1
|
Chen L, Ren Z, Zhang Y, Hou W, Li Y. Design, synthesis, and evaluation of novel stilbene derivatives that degrade acidic nucleoplasmic DNA-binding protein 1 (And1) and synergize with PARP1 inhibitor in NSCLC cells. J Enzyme Inhib Med Chem 2024; 39:2383886. [PMID: 39072709 PMCID: PMC11288208 DOI: 10.1080/14756366.2024.2383886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 07/30/2024] Open
Abstract
Specifically inducing the degradation of acidic nucleoplasmic DNA-binding protein 1 (And1) is a promising antitumor strategy. Our previous study identified Bazedoxifene (BZA) and CH3 as specific And1 degraders and validated their activity in reversing radiotherapy resistance in vitro and in vivo. However, unelucidated structure-activity relationships and moderate activity have limited their application. In this study, 27 novel CH3 derivatives were designed and synthesised based on the cavity topology of the WD40 domain of And1. Among them, A15 with a "V" conformation significantly induced And1 degradation in NSCLC cells. In addition, this study demonstrated a potential synthetic lethal effect of And1 degraders and PARP1 inhibitors. 1 µM of Olaparib in combination with 5 µM of A15 significantly inhibited the proliferation of A549 and H460 cells. Overall, these compounds are valuable tools for elucidating And1 biology, and their special spatial conformation make them promising candidates for future optimisation studies.
Collapse
Affiliation(s)
- Leyuan Chen
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Zhonghao Ren
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, China
| | - Yunze Zhang
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wenbin Hou
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Yiliang Li
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| |
Collapse
|
2
|
Kiermaier E, Stötzel I, Schapfl MA, Villunger A. Amplified centrosomes-more than just a threat. EMBO Rep 2024; 25:4153-4167. [PMID: 39285247 PMCID: PMC11467336 DOI: 10.1038/s44319-024-00260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/05/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Centrosomes are major organizing components of the tubulin-based cytoskeleton. In recent years, we have gained extensive knowledge about their structure, biogenesis, and function from single cells, cell-cell interactions to tissue homeostasis, including their role in human diseases. Centrosome abnormalities are linked to, among others primary microcephaly, birth defects, ciliopathies, and tumorigenesis. Centrosome amplification, a state where two or more centrosomes are present in the G1 phase of the cell cycle, correlates in cancer with karyotype alterations, clinical aggressiveness, and lymph node metastasis. However, amplified centrosomes also appear in healthy tissues and, independent of their established role, in multi-ciliation. One example is the liver where hepatocytes carry amplified centrosomes owing to whole-genome duplication events during organogenesis. More recently, amplified centrosomes have been found in neuronal progenitors and several cell types of hematopoietic origin in which they enhance cellular effector functions. These findings suggest that extra centrosomes do not necessarily pose a risk for genome integrity and are harnessed for physiological processes. Here, we compare established and emerging 'non-canonical functions' of amplified centrosomes in cancerous and somatic cells and discuss their role in cellular physiology.
Collapse
Affiliation(s)
- Eva Kiermaier
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany.
| | - Isabel Stötzel
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Marina A Schapfl
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria.
| |
Collapse
|
3
|
Jiang Y, Yu Z, Zheng H, Zhou X, Zhou M, Geng X, Zhu Y, Huang S, Gong Y, Guo L. An immune biomarker associated with EMT serves as a predictor for prognosis and drug response in bladder cancer. Aging (Albany NY) 2024; 16:10813-10831. [PMID: 38980253 PMCID: PMC11272103 DOI: 10.18632/aging.205927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/22/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Bladder cancer (BLCA), which develops from the upper endometrial of the bladder, is the sixth most prevalent cancer across the globe. WDHD1 (WD repeat and HMG-box DNA binding protein 1 gene) directly affects signaling, the cell cycle, and the development of the cell skeleton. Uncertainty surrounds WDHD1's function in BLCA immunity and prognosis, though. MATERIALS AND METHODS Using weighed gene co-expression network analysis (WGCNA), initially, we first identified 32 risk factors in genes with differential expression for this investigation. Then, using a variety of bioinformatic techniques and experimental validation, we examined the connections between WDHD1 and BLCA expression, clinical pathological traits, WDHD1-related proteins, upper-skin-intermediate conversion (EMT), immune cell immersion, convergence factors, immune markers, and drug sensitivity. RESULT The findings demonstrated that we constructed a 32-gene risk-predicting model where WDHD1 was elevated as a representative gene expression in BLCA and related to a range of clinical traits. Furthermore, high WDHD1 expression was a standalone predictor associated with a worse survival rate. The most commonly recruited cells and their evolutionary patterns were highlighted to better comprehend WDHD1's function in cancer. High WDHD1 expression was associated with many aspects of immunology. Finally, the study found that individuals with high expression of WDHD1 were drug-sensitive to four different broad-spectrum anti-cancer drugs. CONCLUSION These results describe dynamic changes in the tumor microenvironment in BLCA and provide evidence for the hypothesis that WDHD1 is a novel biomarker of tumor development. WDHD1 may therefore be a useful target for the detection and management of BLCA.
