1
|
Ogasawara M. Wilms' tumor 1 -targeting cancer vaccine: Recent advancements and future perspectives. Hum Vaccin Immunother 2024; 20:2296735. [PMID: 38148629 PMCID: PMC10760787 DOI: 10.1080/21645515.2023.2296735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023] Open
Abstract
This mini-review explores recent advancements in cancer vaccines that target Wilms' tumor (WT1). Phase I/II trials of WT1 peptide vaccines have demonstrated their safety and efficacy against various cancers. Early trials employing HLA class I peptides evolved through their combination with HLA class II peptides, resulting in improved clinical outcomes. Additionally, WT1-targeted dendritic cell vaccines have exhibited favorable results. Studies focusing on hematological malignancies have revealed promising outcomes, including long-term remission and extended survival times. The combination of vaccines with immune checkpoint inhibitors has shown synergistic effects. Current preclinical developments are focused on enhancing the effectiveness of WT1 vaccines, underscoring the necessity for future large-scale Phase III trials to further elucidate their efficacy.
Collapse
Affiliation(s)
- Masahiro Ogasawara
- Department of Internal Medicine, Sapporo Hokuyu Hospital, Sapporo, Japan
| |
Collapse
|
2
|
Chen S, Cheng S, Cai J, Liu Z, Li H, Wang P, Li Y, Yang F, Chen K, Qiu M. The current therapeutic cancer vaccines landscape in non-small cell lung cancer. Int J Cancer 2024; 155:1909-1927. [PMID: 39109825 DOI: 10.1002/ijc.35088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 10/04/2024]
Abstract
Currently, conventional immunotherapies for the treatment of non-small cell lung cancer (NSCLC) have low response rates and benefit only a minority of patients, particularly those with advanced disease, so novel therapeutic strategies are urgent deeded. Therapeutic cancer vaccines, a form of active immunotherapy, harness potential to activate the adaptive immune system against tumor cells via antigen cross-presentation. Cancer vaccines can establish enduring immune memory and guard against recurrences. Vaccine-induced tumor cell death prompts antigen epitope spreading, activating functional T cells and thereby sustaining a cancer-immunity cycle. The success of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rendered cancer vaccines a promising avenue, especially when combined with immunotherapy or chemoradiotherapy for NSCLC. This review delves into the intricate antitumor immune mechanisms underlying therapeutic cancer vaccines, enumerates the tumor antigen spectrum of NSCLC, discusses different cancer vaccines progress and summarizes relevant clinical trials. Additionally, we analyze the combination strategies, current limitations, and future prospects of cancer vaccines in NSCLC treatment, aiming to offer fresh insights for their clinical application in managing NSCLC. Overall, cancer vaccines offer promising potential for NSCLC treatment, particularly combining with chemoradiotherapy or immunotherapy could further improve survival in advanced patients. Exploring inhaled vaccines or prophylactic vaccines represents a crucial research avenue.
Collapse
Affiliation(s)
- Shaoyi Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Sida Cheng
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Jingsheng Cai
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Zheng Liu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Haoran Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Peiyu Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Yun Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Kezhong Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| |
Collapse
|
3
|
Frederico SC, Raphael I, Nisnboym M, Huq S, Schlegel BT, Sneiderman CT, Jackson SA, Jain A, Olin MR, Rood BR, Pollack IF, Hwang EI, Rajasundaram D, Kohanbash G. Transcriptomic observations of intra and extracellular immunotherapy targets for pediatric brain tumors. Expert Rev Clin Immunol 2024; 20:1411-1420. [PMID: 39114885 DOI: 10.1080/1744666x.2024.2390023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVES Despite surgical resection, chemoradiation, and targeted therapy, brain tumors remain a leading cause of cancer-related death in children. Immunotherapy has shown some promise and is actively being investigated for treating childhood brain tumors. However, a critical step in advancing immunotherapy for these patients is to uncover targets that can be effectively translated into therapeutic interventions. METHODS In this study, our team performed a transcriptomic analysis across pediatric brain tumor types to identify potential targets for immunotherapy. Additionally, we assessed components that may impact patient response to immunotherapy, including the expression of genes essential for antigen processing and presentation, inhibitory ligands and receptors, interferon signature, and overall predicted T cell infiltration. RESULTS We observed distinct expression patterns across tumor types. These included elevated expression of antigen genes and antigen processing machinery in some tumor types while other tumors had elevated inhibitory checkpoint receptors, known to be associated with response to checkpoint inhibitor immunotherapy. CONCLUSION These findings suggest that pediatric brain tumors exhibit distinct potential for specific immunotherapies. We believe our findings can guide investigators in their assessment of appropriate immunotherapy classes and targets in pediatric brain tumors.
Collapse
Affiliation(s)
- Stephen C Frederico
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michal Nisnboym
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
- Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Sakibul Huq
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brent T Schlegel
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chaim T Sneiderman
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sydney A Jackson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anya Jain
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael R Olin
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Brian R Rood
- Division of Oncology, Children's National Medical Center, Washington, DC, USA
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eugene I Hwang
- Division of Oncology, Children's National Medical Center, Washington, DC, USA
| | | | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Hao J, Dong S, Li J. Estimating weight for multidimensional health poverty using Delphi method and analytic hierarchy process: a case of China. BMC Public Health 2024; 24:2908. [PMID: 39434048 PMCID: PMC11494899 DOI: 10.1186/s12889-024-20406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Traditionally, poverty assessment has relied on a single income criterion, which is inadequate in contexts where absolute poverty has been mitigated. This study developed a weighting scheme for the Multidimensional Health Poverty Index (MHPI) based on sustainable livelihood framework (SLF), aimed at enhancing the accuracy of poverty identification in China. METHODS A two-round Delphi process was used to determine the indicators of the index system. The weight of each indicator was calculated using the analytic hierarchy process (AHP) method. The multidimensional poverty index incorporates SLF's five dimensions: financial, natural, physical, social, and human capital. RESULTS The initial 46 indicators formed an indicator pool for the Delphi questionnaire. Based on the final consensus of the expert panel, the Delphi consultation resulted in an index system comprising six first-level and 23 second-level indicators. The weight values of the first-level indicators (economic security, health status, education, social capital, healthcare utilisation, and living conditions) were 0.2715, 0.2593, 0.0855, 0.0657, 0.1812, and 0.1363, respectively. CONCLUSION This study established a scientific and effective index to evaluate generate weight for estimating multidimensional health poverty in China. Economic security, health status, and healthcare utilisation are the most crucial aspects of multidimensional health poverty. Moreover, the results indicated that vocational training and social capital should be emphasised.
Collapse
Affiliation(s)
- Jin Hao
- School of Public Health, Centre for Health Management and Policy Research, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- NHC Key Lab of Health Economics and Policy Research, Shandong University, Jinan, 250012, China
| | - Shiju Dong
- School of Public Health, Centre for Health Management and Policy Research, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- NHC Key Lab of Health Economics and Policy Research, Shandong University, Jinan, 250012, China
| | - Jiajia Li
- School of Public Health, Centre for Health Management and Policy Research, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- NHC Key Lab of Health Economics and Policy Research, Shandong University, Jinan, 250012, China.
| |
Collapse
|
5
|
Rosenblum LT, Sever RE, Gilbert R, Guerrero D, Vincze SR, Menendez DM, Birikorang PA, Rodgers MR, Jaswal AP, Vanover AC, Latoche JD, Cortez AG, Day KE, Foley LM, Sneiderman CT, Raphael I, Hitchens TK, Nedrow JR, Kohanbash G, Edwards WB, Malek MM. Dual-labeled anti-GD2 targeted probe for intraoperative molecular imaging of neuroblastoma. J Transl Med 2024; 22:940. [PMID: 39407274 PMCID: PMC11476241 DOI: 10.1186/s12967-024-05728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Surgical resection is integral for the treatment of neuroblastoma, the most common extracranial solid malignancy in children. Safely locating and resecting primary tumor and remote deposits of disease remains a significant challenge, resulting in high rates of complications and incomplete surgery, worsening outcomes. Intraoperative molecular imaging (IMI) uses targeted radioactive or fluorescent tracers to identify and visualize tumors intraoperatively. GD2 was selected as an IMI target, as it is highly overexpressed in neuroblastoma and minimally expressed in normal tissue. METHODS GD2 expression in neuroblastoma cell lines was measured by flow cytometry. DTPA and IRDye® 800CW were conjugated to anti-GD2 antibody to generate DTPA-αGD2-IR800. Binding affinity (Kd) of the antibody and the non-radiolabeled tracer were then measured by ELISA assay. Human neuroblastoma SK-N-BE(2) cells were surgically injected into the left adrenal gland of 3.5-5-week-old nude mice and the orthotopic xenograft tumors grew for 5 weeks. 111In-αGD2-IR800 or isotype control tracer was administered via tail vein injection. After 4 and 6 days, mice were euthanized and gamma and fluorescence biodistributions were measured using a gamma counter and ImageJ analysis of acquired SPY-PHI fluorescence images of resected organs (including tumor, contralateral adrenal, kidneys, liver, muscle, blood, and others). Organ uptake was compared by one-way ANOVA (with a separate analysis for each tracer/day combination), and if significant, Sidak's multiple comparison test was used to compare the uptake of each organ to the tumor. Handheld tools were also used to detect and visualize tumor in situ, and to assess for residual disease following non-guided resection. RESULTS 111In-αGD2-IR800 was successfully synthesized with 0.75-2.0 DTPA and 2-3 IRDye® 800CW per antibody and retained adequate antigen-binding (Kd = 2.39 nM for aGD2 vs. 21.31 nM for DTPA-aGD2-IR800). The anti-GD2 tracer demonstrated antigen-specific uptake in mice with human neuroblastoma xenografts (gamma biodistribution tumor-to-blood ratios of 3.87 and 3.88 on days 4 and 6 with anti-GD2 tracer), while isotype control tracer did not accumulate (0.414 and 0.514 on days 4 and 6). Probe accumulation in xenografts was detected and visualized using widely available operative tools (Neoprobe® and SPY-PHI camera) and facilitated detection ofputative residual disease in the resection cavity following unguided resection. CONCLUSIONS We have developed a dual-labeled anti-GD2 antibody-based tracer that incorporates In-111 and IRDye® 800CW for radio- and fluorescence-guided surgery, respectively. The tracer adequately binds to GD2, specifically accumulates in GD2-expressing xenograft tumors, and enables tumor visualization with a hand-held NIR camera. These results encourage the development of 111In-αGD2-IR800 for future use in children with neuroblastoma, with the goal of improving patient safety, completeness of resection, and overall patient outcomes.
Collapse
Affiliation(s)
- Lauren Taylor Rosenblum
- Department of General Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - ReidAnn E Sever
- Department of Neurological Surgery, Children's Hospital of Pittsburgh of UPMC, 7131 Rangos Research Building, 530 45th Street, Pittsburgh, PA, 15201, USA
| | - Ryan Gilbert
- University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA, 15213, USA
| | - David Guerrero
- University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA, 15213, USA
| | - Sarah R Vincze
- Department of Neurological Surgery, Children's Hospital of Pittsburgh of UPMC, 7131 Rangos Research Building, 530 45th Street, Pittsburgh, PA, 15201, USA
| | - Dominic M Menendez
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | - Peggy A Birikorang
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | - Mikayla R Rodgers
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | - Ambika Parmar Jaswal
- Department of Neurological Surgery, Children's Hospital of Pittsburgh of UPMC, 7131 Rangos Research Building, 530 45th Street, Pittsburgh, PA, 15201, USA
| | - Alexander C Vanover
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | - Joseph D Latoche
- In Vivo Imaging Facility Core, Hillman Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Angel G Cortez
- In Vivo Imaging Facility Core, Hillman Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Kathryn E Day
- In Vivo Imaging Facility Core, Hillman Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Lesley M Foley
- In Vivo Imaging Facility Core, Hillman Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Chaim T Sneiderman
- Department of Neurological Surgery, Children's Hospital of Pittsburgh of UPMC, 7131 Rangos Research Building, 530 45th Street, Pittsburgh, PA, 15201, USA
| | - Itay Raphael
- Department of Neurological Surgery, Children's Hospital of Pittsburgh of UPMC, 7131 Rangos Research Building, 530 45th Street, Pittsburgh, PA, 15201, USA
| | - T Kevin Hitchens
- In Vivo Imaging Facility Core, Hillman Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Jessie R Nedrow
- In Vivo Imaging Facility Core, Hillman Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, Children's Hospital of Pittsburgh of UPMC, 7131 Rangos Research Building, 530 45th Street, Pittsburgh, PA, 15201, USA.
