levels during tumorigenesis, as well as the possible pharmacological mechanisms of small molecules that target histone acetylation in cancer treatment.
Collapse
Affiliation(s)
- Donglu Wu
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Ye Qiu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China.,School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yunshuang Jiao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China.,School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China.,School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
12
|
DNA Methylation as a Therapeutic Target for Bladder Cancer. Cells 2020; 9:cells9081850. [PMID: 32784599 PMCID: PMC7463638 DOI: 10.3390/cells9081850] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer (BC) is the tenth most frequent cancer worldwide and is associated with high mortality when diagnosed in its most aggressive form, which is not reverted by the current treatment options. Thus, the development of new therapeutic strategies, either alternative or complementary to the current ones, is of major importance. The disruption of normal epigenetic mechanisms, namely, DNA methylation, is a known early event in cancer development. Consequently, DNA methyltransferase (DNMT) inhibitors constitute a promising therapeutic target for the treatment of BC. Although these inhibitors, mainly nucleoside analogues such as 5-azacytidine (5-aza) and decitabine (DAC), cause re-expression of tumor suppressor genes, inhibition of tumor cell growth, and increased apoptosis in BC experimental models and clinical trials, they also show important drawbacks that prevent their use as a valuable option for the treatment of BC. However, their combination with chemotherapy and/or immune-checkpoint inhibitors could aid in their implementation in the clinical practice. Here, we provide a comprehensive review of the studies exploring the effects of DNA methylation inhibition using DNMTs inhibitors in BC, from in vitro and in vivo studies to clinical trials.
Collapse
|
13
|
Shi X, Gong L, Liu Y, Hou K, Fan Y, Li C, Wen T, Qu X, Che X. 4-phenylbutyric acid promotes migration of gastric cancer cells by histone deacetylase inhibition-mediated IL-8 upregulation. Epigenetics 2019; 15:632-645. [PMID: 31814524 DOI: 10.1080/15592294.2019.1700032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). It is associated with gene transcription and expression. 4-Phenylbutyric acid (4-PBA), an HDAC inhibitor (HDACi), can inhibit cancer cell proliferation by increasing the level of histone acetylation. However, 4-PBA did not show any efficacy in clinical trials. In this study, we found that 4-PBA induced epithelial-mesenchymal transition (EMT) in gastric cancer cell lines MGC-803 and BGC-823 with ectopic E-cadherin expression. Based on the expression profile microarray, IL-8 was the most significantly up-regulated gene by 4-PBA, and was selected for further investigation. Knockdown of IL-8 partially prevented 4-PBA-induced-EMT by blocking the activation of the downstream Gab2-ERK pathway. Furthermore, CHIP assay confirmed that acetyl-H3 directly combined with the promoter region of IL-8 to promote its transcription. Therefore, the results of this study demonstrated that 4-PBA-mediated inhibition of HDAC activity could induce EMT in gastric cancer cells via acetyl-histone-mediated IL-8 upregulation, and the downstream Gab2/ERK activation. These data indicated the possible reason for the failure of 4-PBA in clinical trials.
Collapse
Affiliation(s)
- Xiaonan Shi
- Department of Medical Oncology, The First Hospital of China Medical University , Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University , Shenyang, China.,Department of Oncology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Libao Gong
- Department of Medical Oncology, The First Hospital of China Medical University , Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University , Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University , Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University , Shenyang, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University , Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University , Shenyang, China
| | - Yibo Fan
- Department of Medical Oncology, The First Hospital of China Medical University , Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University , Shenyang, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University , Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University , Shenyang, China
| | - Ti Wen
- Department of Medical Oncology, The First Hospital of China Medical University , Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University , Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University , Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University , Shenyang, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University , Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University , Shenyang, China
| |
Collapse
|
14
|
Chovanec M, Taza F, Kalra M, Hahn N, Nephew KP, Spinella MJ, Albany C. Incorporating DNA Methyltransferase Inhibitors (DNMTis) in the Treatment of Genitourinary Malignancies: A Systematic Review. Target Oncol 2019; 13:49-60. [PMID: 29230671 DOI: 10.1007/s11523-017-0546-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inhibition of DNA methyltransferases (DNMTs) has emerged as a novel treatment strategy in solid tumors. Aberrant hypermethylation in promoters of critical tumor suppressor genes is the basis for the idea that treatment with hypomethylating agents may lead to the restoration of a "normal" epigenome and produce clinically meaningful therapeutic outcomes. The aim of this review article is to summarize the current state of knowledge of DNMT inhibitors in the treatment of genitourinary malignancies. The efficacy of these agents in genitourinary malignancies was reported in a number of studies and suggests a role of induced DNA hypomethylation in overcoming resistance to conventional cytotoxic treatments. The clinical significance of these findings should be further investigated.
Collapse
Affiliation(s)
- Michal Chovanec
- Division of Hematology/Oncology, Indiana University Simon Cancer Center, Indianapolis, IN, USA.
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia.
| | - Fadi Taza
- Division of Hematology/Oncology, Indiana University Simon Cancer Center, Indianapolis, IN, USA
| | - Maitri Kalra
- Division of Hematology/Oncology, Indiana University Simon Cancer Center, Indianapolis, IN, USA
| | - Noah Hahn
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth P Nephew
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - Michael J Spinella
- Department of Comparative Biosciences, the University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Costantine Albany
- Division of Hematology/Oncology, Indiana University Simon Cancer Center, Indianapolis, IN, USA
| |
Collapse
|
15
|
Gaillard SL, Zahurak M, Sharma A, Reiss KA, Sartorius-Mergenthaler S, Downs M, Anders NM, Ahuja N, Rudek MA, Azad N. A phase 1 trial of the oral DNA methyltransferase inhibitor CC-486 and the histone deacetylase inhibitor romidepsin in advanced solid tumors. Cancer 2019; 125:2837-2845. [PMID: 31012962 PMCID: PMC6663621 DOI: 10.1002/cncr.32138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Epigenetic abnormalities are manifold in all solid tumors and include changes in chromatin configuration and DNA methylation. The authors designed a phase 1 study to evaluate the oral DNA methyltransferase inhibitor CC-486 combined with the histone deacetylase inhibitor romidepsin in advanced solid tumors with dose expansion to further evaluate pharmacodynamics and possible clinical benefit of the recommended phase 2 dose (RP2D). METHODS This was a phase 1 study with a 3 + 3 dose-escalation design and an expansion phase for patients with virally mediated cancers. The disease control rate (DCR) was the primary outcome for the expansion cohort. Correlative studies included long interspersed nucleotide element 1 (LINE-1) methylation and drug exposure in blood samples (clinicaltrials.gov identifier NCT01537744). RESULTS Fourteen patients were enrolled in the dose-escalation portion at 3 dose levels. Three patients experienced dose-limiting toxicities; the RP2D was oral CC-486 300 mg daily on days 1 through 14 and romidepsin 8 mg/m2 on days 8 and 15. Because of slow accrual into the expansion phase, the trial was closed after 4 patients enrolled. Common toxicities of the combination included nausea (83.3%), anorexia (72.2%), fatigue (61.1%), and constipation (55.6%). There were 12 patients evaluable for response, 5 with stable disease, of whom 2 received >4 cycles; there were no responses. Exposure to CC-486 and romidepsin was consistent with prior data. LINE-1 methylation on C1D8 was significantly reduced (mean, -6.23; 95% CI, -12.23, -0.24; P = .04). CONCLUSIONS Although, at the RP2D, the combination of CC-486 and romidepsin was tolerable, no significant anticancer activity was observed. Significant demethylation in post-treatment circulating tumor DNA and biopsies provided proof of target acquisition.