Collapse
Affiliation(s)
- Yike Jiang
- Department of Ultrasonography, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Hao Zheng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Xitong Geng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Yanting Zhu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Shuhan Huang
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Yiyang Gong
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Liangyun Guo
- Department of Ultrasonography, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China
| |
Collapse
|
4
|
Wang K, Guo D, Yan T, Sun S, Wang Y, Zheng H, Wang G, Du J. ZBTB16 inhibits DNA replication and induces cell cycle arrest by targeting WDHD1 transcription in lung adenocarcinoma. Oncogene 2024; 43:1796-1810. [PMID: 38654107 DOI: 10.1038/s41388-024-03041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Lung adenocarcinoma is a malignant tumor with high morbidity and mortality. ZBTB16 plays a double role in various tumors; however, the potential mechanism of ZBTB16 in the pathophysiology of lung adenocarcinoma has yet to be elucidated. We herein observed a decreased expression of ZBTB16 mRNA and protein in lung adenocarcinoma and a significantly increased DNA methylation level of ZBTB16 in patients with lung adenocarcinoma. Analysis of public databases and patients' clinical data indicated a close association between ZBTB16 and patient survival. Ectopic expression of ZBTB16 in lung adenocarcinoma cells significantly inhibited cell proliferation, invasion, and migration. It also induced cell cycle arrest in the S phase. Meanwhile, mitotic catastrophe was induced, and DNA damage and apoptosis occurred. In line with these findings, the overexpression of ZBTB16 in xenograft mice resulted in the inhibition of tumor growth. Comprehensive analysis showed that WDHD1 was a potential target for ZBTB16. The overexpression of both isoforms of WDHD1 significantly reversed the ZBTB16-mediated inhibition of lung adenocarcinoma proliferation and cell cycle. These studies suggest that ZBTB16 impedes the progression of lung adenocarcinoma by interfering with WDHD1 transcription, making it a potential novel therapeutic target in the management of lung adenocarcinoma.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Healthcare Respiratory Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Deyu Guo
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Tao Yan
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, China
| | - Shijie Sun
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yadong Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Haotian Zheng
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Guanghui Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China.
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China.
| |
Collapse
|
5
|
Chen L, Liu G, Meng F, Shi Y, Fang Z, Peng Z, Wang M, Gou W, Hou W, Li Y. Bazedoxifene analogs as potential WDHD1 degraders and antitumor agents: Synthesis, evaluation and molecular dynamics simulation studies. Drug Dev Res 2024; 85:e22155. [PMID: 38349257 DOI: 10.1002/ddr.22155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024]
Abstract
DNA repair is strongly associated with tumor resistance to radiotherapy and chemotherapy. WD repeat and HMG-box DNA binding protein 1 (WDHD1) is a key adaptor for homologous recombination repair of DNA, and its overexpression is relevant to the poor prognosis of many tumor patients. We previously have identified and validated bazedoxifene (BZA), which had 60% inhibitory rate on WDHD1 in MCF7 cells at 10 μM, from the Food and Drug Administration-approved compound library. Here, we initially established the binding model of BZA, synthesized and evaluated eight BZA analogs. Further, we detailed the use of molecular dynamics simulations to provide insights into the basis for activity against WDHD1. This binding mode will be instructive for the development of new WDHD1 degraders.
Collapse
Affiliation(s)
- Leyuan Chen
- Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China
| | - Gaiting Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fancui Meng
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Yu Shi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhennan Fang
- Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China
| | - Zhenyu Peng
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Manjiang Wang
- Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China
| | - Wenfeng Gou
- Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China
| | - Wenbin Hou
- Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China
| | - Yiliang Li
- Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China
| |
Collapse
|
6
|
Cui Z, Zou F, Wang R, Wang L, Cheng F, Wang L, Pan R, Guan X, Zheng N, Wang W. Integrative bioinformatics analysis of WDHD1: a potential biomarker for pan-cancer prognosis, diagnosis, and immunotherapy. World J Surg Oncol 2023; 21:309. [PMID: 37759234 PMCID: PMC10523704 DOI: 10.1186/s12957-023-03187-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Although WD repeat and high-mobility group box DNA binding protein 1 (WDHD1) played an essential role in DNA replication, chromosome stability, and DNA damage repair, the panoramic picture of WDHD1 in human tumors remains unclear. Hence, this study aims to comprehensively characterize WDHD1 across 33 human cancers. METHODS Based on publicly available databases such as TCGA, GTEx, and HPA, we used a bioinformatics approach to systematically explore the genomic features and biological functions of WDHD1 in pan-cancer. RESULTS WDHD1 mRNA levels were significantly increased in more than 20 types of tumor tissues. Elevated WDHD1 expression was associated with significantly shorter overall survival (OS) in 10 tumors. Furthermore, in uterine corpus endometrial carcinoma (UCEC) and liver hepatocellular carcinoma (LIHC), WDHD1 expression was significantly associated with higher histological grades and pathological stages. In addition, WDHD1 had a high diagnostic value among 16 tumors (area under the ROC curve [AUC] > 0.9). Functional enrichment analyses suggested that WDHD1 probably participated in many oncogenic pathways such as E2F and MYC targets (false discovery rate [FDR] < 0.05), and it was involved in the processes of DNA replication and DNA damage repair (p.adjust < 0.05). WDHD1 expression also correlated with the half-maximal inhibitory concentrations (IC50) of rapamycin (4 out of 10 cancers) and paclitaxel (10 out of 10 cancers). Overall, WDHD1 was negatively associated with immune cell infiltration and might promote tumor immune escape. Our analysis of genomic alterations suggested that WDHD1 was altered in 1.5% of pan-cancer cohorts and the "mutation" was the predominant type of alteration. Finally, through correlation analysis, we found that WDHD1 might be closely associated with tumor heterogeneity, tumor stemness, mismatch repair (MMR), and RNA methylation modification, which were all processes associated with the tumor progression. CONCLUSIONS Our pan-cancer analysis of WDHD1 provides valuable insights into the genomic characterization and biological functions of WDHD1 in human cancers and offers some theoretical support for the future use of WDHD1-targeted therapies, immunotherapies, and chemotherapeutic combinations for the management of tumors.