- Department of Immunology, University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| | - W Barry Edwards
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | - Marcus M Malek
- Department of General Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
- Department of Pediatric General Surgery, University of Pittsburgh Medical Center, One Children's Hospital Drive, 4401 Penn Ave., Faculty Pavilion 7th Floor, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
6
|
Sennikov S, Volynets M, Alrhmoun S, Perik-Zavodskii R, Perik-Zavodskaia O, Fisher M, Lopatnikova J, Shevchenko J, Nazarov K, Philippova J, Alsalloum A, Kurilin V, Silkov A. Modified Dendritic cell-based T-cell expansion protocol and single-cell multi-omics allow for the selection of the most expanded and in vitro-effective clonotype via profiling of thousands of MAGE-A3-specific T-cells. Front Immunol 2024; 15:1470130. [PMID: 39450161 PMCID: PMC11499154 DOI: 10.3389/fimmu.2024.1470130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Adoptive cell therapy using TCR-engineered T-cells is one of the most effective strategies against tumor cells. The TCR T-cell approach has been well tested against a variety of blood neoplasms but is yet to be deeply tested against solid tumors. Among solid tumors, cancer-testis antigens are the most prominent targets for tumor-specific therapy, as they are usually found on cells that lie behind blood-tissue barriers. Methods We have employed a novel efficient protocol for MAGE-A3-specific T-cell clonal expansion, performed single-cell multi-omic analysis of the expanded T-cells via BD Rhapsody, engineered a selected T-cell receptor into a lentiviral construct, and tested it in an in vitro LDH-cytotoxicity test. Results and discussion We have observed a 191-fold increase in the MAGE-A3-specific T-cell abundance, obtained a dominant T-cell receptor via single-cell multi-omic BD Rhapsody data analysis in the TCRscape bioinformatics tool, and observed potent cytotoxicity of the dominant-clonotype transduced TCR T-cells against a MAGE-A3-positive tumor. We have demonstrated the efficiency of our T-cell enrichment protocol in obtaining potent anti-tumor T-cells and their T-cell receptors, especially when paired with the modern single-cell analysis methods.
Collapse
MESH Headings
- Antigens, Neoplasm/immunology
- Humans
- Neoplasm Proteins/immunology
- Neoplasm Proteins/genetics
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Immunotherapy, Adoptive/methods
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Single-Cell Analysis/methods
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Cell Line, Tumor
- Clone Cells
- Cell Proliferation
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Cytotoxicity, Immunologic
- Multiomics
Collapse
Affiliation(s)
- Sergey Sennikov
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chi WY, Hu Y, Huang HC, Kuo HH, Lin SH, Kuo CTJ, Tao J, Fan D, Huang YM, Wu AA, Hung CF, Wu TC. Molecular targets and strategies in the development of nucleic acid cancer vaccines: from shared to personalized antigens. J Biomed Sci 2024; 31:94. [PMID: 39379923 PMCID: PMC11463125 DOI: 10.1186/s12929-024-01082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024] Open
Abstract
Recent breakthroughs in cancer immunotherapies have emphasized the importance of harnessing the immune system for treating cancer. Vaccines, which have traditionally been used to promote protective immunity against pathogens, are now being explored as a method to target cancer neoantigens. Over the past few years, extensive preclinical research and more than a hundred clinical trials have been dedicated to investigating various approaches to neoantigen discovery and vaccine formulations, encouraging development of personalized medicine. Nucleic acids (DNA and mRNA) have become particularly promising platform for the development of these cancer immunotherapies. This shift towards nucleic acid-based personalized vaccines has been facilitated by advancements in molecular techniques for identifying neoantigens, antigen prediction methodologies, and the development of new vaccine platforms. Generating these personalized vaccines involves a comprehensive pipeline that includes sequencing of patient tumor samples, data analysis for antigen prediction, and tailored vaccine manufacturing. In this review, we will discuss the various shared and personalized antigens used for cancer vaccine development and introduce strategies for identifying neoantigens through the characterization of gene mutation, transcription, translation and post translational modifications associated with oncogenesis. In addition, we will focus on the most up-to-date nucleic acid vaccine platforms, discuss the limitations of cancer vaccines as well as provide potential solutions, and raise key clinical and technical considerations in vaccine development.
Collapse
Affiliation(s)
- Wei-Yu Chi
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Yingying Hu
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hsin-Che Huang
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hui-Hsuan Kuo
- Pharmacology PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Shu-Hong Lin
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston and MD Anderson Cancer Center, Houston, TX, USA
| | - Chun-Tien Jimmy Kuo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Julia Tao
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Darrell Fan
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Yi-Min Huang
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Annie A Wu
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - T-C Wu
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Obstetrics and Gynecology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Koido S, Taguchi J, Shimabuku M, Kan S, Bito T, Misawa T, Ito Z, Uchiyama K, Saruta M, Tsukinaga S, Suka M, Yanagisawa H, Sato N, Ohkusa T, Shimodaira S, Sugiyama H. Dendritic cells pulsed with multifunctional Wilms' tumor 1 (WT1) peptides combined with multiagent chemotherapy modulate the tumor microenvironment and enable conversion surgery in pancreatic cancer. J Immunother Cancer 2024; 12:e009765. [PMID: 39384197 PMCID: PMC11474828 DOI: 10.1136/jitc-2024-009765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/08/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND We aimed to develop a chemoimmunotherapy regimen consisting of a novel Wilms' tumor 1 (WT1) peptide-pulsed dendritic cell (WT1-DC) vaccine and multiagent chemotherapy and to investigate the safety, clinical outcomes, and WT1-specific immune responses of patients with unresectable advanced pancreatic ductal adenocarcinoma (UR-PDAC) who received this treatment. METHODS Patients with UR-PDAC with stage III disease (locally advanced (LA-PDAC; n=6)), stage IV disease (metastatic (M-PDAC; n=3)), or recurrent disease after surgery (n=1) were enrolled in this phase I study. The patients received one cycle of nab-paclitaxel plus gemcitabine alone followed by 15 doses of the WT1-DC vaccine independent of chemotherapy. The novel WT1 peptide cocktail was composed of a multifunctional helper peptide specific for major histocompatibility complex class II, human leukocyte antigen (HLA)-A*02:01, or HLA-A*02:06 and a killer peptide specific for HLA-A*24:02. RESULTS The chemoimmunotherapy regimen was well tolerated. In the nine patients for whom a prognostic analysis was feasible, the clinical outcomes of long-term WT1 peptide-specific delayed-type hypersensitivity (WT1-DTH)-positive patients (n=4) were significantly superior to those of short-term WT1-DTH-positive patients (n=5). During chemoimmunotherapy, eight patients were deemed eligible for conversion surgery and underwent R0 resection (four patients with LA-PDAC, one patient with M-PDAC, and one recurrence) or R1 resection (one patient with M-PDAC), and one patient with LA-PDAC was determined to be unresectable. Long-term WT1-DTH positivity was observed in three of the four patients with R0-resected LA-PDAC. These three patients exhibited notable infiltration of T cells and programmed cell death protein-1+ cells within the pancreatic tumor microenvironment (TME). All patients with long-term WT1-DTH positivity were alive for at least 4.5 years after starting therapy. In patients with long-term WT1-DTH positivity, the percentage of WT1-specific circulating CD4+ or CD8+ T cells that produced IFN-γ or TNF-α was significantly greater than that in patients with short-term WT1-DTH positivity after two vaccinations. Moreover, after 12 vaccinations, the percentages of both circulating regulatory T cells and myeloid-derived suppressor cells were significantly lower in patients with long-term WT1-DTH-positive PDAC than in short-term WT1-DTH-positive patients. CONCLUSIONS Potent activation of WT1-specific immune responses through a combination chemoimmunotherapy regimen including the WT1-DC vaccine in patients with UR-PDAC may modulate the TME and enable conversion surgery, resulting in clinical benefits (Online supplemental file 1). TRIAL REGISTRATION NUMBER jRCTc030190195.
Collapse
Affiliation(s)
- Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | | | | | - Shin Kan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Tuuse Bito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Takeyuki Misawa
- Department of Surgery, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Zensho Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Kan Uchiyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Japan
| | - Shintaro Tsukinaga
- Department of Endoscopy, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Machi Suka
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Minato-ku, Japan
| | - Hiroyuki Yanagisawa
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Minato-ku, Japan
| | - Nobuhiro Sato
- Department of Microbiota Research, Juntendo University, Bunkyo-ku, Japan
| | - Toshifumi Ohkusa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
- Department of Microbiota Research, Juntendo University, Bunkyo-ku, Japan
| | | | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Osaka University, Suita, Japan
| |
Collapse
|
9
|
Kheirkhah AH, Habibi S, Yousefi MH, Mehri S, Ma B, Saleh M, Kavianpour M. Finding potential targets in cell-based immunotherapy for handling the challenges of acute myeloid leukemia. Front Immunol 2024; 15:1460437. [PMID: 39411712 PMCID: PMC11474923 DOI: 10.3389/fimmu.2024.1460437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hostile hematological malignancy under great danger of relapse and poor long-term survival rates, despite recent therapeutic advancements. To deal with this unfulfilled clinical necessity, innovative cell-based immunotherapies have surfaced as promising approaches to improve anti-tumor immunity and enhance patient outcomes. In this comprehensive review, we provide a detailed examination of the latest developments in cell-based immunotherapies for AML, including chimeric antigen receptor (CAR) T-cell therapy, T-cell receptor (TCR)-engineered T-cell therapy, and natural killer (NK) cell-based therapies. We critically evaluate the unique mechanisms of action, current challenges, and evolving strategies to improve the efficacy and safety of these modalities. The review emphasizes how promising these cutting-edge immune-based strategies are in overcoming the inherent complexities and heterogeneity of AML. We discuss the identification of optimal target antigens, the importance of mitigating on-target/off-tumor toxicity, and the need to enhance the persistence and functionality of engineered immune effector cells. All things considered, this review offers a thorough overview of the rapidly evolving field of cell-based immunotherapy for AML, underscoring the significant progress made and the ongoing efforts to translate these innovative approaches into more effective and durable treatments for this devastating disease.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Animals
- Killer Cells, Natural/immunology
- Immunotherapy/methods
- Antigens, Neoplasm/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Amir Hossein Kheirkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sina Habibi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sara Mehri
- Department of Biotechnology, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Bin Ma
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mahshid Saleh
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, United States
| | - Maria Kavianpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
10
|
Han H, Santos HA. Nano- and Micro-Platforms in Therapeutic Proteins Delivery for Cancer Therapy: Materials and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409522. [PMID: 39263818 DOI: 10.1002/adma.202409522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Proteins have emerged as promising therapeutics in oncology due to their great specificity. Many treatment strategies are developed based on protein biologics, such as immunotherapy, starvation therapy, and pro-apoptosis therapy, while some protein biologics have entered the clinics. However, clinical translation is severely impeded by instability, short circulation time, poor transmembrane transportation, and immunogenicity. Micro- and nano-particles-based drug delivery platforms are designed to solve those problems and enhance protein therapeutic efficacy. This review first summarizes the different types of therapeutic proteins in clinical and research stages, highlighting their administration limitations. Next, various types of micro- and nano-particles are described to demonstrate how they can overcome those limitations. The potential of micro- and nano-particles are then explored to enhance the therapeutic efficacy of proteins by combinational therapies. Finally, the challenges and future directions of protein biologics carriers are discussed for optimized protein delivery.
Collapse
Affiliation(s)
- Huijie Han
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
11
|
Gielis S, Flumens D, van der Heijden S, Versteven M, De Reu H, Bartholomeus E, Schippers J, Campillo-Davo D, Berneman ZN, Anguille S, Smits E, Ogunjimi B, Lion E, Laukens K, Meysman P. Analysis of Wilms' tumor protein 1 specific TCR repertoire in AML patients uncovers higher diversity in patients in remission than in relapsed. Ann Hematol 2024:10.1007/s00277-024-05919-1. [PMID: 39259326 DOI: 10.1007/s00277-024-05919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/26/2024] [Indexed: 09/13/2024]
Abstract
The Wilms' tumor protein 1 (WT1) is a well-known and prioritized tumor-associated antigen expressed in numerous solid and blood tumors. Its abundance and immunogenicity have led to the development of different WT1-specific immune therapies. The driving player in these therapies, the WT1-specific T-cell receptor (TCR) repertoire, has received much less attention. Importantly, T cells with high affinity against the WT1 self-antigen are normally eliminated after negative selection in the thymus and are thus rare in peripheral blood. Here, we developed computational models for the robust and fast identification of WT1-specific TCRs from TCR repertoire data. To this end, WT137-45 (WT1-37) and WT1126-134 (WT1-126)-specific T cells were isolated from WT1 peptide-stimulated blood of healthy individuals. The TCR repertoire from these WT1-specific T cells was sequenced and used to train a pattern recognition model for the identification of WT1-specific TCR patterns for the WT1-37 or WT1-126 epitopes. The resulting computational models were applied on an independent published dataset from acute myeloid leukemia (AML) patients, treated with hematopoietic stem cell transplantation, to track WT1-specific TCRs in silico. Several WT1-specific TCRs were found in AML patients. Subsequent clustering analysis of all repertoires indicated the presence of more diverse TCR patterns within the WT1-specific TCR repertoires of AML patients in complete remission in contrast to relapsing patients. We demonstrate the possibility of tracking WT1-37 and WT1-126-specific TCRs directly from TCR repertoire data using computational methods, eliminating the need for additional blood samples and experiments for the two studied WT1 epitopes.
Collapse
Affiliation(s)
- Sofie Gielis
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
| | - Donovan Flumens
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
| | - Sanne van der Heijden
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Maarten Versteven
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
| | - Esther Bartholomeus
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Centre for Health Economics Research and Modeling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Jolien Schippers
- Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR) department, University of Antwerp, Edegem, Belgium
| | - Diana Campillo-Davo
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
- Center for Cell Therapy & Regenerative Medicine (CCRG), Antwerp University Hospital, Edegem, Belgium
| | - Sébastien Anguille
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
- Center for Cell Therapy & Regenerative Medicine (CCRG), Antwerp University Hospital, Edegem, Belgium
- Division of Hematology, Antwerp University Hospital, Edegem, Belgium
| | - Evelien Smits
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
- Center for Cell Therapy & Regenerative Medicine (CCRG), Antwerp University Hospital, Edegem, Belgium
| | - Benson Ogunjimi
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Department of Paediatrics, Antwerp University Hospital, Edegem, Belgium
- Centre for Health Economics Research and Modeling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Eva Lion
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
- Center for Cell Therapy & Regenerative Medicine (CCRG), Antwerp University Hospital, Edegem, Belgium
| | - Kris Laukens
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
| | - Pieter Meysman
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium.