Collapse
Affiliation(s)
- Stéphanie L. Gaillard
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Gynecology and Obstetrics Division of Gynecologic Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Marianna Zahurak
- Department of Oncology Division of Biostatistics and Bioinformatics, Johns Hopkins School of Medicine, Baltimore, MD
| | - Anup Sharma
- Department of Surgery Division of Surgical Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Kim A. Reiss
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Melinda Downs
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Nicole M. Anders
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Nita Ahuja
- Department of Surgery Division of Surgical Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Michelle A. Rudek
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Medicine Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Nilofer Azad
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
16
|
Zafon C, Gil J, Pérez-González B, Jordà M. DNA methylation in thyroid cancer. Endocr Relat Cancer 2019; 26:R415-R439. [PMID: 31035251 DOI: 10.1530/erc-19-0093] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
In recent years, cancer genomics has provided new insights into genetic alterations and signaling pathways involved in thyroid cancer. However, the picture of the molecular landscape is not yet complete. DNA methylation, the most widely studied epigenetic mechanism, is altered in thyroid cancer. Recent technological advances have allowed the identification of novel differentially methylated regions, methylation signatures and potential biomarkers. However, despite recent progress in cataloging methylation alterations in thyroid cancer, many questions remain unanswered. The aim of this review is to comprehensively examine the current knowledge on DNA methylation in thyroid cancer and discuss its potential clinical applications. After providing a general overview of DNA methylation and its dysregulation in cancer, we carefully describe the aberrant methylation changes in thyroid cancer and relate them to methylation patterns, global hypomethylation and gene-specific alterations. We hope this review helps to accelerate the use of the diagnostic, prognostic and therapeutic potential of DNA methylation for the benefit of thyroid cancer patients.
Collapse
Affiliation(s)
- Carles Zafon
- Diabetes and Metabolism Research Unit (VHIR) and Department of Endocrinology, University Hospital Vall d'Hebron and Autonomous University of Barcelona, Barcelona, Spain
- Consortium for the Study of Thyroid Cancer (CECaT), Catalonia, Spain
| | - Joan Gil
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| | - Beatriz Pérez-González
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| | - Mireia Jordà
- Consortium for the Study of Thyroid Cancer (CECaT), Catalonia, Spain
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| |
Collapse
|
17
|
Wu YS, Lee ZY, Chuah LH, Mai CW, Ngai SC. Epigenetics in Metastatic Breast Cancer: Its Regulation and Implications in Diagnosis, Prognosis and Therapeutics. Curr Cancer Drug Targets 2019; 19:82-100. [PMID: 29714144 DOI: 10.2174/1568009618666180430130248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/21/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023]
Abstract
Despite advances in the treatment regimen, the high incidence rate of breast cancer (BC) deaths is mostly caused by metastasis. Recently, the aberrant epigenetic modifications, which involve DNA methylation, histone modifications and microRNA (miRNA) regulations become attractive targets to treat metastatic breast cancer (MBC). In this review, the epigenetic alterations of DNA methylation, histone modifications and miRNA regulations in regulating MBC are discussed. The preclinical and clinical trials of epigenetic drugs such as the inhibitor of DNA methyltransferase (DNMTi) and the inhibitor of histone deacetylase (HDACi), as a single or combined regimen with other epigenetic drug or standard chemotherapy drug to treat MBCs are discussed. The combined regimen of epigenetic drugs or with standard chemotherapy drugs enhance the therapeutic effect against MBC. Evidences that epigenetic changes could have implications in diagnosis, prognosis and therapeutics for MBC are also presented. Several genes have been identified as potential epigenetic biomarkers for diagnosis and prognosis, as well as therapeutic targets for MBC. Endeavors in clinical trials of epigenetic drugs against MBC should be continued although limited success has been achieved. Future discovery of epigenetic drugs from natural resources would be an attractive natural treatment regimen for MBC. Further research is warranted in translating research into clinical practice with the ultimate goal of treating MBC by epigenetic therapy in the near future.
Collapse
Affiliation(s)
- Yuan Seng Wu
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Selangor, Malaysia
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Zhong Yang Lee
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Chun Wai Mai
- Department of Pharmaceutical Chemistry, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Selangor, Malaysia
| |
Collapse
|
18
|
Huang D, Cui L, Ahmed S, Zainab F, Wu Q, Wang X, Yuan Z. An overview of epigenetic agents and natural nutrition products targeting DNA methyltransferase, histone deacetylases and microRNAs. Food Chem Toxicol 2019; 123:574-594. [DOI: 10.1016/j.fct.2018.10.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/25/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
|
19
|
Nucleosidic DNA demethylating epigenetic drugs – A comprehensive review from discovery to clinic. Pharmacol Ther 2018; 188:45-79. [DOI: 10.1016/j.pharmthera.2018.02.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Ponard A, Ferreira-Maldent N, Ertault M, Delain M, Amraoui K, Regina S, Jonville-Béra AP, Hérault O, Colombat P, Gyan E. Glycemic dysregulation in a patient with type 2 diabetes treated with 5-azacitidine: a case report. J Med Case Rep 2018; 12:199. [PMID: 29966534 PMCID: PMC6029345 DOI: 10.1186/s13256-018-1690-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 04/13/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Diabetes and myelodysplastic syndrome are two conditions that may coexist in a single patient, since both diseases are prevalent in the elderly. The pathophysiology of myelodysplastic syndrome involves recurrent genetic mutations, especially in genes controlling epigenetic regulation. Although the pathophysiology of diabetes is not well understood, several studies suggest a role of epigenetics in type 2 diabetes. CASE PRESENTATION We report here for the first time the case of a 75-year-old Caucasian man who was treated for both diabetes and acute myeloid leukemia secondary to myelodysplastic syndrome, with a temporal association between glycemic dysregulation and the intake of 5-azacitidine. In fact, 2-3 days after starting each 7-day cycle of 5-azacitidine, he reported higher blood glucose levels, requiring an increased dose of self-administered insulin. CONCLUSION This observation could help to understand the pathophysiology of these two conditions and could encourage physicians to monitor blood glucose levels in patients under hypomethylating agent with a history of diabetes.