Collapse
Affiliation(s)
- Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fan Zou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Rongli Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feiyan Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rumeng Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nini Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
7
|
Zhang Z, Zhu Q. WD Repeat and HMG Box DNA Binding Protein 1: An Oncoprotein at the Hub of Tumorigenesis and a Novel Therapeutic Target. Int J Mol Sci 2023; 24:12494. [PMID: 37569867 PMCID: PMC10420296 DOI: 10.3390/ijms241512494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
WD repeat and HMG-box DNA binding protein 1 (WDHD1) is a highly conserved gene from yeast to humans. It actively participates in DNA replication, playing a crucial role in DNA damage repair and the cell cycle, contributing to centromere formation and sister chromosome segregation. Notably, several studies have implicated WDHD1 in the development and progression of diverse tumor types, including esophageal carcinoma, pulmonary carcinoma, and breast carcinoma. Additionally, the inhibitor of WDHD1 has been found to enhance radiation sensitivity, improve drug resistance, and significantly decrease tumor cell proliferation. This comprehensive review aims to provide an overview of the molecular structure, biological functions, and regulatory mechanisms of WDHD1 in tumors, thereby establishing a foundation for future investigations and potential clinical applications of WDHD1.
Collapse
Affiliation(s)
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China;
| |
Collapse
|
8
|
Zeng W, Xu X, Xu F, Zhu F, Li Y, Ma J. Exploring Key Genes with Diagnostic Value for Nonalcoholic Steatohepatitis Based on Bioinformatics Analysis. ACS OMEGA 2023; 8:20959-20967. [PMID: 37323410 PMCID: PMC10268261 DOI: 10.1021/acsomega.3c01709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 06/17/2023]
Abstract
We aimed to screen specific genes in liver tissue samples of patients with nonalcoholic steatohepatitis (NASH) with clinical diagnostic value based on bioinformatics analysis. The datasets of liver tissue samples from healthy individuals and NASH patients were retrieved for consistency cluster analysis to obtain the NASH sample typing, followed by verification of the diagnostic value of sample genotyping-specific genes. All samples were subjected to logistic regression analysis, followed by the establishment of the risk model, and then, the diagnostic value was determined by receiver operating characteristic curve analysis. NASH samples could be divided into cluster 1, cluster 2, and cluster 3, which could predict the nonalcoholic fatty liver disease activity score of patients. A total of 162 sample genotyping-specific genes were extracted from patient clinical parameters, and the top 20 core genes in the protein interaction network were obtained for logistic regression analysis. Five sample genotyping-specific genes (WD repeat and HMG-box DNA-binding protein 1 [WDHD1], GINS complex subunit 2 [GINS2], replication factor C subunit 3 (RFC3), secreted phosphoprotein 1 [SPP1], and spleen tyrosine kinase [SYK]) were extracted to construct the risk models with high diagnostic value in NASH. Compared with the low-risk group, the high-risk group of the model showed increased lipoproduction and decreased lipolysis and lipid β oxidation. The risk models based on WDHD1, GINS2, RFC3, SPP1, and SYK have high diagnostic value in NASH, and this risk model is closely related to lipid metabolism pathways.