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium.
- Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
12
|
Lu C, Zou L, Wang Q, Sun M, Shi T, Xu S, Meng F, Du J. Potent antitumor activity of a bispecific T-cell engager antibody targeting the intracellular antigen KRAS G12V. BIOMOLECULES & BIOMEDICINE 2024; 24:1424-1434. [PMID: 38752985 PMCID: PMC11379025 DOI: 10.17305/bb.2024.10431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 09/07/2024]
Abstract
Kirsten Rat Sarcoma viral oncogene homolog (KRAS) is one of the most frequent oncogenes. However, there are limited treatment options due to its intracellular expression. To address this, we developed a novel bispecific T-cell engager (BiTE) antibody targeting HLA-A2/KRAS G12V complex and CD3 (HLA-G12V/CD3 BiTE). We examined its specific binding to tumor cells and T cells, as well as its anti-tumor effects in vivo. HLA-G12V/CD3 BiTE was expressed in Escherichia coli and its binding affinities to CD3 and HLA-A2/KRAS G12V were measured by flow cytometry, along with T-cell activation. In a xenograft pancreatic tumor model, the HLA-G12V/CD3 BiTE's anti-tumor effects were assessed through tumor growth, survival time, and safety. Our results demonstrated specific binding of HLA-G12V/CD3 BiTE to tumor cells with an HLA-A2/KRAS G12V mutation and T cells. The HLA-G12V/CD3 BiTE also activated T-cells in the presence of tumor cells in vitro. HLA-G12V/CD3 BiTE in vivo testing showed delayed tumor growth without severe toxicity to major organs and prolonged mouse survival. This study highlights the potential of constructing BiTEs recognizing an HLA-peptide complex and providing a novel therapy for cancer treatment targeting the intracellular tumor antigen.
Collapse
Affiliation(s)
- Changchang Lu
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Lu Zou
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qiaoli Wang
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mengna Sun
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianyu Shi
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shuang Xu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fanyan Meng
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Juan Du
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Dong L, Cao Z, Chen M, Liu Y, Ma X, Lu Y, Zhang Y, Feng K, Zhang Y, Meng Z, Yang Q, Wang Y, Wu Z, Han W. Inhibition of glycosphingolipid synthesis with eliglustat in combination with immune checkpoint inhibitors in advanced cancers: preclinical evidence and phase I clinical trial. Nat Commun 2024; 15:6970. [PMID: 39138212 PMCID: PMC11322526 DOI: 10.1038/s41467-024-51495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
Glycosphingolipids (GSLs) are abundantly expressed in cancer cells. The effects of GSL-targeted immunotherapies are not fully understood. Here, we show that the inhibition of GSL synthesis with the UDP-glucose ceramide glucosyltransferase inhibitor eliglustat can increase the exposure of the major histocompatibility complex (MHC) and tumour antigen peptides, enhancing the antitumour response of CD8+ T cells in a range of tumour models. We therefore conducted a proof-of-concept phase I trial on the combination of eliglustat and an anti-PD-1 antibody for the treatment of advanced cancers (NCT04944888). The primary endpoints were safety and feasibility, and the secondary endpoint was antitumor activity. All prespecified endpoints were met. Among the 31 enrolled patients, only 1 patient experienced a grade 3 adverse event (AE), and no grade 4 AEs were observed. The objective response rate was 22.6% and the disease control rate reached 71%. Of the 8 patients with proficient mismatch repair/microsatellite stable (pMMR/MSS) colorectal cancer, one achieved complete response and two each had partial response and stable disease. In summary, inhibiting the synthesis of GSLs might represent an effective immunotherapy approach.
Collapse
Affiliation(s)
- Liang Dong
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhi Cao
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Meixia Chen
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yang Liu
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xinran Ma
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Yuting Lu
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yan Zhang
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Kaichao Feng
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yang Zhang
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhenzhen Meng
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qingming Yang
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yao Wang
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China.
| | - Zhiqiang Wu
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China.
| | - Weidong Han
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China.
- School of Medicine, Nankai University, Tianjin, China.
- Changping Laboratory, Beijing, China.
- National Clinical Research Centre for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
14
|
Ito M, Koido S, Iwamoto T, Morimoto S, Fujiki F, Sugiyama H, Matsumoto S, Effenberger C, Kiyotani K, Shiba K. Enhancing the immunogenicity of Wilms tumor 1 epitope in mesothelioma cells with immunoproteasome inhibitors. PLoS One 2024; 19:e0308330. [PMID: 39116074 PMCID: PMC11309442 DOI: 10.1371/journal.pone.0308330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
The immunogenicity of cancer cells is influenced by several factors, including the expression of the major histocompatibility complex class I (MHC-I), antigen expression, and the repertoire of proteasome-produced epitope peptides. The malignant pleural mesothelioma cell line ACC-MEOS-4 (MESO-4) expresses high levels of MHC-I and Wilms tumor 1 (WT1) tumor antigens. Using a functional T cell reporter assay specific for the HLA-A*24:02 restricted WT1 epitope (WT1235, CMTWNQMNL), we searched for factors that augmented the immunogenicity of MESO-4, focusing on proteasomes, which have a central role in the antigen processing machinery. ONX-0914, a selective inhibitor of the immunoproteasome subunit β5i, enhanced immunogenicity dose-dependently at low concentrations without cytotoxicity. In addition, CD8+ T lymphocytes recognizing WT1 showed greater cytotoxicity against MESO-4 pre-treated with ONX-0914. MESO-4 expresses a standard proteasome (SP) and immunoproteasome (IP). Notably, IP has distinct catalytic activity from SP, favoring the generation of antigenic peptides with high affinity for MHC-I in antigen-presenting cells and cancer cells. In vitro, immunoproteasome digestion assay and mass spectrometry analysis showed that IP cleaved WT1235 internally after the hydrophobic residues. Importantly, this internal cleavage of the WT1235 epitope was mitigated by ONX-0914. These results suggest that ONX-0914 prevents the internal destructive cleavage of WT1235 by IP, thereby promoting the specific presentation of the WT1 epitope by MESO-4. In conclusion, selective IP inhibitors might offer a means to modulate cancer cell immunogenicity by directing the presentation of particular tumor epitopes.
Collapse
Affiliation(s)
- Masaki Ito
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan
- Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shigeo Koido
- The Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Chiba, Japan
| | - Takeo Iwamoto
- Core Research Facilities, The Jikei University School of Medicine, Tokyo, Japan
| | - Soyoko Morimoto
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fumihiro Fujiki
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Saki Matsumoto
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Clara Effenberger
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kiyotaka Shiba
- Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
15
|
Forchhammer S, Pop OT, Hahn M, Aebischer V, Seitz CM, Schroeder C, Liebmann A, Abele M, Wild H, Bien E, Kunc M, Schneider DT, Cuk K, Büttel I, Flemmig C, Peters M, Laible M, Brück P, Türeci Ö, Sahin U, Flatz L, Brecht IB. Expression of the tumor antigens NY-ESO-1, tyrosinase, MAGE-A3, and TPTE in pediatric and adult melanoma: a retrospective case control study. Virchows Arch 2024; 485:335-346. [PMID: 38890171 PMCID: PMC11329550 DOI: 10.1007/s00428-024-03846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Tumor-associated antigens (TAAs) are potential targets for T cell-based immunotherapy approaches in cutaneous melanoma. BNT111, an investigational lipoplex-formulated mRNA-based therapeutic cancer vaccine encoding melanoma TAAs NY-ESO-1, tyrosinase, MAGE-A3, and TPTE, is undergoing clinical testing in adults. Expression of these TAAs in pediatric melanoma is unclear but is a prerequisite for feasibility of this treatment approach in children with melanoma. Our main objective was to characterize expression of those TAAs in pediatric melanomas compared to control cohorts. In this retrospective case control study, protein and transcript expression of NY-ESO-1, tyrosinase, MAGE-A3, and TPTE were analyzed in a cohort of 25 pediatric melanomas, 31 melanomas of young adults, 29 adult melanomas, and 30 benign melanocytic nevi in children using immunohistochemical staining and digital pathology (QuPath) and reverse transcription quantitative PCR. Based on IHC analysis, pediatric melanomas expressed tyrosinase (100.0%), TPTE (44.0%), MAGE-A3 (12.0%), and NY-ESO-1 (8.0%). Young adult melanomas expressed tyrosinase (96.8%), NY-ESO-1 (19.4%), MAGE-A3 (19.4%), and TPTE (3.2%). Adult melanomas expressed tyrosinase (86.2%), MAGE-A3 (75.9%), NY-ESO-1 (48.3%), and TPTE (48.3%). Childhood melanocytic nevi only expressed tyrosinase (93.3%). Expression prevalence of individual TAAs did not differ between subtypes of pediatric melanoma, and no association with prognosis was found. All four TAAs were expressed in pediatric melanoma, albeit NY-ESO-1 and MAGE-A3 to a lesser extent than in adult melanoma. These data support the possibility of investigating vaccines targeting these TAAs for the treatment of pediatric melanoma.
Collapse
Affiliation(s)
- Stephan Forchhammer
- Department of Dermatology, Eberhard Karls University of Tuebingen, Liebermeisterstrasse 25, 72076, Tuebingen, Germany.
| | - Oltin Tiberiu Pop
- Institute for Immunobiology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Matthias Hahn
- Department of Dermatology, Eberhard Karls University of Tuebingen, Liebermeisterstrasse 25, 72076, Tuebingen, Germany
| | - Valentin Aebischer
- Department of Dermatology, Eberhard Karls University of Tuebingen, Liebermeisterstrasse 25, 72076, Tuebingen, Germany
| | - Christian M Seitz
- Pediatric Hematology and Oncology, Children's Hospital, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Alexandra Liebmann
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Michael Abele
- Pediatric Hematology and Oncology, Children's Hospital, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Hannah Wild
- Pediatric Hematology and Oncology, Children's Hospital, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Ewa Bien
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Michal Kunc
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Dominik T Schneider
- Clinic of Pediatrics, Dortmund Municipal Hospital, University Witten/Herdecke, Dortmund, Germany
| | | | | | | | | | | | | | | | | | - Lukas Flatz
- Department of Dermatology, Eberhard Karls University of Tuebingen, Liebermeisterstrasse 25, 72076, Tuebingen, Germany
- Institute for Immunobiology, Kantonsspital St Gallen, St Gallen, Switzerland
- Department of Dermatology, Venereology, and Allergology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Ines B Brecht
- Pediatric Hematology and Oncology, Children's Hospital, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
16
|
Yao X, Matosevic S. Generation and evaluation of cancer binding capacity of HLA-A2-WT1 complex-targeting antibody. Immunol Lett 2024; 268:106881. [PMID: 38810886 DOI: 10.1016/j.imlet.2024.106881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/03/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Wilms' tumor (WT1), a transcription factor highly expressed in various leukemias and solid tumors, is a highly specific intracellular tumor antigen, requiring presentation through complexation with HLA-restricted peptides.. WT1-derived epitopes are able to assemble with MHC-I and thereby be recognized by T cell receptors (TCR). Identification of new targetable epitopes derived from WT1 on solid tumors is a challenge, but meaningful for the development of therapeutics that could in this way target intracellular oncogenic proteins. In this study, we developed and comprehensively describe methods to validate the formation of the complex of WT1126-134 and HLA-A2. Subsequently, we developed an antibody fragment able to recognize the extracellular complex on the surface of cancer cells. The single chain variable fragment (scFv) of an established TCR-mimic antibody, specifically recognizing the WT1-derived peptide presented by the HLA-A2 complex, was expressed, purified, and functionally validated using a T2 cell antigen presentation model. Furthermore, we evaluated the potential of the WT1-derived peptide as a targetable extracellular antigen in multiple solid tumor cell lines. Our study describes methodology for the evaluation of WT1-derived peptides as tumor-specific antigen on solid tumors, and may facilitate the selection of potential candidates for future immunotherapy targeting WT1 epitopes.