Collapse
Affiliation(s)
- Antoine Ponard
- Service d'hématologie et thérapie cellulaire, Centre hospitalier universitaire, 2 boulevard Tonnellé, 37044, Tours, France.,Faculté de Médecine, Université François Rabelais, Tours, France
| | | | - Marjan Ertault
- Service d'hématologie et thérapie cellulaire, Centre hospitalier universitaire, 2 boulevard Tonnellé, 37044, Tours, France
| | - Martine Delain
- Service d'hématologie et thérapie cellulaire, Centre hospitalier universitaire, 2 boulevard Tonnellé, 37044, Tours, France
| | - Kamel Amraoui
- Service d'hématologie et thérapie cellulaire, Centre hospitalier universitaire, 2 boulevard Tonnellé, 37044, Tours, France
| | - Sandra Regina
- Pôle Santé Léonard de Vinci, Chambray-les-Tours, France
| | - Annie-Pierre Jonville-Béra
- Centre régional de pharmacovigilance, Service de pharmacologie clinique, Centre hospitalier universitaire, Tours, France
| | - Olivier Hérault
- Service d'hématologie biologique, Centre hospitalier universitaire, Tours, France.,Laboratoire LNOx, ERL CNRS 7001, Université de Tours, Tours, France.,Faculté de Médecine, Université François Rabelais, Tours, France
| | - Philippe Colombat
- Service d'hématologie et thérapie cellulaire, Centre hospitalier universitaire, 2 boulevard Tonnellé, 37044, Tours, France.,Service d'hématologie biologique, Centre hospitalier universitaire, Tours, France.,Faculté de Médecine, Université François Rabelais, Tours, France
| | - Emmanuel Gyan
- Service d'hématologie et thérapie cellulaire, Centre hospitalier universitaire, 2 boulevard Tonnellé, 37044, Tours, France. .,Service d'hématologie biologique, Centre hospitalier universitaire, Tours, France. .,Laboratoire LNOx, ERL CNRS 7001, Université de Tours, Tours, France. .,Faculté de Médecine, Université François Rabelais, Tours, France.
| |
Collapse
|
21
|
4-Phenylbutyric acid protects against lipopolysaccharide-induced bone loss by modulating autophagy in osteoclasts. Biochem Pharmacol 2018; 151:9-17. [DOI: 10.1016/j.bcp.2018.02.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/14/2018] [Indexed: 11/20/2022]
|
22
|
Qian K, Sun L, Zhou G, Ge H, Meng Y, Li J, Li X, Fang X. Sodium Phenylbutyrate Inhibits Tumor Growth and the Epithelial-Mesenchymal Transition of Oral Squamous Cell Carcinoma In Vitro and In Vivo. Cancer Biother Radiopharm 2018; 33:139-145. [PMID: 29658787 DOI: 10.1089/cbr.2017.2418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sodium phenylbutyrate (SPB) as a salt of 4-phenylbutyric acid (4-PBA) has been reported to be an ammonia scavenger, histone deacetylase inhibitor, and an endoplasmic reticulum stress inhibitor in various diseases, including neurological diseases, inflammatory disorders, and carcinogenesis. Although phenylbutyrate showed effective antitumor properties in many cancers, its role in oral squamous cell carcinoma (OSCC) remains further characterized. Thus, the OSCC cell lines CAL27, HSC3, and SCC4 were treated with a series of doses of SPB for different times. The IC50 of three cell lines for SPB was determined to be 4.0, 3.7, and 3.0 mM. The CCK-8 assay indicated that the treatment of SPB induced continuous inhibition of cell vitality of three cell lines. Apoptosis was assessed by Hoechst assay that showed that SPB could significantly promote cell apoptosis. Moreover, the apoptosis-related pathway was analyzed, and the results showed that the expression of antiapoptosis factor BCL-2 was downregulated by SPB but the cleavage of caspase-3 was increased. Meanwhile, it was found that SPB also impaired the migration and invasion of OSCC cells in vitro. Mechanistically, the transforming growth factor-β (TGFB) related epithelial-mesenchymal transition (EMT) was inhibited by SPB with decreased mesenchymal marker N-cadherin and increased epithelial marker E-cadherin. Furthermore, the antitumor effect of SPB in vivo was also demonstrated. The administration of SPB induced remarkably tumor regression with decreased tumor volume, and the TGFB level and EMT phenotype in vivo were also inhibited. These data demonstrated that the treatment of SPB could function as antitumor therapeutics for OSCC.
Collapse
Affiliation(s)
- Kun Qian
- Department of Life Science, Huzhou University , Huzhou, Zhejiang, China
| | - Laiyu Sun
- Department of Life Science, Huzhou University , Huzhou, Zhejiang, China
| | - Guoqing Zhou
- Department of Life Science, Huzhou University , Huzhou, Zhejiang, China
| | - Haixia Ge
- Department of Life Science, Huzhou University , Huzhou, Zhejiang, China
| | - Yue Meng
- Department of Life Science, Huzhou University , Huzhou, Zhejiang, China
| | - Jingfen Li
- Department of Life Science, Huzhou University , Huzhou, Zhejiang, China
| | - Xiao Li
- Department of Life Science, Huzhou University , Huzhou, Zhejiang, China
| | - Xinqiang Fang
- Department of Life Science, Huzhou University , Huzhou, Zhejiang, China
| |
Collapse
|
23
|
Marques-Magalhães Â, Graça I, Henrique R, Jerónimo C. Targeting DNA Methyltranferases in Urological Tumors. Front Pharmacol 2018; 9:366. [PMID: 29706891 PMCID: PMC5909196 DOI: 10.3389/fphar.2018.00366] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
Urological cancers are a heterogeneous group of malignancies accounting for a considerable proportion of cancer-related morbidity and mortality worldwide. Aberrant epigenetic traits, especially altered DNA methylation patterns constitute a hallmark of these tumors. Nonetheless, these alterations are reversible, and several efforts have been carried out to design and test several epigenetic compounds that might reprogram tumor cell phenotype back to a normal state. Indeed, several DNMT inhibitors are currently under evaluation for therapeutic efficacy in clinical trials. This review highlights the critical role of DNA methylation in urological cancers and summarizes the available data on pre-clinical assays and clinical trials with DNMT inhibitors in bladder, kidney, prostate, and testicular germ cell cancers.