Collapse
Affiliation(s)
- Wenchun Zeng
- Department
of Gastroenterology, The First People’s
Hospital of Yongkang, Affiliated to Hangzhou Medical College, Jinhua 321300, P. R. China
| | - Xiangwei Xu
- Department
of Pharmacy, The First People’s Hospital
of Yongkang, Affiliated to Hangzhou Medical College, Jinhua 321300, P. R. China
| | - Fang Xu
- Department
of Gastroenterology, The First People’s
Hospital of Yongkang, Affiliated to Hangzhou Medical College, Jinhua 321300, P. R. China
| | - Fang Zhu
- Department
of Gastroenterology, The First People’s
Hospital of Yongkang, Affiliated to Hangzhou Medical College, Jinhua 321300, P. R. China
| | - Yuecui Li
- Department
of Infectious Liver Disease, The First People’s
Hospital of Yongkang, Affiliated to Hangzhou Medical College, Jinhua 321300, P. R. China
| | - Ji Ma
- Department
of Gastroenterology, The First People’s
Hospital of Yongkang, Affiliated to Hangzhou Medical College, Jinhua 321300, P. R. China
| |
Collapse
|
9
|
Prakash Yadav R, Leskinen S, Ma L, Mäkelä JA, Kotaja N. Chromatin remodelers HELLS, WDHD1 and BAZ1A are dynamically expressed during mouse spermatogenesis. Reproduction 2023; 165:49-63. [PMID: 36194437 PMCID: PMC9782464 DOI: 10.1530/rep-22-0240] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
Abstract
In brief Proper regulation of heterochromatin is critical for spermatogenesis. This study reveals the dynamic localization patterns of distinct chromatin regulators during spermatogenesis and disrupted sex chromatin status in spermatocytes in the absence of DICER. Abstract Heterochromatin is dynamically formed and organized in differentiating male germ cells, and its proper regulation is a prerequisite for normal spermatogenesis. While heterochromatin is generally transcriptionally silent, we have previously shown that major satellite repeat (MSR) DNA in the pericentric heterochromatin (PCH) is transcribed during spermatogenesis. We have also shown that DICER associates with PCH and is involved in the regulation of MSR-derived transcripts. To shed light on the heterochromatin regulation in the male germline, we studied the expression, localization and heterochromatin association of selected testis-enriched chromatin regulators in the mouse testis. Our results show that HELLS, WDHD1 and BAZ1A are dynamically expressed during spermatogenesis. They display limited overlap in expression, suggesting involvement in distinct heterochromatin-associated processes at different steps of differentiation. We also show that HELLS and BAZ1A interact with DICER and MSR chromatin. Interestingly, deletion of Dicer1 affects the sex chromosome heterochromatin status in late pachytene spermatocytes, as demonstrated by mislocalization of Polycomb protein family member SCML1 to the sex body. These data substantiate the importance of dynamic heterochromatin regulation during spermatogenesis and emphasize the key role of DICER in the maintenance of chromatin status in meiotic male germ cells.
Collapse
Affiliation(s)
- Ram Prakash Yadav
- 1Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Sini Leskinen
- 1Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Lin Ma
- 1Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Juho-Antti Mäkelä
- 1Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Noora Kotaja
- 1Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| |
Collapse
|
10
|
Zhang Y, Li J, Zhou Y, Li Z, Peng C, Pei H, Zhu W. And-1 Coordinates with the FANCM Complex to Regulate Fanconi Anemia Signaling and Cisplatin Resistance. Cancer Res 2022; 82:3249-3262. [PMID: 35867033 PMCID: PMC9481708 DOI: 10.1158/0008-5472.can-22-0769] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/16/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
The Fanconi anemia (FA) pathway is essential for repairing DNA interstrand crosslinks (ICL). ICLs induce stalled DNA replication forks and trigger activation of the FA pathway by promoting recruitment of the FANCM/FAAP24/MHF complex to ICL sites. Given that stalled replication forks are proximal to ICL sites, fork-associated proteins may coordinate with FA factors to rapidly sense ICLs for activation of FA signaling. Here we report that And-1, a replisome protein, is critical for activation of the FA pathway by sensing ICL-stalled forks and recruiting the FANCM/FAAP24 complex to ICLs. In response to ICLs, And-1 rapidly accumulated at ICL-stalled forks in a manner dependent on ataxia telangiectasia and Rad3-related protein-induced phosphorylation at T826. And-1 phosphorylation triggered an intramolecular change that promoted the interaction of And-1 with FANCM/FAAP24, resulting in recruitment of the FANCM/FAAP24 complex to ICLs. Furthermore, p-T826 And-1 was elevated in cisplatin-resistant ovarian cancer cells, and activated And-1 contributed to cisplatin resistance. Collectively, these studies elucidate a mechanism by which And-1 regulates FA signaling and identify And-1 as a potential target for developing therapeutic approaches to treat platinum-resistant ovarian cancer. SIGNIFICANCE This work shows that phosphorylation of And-1 by ATR activates Fanconi anemia signaling at interstrand crosslink-stalled replication forks by recruiting the FANCM/FAAP24 complex, revealing And-1 as a potential therapeutic target in cancer.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Jing Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Yuan Zhou
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Zhuqing Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Changmin Peng
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Huadong Pei
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
11
|
Xian Q, Zhu D. The Involvement of WDHD1 in the Occurrence of Esophageal Cancer as a Downstream Target of PI3K/AKT Pathway. JOURNAL OF ONCOLOGY 2022; 2022:5871188. [PMID: 35422862 PMCID: PMC9005294 DOI: 10.1155/2022/5871188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/18/2022] [Indexed: 11/18/2022]
Abstract
Esophageal cancer is one of the most common malignant tumors in the world, which is characterized by high incidence, strong invasiveness, high mortality, and poor prognosis. At present, the therapies include surgery, endoscopic resection, radiotherapy and chemotherapy, targeted therapy, and immunotherapy. The five-year survival rate of esophageal cancer has not been significantly improved, although the medical level has been continuously improved and the management and application of different therapies have been improved day by day. At present, an abnormal gene expression is still regarded as an important factor in the occurrence and development of esophageal cancer. WD repeat and HMG-box DNA binding protein 1(WDHD1), as a key gene, plays an important role in the occurrence of esophageal cancer. It is known that the protein encoded by WDHD1 is the downstream target of the PI3K/AKT pathway. When PI3Ks is activated by extracellular signals, PI(4,5)P2 on the inner side of the plasma membrane will be converted into PI(3,4,5)P3. Then, PI(3,4,5)P3 can be converted into PI(3,4)P2,PI(4)P and PI(3)P by dephosphorylation of some regulatory factors. PI(3,4,5)P3 recruited AKT to the plasma membrane and combined with its pH domain, resulting in conformational change of AKT. Subsequently, AKT was completely activated by PDK1 and PDK2 and begins to move to the cytoplasm and nucleus. In this process, AKT continuously phosphorylates downstream substrates. WDHD1, as a downstream target of AKT, is also phosphorylated and induces DNA replication. Besides the abnormal regulation of cells by other downstream targets of AKT, it also becomes a potential pathway that may eventually lead to the occurrence of esophageal cancer.