Collapse
MESH Headings
- Humans
- WT1 Proteins/immunology
- WT1 Proteins/metabolism
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Cell Line, Tumor
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/therapy
- Protein Binding
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Antigen Presentation/immunology
- Epitopes/immunology
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Peptides/immunology
- Peptides/chemistry
- Peptides/metabolism
Collapse
Affiliation(s)
- Xue Yao
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA
| | - Sandro Matosevic
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA; Center for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
17
|
Jiang Y, Zhang G, Zhu J, Wang X, Tao Z, Yu P. Development and validation of a TAAbs and TAAs based non-invasive model for diagnosing lung cancer. Heliyon 2024; 10:e33888. [PMID: 39027487 PMCID: PMC11255565 DOI: 10.1016/j.heliyon.2024.e33888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
Background Single Tumor-associated autoantibodies (TAAbs) and tumor-associated antigens (TAAs) have been found to have lower diagnostic efficacy in lung cancer. Our objective is to develop and validate a lung cancer prediction model that utilizes TAAbs and TAAs and to enhance the accuracy of lung cancer detection. Methods 1830 subjects were randomly divided into training and validation sets at a 7:3 ratio for this study. Lasso regression analysis was used to remove collinear variables, whereas univariate logistic regression analysis was employed to identify potential independent risk factors for lung cancer. A diagnostic model was constructed using multivariate logistic analysis. The results were presented as a nomogram and assessed for various performance measures, including area under the curve, calibration curve, and decision curve analysis. Results The diagnostic model was developed using gender, age, GAGE7, MAGE-A1, CA125, and CEA as variables. The training set had an AUC of 0.787, while the validation set had an AUC of 0.750. The calibration curves of the training and validation sets showed a strong agreement between anticipated and observed values. The nomogram performed better than any individual variable in both the training and validation sets in terms of net benefits for lung cancer detection, according to DCA analysis. Conclusions This study proposes a diagnostic model for lung cancer that uses TAAbs and TAAs and incorporates individual characteristics. This model can be easily applied to personalized diagnosis.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Gong Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Jiayi Zhu
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xuchu Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Pan Yu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
18
|
Zhang J, Terreni M, Liu F, Sollogoub M, Zhang Y. Ganglioside GM3-based anticancer vaccines: Reviewing the mechanism and current strategies. Biomed Pharmacother 2024; 176:116824. [PMID: 38820973 DOI: 10.1016/j.biopha.2024.116824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
Ganglioside GM3 is one of the most common membrane-bound glycosphingolipids. The over-expression of GM3 on tumor cells makes it defined as a tumor-associated carbohydrate antigen (TACA). The specific expression property in cancers, especially in melanoma, make it become an important target to develop anticancer vaccines or immunotherapies. However, in the manner akin to most TACAs, GM3 is an autoantigen facing with problems of low immunogenicity and easily inducing immunotolerance, which means itself only cannot elicit a powerful enough immune response to prevent or treat cancer. With a comparative understanding of the mechanisms that how immune system responses to the carbohydrate vaccines, this review summarizes the studies on the recent efforts to development GM3-based anticancer vaccines.
Collapse
Affiliation(s)
- Jiaxu Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, Paris 75005, France; College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Fang Liu
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, Paris 75005, France
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, Paris 75005, France
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, Paris 75005, France; College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
19
|
Nagai H, Chen H, Karube R, Koitabashi Y, Numata O, Yamahara K. Combination of Radiation Therapy, Wim's Tumor 1 (WT1) Dendritic Cell Vaccine Therapy, and α-Galactosylceramide-Pulsed Dendritic Cell Vaccine Therapy for End-Stage Small Bowel Cancer. Cureus 2024; 16:e64972. [PMID: 39035592 PMCID: PMC11259906 DOI: 10.7759/cureus.64972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 07/23/2024] Open
Abstract
There is no established treatment for terminal cancer patients who no longer respond to surgery, radiotherapy, or chemotherapy, and palliative care is the standard worldwide. We performed intensity-modulated radiation therapy for pain relief in a 40-year-old male patient with end-stage small intestinal cancer who had been diagnosed with a life expectancy of two months after chemotherapy had been ineffective. Subsequent administration of seven doses of dendritic cell vaccine recognizing Wim's tumor 1 (WT1) and α-galactosylceramide antigens resulted in significant shrinkage of the cancer and marked improvement of the patient's general condition. The combination therapy of radiotherapy and dendritic cell vaccine therapy may suppress cancer progression and prolong survival, even in patients with chemotherapy-refractory terminal cancer. In particular, double dendritic cell vaccine therapy with WT1 and α-galactosylceramide-pulsed dendritic cell may provide an anti-tumor immune effect that is superior to that of the respective monotherapy.
Collapse
Affiliation(s)
- Hisashi Nagai
- Department of Human Development - Environment and Resources, Graduate School of Human and Environmental Studies, Tokai University, Kanagawa, JPN
- Department of Regenerative Medicine, Ginza Phoenix Clinic, Tokyo, JPN
| | - Hao Chen
- Department of Respiratory Medicine, Yokohama City University Hospital, Yokohama, JPN
| | - Ryusuke Karube
- Department of Regenerative Medicine, Ginza Phoenix Clinic, Tokyo, JPN
| | - Yusuke Koitabashi
- Department of Regenerative Medicine, Ginza Phoenix Clinic, Tokyo, JPN
| | - Ouka Numata
- Department of Regenerative Medicine, Ginza Phoenix Clinic, Tokyo, JPN
| | - Kenichi Yamahara
- Laboratory of Molecular and Cellular Therapy, Institute for Advanced Medical Sciences, Hyogo Medical University, Hyogo, JPN
| |
Collapse
|
20
|
Farhangnia P, Ghods R, Falak R, Zarnani AH, Delbandi AA. Identification of placenta-specific protein 1 (PLAC-1) expression on human PC-3 cell line-derived prostate cancer stem cells compared to the tumor parental cells. Discov Oncol 2024; 15:251. [PMID: 38943028 PMCID: PMC11213845 DOI: 10.1007/s12672-024-01121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Placenta-specific protein 1 (PLAC-1) is a gene primarily expressed in the placenta and the testis. Interestingly, it is also found to be expressed in many solid tumors, and it is involved in malignant cell features. However, no evidence has been reported regarding the relationship between PLAC-1 and cancer stem cells (CSCs). In the current research, we explored the expression of the PLAC-1 molecule in prostate cancer stem cells (PCSCs) derived from the human PC-3 cell line. The enrichment of PCSCs was achieved using a three-dimensional cell culture technique known as the sphere-formation assay. To confirm the identity of PCSCs, we examined the expression of genes associated with stemness and pluripotency, such as SOX2, OCT4, Nanog, C-Myc, and KLF-4, as well as stem cell differentiation molecules like CD44 and CD133. These evaluations were conducted in both the PCSCs and the original tumor cells (parental cells) using real-time PCR and flow cytometry. Subsequently, we assessed the expression of the PLAC-1 molecule in both enriched cells and parental tumor cells at the gene and protein levels using the same techniques. The tumor cells from the PC-3 cell line formed spheroids with CSC characteristics in a non-adherent medium. The expression of SOX2, OCT4, Nanog, and C-Myc genes (p < 0.01), and the molecules CD44 and CD133 (p < 0.05) were significantly elevated in PCSCs compared to the parental cells. The expression of the PLAC-1 molecule in PCSCs showed a significant increase compared to the parental cells at both gene (p < 0.01) and protein (p < 0.001) levels. In conclusion, it was indicated for the first time that PLAC-1 is up-regulated in PCSCs derived from human PC-3 cell line. This study may propose PLAC-1 as a potential target in targeted therapies, which should be confirmed through further studies.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Yuan DY, McKeague ML, Raghu VK, Schoen RE, Finn OJ, Benos PV. Cellular and transcriptional profiles of peripheral blood mononuclear cells pre-vaccination predict immune response to preventative MUC1 vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598031. [PMID: 38948837 PMCID: PMC11212910 DOI: 10.1101/2024.06.14.598031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A single arm trial (NCT007773097) and a double-blind, placebo controlled randomized trial ( NCT02134925 ) were conducted in individuals with a history of advanced colonic adenoma to test the safety and immunogenicity of the MUC1 tumor antigen vaccine and its potential to prevent new adenomas. These were the first two trials of a non-viral cancer vaccine administered in the absence of cancer. The vaccine was safe and strongly immunogenic in 43% (NCT007773097) and 25% ( NCT02134925 ) of participants. The lack of response in a significant number of participants suggested, for the first time, that even in a premalignant setting, the immune system may have already been exposed to some level of suppression previously reported only in cancer. Single-cell RNA-sequencing (scRNA-seq) on banked pre-vaccination peripheral blood mononuclear cells (PBMCs) from 16 immune responders and 16 non-responders identified specific cell types, genes, and pathways of a productive vaccine response. Responders had a significantly higher percentage of CD4+ naive T cells pre-vaccination, but a significantly lower percentage of CD8+ T effector memory (TEM) cells and CD16+ monocytes. Differential gene expression (DGE) and transcription factor inference analysis showed a higher level of expression of T cell activation genes, such as Fos and Jun, in CD4+ naive T cells, and pathway analysis showed enriched signaling activity in responders. Furthermore, Bayesian network analysis suggested that these genes were mechanistically connected to response. Our analyses identified several immune mechanisms and candidate biomarkers to be further validated as predictors of immune responses to a preventative cancer vaccine that could facilitate selection of individuals likely to benefit from a vaccine or be used to improve vaccine responses.
Collapse
|
22
|
Emens LA, Romero PJ, Anderson AC, Bruno TC, Capitini CM, Collyar D, Gulley JL, Hwu P, Posey AD, Silk AW, Wargo JA. Challenges and opportunities in cancer immunotherapy: a Society for Immunotherapy of Cancer (SITC) strategic vision. J Immunother Cancer 2024; 12:e009063. [PMID: 38901879 PMCID: PMC11191773 DOI: 10.1136/jitc-2024-009063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/22/2024] Open
Abstract
Cancer immunotherapy has flourished over the last 10-15 years, transforming the practice of oncology and providing long-term clinical benefit to some patients. During this time, three distinct classes of immune checkpoint inhibitors, chimeric antigen receptor-T cell therapies specific for two targets, and two distinct classes of bispecific T cell engagers, a vaccine, and an oncolytic virus have joined cytokines as a standard of cancer care. At the same time, scientific progress has delivered vast amounts of new knowledge. For example, advances in technologies such as single-cell sequencing and spatial transcriptomics have provided deep insights into the immunobiology of the tumor microenvironment. With this rapid clinical and scientific progress, the field of cancer immunotherapy is currently at a critical inflection point, with potential for exponential growth over the next decade. Recognizing this, the Society for Immunotherapy of Cancer convened a diverse group of experts in cancer immunotherapy representing academia, the pharmaceutical and biotechnology industries, patient advocacy, and the regulatory community to identify current opportunities and challenges with the goal of prioritizing areas with the highest potential for clinical impact. The consensus group identified seven high-priority areas of current opportunity for the field: mechanisms of antitumor activity and toxicity; mechanisms of drug resistance; biomarkers and biospecimens; unique aspects of novel therapeutics; host and environmental interactions; premalignant immunity, immune interception, and immunoprevention; and clinical trial design, endpoints, and conduct. Additionally, potential roadblocks to progress were discussed, and several topics were identified as cross-cutting tools for optimization, each with potential to impact multiple scientific priority areas. These cross-cutting tools include preclinical models, data curation and sharing, biopsies and biospecimens, diversification of funding sources, definitions and standards, and patient engagement. Finally, three key guiding principles were identified that will both optimize and maximize progress in the field. These include engaging the patient community; cultivating diversity, equity, inclusion, and accessibility; and leveraging the power of artificial intelligence to accelerate progress. Here, we present the outcomes of these discussions as a strategic vision to galvanize the field for the next decade of exponential progress in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Ana Carrizosa Anderson
- The Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Tullia C Bruno
- Department of Immunology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christian M Capitini
- Department of Pediatrics and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Deborah Collyar
- Patient Advocates in Research (PAIR), Danville, California, USA
| | - James L Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Avery D Posey
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ann W Silk
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
23
|
Dąbrowski A, Nowicki M, Budzyńska A, Suchodolski J, Ogórek R, Chabowski M, Przywara K. Analysis of CYP1B1 Polymorphisms in Lung Cancer Patients Using Novel, Quick and Easy Methods Based on CAPS and ACRS-PCR Techniques. Int J Mol Sci 2024; 25:6676. [PMID: 38928381 PMCID: PMC11203417 DOI: 10.3390/ijms25126676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Within the sequence of the CYP1B1 gene, more than 50 polymorphisms, resulting from single-nucleotide polymorphisms (SNPs), have been described. Some of them play an important role as specific genetic markers in the process of carcinogenesis and for therapeutic purposes. In this publication, we present methods we have developed that enable the specific and unambiguous identification of four polymorphisms that result in amino acid changes: c. 142C > G, c. 355G > T, c. 1294C > G, and c. 1358A > G. Our studies are based on cleaved amplified polymorphic sequences (CAPSs) and artificially created restriction site (ACRS) PCR techniques; therefore, they require only basic laboratory equipment and low financial outlays. Utilizing the described methods allows for the reduction of research time and cost, and the minimization of errors. Their effectiveness and efficiency depend on the careful design of appropriate primers and the precise selection of suitable restriction enzymes. As a result, further confirmation by sequencing is not necessary. Using the developed method, we examined 63 patients diagnosed with lung cancer and observed a 1.5 to 2.1 times higher frequency of the analyzed single-nucleotide polymorphisms compared to the frequency in the European population.
Collapse
Affiliation(s)
- Adam Dąbrowski
- Laboratory of Molecular Diagnostics “Bio-Genetik” NZOZ, 50-525 Wrocław, Poland;
| | - Maciej Nowicki
- Department of Surgery, 4th Military Teaching Hospital, 53-114 Wroclaw, Poland; (M.N.); (M.C.)
| | - Aleksandra Budzyńska
- Department of Mycology and Genetics, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland; (A.B.); (J.S.); (R.O.)
| | - Jakub Suchodolski
- Department of Mycology and Genetics, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland; (A.B.); (J.S.); (R.O.)
| | - Rafał Ogórek
- Department of Mycology and Genetics, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland; (A.B.); (J.S.); (R.O.)
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Teaching Hospital, 53-114 Wroclaw, Poland; (M.N.); (M.C.)