Collapse
Affiliation(s)
- Ângela Marques-Magalhães
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Inês Graça
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| |
Collapse
|
24
|
Azad NS, El-Khoueiry A, Yin J, Oberg AL, Flynn P, Adkins D, Sharma A, Weisenberger DJ, Brown T, Medvari P, Jones PA, Easwaran H, Kamel I, Bahary N, Kim G, Picus J, Pitot HC, Erlichman C, Donehower R, Shen H, Laird PW, Piekarz R, Baylin S, Ahuja N. Combination epigenetic therapy in metastatic colorectal cancer (mCRC) with subcutaneous 5-azacitidine and entinostat: a phase 2 consortium/stand up 2 cancer study. Oncotarget 2018; 8:35326-35338. [PMID: 28186961 PMCID: PMC5471058 DOI: 10.18632/oncotarget.15108] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/25/2016] [Indexed: 12/14/2022] Open
Abstract
Purpose Therapy with demethylating agent 5-azacitidine and histone deacetylase inhibitor entinostat shows synergistic re-expression of tumor-suppressor genes and growth inhibition in colorectal (CRC) cell lines and in vivo studies. Experimental Design We conducted a phase II, multi-institutional study of the combination in metastatic CRC patients. Subcutaneous azacitidine was administered at 40 mg/m2 days 1-5 and 8-10 and entinostat was given 7 mg orally on days 3 and 10. An interim analysis indicated toxicity crossed the pre-specified safety boundary but was secondary to disease. A 2nd cohort with added eligibility restrictions was accrued: prior therapies were limited to no more than 2 or 3 (KRAS-mutated and KRAS-wildtype cancers, respectively) and <30% of liver involvement. The primary endpoint was RECIST response. Serial biopsies were performed at baseline and after 2 cycles of therapy. Results Forty-seven patients were enrolled (24:Cohort 1, 23:Cohort 2). Patients were heavily pre-treated (median prior therapies 4: Cohort 1 and 2.5: cohort 2). No responses were observed. Median progression-free survival was 1.9 months; overall survival was 5.6 and 8.3 months in Cohorts 1 and 2, respectively. Toxicity was tolerable and as expected. Unsupervised cluster analysis of serial tumor biopsies suggested greater DNA demethylation in patients with PFS above the median. Conclusion In this first trial of CRC patients with combination epigenetic therapy, we show tolerable therapy without significant clinical activity as determined by RECIST responses. Reversal of hypermethylation was seen in a subset of patients and correlated with improved PFS.
Collapse
Affiliation(s)
| | | | - Jun Yin
- Mayo Clinic, Rochestor, MN, USA
| | | | | | | | - Anup Sharma
- Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | - Ihab Kamel
- Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Joel Picus
- Washington University, St. Louis, MO, USA
| | | | | | | | - Hui Shen
- Van Andel Research Institute, Grand Rapids, MI, USA
| | | | | | | | - Nita Ahuja
- Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
25
|
Abstract
Lung cancer is the leading cause of cancer-related deaths in the world. Despite significant advances in the early detection and treatment of the disease, the prognosis remains poor, with an overall 5-year survival rate ranging from 15% to 20%. This poor prognosis results largely from early micrometastatic spread of cancer cells to nearby lymph nodes or tissues and partially from early recurrence after curative surgical resection. Recently, precision medicines that target potential oncogenic driver mutations have been approved to treat lung cancer. However, some lung cancer patients do not have targetable mutations, and many patients develop resistance to targeted therapy. Tumor heterogeneity and mutational density are also challenges in treating lung cancer, which underscores the need for developing alternative therapeutic strategies for treating lung cancer. Epigenetic therapy may circumvent the problems of tumor heterogeneity and drug resistance by affecting the expression of several hundred target genes. This review highlights precision medicine using an innovative approach of epigenetic priming prior to conventional standard therapy or targeted cancer therapy in lung cancer.
Collapse
Affiliation(s)
- Dongho Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea. .,Samsung Medical Center, Research Institute for Future Medicine, Seoul, South Korea.
| |
Collapse
|
26
|
Shi X, Zheng C, Li C, Hou K, Wang X, Yang Z, Liu C, Liu Y, Che X, Qu X. 4-Phenybutyric acid promotes gastric cancer cell migration via histone deacetylase inhibition-mediated HER3/HER4 up-regulation. Cell Biol Int 2017; 42:53-62. [PMID: 28851073 DOI: 10.1002/cbin.10866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/22/2017] [Indexed: 11/05/2022]
Abstract
Dysregulation of histone acetylation plays an important role in tumor development. Histone acetylation regulates gene transcription and expression, which is reversibly regulated by histone acetyltransferase (HAT) and histone deacetylase (HDAC). As an HDAC inhibitor, 4-phenylbutyric acid (4-PBA) can increase histone acetylation levels by inhibiting HDAC activity. While 4-PBA inhibits proliferation of tumor cells in vitro, clinical trials have failed to show benefits of 4-PBA for refractory solid tumors. Here, we found that 4-PBA could enhance the migration capacity of gastric cancer cells. Upregulation of HER3/HER4 and activation of HER3/HER4-ERK pathway was shown to be involved in 4-PBA-induced gastric cancer cell migration. Knockdown of HER3/HER4 blocked HER3/HER4-ERK activation and partially prevented 4-PBA-induced cell migration. Consistently, the ERK inhibitor PD98059 also partially prevented 4-PBA-induced cell migration. Moreover, enhanced levels of acetyl-histones were detected following 4-PBA-treatment, and histone3 acetylation in promoter regions of HER3 and HER4 were confirmed by ChIP. These results demonstrate that 4-PBA promotes gastric cancer cells migration through upregulation of HER3/HER4 subsequent to increased levels of acetyl-histone and activation of ERK signaling. These novel findings provide important considerations for the use of 4-PBA in cancer therapeutics.
Collapse
Affiliation(s)
- Xiaonan Shi
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Chunlei Zheng
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Ce Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Kezuo Hou
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoxun Wang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Zichang Yang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Chang Liu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Yunpeng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaofang Che
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
27
|
Al-Keilani MS, Al-Sawalha NA. Potential of Phenylbutyrate as Adjuvant Chemotherapy: An Overview of Cellular and Molecular Anticancer Mechanisms. Chem Res Toxicol 2017; 30:1767-1777. [DOI: 10.1021/acs.chemrestox.7b00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Maha S. Al-Keilani
- Jordan University of Science and Technology, College
of Pharmacy, Department of Clinical Pharmacy, P.O. Box 3030, Irbid 22110, Jordan
| | - Nour A. Al-Sawalha
- Jordan University of Science and Technology, College
of Pharmacy, Department of Clinical Pharmacy, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
28
|
朱 晓, 李 夏, 李 素, 于 红. EBV相关性胃癌研究进展. Shijie Huaren Xiaohua Zazhi 2017; 25:1375-1381. [DOI: 10.11569/wcjd.v25.i15.1375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
胃癌细胞中存在Epstein-Barr病毒(Epstein-Barr virus, EBV)者被称为EBV相关性胃癌(Epstein-Barr virus-associated gastric carcinoma, EBVaGC). 近年来EBVaGC作为一种独特的分子亚型疾病逐渐被人们所认知, 全球胃癌患者中平均有10%者为EBVaGC. 本文对EBVaGC近年来在流行病学、临床病理特征、发病机制、治疗及预后等方面的研究进展作一综述. 但目前对EBVaGC的研究尚不明确, 且尚无临床诊疗规范与共识, 也带来了新的挑战和机遇.