Collapse
Affiliation(s)
- Qingying Xian
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Danxia Zhu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| |
Collapse
|
12
|
Dolce V, Dusi S, Giannattasio M, Joseph CR, Fumasoni M, Branzei D. Parental histone deposition on the replicated strands promotes error-free DNA damage tolerance and regulates drug resistance. Genes Dev 2022; 36:167-179. [PMID: 35115379 PMCID: PMC8887126 DOI: 10.1101/gad.349207.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
In this study, Dolce et al. investigated connections between Ctf4-mediated processes involved in drug resistance, and conducted a suppressor screen of ctf4Δ sensitivity to the methylating agent MMS. Their findings demonstrate a chromatin-based drug resistance mechanism in which defects in parental histone transfer after replication fork passage impair error-free recombination bypass and lead to up-regulation of TLS-mediated mutagenesis and drug resistance. Ctf4 is a conserved replisome component with multiple roles in DNA metabolism. To investigate connections between Ctf4-mediated processes involved in drug resistance, we conducted a suppressor screen of ctf4Δ sensitivity to the methylating agent MMS. We uncovered that mutations in Dpb3 and Dpb4 components of polymerase ε result in the development of drug resistance in ctf4Δ via their histone-binding function. Alleviated sensitivity to MMS of the double mutants was not associated with rescue of ctf4Δ defects in sister chromatid cohesion, replication fork architecture, or template switching, which ensures error-free replication in the presence of genotoxic stress. Strikingly, the improved viability depended on translesion synthesis (TLS) polymerase-mediated mutagenesis, which was drastically increased in ctf4 dpb3 double mutants. Importantly, mutations in Mcm2–Ctf4–Polα and Dpb3–Dpb4 axes of parental (H3–H4)2 deposition on lagging and leading strands invariably resulted in reduced error-free DNA damage tolerance through gap filling by template switch recombination. Overall, we uncovered a chromatin-based drug resistance mechanism in which defects in parental histone transfer after replication fork passage impair error-free recombination bypass and lead to up-regulation of TLS-mediated mutagenesis and drug resistance.
Collapse
Affiliation(s)
- Valeria Dolce
- Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare (IFOM), the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Sabrina Dusi
- Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare (IFOM), the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Michele Giannattasio
- Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare (IFOM), the FIRC Institute of Molecular Oncology, 20139 Milan, Italy.,Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, 20122 Milan, Italy
| | - Chinnu Rose Joseph
- Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare (IFOM), the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Marco Fumasoni
- Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare (IFOM), the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Dana Branzei
- Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare (IFOM), the FIRC Institute of Molecular Oncology, 20139 Milan, Italy.,Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100 Pavia, Italy
| |
Collapse
|
13
|
Zhang T, Greenberg RA. The inner workings of replisome-dependent control of DNA damage tolerance. Genes Dev 2022; 36:103-105. [PMID: 35193944 PMCID: PMC8887134 DOI: 10.1101/gad.349408.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genomic DNA is continuously challenged by endogenous and exogenous sources of damage. The resulting lesions may act as physical blocks to DNA replication, necessitating repair mechanisms to be intrinsically coupled to the DNA replisome machinery. DNA damage tolerance (DDT) is comprised of translesion synthesis (TLS) and template switch (TS) repair processes that allow the replisome to bypass of bulky DNA lesions and complete DNA replication. How the replisome orchestrates which DDT repair mechanism becomes active at replication blocks has remained enigmatic. In this issue of Genes & Development, Dolce and colleagues (pp. 167-179) report that parental histone deposition by replisome components Ctf4 and Dpb3/4 promotes TS while suppressing error-prone TLS. Deletion of Dpb3/4 restored resistance to DNA-damaging agents in ctf4Δ cells at the expense of synergistic increases in mutagenesis due to elevated TLS. These findings illustrate the importance of replisome-directed chromatin maintenance to genome integrity and the response to DNA-damaging anticancer therapeutics.