- Department of Nursing and Obstetrics, Division of Anesthesiological and Surgical Nursing, Faculty of Health Science, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Department of Clinical Surgical Sciences, Faculty of Medicine, Wroclaw University of Science and Technology, 51-377 Wroclaw, Poland
| | - Katarzyna Przywara
- Department of Mycology and Genetics, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland; (A.B.); (J.S.); (R.O.)
| |
Collapse
|
24
|
Bhat AM, Mohapatra BC, Luan H, Mushtaq I, Chakraborty S, Kumar S, Wu W, Nolan B, Dutta S, Storck MD, Schott M, Meza JL, Lele SM, Lin MF, Cook LM, Corey E, Morrissey C, Coulter DW, Rowley MJ, Natarajan A, Datta K, Band V, Band H. GD2 and its biosynthetic enzyme GD3 synthase promote tumorigenesis in prostate cancer by regulating cancer stem cell behavior. Sci Rep 2024; 14:13523. [PMID: 38866755 PMCID: PMC11169677 DOI: 10.1038/s41598-024-60052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/18/2024] [Indexed: 06/14/2024] Open
Abstract
While better management of loco-regional prostate cancer (PC) has greatly improved survival, advanced PC remains a major cause of cancer deaths. Identification of novel targetable pathways that contribute to tumor progression in PC could open new therapeutic options. The di-ganglioside GD2 is a target of FDA-approved antibody therapies in neuroblastoma, but the role of GD2 in PC is unexplored. Here, we show that GD2 is expressed in a small subpopulation of PC cells in a subset of patients and a higher proportion of metastatic tumors. Variable levels of cell surface GD2 expression were seen on many PC cell lines, and the expression was highly upregulated by experimental induction of lineage progression or enzalutamide resistance in CRPC cell models. GD2high cell fraction was enriched upon growth of PC cells as tumorspheres and GD2high fraction was enriched in tumorsphere-forming ability. CRISPR-Cas9 knockout (KO) of the rate-limiting GD2 biosynthetic enzyme GD3 Synthase (GD3S) in GD2high CRPC cell models markedly impaired the in vitro oncogenic traits and growth as bone-implanted xenograft tumors and reduced the cancer stem cell and epithelial-mesenchymal transition marker expression. Our results support the potential role of GD3S and its product GD2 in promoting PC tumorigenesis by maintaining cancer stem cells and suggest the potential for GD2 targeting in advanced PC.
Collapse
Affiliation(s)
- Aaqib M Bhat
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bhopal C Mohapatra
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Insha Mushtaq
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Departments of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Incyte Corporation, Wilmington, DE, USA
| | - Sukanya Chakraborty
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Siddhartha Kumar
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Wangbin Wu
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Ben Nolan
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Micah Schott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jane L Meza
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Subodh M Lele
- Departments of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Leah M Cook
- Departments of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Donald W Coulter
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
- Incyte Corporation, Wilmington, DE, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA.
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Departments of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
25
|
Lan X, Mi T, Alli S, Guy C, Djekidel MN, Liu X, Boi S, Chowdhury P, He M, Zehn D, Feng Y, Youngblood B. Antitumor progenitor exhausted CD8 + T cells are sustained by TCR engagement. Nat Immunol 2024; 25:1046-1058. [PMID: 38816618 DOI: 10.1038/s41590-024-01843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
The durability of an antitumor immune response is mediated in part by the persistence of progenitor exhausted CD8+ T cells (Tpex). Tpex serve as a resource for replenishing effector T cells and preserve their quantity through self-renewal. However, it is unknown how T cell receptor (TCR) engagement affects the self-renewal capacity of Tpex in settings of continued antigen exposure. Here we use a Lewis lung carcinoma model that elicits either optimal or attenuated TCR signaling in CD8+ T cells to show that formation of Tpex in tumor-draining lymph nodes and their intratumoral persistence is dependent on optimal TCR engagement. Notably, attenuated TCR stimulation accelerates the terminal differentiation of optimally primed Tpex. This TCR-reinforced Tpex development and self-renewal is coupled to proximal positioning to dendritic cells and epigenetic imprinting involving increased chromatin accessibility at Egr2 and Tcf1 target loci. Collectively, this study highlights the critical function of TCR engagement in sustaining Tpex during tumor progression.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Mice
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/metabolism
- Mice, Inbred C57BL
- Hepatocyte Nuclear Factor 1-alpha/metabolism
- Cell Differentiation/immunology
- Dendritic Cells/immunology
- Signal Transduction/immunology
- Mice, Knockout
- Lymphocyte Activation/immunology
- Cell Self Renewal
- Mice, Transgenic
- Early Growth Response Protein 2
Collapse
Affiliation(s)
- Xin Lan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tian Mi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shanta Alli
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Xueyan Liu
- Department of Mathematics, University of New Orleans, New Orleans, LA, USA
| | - Shannon Boi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Partha Chowdhury
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Minghong He
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
26
|
Yang K, Lu R, Mei J, Cao K, Zeng T, Hua Y, Huang X, Li W, Yin Y. The war between the immune system and the tumor - using immune biomarkers as tracers. Biomark Res 2024; 12:51. [PMID: 38816871 PMCID: PMC11137916 DOI: 10.1186/s40364-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
Nowadays, immunotherapy is one of the most promising anti-tumor therapeutic strategy. Specifically, immune-related targets can be used to predict the efficacy and side effects of immunotherapy and monitor the tumor immune response. In the past few decades, increasing numbers of novel immune biomarkers have been found to participate in certain links of the tumor immunity to contribute to the formation of immunosuppression and have entered clinical trials. Here, we systematically reviewed the oncogenesis and progression of cancer in the view of anti-tumor immunity, particularly in terms of tumor antigen expression (related to tumor immunogenicity) and tumor innate immunity to complement the cancer-immune cycle. From the perspective of integrated management of chronic cancer, we also appraised emerging factors affecting tumor immunity (including metabolic, microbial, and exercise-related markers). We finally summarized the clinical studies and applications based on immune biomarkers. Overall, immune biomarkers participate in promoting the development of more precise and individualized immunotherapy by predicting, monitoring, and regulating tumor immune response. Therefore, targeting immune biomarkers may lead to the development of innovative clinical applications.
Collapse
Affiliation(s)
- Kai Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Rongrong Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Jie Mei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Kai Cao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Tianyu Zeng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Yijia Hua
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
- Gusu School, Nanjing Medical University, Nanjing, China
| | - Xiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| |
Collapse
|
27
|
Zhao X, Shao S, Hu L. The recent advancement of TCR-T cell therapies for cancer treatment. Acta Biochim Biophys Sin (Shanghai) 2024; 56:663-674. [PMID: 38557898 PMCID: PMC11187488 DOI: 10.3724/abbs.2024034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Adoptive cell therapies involve infusing engineered immune cells into cancer patients to recognize and eliminate tumor cells. Adoptive cell therapy, as a form of living drug, has undergone explosive growth over the past decade. The recognition of tumor antigens by the T-cell receptor (TCR) is one of the natural mechanisms that the immune system used to eliminate tumor cells. TCR-T cell therapy, which involves introducing exogenous TCRs into patients' T cells, is a novel cell therapy strategy. TCR-T cell therapy can target the entire proteome of cancer cells. Engineering T cells with exogenous TCRs to help patients combat cancer has achieved success in clinical trials, particularly in treating solid tumors. In this review, we examine the progress of TCR-T cell therapy over the past five years. This includes the discovery of new tumor antigens, protein engineering techniques for TCR, reprogramming strategies for TCR-T cell therapy, clinical studies on TCR-T cell therapy, and the advancement of TCR-T cell therapy in China. We also propose several potential directions for the future development of TCR-T cell therapy.
Collapse
Affiliation(s)
- Xiang Zhao
- />Key Laboratory of Multi-Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| | - Shuai Shao
- />Key Laboratory of Multi-Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| | - Lanxin Hu
- />Key Laboratory of Multi-Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| |
Collapse
|
28
|
Latcu SC, Bardan R, Cumpanas AA, Barbos V, Baderca F, Gaje PN, Ceausu RA, Comsa S, Dumitru CS, Dumache R, Cut TG, Lazureanu VE, Petrica L. Immunotherapy Applications for Thymine Dimers and WT1 Antigen in Renal Cancers: A Comparative Statistical Analysis. J Pers Med 2024; 14:557. [PMID: 38929778 PMCID: PMC11205122 DOI: 10.3390/jpm14060557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Renal cell carcinoma (RCC) remains incurable in advanced stages. Biomarkers have proven to be quite useful in cancer therapeutics. Herein, we provide a comparative/integrative statistical analysis of seminal immunohistochemistry (IHC) findings for Wilms' Tumor 1 antigen (WT1) and thymine dimers (TDs), emerging as atypical, yet promising, potential biomarkers for RCCs. We assessed WT1/TD reactivity in adult RCC tumor cells, tumor microenvironment (TME), and tumor-adjacent healthy renal tissue (HRT). WT1 positivity was scarce and strictly nuclear in tumor cells, whereas TD-reactive tumor tissues were prevalent. We report statistically significant positive correlations between the density of reactive RCC cellularity and the intensity of nuclear staining for both biomarkers (WT1 - rho = 0.341, p-value = 0.036; TDs - rho = 0.379, p-value = 0.002). RCC stromal TME TD-positivity was much more frequent than WT1 reactivity, apparently proportional to that of the proper RCC cellularity and facilitated by extensive RCC inflammatory infiltration. TDs exhibited nuclear reactivity for most TME cell lines, while RCC TME WT1 expression was rare and inconsistent. In HRTs, TDs were entirely restricted to renal tubular cells, the likely cellular progenitor of most conventional RCC subtypes. In lieu of proper validation, these early findings have significant implications regarding the origins/biology of RCCs and may inform RCC therapeutics, both accounting for the high frequency of immunotherapy-permissive frameshift indels in RCCs, but also hinting at novel predictive clinical tools for WT1-targeted immunotherapy. Overall, the current study represents a meek yet hopefully significant step towards understanding the molecular biology and potential therapeutic targets of RCCs.
Collapse
Affiliation(s)
- Silviu Constantin Latcu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (S.C.L.); (V.B.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Razvan Bardan
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Alin Adrian Cumpanas
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Vlad Barbos
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (S.C.L.); (V.B.)
| | - Flavia Baderca
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.B.); (P.N.G.); (R.A.C.); (S.C.); (C.-S.D.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Pusa Nela Gaje
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.B.); (P.N.G.); (R.A.C.); (S.C.); (C.-S.D.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Raluca Amalia Ceausu
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.B.); (P.N.G.); (R.A.C.); (S.C.); (C.-S.D.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Serban Comsa
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.B.); (P.N.G.); (R.A.C.); (S.C.); (C.-S.D.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Cristina-Stefania Dumitru
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.B.); (P.N.G.); (R.A.C.); (S.C.); (C.-S.D.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Raluca Dumache
- Department VIII, Discipline of Forensic Medicine, Bioethics, Deontology and Medical Law, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
- Center for Ethics in Human Genetic Identifications, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Talida Georgiana Cut
- Center for Ethics in Human Genetic Identifications, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Voichita Elena Lazureanu
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Ligia Petrica
- Department of Internal Medicine II, Division of Nephrology, Victor Babes University of Medicine and Pharmacy Timisoara, County Emergency Hospital Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| |
Collapse
|
29
|
Mora J, Climent A, Roldán M, Flores MC, Varo A, Perez-Jaume S, Jou C, Celma MS, Lazaro JJ, Cheung I, Castañeda A, Gorostegui M, Rodriguez E, Chamorro S, Muñoz JP, Cheung NK. Desensitizing the autonomic nervous system to mitigate anti-GD2 monoclonal antibody side effects. Front Oncol 2024; 14:1380917. [PMID: 38812778 PMCID: PMC11134175 DOI: 10.3389/fonc.2024.1380917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Background Anti-GD2 monoclonal antibodies (mAbs) have shown to improve the overall survival of patients with high-risk neuroblastoma (HR-NB). Serious adverse events (AEs), including pain, within hours of antibody infusion, have limited the development of these therapies. In this study, we provide evidence of Autonomic Nervous System (ANS) activation as the mechanism to explain the main side effects of anti-GD2 mAbs. Methods Through confocal microscopy and computational super-resolution microscopy experiments we explored GD2 expression in postnatal nerves of infants. In patients we assessed the ANS using the Sympathetic Skin Response (SSR) test. To exploit tachyphylaxis, a novel infusion protocol (the Step-Up) was mathematically modelled and tested. Results Through confocal microscopy, GD2 expression is clearly visible in the perineurium surrounding the nuclei of nerve cells. By computational super-resolution microscopy experiments we showed the selective expression of GD2 on the cell membranes of human Schwann cells in peripheral nerves (PNs) significantly lower than on NB. In patients, changes in the SSR were observed 4 minutes into the anti-GD2 mAb naxitamab infusion. SSR latency quickly shortened followed by gradual decrease in the amplitude before disappearance. SSR response did not recover for 24 hours consistent with tachyphylaxis and absence of side effects in the clinic. The Step-Up protocol dissociated on-target off-tumor side effects while maintaining serum drug exposure. Conclusion We provide first evidence of the ANS as the principal non-tumor target of anti-GD2 mAbs in humans. We describe the development and modeling of the Step-Up protocol exploiting the tachyphylaxis phenomenon we demonstrate in patients using the SSR test.