Collapse
|
29
|
Sato T, Issa JPJ, Kropf P. DNA Hypomethylating Drugs in Cancer Therapy. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026948. [PMID: 28159832 DOI: 10.1101/cshperspect.a026948] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aberrant DNA methylation is a critically important modification in cancer cells, which, through promoter and enhancer DNA methylation changes, use this mechanism to activate oncogenes and silence of tumor-suppressor genes. Targeting DNA methylation in cancer using DNA hypomethylating drugs reprograms tumor cells to a more normal-like state by affecting multiple pathways, and also sensitizes these cells to chemotherapy and immunotherapy. The first generation hypomethylating drugs azacitidine and decitabine are routinely used for the treatment of myeloid leukemias and a next-generation drug (guadecitabine) is currently in clinical trials. This review will summarize preclinical and clinical data on DNA hypomethylating drugs as a cancer therapy.
Collapse
Affiliation(s)
- Takahiro Sato
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Jean-Pierre J Issa
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.,Fox Chase Cancer Center, Temple Health, Philadelphia, Pennsylvania 19111
| | - Patricia Kropf
- Fox Chase Cancer Center, Temple Health, Philadelphia, Pennsylvania 19111
| |
Collapse
|
30
|
Clinical and biological effects of demethylating agents on solid tumours – A systematic review. Cancer Treat Rev 2017; 54:10-23. [DOI: 10.1016/j.ctrv.2017.01.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 01/22/2023]
|
31
|
Sato T, Cesaroni M, Chung W, Panjarian S, Tran A, Madzo J, Okamoto Y, Zhang H, Chen X, Jelinek J, Issa JPJ. Transcriptional Selectivity of Epigenetic Therapy in Cancer. Cancer Res 2016; 77:470-481. [PMID: 27879268 DOI: 10.1158/0008-5472.can-16-0834] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/26/2016] [Accepted: 10/21/2016] [Indexed: 12/22/2022]
Abstract
A central challenge in the development of epigenetic cancer therapy is the ability to direct selectivity in modulating gene expression for disease-selective efficacy. To address this issue, we characterized by RNA-seq, DNA methylation, and ChIP-seq analyses the epigenetic response of a set of colon, breast, and leukemia cancer cell lines to small-molecule inhibitors against DNA methyltransferases (DAC), histone deacetylases (Depsi), histone demethylases (KDM1A inhibitor S2101), and histone methylases (EHMT2 inhibitor UNC0638 and EZH2 inhibitor GSK343). We also characterized the effects of DAC as combined with the other compounds. Averaged over the cancer cell models used, we found that DAC affected 8.6% of the transcriptome and that 95.4% of the genes affected were upregulated. DAC preferentially regulated genes that were silenced in cancer and that were methylated at their promoters. In contrast, Depsi affected the expression of 30.4% of the transcriptome but showed little selectivity for gene upregulation or silenced genes. S2101, UNC0638, and GSK343 affected only 2% of the transcriptome, with UNC0638 and GSK343 preferentially targeting genes marked with H3K9me2 or H3K27me3, respectively. When combined with histone methylase inhibitors, the extent of gene upregulation by DAC was extended while still maintaining selectivity for DNA-methylated genes and silenced genes. However, the genes upregulated by combination treatment exhibited limited overlap, indicating the possibility of targeting distinct sets of genes based on different epigenetic therapy combinations. Overall, our results demonstrated that DNA methyltransferase inhibitors preferentially target cancer-relevant genes and can be combined with inhibitors targeting histone methylation for synergistic effects while still maintaining selectivity. Cancer Res; 77(2); 470-81. ©2016 AACR.
Collapse
Affiliation(s)
- Takahiro Sato
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania.
| | - Matteo Cesaroni
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Woonbok Chung
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Shoghag Panjarian
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Anthony Tran
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Jozef Madzo
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Yasuyuki Okamoto
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Hanghang Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Xiaowei Chen
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jaroslav Jelinek
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Jean-Pierre J Issa
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
Ansari J, Shackelford RE, El-Osta H. Epigenetics in non-small cell lung cancer: from basics to therapeutics. Transl Lung Cancer Res 2016; 5:155-71. [PMID: 27186511 DOI: 10.21037/tlcr.2016.02.02] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer remains the number one cause of cancer-related deaths worldwide with 221,200 estimated new cases and 158,040 estimated deaths in 2015. Approximately 80% of cases are non-small cell lung cancer (NSCLC). The diagnosis is usually made at an advanced stage where the prognosis is poor and therapeutic options are limited. The evolution of lung cancer is a multistep process involving genetic, epigenetic, and environmental factor interactions that result in the dysregulation of key oncogenes and tumor suppressor genes, culminating in activation of cancer-related signaling pathways. The past decade has witnessed the discovery of multiple molecular aberrations that drive lung cancer growth, among which are epidermal growth factor receptor (EGFR) mutations and translocations involving the anaplastic lymphoma kinase (ALK) gene. This has translated into therapeutic agent developments that target these molecular alterations. The absence of targetable mutations in 50% of NSCLC cases and targeted therapy resistance development underscores the importance for developing alternative therapeutic strategies for treating lung cancer. Among these strategies, pharmacologic modulation of the epigenome has been used to treat lung cancer. Epigenetics approaches may circumvent the problem of tumor heterogeneity by affecting the expression of multiple tumor suppression genes (TSGs), halting tumor growth and survival. Moreover, it may be effective for tumors that are not driven by currently recognized druggable mutations. This review summarizes the molecular pathology of lung cancer epigenetic aberrations and discusses current efforts to target the epigenome with different pharmacological approaches. Our main focus will be on hypomethylating agents, histone deacetylase (HDAC) inhibitors, microRNA modulations, and the role of novel epigenetic biomarkers. Last, we will address the challenges that face this old-new strategy in treating lung cancer.
Collapse
Affiliation(s)
- Junaid Ansari
- 1 Department of Medicine, Feist-Weiller Cancer Center, LSU Health, Shreveport, LA, USA ; 2 Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| | - Rodney E Shackelford
- 1 Department of Medicine, Feist-Weiller Cancer Center, LSU Health, Shreveport, LA, USA ; 2 Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| | - Hazem El-Osta
- 1 Department of Medicine, Feist-Weiller Cancer Center, LSU Health, Shreveport, LA, USA ; 2 Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| |
Collapse
|
33
|
Epithelial-Mesenchymal Transition and Breast Cancer. J Clin Med 2016; 5:jcm5020013. [PMID: 26821054 PMCID: PMC4773769 DOI: 10.3390/jcm5020013] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the most common cancer in women and distant site metastasis is the main cause of death in breast cancer patients. There is increasing evidence supporting the role of epithelial-mesenchymal transition (EMT) in tumor cell progression, invasion, and metastasis. During the process of EMT, epithelial cancer cells acquire molecular alternations that facilitate the loss of epithelial features and gain of mesenchymal phenotype. Such transformation promotes cancer cell migration and invasion. Moreover, emerging evidence suggests that EMT is associated with the increased enrichment of cancer stem-like cells (CSCs) and these CSCs display mesenchymal characteristics that are resistant to chemotherapy and target therapy. However, the clinical relevance of EMT in human cancer is still under debate. This review will provide an overview of current evidence of EMT from studies using clinical human breast cancer tissues and its associated challenges.