Collapse
Affiliation(s)
- Tianpeng Zhang
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
14
|
Huang L, Ye T, Wang J, Gu X, Ma R, Sheng L, Ma B. Identification of Survival-Associated Hub Genes in Pancreatic Adenocarcinoma Based on WGCNA. Front Genet 2022; 12:814798. [PMID: 35047023 PMCID: PMC8762281 DOI: 10.3389/fgene.2021.814798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic adenocarcinoma is one of the leading causes of cancer-related death worldwide. Since little clinical symptoms were shown in the early period of pancreatic adenocarcinoma, most patients were found to carry metastases when diagnosis. The lack of effective diagnosis biomarkers and therapeutic targets makes pancreatic adenocarcinoma difficult to screen and cure. The fundamental problem is we know very little about the regulatory mechanisms during carcinogenesis. Here, we employed weighted gene co-expression network analysis (WGCNA) to build gene interaction network using expression profile of pancreatic adenocarcinoma from The Cancer Genome Atlas (TCGA). STRING was used for the construction and visualization of biological networks. A total of 22 modules were detected in the network, among which yellow and pink modules showed the most significant associations with pancreatic adenocarcinoma. Dozens of new genes including PKMYT1, WDHD1, ASF1B, and RAD18 were identified. Further survival analysis yielded their valuable effects on the diagnosis and treatment of pancreatic adenocarcinoma. Our study pioneered network-based algorithm in the application of tumor etiology and discovered several promising regulators for pancreatic adenocarcinoma detection and therapy.
Collapse
Affiliation(s)
- Liya Huang
- Department of Gastroenterology, The General Hospital of NingXia Medical University, Yinchuan, China
| | - Ting Ye
- Department of Gastroenterology, The General Hospital of NingXia Medical University, Yinchuan, China
| | - Jingjing Wang
- Department of Gastroenterology, The General Hospital of NingXia Medical University, Yinchuan, China
| | - Xiaojing Gu
- Department of Gastroenterology, The General Hospital of NingXia Medical University, Yinchuan, China
| | - Ruiting Ma
- Department of Gastroenterology, The General Hospital of NingXia Medical University, Yinchuan, China
| | - Lulu Sheng
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Binwu Ma
- Department of Neurology, The General Hospital of NingXia Medical University, Yinchuan, China
| |
Collapse
|
15
|
He RQ, Li JD, He WY, Chen G, Huang ZG, Li MF, Wu WZ, Chen JT, Pan YQ, Jiang H, Dang YW, Yang LH. Prognosis prediction ability and prospective biological mechanisms of WDHD1 in hepatocellular carcinoma tissues. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
16
|
Li J, Zhang Y, Sun J, Chen L, Gou W, Chen C, Zhou Y, Li Z, Chan DW, Huang R, Pei H, Zheng W, Li Y, Xia M, Zhu W. Discovery and characterization of potent And-1 inhibitors for cancer treatment. Clin Transl Med 2021; 11:e627. [PMID: 34923765 PMCID: PMC8684776 DOI: 10.1002/ctm2.627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
Acidic nucleoplasmic DNA-binding protein 1 (And-1), an important factor for deoxyribonucleic acid (DNA) replication and repair, is overexpressed in many types of cancer but not in normal tissues. Although multiple independent studies have elucidated And-1 as a promising target gene for cancer therapy, an And-1 inhibitor has yet to be identified. Using an And-1 luciferase reporter assay to screen the Library of Pharmacologically Active Compounds (LOPAC) in a high throughput screening (HTS) platform, and then further screen the compound analog collection, we identified two potent And-1 inhibitors, bazedoxifene acetate (BZA) and an uncharacterized compound [(E)-5-(3,4-dichlorostyryl)benzo[c][1,2]oxaborol-1(3H)-ol] (CH3), which specifically inhibit And-1 by promoting its degradation. Specifically, through direct interaction with And-1 WD40 domain, CH3 interrupts the polymerization of And-1. Depolymerization of And-1 promotes its interaction with E3 ligase Cullin 4B (CUL4B), resulting in its ubiquitination and subsequent degradation. Furthermore, CH3 suppresses the growth of a broad range of cancers. Moreover, And-1 inhibitors re-sensitize platinum-resistant ovarian cancer cells to platinum drugs in vitro and in vivo. Since BZA is an FDA approved drug, we expect a clinical trial of BZA-mediated cancer therapy in the near future. Taken together, our findings suggest that targeting And-1 by its inhibitors is a potential broad-spectrum anti-cancer chemotherapy regimen.