Collapse
Affiliation(s)
- Jaume Mora
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Alejandra Climent
- Department of Neurophysiology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Mònica Roldán
- Department of Genetics, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Amalia Varo
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Sara Perez-Jaume
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Cristina Jou
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Mónica S. Celma
- Department of Pharmacy, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Juan José Lazaro
- Department of Anesthesiology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Irene Cheung
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center (MSK), New York, NY, United States
| | - Alicia Castañeda
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Maite Gorostegui
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Eva Rodriguez
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Saray Chamorro
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Juan Pablo Muñoz
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Nai-Kong Cheung
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center (MSK), New York, NY, United States
| |
Collapse
|
30
|
Huang P, Zhang X, Prabhu JS, Pandey V. Therapeutic vulnerabilities in triple negative breast cancer: Stem-like traits explored within molecular classification. Biomed Pharmacother 2024; 174:116584. [PMID: 38613998 DOI: 10.1016/j.biopha.2024.116584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is the most aggressive type of breast cancer (BC). Despite advances in the clinical management of TNBC, recurrence-related mortality remains a challenge. The stem-like phenotype of TNBC plays a significant role in the persistence of minimal disease residue after therapy. Individuals exhibiting stem-like characteristics are particularly prone to inducing malignant relapse accompanied by strong resistance. Therefore, stem-like traits have been broadly proposed as therapeutic vulnerabilities to treat TNBC and reduce recurrence. However, heterogeneity within TNBC often generally restricts the stability of the therapeutic efficacy. To understand the heterogeneity and manage TNBC more precisely, multiple TNBC subtyping categories have been reported, providing the basis for profile-according therapeutic regimens. To provide more insight into targeting stem-like traits to ablate TNBC and reduce recurrence in the context of heterogeneity, this paper reviewed the molecular subtyping of TNBC, identified the consensus subtypes with distinct stem-like phenotypes, characterized the stemness hierarchy of TNBC, outlined the biological models for stem-like TNBC subtypes, summarized the therapeutic vulnerabilities in stem-like traits of the subtypes, and proposed potential therapeutic regimens targeting stem-like characteristics to improve TNBC prognosis.
Collapse
Affiliation(s)
- Peng Huang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, India
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
31
|
Bhat AM, Mohapatra BC, Luan H, Mushtaq I, Chakraborty S, Kumar S, Wu W, Nolan B, Dutta S, Stock MD, Schott M, Meza JL, Lele SM, Lin MF, Cook LM, Corey E, Morrissey C, Coulter DW, Rowley J, Natarajan A, Datta K, Band V, Band H. GD2 and its biosynthetic enzyme GD3 synthase promote tumorigenesis in prostate cancer by regulating cancer stem cell behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.18.533299. [PMID: 36993422 PMCID: PMC10055271 DOI: 10.1101/2023.03.18.533299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
While better management of loco-regional prostate cancer (PC) has greatly improved survival, advanced PC remains a major cause of cancer deaths. Identification of novel targetable pathways that contribute to tumor progression in PC could open new therapeutic options. The di-ganglioside GD2 is a target of FDA-approved antibody therapies in neuroblastoma, but the role of GD2 in PC is unexplored. Here, we show that GD2 is expressed in a small subpopulation of PC cells in a subset of patients and a higher proportion of metastatic tumors. Variable levels of cell surface GD2 expression were seen on many PC cell lines, and the expression was highly upregulated by experimental induction of lineage progression or enzalutamide resistance in CRPC cell models. GD2high cell fraction was enriched upon growth of PC cells as tumorspheres and GD2high fraction was enriched in tumorsphere-forming ability. CRISPR-Cas9 knockout (KO) of the rate-limiting GD2 biosynthetic enzyme GD3 Synthase (GD3S) in GD2high CRPC cell models markedly impaired the in vitro oncogenic traits and growth as bone-implanted xenograft tumors and reduced the cancer stem cell (CSC) and epithelial-mesenchymal transition (EMT) marker expression. Our results support the potential role of GD3S and its product GD2 in promoting PC tumorigenesis by maintaining cancer stem cells and suggest the potential for GD2 targeting in advanced PC.
Collapse
|
32
|
Kurihara S, Ishikawa A, Kaneko S. Genome editing iPSC to purposing enhancement of induce CD8 killer T cell function for regenerative immunotherapy. Inflamm Regen 2024; 44:20. [PMID: 38637837 PMCID: PMC11025212 DOI: 10.1186/s41232-024-00328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/06/2024] [Indexed: 04/20/2024] Open
Abstract
In recent years, immunotherapy has become a standard cancer therapy, joining surgery, chemotherapy, and radiation therapy. This therapeutic approach involves the use of patient-derived antigen-specific T cells or genetically modified T cells engineered with chimeric antigen receptors (CAR) or T cell receptors (TCR) that specifically target cancer antigens. However, T cells require ex vivo stimulation for proliferation when used in therapy, and the resulting "exhaustion," which is characterized by a diminished proliferation capacity and anti-tumor activity, poses a significant challenge. As a solution, we reported "rejuvenated" CD8 + T cells that possess high proliferation capacity from induced pluripotent stem cells (iPSCs) in 2013. This review discusses the status and future developments in immunotherapy using iPSC-derived T cells, drawing insights from our research to overcome the exhaustion associated with antigen-specific T cell therapy.
Collapse
Affiliation(s)
- Sota Kurihara
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Akihiro Ishikawa
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
| |
Collapse
|
33
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Advances in Therapeutic Cancer Vaccines, Their Obstacles, and Prospects Toward Tumor Immunotherapy. Mol Biotechnol 2024:10.1007/s12033-024-01144-3. [PMID: 38625508 DOI: 10.1007/s12033-024-01144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Over the past few decades, cancer immunotherapy has experienced a significant revolution due to the advancements in immune checkpoint inhibitors (ICIs) and adoptive cell therapies (ACTs), along with their regulatory approvals. In recent times, there has been hope in the effectiveness of cancer vaccines for therapy as they have been able to stimulate de novo T-cell reactions against tumor antigens. These tumor antigens include both tumor-associated antigen (TAA) and tumor-specific antigen (TSA). Nevertheless, the constant quest to fully achieve these abilities persists. Therefore, this review offers a broad perspective on the existing status of cancer immunizations. Cancer vaccine design has been revolutionized due to the advancements made in antigen selection, the development of antigen delivery systems, and a deeper understanding of the strategic intricacies involved in effective antigen presentation. In addition, this review addresses the present condition of clinical tests and deliberates on their approaches, with a particular emphasis on the immunogenicity specific to tumors and the evaluation of effectiveness against tumors. Nevertheless, the ongoing clinical endeavors to create cancer vaccines have failed to produce remarkable clinical results as a result of substantial obstacles, such as the suppression of the tumor immune microenvironment, the identification of suitable candidates, the assessment of immune responses, and the acceleration of vaccine production. Hence, there are possibilities for the industry to overcome challenges and enhance patient results in the coming years. This can be achieved by recognizing the intricate nature of clinical issues and continuously working toward surpassing existing limitations.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
34
|
Veneziani AC, Sneha S, Oza AM. Antibody-Drug Conjugates: Advancing from Magic Bullet to Biological Missile. Clin Cancer Res 2024; 30:1434-1437. [PMID: 38306232 DOI: 10.1158/1078-0432.ccr-23-3414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024]
Abstract
Precision drug development is focusing on targeting tumor cell surface proteins for therapeutic delivery, maximizing biomarker identified on-target damage to the tumor while minimizing toxicity. A recent article demonstrated high expression of B7-H4 antigen on resistant ovarian cancer cells and described preclinical activity of B7-H4-directed antibody-drug conjugate. See related article by Gitto et al., p. 1567.
Collapse
Affiliation(s)
- Ana C Veneziani
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Suku Sneha
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Goetze S, van Drogen A, Albinus JB, Fort KL, Gandhi T, Robbiani D, Laforte V, Reiter L, Levesque MP, Xuan Y, Wollscheid B. Simultaneous targeted and discovery-driven clinical proteotyping using hybrid-PRM/DIA. Clin Proteomics 2024; 21:26. [PMID: 38565978 PMCID: PMC10988896 DOI: 10.1186/s12014-024-09478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Clinical samples are irreplaceable, and their transformation into searchable and reusable digital biobanks is critical for conducting statistically empowered retrospective and integrative research studies. Currently, mainly data-independent acquisition strategies are employed to digitize clinical sample cohorts comprehensively. However, the sensitivity of DIA is limited, which is why selected marker candidates are often additionally measured targeted by parallel reaction monitoring. METHODS Here, we applied the recently co-developed hybrid-PRM/DIA technology as a new intelligent data acquisition strategy that allows for the comprehensive digitization of rare clinical samples at the proteotype level. Hybrid-PRM/DIA enables enhanced measurement sensitivity for a specific set of analytes of current clinical interest by the intelligent triggering of multiplexed parallel reaction monitoring (MSxPRM) in combination with the discovery-driven digitization of the clinical biospecimen using DIA. Heavy-labeled reference peptides were utilized as triggers for MSxPRM and monitoring of endogenous peptides. RESULTS We first evaluated hybrid-PRM/DIA in a clinical context on a pool of 185 selected proteotypic peptides for tumor-associated antigens derived from 64 annotated human protein groups. We demonstrated improved reproducibility and sensitivity for the detection of endogenous peptides, even at lower concentrations near the detection limit. Up to 179 MSxPRM scans were shown not to affect the overall DIA performance. Next, we applied hybrid-PRM/DIA for the integrated digitization of biobanked melanoma samples using a set of 30 AQUA peptides against 28 biomarker candidates with relevance in molecular tumor board evaluations of melanoma patients. Within the DIA-detected approximately 6500 protein groups, the selected marker candidates such as UFO, CDK4, NF1, and PMEL could be monitored consistently and quantitatively using MSxPRM scans, providing additional confidence for supporting future clinical decision-making. CONCLUSIONS Combining PRM and DIA measurements provides a new strategy for the sensitive and reproducible detection of protein markers from patients currently being discussed in molecular tumor boards in combination with the opportunity to discover new biomarker candidates.
Collapse
Affiliation(s)
- Sandra Goetze
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland.
| | - Audrey van Drogen
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Jonas B Albinus
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Kyle L Fort
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | | | | | | | | | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Yue Xuan
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | - Bernd Wollscheid
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
36
|
Liatsou I, Fu Y, Li Z, Hasan M, Guo X, Yu J, Piccolo J, Cartee A, Wang H, Du Y, Bryan J, Gabrielson K, Kraitchman DL, Sgouros G. Therapeutic efficacy of an alpha-particle emitter labeled anti-GD2 humanized antibody against osteosarcoma-a proof of concept study. Eur J Nucl Med Mol Imaging 2024; 51:1409-1420. [PMID: 38108831 DOI: 10.1007/s00259-023-06528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE Current treatments for osteosarcoma (OS) have a poor prognosis, particularly for patients with metastasis and recurrence, underscoring an urgent need for new targeted therapies to improve survival. Targeted alpha-particle therapy selectively delivers cytotoxic payloads to tumors with radiolabeled molecules that recognize tumor-associated antigens. We have recently demonstrated the potential of an FDA approved, humanized anti-GD2 antibody, hu3F8, as a targeted delivery vector for radiopharmaceutical imaging of OS. The current study aims to advance this system for alpha-particle therapy of OS. METHODS The hu3F8 antibody was radiolabeled with actinium-225, and the safety and therapeutic efficacy of the [225Ac]Ac-DOTA-hu3F8 were evaluated in both orthotopic murine xenografts of OS and spontaneously occurring OS in canines. RESULTS Significant antitumor activity was proven in both cases, leading to improved overall survival. In the murine xenograft's case, tumor growth was delayed by 16-18 days compared to the untreated cohort as demonstrated by bioluminescence imaging. The results were further validated with magnetic resonance imaging at 33 days after treatment, and microcomputed tomography and planar microradiography post-mortem. Histological evaluations revealed radiation-induced renal toxicity, manifested as epithelial cell karyomegaly and suggestive polyploidy in the kidneys, suggesting rapid recovery of renal function after radiation damage. Treatment of the two canine patients delayed the progression of metastatic spread, with an overall survival time of 211 and 437 days and survival beyond documented metastasis of 111 and 84 days, respectively. CONCLUSION This study highlights the potential of hu3F8-based alpha-particle therapy as a promising treatment strategy for OS.
Collapse
Affiliation(s)
- Ioanna Liatsou
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Yingli Fu
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhi Li
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mahmud Hasan
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xin Guo
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jing Yu
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph Piccolo
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allison Cartee
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hao Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yong Du
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dara L Kraitchman
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - George Sgouros
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Gan Y, Kang Y, Zhong R, You J, Chen J, Li L, Chen J, Chen L. Cancer testis antigen MAGEA3 in serum and serum-derived exosomes serves as a promising biomarker in lung adenocarcinoma. Sci Rep 2024; 14:7573. [PMID: 38555374 PMCID: PMC10981702 DOI: 10.1038/s41598-024-58003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Cancer testis antigen (CTA) Melanoma Antigen Gene A3 (MAGEA3) were overexpressed in multiple tumor types, but the expression pattern of MAGEA3 in the serum of lung adenocarcinoma (LUAD) remains unclear. Clinically derived serum and serum exosome samples were used to assess the mRNA expression of MAGEA3 and MAGEA4 by qRT-PCR, and serum MAGEA3 and MAGEA4 protein expression were evaluated by ELISA in total 133 healthy volunteers' and 289 LUAD patients' serum samples. An analysis of the relationship of the mRNA and protein expression of MAGEA3 and MAGEA4 with clinicopathologic parameters was performed and the diagnostic value of MAGEA3 and MAGEA4 was plotted on an ROC curve. In addition, the correlation of MAGEA3 mRNA with infiltrating immune cells was investigated through TIMER, the CIBERSORT algorithm and the TISIDB database. Expression of serum and serum exosome MAGEA3 and MAGEA4 mRNA were significantly higher in LUAD patients than in healthy donors. MAGEA3 mRNA associated with tumor diameter, TMN stage, and NSE in LUAD serum samples, and MAGEA3 mRNA correlated with N stage in serum-derived exosomes, possessing areas under the curve (AUC) of 0.721 and 0.832, respectively. Besides, serum MAGEA3 protein levels were elevated in LUAD patients, and were closely related to stage and NSE levels, possessing AUC of 0.781. Further analysis signified that the expression of MAGEA3 mRNA was positive correlation with neutrophil, macrophages M2, dendritic cells resting, and eosinophilic, but negatively correlated with B cells, plasma cells, CD8 + T cells, CD4 + T cells, Th17 cells, macrophages and dendritic cells. Collectively, our results suggested that the MAGEA3 expression in mRNA and protein were upregulated in LUAD, and MAGEA3 could be used as a diagnostic biomarker and immunotherapy target for LUAD patients.