Collapse
|
34
|
Zahnow C, Topper M, Stone M, Murray-Stewart T, Li H, Baylin S, Casero R. Inhibitors of DNA Methylation, Histone Deacetylation, and Histone Demethylation: A Perfect Combination for Cancer Therapy. Adv Cancer Res 2016; 130:55-111. [PMID: 27037751 DOI: 10.1016/bs.acr.2016.01.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epigenetic silencing and inappropriate activation of gene expression are frequent events during the initiation and progression of cancer. These events involve a complex interplay between the hypermethylation of CpG dinucleotides within gene promoter and enhancer regions, the recruitment of transcriptional corepressors and the deacetylation and/or methylation of histone tails. These epigenetic regulators act in concert to block transcription or interfere with the maintenance of chromatin boundary regions. However, DNA/histone methylation and histone acetylation states are reversible, enzyme-mediated processes and as such, have emerged as promising targets for cancer therapy. This review will focus on the potential benefits and synergistic/additive effects of combining DNA-demethylating agents and histone deacetylase inhibitors or lysine-specific demethylase inhibitors together in epigenetic therapy for solid tumors and will highlight what is known regarding the mechanisms of action that contribute to the antitumor response.
Collapse
|
35
|
Nervi C, De Marinis E, Codacci-Pisanelli G. Epigenetic treatment of solid tumours: a review of clinical trials. Clin Epigenetics 2015; 7:127. [PMID: 26692909 PMCID: PMC4676165 DOI: 10.1186/s13148-015-0157-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022] Open
Abstract
Epigenetic treatment has been approved by regulatory agencies for haematological malignancies. The success observed in cutaneous lymphomas represents a proof of principle that similar results may be obtained in solid tumours. Several agents that interfere with DNA methylation-demethylation and histones acetylation/deacetylation have been studied, and some (such as azacytidine, decitabine, valproic acid and vorinostat) are already in clinical use. The aim of this review is to provide a brief overview of the molecular events underlying the antitumour effects of epigenetic treatments and to summarise data available on clinical trials that tested the use of epigenetic agents against solid tumours. We not only list results but also try to indicate how the proper evaluation of this treatment might result in a better selection of effective agents and in a more rapid development. We divided compounds in demethylating agents and HDAC inhibitors. For each class, we report the antitumour activity and the toxic side effects. When available, we describe plasma pharmacokinetics and pharmacodynamic evaluation in tumours and in surrogate tissues (generally white blood cells). Epigenetic treatment is a reality in haematological malignancies and deserves adequate attention in solid tumours. A careful consideration of available clinical data however is required for faster drug development and possibly to re-evaluate some molecules that were perhaps discarded too early.
Collapse
Affiliation(s)
- Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnology, University of Rome "la Sapienza", Corso della Repubblica, 97, 04100 Latina, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnology, University of Rome "la Sapienza", Corso della Repubblica, 97, 04100 Latina, Italy
| | - Giovanni Codacci-Pisanelli
- Department of Medical and Surgical Sciences and Biotechnology, University of Rome "la Sapienza", Corso della Repubblica, 97, 04100 Latina, Italy
| |
Collapse
|
36
|
Fadeev NP, Kharisov RI, Kovan’ko EG, Pustovalov YI. Study of Antitumor Activity of Sodium Phenylbutyrate, Histon Deacetylase Inhibitor, on Ehrlich Carcinoma Model. Bull Exp Biol Med 2015; 159:652-4. [DOI: 10.1007/s10517-015-3039-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Indexed: 11/27/2022]
|
37
|
Targeting Chromatin-Mediated Transcriptional Control of Gene Expression in Non-Small Cell Lung Cancer Therapy: Preclinical Rationale and Clinical Results. Drugs 2015; 75:1757-71. [DOI: 10.1007/s40265-015-0461-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Abstract
Epigenetic modifications work in concert with genetic mechanisms to regulate transcriptional activity in normal tissues and are often dysregulated in disease. Although they are somatically heritable, modifications of DNA and histones are also reversible, making them good targets for therapeutic intervention. Epigenetic changes often precede disease pathology, making them valuable diagnostic indicators for disease risk or prognostic indicators for disease progression. Several inhibitors of histone deacetylation or DNA methylation are approved for hematological malignancies by the US Food and Drug Administration and have been in clinical use for several years. More recently, histone methylation and microRNA expression have gained attention as potential therapeutic targets. The presence of multiple epigenetic aberrations within malignant tissue and the abilities of cells to develop resistance suggest that epigenetic therapies are most beneficial when combined with other anticancer strategies, such as signal transduction inhibitors or cytotoxic treatments. A key challenge for future epigenetic therapies will be to develop inhibitors with specificity to particular regions of chromosomes, thereby potentially reducing side effects.
Collapse
|
39
|
Genomic assays for Epstein-Barr virus-positive gastric adenocarcinoma. Exp Mol Med 2015; 47:e134. [PMID: 25613731 PMCID: PMC4314585 DOI: 10.1038/emm.2014.93] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 10/06/2014] [Indexed: 12/13/2022] Open
Abstract
A small set of gastric adenocarcinomas (9%) harbor Epstein–Barr virus (EBV) DNA within malignant cells, and the virus is not an innocent bystander but rather is intimately linked to pathogenesis and tumor maintenance. Evidence comes from unique genomic features of host DNA, mRNA, microRNA and CpG methylation profiles as revealed by recent comprehensive genomic analysis by The Cancer Genome Atlas Network. Their data show that gastric cancer is not one disease but rather comprises four major classes: EBV-positive, microsatellite instability (MSI), genomically stable and chromosome instability. The EBV-positive class has even more marked CpG methylation than does the MSI class, and viral cancers have a unique pattern of methylation linked to the downregulation of CDKN2A (p16) but not MLH1. EBV-positive cancers often have mutated PIK3CA and ARID1A and an amplified 9p24.1 locus linked to overexpression of JAK2, CD274 (PD-L1) and PDCD1LG2 (PD-L2). Multiple noncoding viral RNAs are highly expressed. Patients who fail standard therapy may qualify for enrollment in clinical trials targeting cancer-related human gene pathways or promoting destruction of infected cells through lytic induction of EBV genes. Genomic tests such as the GastroGenus Gastric Cancer Classifier are available to identify actionable variants in formalin-fixed cancer tissue of affected patients.
Collapse
|
40
|
Basse C, Arock M. The increasing roles of epigenetics in breast cancer: Implications for pathogenicity, biomarkers, prevention and treatment. Int J Cancer 2014; 137:2785-94. [PMID: 25410431 DOI: 10.1002/ijc.29347] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/14/2014] [Indexed: 12/14/2022]
Abstract
Nowadays, the mechanisms governing the occurrence of cancer are thought to be the consequence not only of genetic defects but also of epigenetic modifications. Therefore, epigenetic has become a very attractive and increasingly investigated field of research in order to find new ways of prevention and treatment of neoplasia, and this is particularly the case for breast cancer (BC). Thus, this review will first develop the main known epigenetic modifications that can occur in cancer and then expose the future role that control of epigenetic modifications might play in prevention, prognostication, follow-up and treatment of BC. Indeed, epigenetic biomarkers found in peripheral blood might become new tools to detect BC, to define its prognostic and to predict its outcome, whereas epi-drugs might have an increasing potential of development in the next future. However, if DNA methyltransferase inhibitors and histone desacetylase inhibitors have shown encouraging results in BC, their action remains nonspecific. Thus, additional clinical studies are needed to evaluate more precisely the effects of these molecules, even if they have provided encouraging results in cotreatment and combined therapies. This review will also deal with the potential of RNA interference (RNAi) as epi-drugs. Finally, we will focus on the potential prevention of BC through epigenetic based on diet and we will particularly develop the possible place of isothiocyanates from cruciferous vegetables or of Genistein from soybean in a dietary program that might potentially reduce the risk of BC in large populations.