Collapse
Affiliation(s)
- Jing Li
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Yi Zhang
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Jing Sun
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Leyuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicinePeking Union Medical College & Chinese Academy of Medical SciencesTianjinChina
| | - Wenfeng Gou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicinePeking Union Medical College & Chinese Academy of Medical SciencesTianjinChina
| | - Chi‐Wei Chen
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Yuan Zhou
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Zhuqing Li
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - David W. Chan
- Department of Obstetrics and Gynecology, LKS Faculty of MedicineThe University of Hong KongHong, China
| | - Ruili Huang
- Division of Preclinical Innovation, National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - Huadong Pei
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Wei Zheng
- Division of Preclinical Innovation, National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicinePeking Union Medical College & Chinese Academy of Medical SciencesTianjinChina
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - Wenge Zhu
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
17
|
Chen N, Zhang G, Fu J, Wu Q. Identification of Key Modules and Hub Genes Involved in Esophageal Squamous Cell Carcinoma Tumorigenesis Using WCGNA. Cancer Control 2021; 27:1073274820978817. [PMID: 33345608 PMCID: PMC8480348 DOI: 10.1177/1073274820978817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction: The mechanistic basis for the development of esophageal squamous cell carcinoma (ESCC) remains poorly understood. The goal of the present study was thus to characterize mRNA and long noncoding RNA (lncRNA) expression profiles associated with ESCC in order to identify key hub genes associated with the pathogenesis of this cancer. Materials and Methods: The GSE26866 and GSE45670 datasets from the Gene Expression Omnibus (GEO) database were used to conduct a weighted gene co-expression network analysis (WGCNA), after which Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted. Cytoscape was additionally used to construct lncRNA-mRNA networks, after which hub genes were identified and validated through the assessment of TCGA datasets and clinical samples. Results: Two gene modules were found to be closely linked to ESCC tumorigenesis. These genes were enriched in cell cycle, MAPK signaling, JAK-STAT signaling, pyrimidine metabolism, arachidonic acid metabolism, and P53 signaling pathway activity, all of which are directly linked with the development of cancer. In total, we identified and validated 9 hub genes associated with ESCC (DDX18, DNMT1, NCAPG, WDHD1, PRR11, VOPP1, ZKSCAN5, LC35C2, and PHACTR2). Conclusion: In summary, we identified key gene modules and hub genes associated with ESCC development, and we constructed a lncRNA-mRNA network pertaining to this cancer type. These results provide a foundation for future research regarding the mechanistic basis of ESCC.
Collapse
Affiliation(s)
- Nanzheng Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Junke Fu
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qifei Wu
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
Biswas R, Ghosh D, Dutta B, Halder U, Goswami P, Bandopadhyay R. Potential Non-coding RNAs from Microorganisms and their Therapeutic Use in the Treatment of Different Human Cancers. Curr Gene Ther 2021; 21:207-215. [PMID: 33390136 DOI: 10.2174/1566523220999201230204814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
Cancer therapy describes the treatment of cancer, often with surgery, chemotherapy, and radiotherapy. Additionally, RNA interference (RNAi) is likely to be considered a new emerging, alternative therapeutic approach for silencing/targeting cancer-related genes. RNAi can exert antiproliferative and proapoptotic effects by targeting functional carcinogenic molecules or knocking down gene products of cancer-related genes. However, in contrast to conventional cancer therapies, RNAi based therapy seems to have fewer side effects. Transcription signal sequence and conserved sequence analysis-showed that microorganisms could be a potent source of non-coding RNAs. This review concluded that mapping of RNAi mechanism and RNAi based drug delivery approaches is expected to lead a better prospective of cancer therapy.
Collapse
Affiliation(s)
- Raju Biswas
- UGC-Center of Advanced study, Department of Botany, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Dipanjana Ghosh
- UGC-Center of Advanced study, Department of Botany, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Bhramar Dutta
- UGC-Center of Advanced study, Department of Botany, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Urmi Halder
- UGC-Center of Advanced study, Department of Botany, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Prittam Goswami
- Haldia Institute of Technology, HIT College Rd, Kshudiram Nagar, Haldia-721657, West Bengal, India
| | - Rajib Bandopadhyay
- UGC-Center of Advanced study, Department of Botany, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| |
Collapse
|
19
|
Zhou Y, Chen JJ. STAT3 plays an important role in DNA replication by turning on WDHD1. Cell Biosci 2021; 11:10. [PMID: 33413624 PMCID: PMC7792067 DOI: 10.1186/s13578-020-00524-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Signal transducers and activators of transcription 3 (STAT3) is a transcription factor that plays a key role in many cellular processes such as cell growth and cancer. However, the functions and mechanisms by which STAT3 regulates cellular processes are not fully understood. RESULTS Here we describe a novel function of STAT3. We demonstrated that STAT3 plays an important role in DNA replication. Specifically, knockdown of STAT3 reduced DNA replication while activation and ectopic expression of STAT3 promoted DNA replication. We further identified the WD repeat and HMG-box DNA-binding protein 1 (WDHD1), which plays an important role in DNA replication initiation, as a novel STAT3 target gene that mediated the DNA replication function of STAT3. We showed that STAT3 bind the promoter/up regulatory region of WDHD1 gene. CONCLUSIONS These studies identified a novel function of STAT3 that is mediated by its newly identified target gene WDHD1 and have important implications.