Collapse
Affiliation(s)
- Yuhan Gan
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yanli Kang
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ruifang Zhong
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jianbin You
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jiahao Chen
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ling Li
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jinhua Chen
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
| | - Liangyuan Chen
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
38
|
Ayyalasomayajula R, Cudic M. Targeting Siglec-Sialylated MUC1 Immune Axis in Cancer. Cancers (Basel) 2024; 16:1334. [PMID: 38611013 PMCID: PMC11011055 DOI: 10.3390/cancers16071334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Siglecs play a key role in mediating cell-cell interactions via the recognition of different sialylated glycoconjugates, including tumor-associated MUC1, which can lead to the activation or inhibition of the immune response. The activation occurs through the signaling of Siglecs with the cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM)-containing proteins, while the inhibition signal is a result of the interaction of intracellular immunoreceptor tyrosine-based inhibition motif (ITIM)-bearing receptors. The interaction of tumor-associated MUC1 sialylated glycans with Siglecs via ITIM motifs decreases antitumor immunity. Consequently, these interactions are expected to play a key role in tumor evasion. Efforts to modulate the response of immune cells by blocking the immune-suppressive effects of inhibitory Siglecs, driving immune-activating Siglecs, and/or altering the synthesis and expression of the sialic acid glycocalyx are new therapeutic strategies deserving further investigation. We will highlight the role of Siglec's family receptors in immune evasion through interactions with glycan ligands in their natural context, presented on the protein such as MUC1, factors affecting their fine binding specificities, such as the role of multivalency either at the ligand or receptor side, their spatial organization, and finally the current and future therapeutic interventions targeting the Siglec-sialylated MUC1 immune axis in cancer.
Collapse
Affiliation(s)
| | - Mare Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA;
| |
Collapse
|
39
|
Van Genechten T, De Laere M, Van den Bossche J, Stein B, De Rycke K, Deschepper C, Hazes K, Peeters R, Couttenye MM, Van De Walle K, Roelant E, Maes S, Vanden Bossche S, Dekeyzer S, Huizing M, Caluwaert K, Nijs G, Cools N, Verlooy J, Norga K, Verhulst S, Anguille S, Berneman Z, Lion E. Adjuvant Wilms' tumour 1-specific dendritic cell immunotherapy complementing conventional therapy for paediatric patients with high-grade glioma and diffuse intrinsic pontine glioma: protocol of a monocentric phase I/II clinical trial in Belgium. BMJ Open 2024; 14:e077613. [PMID: 38503417 PMCID: PMC10952861 DOI: 10.1136/bmjopen-2023-077613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024] Open
Abstract
INTRODUCTION Diffuse intrinsic pontine glioma (DIPG) and paediatric high-grade glioma (pHGG) are aggressive glial tumours, for which conventional treatment modalities fall short. Dendritic cell (DC)-based immunotherapy is being investigated as a promising and safe adjuvant therapy. The Wilms' tumour protein (WT1) is a potent target for this type of antigen-specific immunotherapy and is overexpressed in DIPG and pHGG. Based on this, we designed a non-randomised phase I/II trial, assessing the feasibility and safety of WT1 mRNA-loaded DC (WT1/DC) immunotherapy in combination with conventional treatment in pHGG and DIPG. METHODS AND ANALYSIS 10 paediatric patients with newly diagnosed or pretreated HGG or DIPG were treated according to the trial protocol. The trial protocol consists of leukapheresis of mononuclear cells, the manufacturing of autologous WT1/DC vaccines and the combination of WT1/DC-vaccine immunotherapy with conventional antiglioma treatment. In newly diagnosed patients, this comprises chemoradiation (oral temozolomide 90 mg/m2 daily+radiotherapy 54 Gy in 1.8 Gy fractions) followed by three induction WT1/DC vaccines (8-10×106 cells/vaccine) given on a weekly basis and a chemoimmunotherapy booster phase consisting of six 28-day cycles of oral temozolomide (150-200 mg/m2 on days 1-5) and a WT1/DC vaccine on day 21. In pretreated patients, the induction and booster phase are combined with best possible antiglioma treatment at hand. Primary objectives are to assess the feasibility of the production of mRNA-electroporated WT1/DC vaccines in this patient population and to assess the safety and feasibility of combining conventional antiglioma treatment with the proposed immunotherapy. Secondary objectives are to investigate in vivo immunogenicity of WT1/DC vaccination and to assess disease-specific and general quality of life. ETHICS AND DISSEMINATION The ethics committee of the Antwerp University Hospital and the University of Antwerp granted ethics approval. Results of the clinical trial will be shared through publication in a peer-reviewed journal and presentations at conferences. TRIAL REGISTRATION NUMBER NCT04911621.
Collapse
Affiliation(s)
- Toon Van Genechten
- Pediatric Oncology, University Hospital Antwerp, Edegem, Antwerpen, Belgium
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, University of Antwerp Faculty of Medicine and Health Sciences, Wilrijk, Belgium
| | - Maxime De Laere
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, University of Antwerp Faculty of Medicine and Health Sciences, Wilrijk, Belgium
- Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Antwerpen, Belgium
| | - Jolien Van den Bossche
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, University of Antwerp Faculty of Medicine and Health Sciences, Wilrijk, Belgium
- Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Antwerpen, Belgium
| | - Barbara Stein
- Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Antwerpen, Belgium
| | - Kim De Rycke
- Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Antwerpen, Belgium
| | | | - Katja Hazes
- Pediatric Oncology, University Hospital Antwerp, Edegem, Antwerpen, Belgium
| | - Renke Peeters
- Pediatric Oncology, University Hospital Antwerp, Edegem, Antwerpen, Belgium
| | | | | | - Ella Roelant
- Statistics, Universitair Ziekenhuis Antwerpen, Edegem, Antwerpen, Belgium
| | - Sabine Maes
- Anesthesiology, University Hospital Antwerp, Edegem, Antwerpen, Belgium
| | | | - Sven Dekeyzer
- Radiology, University Hospital Antwerp, Edegem, Antwerpen, Belgium
| | - Manon Huizing
- Cell and Tissue Bank, University Hospital Antwerp, Edegem, Antwerp, Belgium
- Faculty of Health Sciences, University Hospital Antwerp, Edegem, België, Belgium
| | - Kim Caluwaert
- Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Antwerpen, Belgium
- Cell and Tissue Bank, University Hospital Antwerp, Edegem, Antwerp, Belgium
| | - Griet Nijs
- Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Antwerpen, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, University of Antwerp Faculty of Medicine and Health Sciences, Wilrijk, Belgium
- Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Antwerpen, Belgium
| | - Joris Verlooy
- Pediatric Oncology, University Hospital Antwerp, Edegem, Antwerpen, Belgium
| | - Koen Norga
- Pediatric Oncology, University Hospital Antwerp, Edegem, Antwerpen, Belgium
| | - Stijn Verhulst
- Pediatrics, University Hospital Antwerp, Edegem, Antwerpen, Belgium
| | - Sebastien Anguille
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, University of Antwerp Faculty of Medicine and Health Sciences, Wilrijk, Belgium
- Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Antwerpen, Belgium
| | - Zwi Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, University of Antwerp Faculty of Medicine and Health Sciences, Wilrijk, Belgium
- Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Antwerpen, Belgium
| | - Eva Lion
- Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Antwerpen, Belgium
- Laboratory of Experimental Hematology, University Hospital Antwerp, Edegem, Antwerp, Belgium
| |
Collapse
|
40
|
Nagai H, Karube R. Late-Stage Ovarian Cancer With Systemic Multiple Metastases Shows Marked Shrinkage Using a Combination of Wilms' Tumor Antigen 1 (WT1) Dendritic Cell Vaccine, Natural Killer (NK) Cell Therapy, and Nivolumab. Cureus 2024; 16:e56685. [PMID: 38523872 PMCID: PMC10960621 DOI: 10.7759/cureus.56685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 03/26/2024] Open
Abstract
A patient with bilateral ovarian cancer, peritoneal dissemination, and multiple liver and lung metastases was found with a sudden accumulation of ascites six months after delivery. Chemotherapy was started, but the prognosis was judged to be poor, so immuno-cell therapy was combined with chemotherapy. After multiple cycles of Wilms' tumor antigen 1 (WT1) dendritic cell vaccine therapy and highly activated natural killer (NK) cell therapy, the patient showed a disappearance of ascites and a remarkable reduction of multiple cancers in the whole body. Furthermore, there were no side effects other than reactive fever caused by the administration of immune cells, and no damage to the patient's body was observed. This case suggests that not only the combined effects of chemotherapy and immunotherapy but also the combined use of various types of immuno-cell therapy may provide beneficial clinical effects in patients with extremely poor prognoses and few options for standard treatment.
Collapse
Affiliation(s)
- Hisashi Nagai
- Human and Environmental Studies, Tokai University, Hiratsuka, JPN
- Oncology, Ginza Phoenix Clinic, Tokyo, JPN
| | | |
Collapse
|
41
|
Roy R. Cancer cells and viruses share common glycoepitopes: exciting opportunities toward combined treatments. Front Immunol 2024; 15:1292588. [PMID: 38495885 PMCID: PMC10940920 DOI: 10.3389/fimmu.2024.1292588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Aberrant glycosylation patterns of glycoproteins and glycolipids have long been recognized as one the major hallmarks of cancer cells that has led to numerous glycoconjugate vaccine attempts. These abnormal glycosylation profiles mostly originate from the lack of key glycosyltransferases activities, mutations, over expressions, or modifications of the requisite chaperone for functional folding. Due to their relative structural simplicity, O-linked glycans of the altered mucin family of glycoproteins have been particularly attractive in the design of tumor associated carbohydrate-based vaccines. Several such glycoconjugate vaccine formulations have generated potent monoclonal anti-carbohydrate antibodies useful as diagnostic and immunotherapies in the fight against cancer. Paradoxically, glycoproteins related to enveloped viruses also express analogous N- and O-linked glycosylation patterns. However, due to the fact that viruses are not equipped with the appropriate glycosyl enzyme machinery, they need to hijack that of the infected host cells. Although the resulting N-linked glycans are very similar to those of normal cells, some of their O-linked glycan patterns often share the common structural simplicity to those identified on tumor cells. Consequently, given that both cancer cells and viral glycoproteins share both common N- and O-linked glycoepitopes, glycoconjugate vaccines could be highly attractive to generate potent immune responses to target both conditions.
Collapse
Affiliation(s)
- René Roy
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
42
|
Al-Hawary SIS, Jasim SA, Hjazi A, Oghenemaro EF, Kaur I, Kumar A, Al-Ani AM, Alwaily ER, Redhee AH, Mustafa YF. Nucleic acid-based vaccine for ovarian cancer cells; bench to bedside. Cell Biochem Funct 2024; 42:e3978. [PMID: 38515237 DOI: 10.1002/cbf.3978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Ovarian cancer continues to be a difficult medical issue that affects millions of individuals worldwide. Important platforms for cancer immunotherapy include checkpoint inhibitors, chimeric antigen receptor T cells, bispecific antibodies, cancer vaccines, and other cell-based treatments. To avoid numerous infectious illnesses, conventional vaccinations based on synthetic peptides, recombinant subunit vaccines, and live attenuated and inactivated pathogens are frequently utilized. Vaccine manufacturing processes, however, are not entirely safe and carry a significant danger of contaminating living microorganisms. As a result, the creation of substitute vaccinations is required for both viral and noninfectious illnesses, including cancer. Recently, there has been testing of nucleic acid vaccines, or NAVs, as a cancer therapeutic. Tumor antigens (TAs) are genetically encoded by DNA and mRNA vaccines, which the host uses to trigger immune responses against ovarian cancer cells that exhibit the TAs. Despite being straightforward, safe, and easy to produce, NAVs are not currently thought to be an ideal replacement for peptide vaccines. Some obstacles to this strategy include selecting the appropriate therapeutic agents (TAs), inadequate immunogenicity, and the immunosuppressive characteristic of ovarian cancer. We focus on strategies that have been employed to increase NAVs' effectiveness in the fight against ovarian cancer in this review.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Anbar, Iraq
- Biotechnology Department, College of Applied Science, Fallujah University, Fallujah, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Nigeria
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after The First President of Russia, Yekaterinburg, Russia
| | | | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
43
|
Katsikis PD, Ishii KJ, Schliehe C. Challenges in developing personalized neoantigen cancer vaccines. Nat Rev Immunol 2024; 24:213-227. [PMID: 37783860 DOI: 10.1038/s41577-023-00937-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 10/04/2023]
Abstract
The recent success of cancer immunotherapies has highlighted the benefit of harnessing the immune system for cancer treatment. Vaccines have a long history of promoting immunity to pathogens and, consequently, vaccines targeting cancer neoantigens have been championed as a tool to direct and amplify immune responses against tumours while sparing healthy tissue. In recent years, extensive preclinical research and more than one hundred clinical trials have tested different strategies of neoantigen discovery and vaccine formulations. However, despite the enthusiasm for neoantigen vaccines, proof of unequivocal efficacy has remained beyond reach for the majority of clinical trials. In this Review, we focus on the key obstacles pertaining to vaccine design and tumour environment that remain to be overcome in order to unleash the true potential of neoantigen vaccines in cancer therapy.