Collapse
Affiliation(s)
- Clémence Basse
- Medical Oncology Unit, Anticancer Center Henri Becquerel, Rouen, France
| | - Michel Arock
- Molecular Oncology and Pharmacology, LBPA CNRS UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| |
Collapse
|
41
|
Vaiopoulos AG, Athanasoula KC, Papavassiliou AG. Epigenetic modifications in colorectal cancer: Molecular insights and therapeutic challenges. Biochim Biophys Acta Mol Basis Dis 2014; 1842:971-80. [DOI: 10.1016/j.bbadis.2014.02.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/12/2014] [Accepted: 02/15/2014] [Indexed: 12/11/2022]
|
42
|
Li B, Ye Z. Epigenetic alterations in osteosarcoma: promising targets. Mol Biol Rep 2014; 41:3303-15. [PMID: 24500341 DOI: 10.1007/s11033-014-3193-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 01/22/2014] [Indexed: 01/10/2023]
Abstract
Cancer is being reinterpreted due to recent discoveries related to epigenetic regulation during development, and the importance of epigenetic mechanisms in initiation and progression of cancer has been further highlighted by the recent explosion in medical information. Osteosarcoma is highly genetically unstable, and current therapeutic regimens are subject to chemoresistance and tumor relapse. Understanding the epigenetic mechanisms in the pathogenesis of osteosarcoma will provide novel avenues for cancer therapy. In this review, we examine the epigenetic alterations in gene expression in osteosarcoma, and discuss the utilization of epigenetic regulation therapy in treatment against osteosarcoma.
Collapse
Affiliation(s)
- Binghao Li
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310008, China
| | | |
Collapse
|
43
|
Abstract
The hypomethylating agent 5-Azacytidine epigenetically modulates various genes, including tumor suppressor genes. For many years, the "new agent", which was first discovered in the 1960s, remained fairly unobtrusive in the rank of salvage treatment options for myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). When the significance of epigenetics in tumorigenesis became clear, 5-Azacytidine attracted new attention. Finally, it was the first drug approved for the treatment of all categories of MDS, and its survival benefit over best conventional care was confirmed. Today, in many clinical situations, when aggressive therapies including allogeneic hematopoietic cell transplantation are not an option, 5-Azacytidine is the first treatment of choice. Preliminary data on combinations of the hypomethylating agent with other new drugs are promising, and innovative strategies involving immune modulation and regenerative tissue repair hold a broad potential for future developments.
Collapse
Affiliation(s)
- Antonia M S Müller
- Division of Hematology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland,
| | | |
Collapse
|
44
|
Mokhtarani M, Diaz GA, Rhead W, Berry SA, Lichter-Konecki U, Feigenbaum A, Schulze A, Longo N, Bartley J, Berquist W, Gallagher R, Smith W, McCandless SE, Harding C, Rockey DC, Vierling JM, Mantry P, Ghabril M, Brown RS, Dickinson K, Moors T, Norris C, Coakley D, Milikien DA, Nagamani SC, Lemons C, Lee B, Scharschmidt BF. Elevated phenylacetic acid levels do not correlate with adverse events in patients with urea cycle disorders or hepatic encephalopathy and can be predicted based on the plasma PAA to PAGN ratio. Mol Genet Metab 2013; 110:446-53. [PMID: 24144944 PMCID: PMC4108288 DOI: 10.1016/j.ymgme.2013.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 09/29/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Phenylacetic acid (PAA) is the active moiety in sodium phenylbutyrate (NaPBA) and glycerol phenylbutyrate (GPB, HPN-100). Both are approved for treatment of urea cycle disorders (UCDs) - rare genetic disorders characterized by hyperammonemia. PAA is conjugated with glutamine in the liver to form phenylacetyleglutamine (PAGN), which is excreted in urine. PAA plasma levels ≥ 500 μg/dL have been reported to be associated with reversible neurological adverse events (AEs) in cancer patients receiving PAA intravenously. Therefore, we have investigated the relationship between PAA levels and neurological AEs in patients treated with these PAA pro-drugs as well as approaches to identifying patients most likely to experience high PAA levels. METHODS The relationship between nervous system AEs, PAA levels and the ratio of plasma PAA to PAGN were examined in 4683 blood samples taken serially from: [1] healthy adults [2], UCD patients of ≥ 2 months of age, and [3] patients with cirrhosis and hepatic encephalopathy (HE). The plasma ratio of PAA to PAGN was analyzed with respect to its utility in identifying patients at risk of high PAA values. RESULTS Only 0.2% (11) of 4683 samples exceeded 500 μg/ml. There was no relationship between neurological AEs and PAA levels in UCD or HE patients, but transient AEs including headache and nausea that correlated with PAA levels were observed in healthy adults. Irrespective of population, a curvilinear relationship was observed between PAA levels and the plasma PAA:PAGN ratio, and a ratio>2.5 (both in μg/mL) in a random blood draw identified patients at risk for PAA levels>500 μg/ml. CONCLUSIONS The presence of a relationship between PAA levels and reversible AEs in healthy adults but not in UCD or HE patients may reflect intrinsic differences among the populations and/or metabolic adaptation with continued dosing. The plasma PAA:PAGN ratio is a functional measure of the rate of PAA metabolism and represents a useful dosing biomarker.
Collapse
Affiliation(s)
- M Mokhtarani
- Hyperion Therapeutics, 601 Gateway Blvd., Suite 200, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Schweizer S, Meisel A, Märschenz S. Epigenetic mechanisms in cerebral ischemia. J Cereb Blood Flow Metab 2013; 33:1335-46. [PMID: 23756691 PMCID: PMC3764391 DOI: 10.1038/jcbfm.2013.93] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/14/2013] [Accepted: 05/21/2013] [Indexed: 01/27/2023]
Abstract
Treatment efficacy for ischemic stroke represents a major challenge. Despite fundamental advances in the understanding of stroke etiology, therapeutic options to improve functional recovery remain limited. However, growing knowledge in the field of epigenetics has dramatically changed our understanding of gene regulation in the last few decades. According to the knowledge gained from animal models, the manipulation of epigenetic players emerges as a highly promising possibility to target diverse neurologic pathologies, including ischemia. By altering transcriptional regulation, epigenetic modifiers can exert influence on all known pathways involved in the complex course of ischemic disease development. Beneficial transcriptional effects range from attenuation of cell death, suppression of inflammatory processes, and enhanced blood flow, to the stimulation of repair mechanisms and increased plasticity. Most striking are the results obtained from pharmacological inhibition of histone deacetylation in animal models of stroke. Multiple studies suggest high remedial qualities even upon late administration of histone deacetylase inhibitors (HDACi). In this review, the role of epigenetic mechanisms, including histone modifications as well as DNA methylation, is discussed in the context of known ischemic pathways of damage, protection, and regeneration.
Collapse
Affiliation(s)
- Sophie Schweizer
- Department of Neurology and Experimental Neurology, Center of Stroke Research Berlin, Charité University Medicine, Charitéplatz 1, Berlin, Germany
| | | | | |
Collapse
|
46
|
Lin J, Wang C, Kelly WK. Targeting epigenetics for the treatment of prostate cancer: recent progress and future directions. Semin Oncol 2013; 40:393-401. [PMID: 23806502 DOI: 10.1053/j.seminoncol.2013.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Epigenetic aberrations contribute to prostate cancer carcinogenesis and disease progression. Efforts have been made to target DNA methyltransferase and histone deacetylases (HDACs) in prostate cancer and other solid tumors but have not had the success that was seen in the hematologic malignancies. Oral, less toxic, and more specific agents are being developed in solid tumors including prostate cancer. Combinations of epigenetic agents alone or with a targeted agent such as androgen receptor signaling inhibitors are promising approaches and will be discussed further.
Collapse
Affiliation(s)
- Jianqing Lin
- Department of Medical Oncology, Jefferson Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
47
|
Vendetti FP, Rudin CM. Epigenetic therapy in non-small-cell lung cancer: targeting DNA methyltransferases and histone deacetylases. Expert Opin Biol Ther 2013; 13:1273-85. [PMID: 23859704 DOI: 10.1517/14712598.2013.819337] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Epigenetics refers to heritable modifications of DNA and associated chromatin components that influence gene expression without altering DNA coding sequence. Epigenetic dysregulation is a central contributor to oncogenesis and is increasingly a focus of interest in cancer therapeutic research. Two key levels of aberrant epigenetic control are DNA methylation and histone acetylation. Primary regulators of these epigenetic changes include DNA methyltransferases (DNMTs) and histone deacetylases (HDACs). AREAS COVERED This review focuses on epigenetic changes in non-small-cell lung cancer and recent preclinical and clinical studies targeting these changes. DNMT inhibitors were previously explored at or near maximally tolerated doses, levels at which these agents are cytotoxic but have suboptimal effects on DNA methylation. Use of these inhibitors at substantially lower doses, in combination with HDAC inhibitors, can promote re-expression of silenced tumor suppressor genes, can result in major clinical responses and may alter tumor responsiveness to subsequent cytotoxic therapies. EXPERT OPINION Combinatorial epigenetic therapy has demonstrated encouraging clinical activity, but many relevant questions remain. Global strategies influencing the epigenome may have both positive and potential negative long-term effects on cancer progression. Further clinical investigation of this approach, including exploratory studies to define predictive biomarkers, is warranted.
Collapse
Affiliation(s)
- Frank P Vendetti
- Johns Hopkins University, The Sidney Kimmel Comprehensive Cancer Center, David H. Koch Cancer Research Building 2, Room 562, 1550 Orleans Street, Baltimore, MD 21231, USA
| | | |
Collapse
|
48
|
Liu SV, Fabbri M, Gitlitz BJ, Laird-Offringa IA. Epigenetic therapy in lung cancer. Front Oncol 2013; 3:135. [PMID: 23755372 PMCID: PMC3667274 DOI: 10.3389/fonc.2013.00135] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/13/2013] [Indexed: 12/21/2022] Open
Abstract
Epigenetic deregulation of gene function has been strongly implicated in carcinogenesis and is one of the mechanisms contributing to the development of lung cancer. The inherent reversibility of epigenetic alterations makes them viable therapeutic targets. Here, we review the therapeutic implications of epigenetic changes in lung cancer, and recent advances in therapeutic strategies targeting DNA methylation and histone acetylation.
Collapse
Affiliation(s)
- Stephen V Liu
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles, CA , USA
| | | | | | | |
Collapse
|
49
|
Cherblanc FL, Davidson RWM, Di Fruscia P, Srimongkolpithak N, Fuchter MJ. Perspectives on natural product epigenetic modulators in chemical biology and medicine. Nat Prod Rep 2013; 30:605-24. [DOI: 10.1039/c3np20097c] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
50
|
Chu BF, Karpenko MJ, Liu Z, Aimiuwu J, Villalona-Calero MA, Chan KK, Grever MR, Otterson GA. Phase I study of 5-aza-2'-deoxycytidine in combination with valproic acid in non-small-cell lung cancer. Cancer Chemother Pharmacol 2012; 71:115-21. [PMID: 23053268 DOI: 10.1007/s00280-012-1986-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/17/2012] [Indexed: 11/28/2022]
Abstract
PURPOSE Non-small-cell lung cancer (NSCLC) accounts for the majority of lung cancer and is the most common cause of cancer death in industrialized countries. Epigenetic modifications are observed universally during the tumorigenesis of lung cancer. The development of epigenetic-modulating agents utilizing the synergism between hypomethylating agents and histone deacetylase (HDAC) inhibitors provides a novel therapeutic approach in treating NSCLC. METHODS We performed a phase I trial combining 5-aza-2'-deoxycytidine (decitabine) and valproic acid (VPA), in patients with advanced stage NSCLC. Patients were treated with escalating doses of decitabine (5-15 mg/m(2)) IV for 10 days in combination with VPA (10-20 mg/kg/day) PO on days 5-21 of a 28-day cycle. Pharmacokinetic and pharmacodynamic analysis included decitabine pharmacokinetics and fetal hemoglobin expression. RESULTS Eight patients were accrued to this phase I study. All patients had advanced NSCLC and had received prior chemotherapy. Eastern Cooperative Oncology Group performance status was 0-2. Major toxicities included myelosuppression and neurotoxicity. Dose-limiting toxicity was seen in two patients suffering grade 3 neurotoxicity during cycle one including disorientation, lethargy, memory loss, and ataxia at dose level 1. One patient had grade 3 neutropenia at the de-escalated dose. No objective response was observed, and stable disease was seen in one patient. Fetal hemoglobin levels increased after cycle one in all seven patients with evaluable results. CONCLUSIONS We observed that decitabine and valproic acid are an effective combination in reactivating hypermethylated genes as demonstrated by re-expressing fetal hemoglobin. This combination in patients with advanced stage IV NSCLC, however, is limited by unacceptable neurological toxicity at a relatively low dosage. Combining hypomethylating agents with alternative HDAC inhibitors that lack the toxicity of VPA should be explored further.
Collapse
Affiliation(s)
- B F Chu
- Division of Medical Oncology, Department of Medicine, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|