Collapse
Affiliation(s)
- Peter D Katsikis
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Christopher Schliehe
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
44
|
Nagai H. Immunoradiation Therapy for End-Stage Undifferentiated Cervical Cancer That Restored Sensitivity to Chemotherapy and Resulted in the Disappearance of the Cancer. Cureus 2024; 16:e57144. [PMID: 38559531 PMCID: PMC10978461 DOI: 10.7759/cureus.57144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Among cervical cancers, small cell undifferentiated carcinoma is rare. Because of its rapid progression, the prognosis is extremely poor. During the course of cisplatin-based chemotherapy for stage Ⅳ small cell undifferentiated carcinoma of the cervix, the patient developed drug resistance, and standard treatment was no longer feasible. Therefore, immunoradiotherapy was administered to activate anticancer immunity. Surprisingly, the cancer drug sensitivity was restored, and cisplatin was again successful, and the cancer disappeared. In addition, the activation of cancer-specific immunity maintained the disappearance of the cancer. It should be noted that immunoradiotherapy not only increases anti-cancer immunity but may also contribute to overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Hisashi Nagai
- Human and Environmental Studies, Tokai University, Kanagawa, JPN
- Oncology, Ginza Phoenix Clinic, Tokyo, JPN
| |
Collapse
|
45
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
46
|
Gugulothu KN, Anvesh Sai P, Suraparaju S, Karuturi SP, Pendli G, Kamma RB, Nimmagadda K, Modepalli A, Mamilla M, Vashist S. WT1 Cancer Vaccine in Advanced Pancreatic Cancer: A Systematic Review. Cureus 2024; 16:e56934. [PMID: 38665761 PMCID: PMC11043900 DOI: 10.7759/cureus.56934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Advanced pancreatic cancer is one of the prominent contributors to cancer-related mortality globally. Chemotherapy, especially gemcitabine, is generally used for the treatment of advanced pancreatic cancer. Despite the treatment, the fatality rate for advanced pancreatic cancer is alarmingly high. Thus, the dire need for better treatment alternatives has drawn focus to cancer vaccinations. The Wilms tumor gene (WT1), typically associated with Wilms tumor, is found to be excessively expressed in some cancers, such as pancreatic cancer. This characteristic feature is harvested to develop cancer vaccines against WT1. This review aims to systematically summarize the clinical trials investigating the efficacy and safety of WT1 vaccines in patients with advanced pancreatic cancer. An extensive literature search was conducted on databases Medline, Web of Science, ScienceDirect, and Google Scholar using the keywords "Advanced pancreatic cancer," "Cancer vaccines," "WT1 vaccines," and "Pulsed DC vaccines," and the results were exclusively studied to construct this review. WT1 vaccines work by introducing peptides from the WT1 protein to trigger an immune response involving cytotoxic T lymphocytes via antigen-presenting cells. Upon activation, these lymphocytes induce apoptosis in cancer cells by specifically targeting those with increased WT1 levels. WT1 vaccinations, which are usually given in addition to chemotherapy, have demonstrated clinically positive results and minimal side effects. However, there are several challenges to their widespread use, such as the immunosuppressive nature of tumors and heterogeneity in expression. Despite these limitations, the risk-benefit profile of cancer vaccines is encouraging, especially for the WT1 vaccine in the treatment of advanced pancreatic cancer. Considering the fledgling status of their development, large multicentric, variables-matched, extensive analysis across diverse demographics is considered essential.
Collapse
Affiliation(s)
| | | | - Sonika Suraparaju
- Internal Medicine, Sri Padmavathi Medical College for Women, Tirupati, IND
| | | | - Ganesh Pendli
- Internal Medicine, PES Institute of Medical Sciences and Research, Kuppam, IND
| | - Ravi Babu Kamma
- Internal Medicine, Sri Venkata Sai (SVS) Medical College, Mahabubnagar, IND
| | | | - Alekhya Modepalli
- Internal Medicine, Sri Padmavathi Medical College for Women, Tirupati, IND
| | - Mahesh Mamilla
- Internal Medicine, Sri Venkateswara Medical College, Tirupati, IND
| | | |
Collapse
|
47
|
Kosumi T, Kobayashi M, Shimodaira S, Sugiyama H, Koido S. Dendritic cell vaccination in combination with erlotinib in a patient with inoperable lung adenocarcinoma: a case report. J Med Case Rep 2024; 18:88. [PMID: 38336778 PMCID: PMC10858469 DOI: 10.1186/s13256-024-04363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Satisfactory treatment for patients with unresectable advanced lung cancer has not yet been established. We report a case of unresectable advanced lung cancer (stage IIIb: T2aN3M0) treated with a total of 15 doses of dendritic cells pulsed with a Wilms' tumor 1 and mucin 1 vaccine in combination with erlotinib, a small molecule epidermal growth factor receptor tyrosine kinase inhibitor, for more than 699 days without recurrence or metastasis. CASE PRESENTATION A 63-year-old Korean woman was diagnosed with lung adenocarcinoma by pathology and computed tomography. The adenocarcinoma showed an epidermal growth factor receptor (EGFR) mutation, no anaplastic lymphoma kinase expression, and less than 1% expression of programmed death ligand 1. She received erlotinib alone for approximately 1 month. She then received erlotinib and the dendritic cells pulsed with Wilms' tumor 1 and mucin 1 vaccine. The diameter of the erythema at the vaccinated sites was 30 mm at 48 hours after the first vaccination. Moreover, it was maintained at more than 20 mm during the periods of vaccination. These results suggested the induction of antitumor immunity by the vaccine. Remarkably, the tumor size decreased significantly to 12 mm, a 65.7% reduction, after combined therapy with eight doses of the dendritic cells pulsed with Wilms' tumor 1 and mucin 1 vaccine and erlotinib for 237 days based on fluorodeoxyglucose uptake by positron emission tomography/computed tomography and computed tomography. Interestingly, after 321 days of combination therapy, the clinical findings improved, and no tumor was detected based on computed tomography. Validation of the tumor's disappearance persisted for at least 587 days after treatment initiation, without any indication of recurrence or metastasis. CONCLUSION Standard anticancer therapy combined with the dendritic cells pulsed with Wilms' tumor 1 and mucin 1 vaccine may have therapeutic effects for such patients with unresectable lung adenocarcinoma.
Collapse
Affiliation(s)
- Takuya Kosumi
- Kyushukouseikai Clinic, 1-2-12 Tenjin, Chuo-Ku, Fukuoka-Shi, 810-0001, Japan.
| | - Masanori Kobayashi
- Okazakiyuuai Clinic, 104-1 Azaikeda, Tsutsubaricho, Okazaki-Shi, Aichi-ken, 444-0932, Japan
| | - Shigetaka Shimodaira
- Department of Regenerative Medicine, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita-City, Osaka, 565-0871, Japan
| | - Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kashiwa Hospital, The Jikei University School of Medicine, 163-1 Kashiwa-Shita, Kashiwa, Chiba, 277-8567, Japan
| |
Collapse
|
48
|
Dao T, Xiong G, Mun SS, Meyerberg J, Korontsvit T, Xiang J, Cui Z, Chang AY, Jarvis C, Cai W, Luo H, Pierson A, Daniyan A, Yoo S, Takao S, Kharas M, Kentsis A, Liu C, Scheinberg DA. A dual-receptor T-cell platform with Ab-TCR and costimulatory receptor achieves specificity and potency against AML. Blood 2024; 143:507-521. [PMID: 38048594 PMCID: PMC10950474 DOI: 10.1182/blood.2023021054] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/06/2023] Open
Abstract
ABSTRACT Chimeric antigen receptor T-cell (CAR T) therapy has produced remarkable clinical responses in B-cell neoplasms. However, many challenges limit this class of agents for the treatment of other cancer types, in particular the lack of tumor-selective antigens for solid tumors and other hematological malignancies, such as acute myeloid leukemia (AML), which may be addressed without significant risk of severe toxicities while providing sufficient abundance for efficient tumor suppression. One approach to overcome this hurdle is dual targeting by an antibody-T-cell receptor (AbTCR) and a chimeric costimulatory signaling receptor (CSR) to 2 different antigens, in which both antigens are found together on the cancer cells but not together on normal cells. To explore this proof of concept in AML, we engineered a new T-cell format targeting Wilms tumor 1 protein (WT1) and CD33; both are highly expressed on most AML cells. Using an AbTCR comprising a newly developed TCR-mimic monoclonal antibody against the WT1 RMFPNAPYL (RMF) epitope/HLA-A2 complex, ESK2, and a secondary CSR comprising a single-chain variable fragment directed to CD33 linked to a truncated CD28 costimulatory fragment, this unique platform confers specific T-cell cytotoxicity to the AML cells while sparing healthy hematopoietic cells, including CD33+ myelomonocytic normal cells. These data suggest that this new platform, named AbTCR-CSR, through the combination of a AbTCR CAR and CSR could be an effective strategy to reduce toxicity and improve specificity and clinical outcomes in adoptive T-cell therapy in AML.
Collapse
Affiliation(s)
- Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Sung Soo Mun
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jeremy Meyerberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tatyana Korontsvit
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Ziyou Cui
- Eureka Therapeutics Inc, Emeryville, CA
| | - Aaron Y. Chang
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Casey Jarvis
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Winson Cai
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hanzhi Luo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aspen Pierson
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anthony Daniyan
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sarah Yoo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sumiko Takao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael Kharas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, New York, NY
| | - Alex Kentsis
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, New York, NY
| | - Cheng Liu
- Eureka Therapeutics Inc, Emeryville, CA
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, New York, NY
| |
Collapse
|
49
|
Bose M, Sanders A, Handa A, Vora A, Cardona MR, Brouwer C, Mukherjee P. Molecular crosstalk between MUC1 and STAT3 influences the anti-proliferative effect of Napabucasin in epithelial cancers. Sci Rep 2024; 14:3178. [PMID: 38326371 PMCID: PMC10850135 DOI: 10.1038/s41598-024-53549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
MUC1 is a transmembrane glycoprotein that is overexpressed and aberrantly glycosylated in epithelial cancers. The cytoplasmic tail of MUC1 (MUC1 CT) aids in tumorigenesis by upregulating the expression of multiple oncogenes. Signal transducer and activator of transcription 3 (STAT3) plays a crucial role in several cellular processes and is aberrantly activated in many cancers. In this study, we focus on recent evidence suggesting that STAT3 and MUC1 regulate each other's expression in cancer cells in an auto-inductive loop and found that their interaction plays a prominent role in mediating epithelial-to-mesenchymal transition (EMT) and drug resistance. The STAT3 inhibitor Napabucasin was in clinical trials but was discontinued due to futility. We found that higher expression of MUC1 increased the sensitivity of cancer cells to Napabucasin. Therefore, high-MUC1 tumors may have a better outcome to Napabucasin therapy. We report how MUC1 regulates STAT3 activity and provide a new perspective on repurposing the STAT3-inhibitor Napabucasin to improve clinical outcome of epithelial cancer treatment.
Collapse
Affiliation(s)
- Mukulika Bose
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA.
| | - Alexa Sanders
- Department of Bioinformatics, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Aashna Handa
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Aabha Vora
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Manuel R Cardona
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Cory Brouwer
- Department of Bioinformatics, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Pinku Mukherjee
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
50
|
Meci A, Goyal N, Slonimsky G. Mechanisms of Resistance and Therapeutic Perspectives in Immunotherapy for Advanced Head and Neck Cancers. Cancers (Basel) 2024; 16:703. [PMID: 38398094 PMCID: PMC10887076 DOI: 10.3390/cancers16040703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Immunotherapy is emerging as an effective treatment for advanced head and neck cancers and interest in this treatment modality has led to rapid expansion of this research. Pembrolizumab and nivolumab, monoclonal antibodies directed against the programmed cell death-1 (PD-1) receptor, are US Food and Drug Administration (FDA)- and European Medical Agency (EMA)-approved immunotherapies for head and neck squamous cell carcinoma (HNSCC). Resistance to immunotherapy is common, with about 60% of patients with recurrent or metastatic HNSCC not responding to immunotherapy and only 20-30% of patients without disease progression in the long term. Overcoming resistance to immunotherapy is therefore essential for augmenting the effectiveness of immunotherapy in HNSCC. This review details the innate and adaptive mechanisms by which head and neck cancers can become resistant to immunotherapeutic agents, biomarkers that can be used for immunotherapy patient selection, as well as other factors of the tumor microenvironment correlated with therapeutic response and prognosis. Numerous combinations and novel immunotherapies are currently being trialed, based on better understood immune evasion mechanisms. These potential treatments hold the promise of overcoming resistance to immunotherapy in head and neck cancers.
Collapse
Affiliation(s)
- Andrew Meci
- The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Neerav Goyal
- Department of Otolaryngology-Head and Neck Surgery, Penn State Health, Milton S. Hershey Medical Center, 500 University Dr, Hershey, PA 17033, USA;
| | - Guy Slonimsky
- Department of Otolaryngology-Head and Neck Surgery, Penn State Health, Milton S. Hershey Medical Center, 500 University Dr, Hershey, PA 17033, USA;
| |
Collapse
|