Collapse
Affiliation(s)
- Yunying Zhou
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Medical Research & Laboratory Diagnostic Center, Central Hospital Affiliated To Shandong First Medical University, Jinan, China.,The Cancer Research Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jason J Chen
- Department of Microbiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. .,The Cancer Research Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
20
|
Ertay A, Liu H, Liu D, Peng P, Hill C, Xiong H, Hancock D, Yuan X, Przewloka MR, Coldwell M, Howell M, Skipp P, Ewing RM, Downward J, Wang Y. WDHD1 is essential for the survival of PTEN-inactive triple-negative breast cancer. Cell Death Dis 2020; 11:1001. [PMID: 33221821 PMCID: PMC7680459 DOI: 10.1038/s41419-020-03210-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer that lacks the oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, making it difficult to target therapeutically. Targeting synthetic lethality is an alternative approach for cancer treatment. TNBC shows frequent loss of phosphatase and tensin homologue (PTEN) expression, which is associated with poor prognosis and treatment response. To identify PTEN synthetic lethal interactions, TCGA analysis coupled with a whole-genome siRNA screen in isogenic PTEN-negative and -positive cells were performed. Among the candidate genes essential for the survival of PTEN-inactive TNBC cells, WDHD1 (WD repeat and high-mobility group box DNA-binding protein 1) expression was increased in the low vs. high PTEN TNBC samples. It was also the top hit in the siRNA screen and its knockdown significantly inhibited cell viability in PTEN-negative cells, which was further validated in 2D and 3D cultures. Mechanistically, WDHD1 is important to mediate a high demand of protein translation in PTEN-inactive TNBC. Finally, the importance of WDHD1 in TNBC was confirmed in patient samples obtained from the TCGA and tissue microarrays with clinic-pathological information. Taken together, as an essential gene for the survival of PTEN-inactive TNBC cells, WDHD1 could be a potential biomarker or a therapeutic target for TNBC.
Collapse
Affiliation(s)
- Ayse Ertay
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Huiquan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Dian Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Ping Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Charlotte Hill
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - David Hancock
- Oncogene Biology, The Francis Crick Institute, London, NW1 1AT, UK
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Marcin R Przewloka
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Mark Coldwell
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Michael Howell
- High-Throughput Screening, The Francis Crick Institute, London, NW1 1AT, UK
| | - Paul Skipp
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Rob M Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Julian Downward
- Oncogene Biology, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
21
|
Wang H, Wu D, Cai L, Li X, Zhang Z, Chen S. Aberrant methylation of WD-repeat protein 41 contributes to tumour progression in triple-negative breast cancer. J Cell Mol Med 2020; 24:6869-6882. [PMID: 32394588 PMCID: PMC7299681 DOI: 10.1111/jcmm.15344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
WD-repeat proteins are implicated in a variety of biological functions, most recently in oncogenesis. However, the underlying function of WD-repeat protein 41 (WDR41) in tumorigenesis remains elusive. The present study was aimed to explore the role of WDR41 in breast cancer. Combined with Western blotting and immunohistochemistry, the results showed that WDR41 was expressed at low levels in breast cancer, especially in triple-negative breast cancer (TNBC). Using methylation-specific PCR (MSP), we observed that WDR41 presented hypermethylation in MDA-MB-231 cells. Methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) management increased the expression of WDR41 in MDA-MB-231 cells, but not in MCF-10A (normal mammary epithelial cells) or oestrogen receptor-positive MCF-7 breast cancer cells. WDR41-down-regulation promoted, while WDR41-up-regulation inhibited the tumour characteristics of TNBC cells including cell viability, cell cycle and migration. Further, WDR41-up-regulation dramatically suppressed tumour growth in vivo. Mechanistically, WDR41 protein ablation activated, while WDR41-up-regulation repressed the AKT/GSK-3β pathway and the subsequent nuclear activation of β-catenin in MDA-MB-231 cells, and 5-aza-dC treatment enhanced this effect. After treatment with the AKT inhibitor MK-2206, WDR41-down-regulation-mediated activation of the GSK-3β/β-catenin signalling was robustly abolished. Collectively, methylated WDR41 in MDA-MB-231 cells promotes tumorigenesis through positively regulating the AKT/GSK-3β/β-catenin pathway, thus providing an important foundation for treating TNBC.
Collapse
Affiliation(s)
- Han Wang
- Translational Medicine Research Center (TMRC)School of Pharmaceutical ScienceXiamen UniversityXiamenFujianChina
| | - Dan Wu
- Department of oncologyXiamen Fifth hospitalXiamenChina
| | - Liangliang Cai
- Translational Medicine Research Center (TMRC)School of Pharmaceutical ScienceXiamen UniversityXiamenFujianChina
| | - Xiaohong Li
- Department of Medical OncologyCancer HospitalThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Zhiming Zhang
- Department of Breast SurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Shuai Chen
- Department of oncologyXiamen Fifth hospitalXiamenChina
- Translational Medicine Research Center (TMRC)School of Pharmaceutical ScienceXiamen UniversityXiamenFujianChina
- Department of Otolaryngology‐Head and Neck SurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Otolaryngology‐Head and Neck SurgeryXiamenChina
| |
Collapse
|
22
|
Gong L, Xiao M, He D, Hu Y, Zhu Y, Xiang L, Bao Y, Liu X, Zeng Q, Liu J, Zhou M, Zhou Y, Cheng Y, Zhang Y, Deng L, Zhu R, Lan H, Cao K. WDHD1 Leads to Cisplatin Resistance by Promoting MAPRE2 Ubiquitination in Lung Adenocarcinoma. Front Oncol 2020; 10:461. [PMID: 32426268 PMCID: PMC7212426 DOI: 10.3389/fonc.2020.00461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/13/2020] [Indexed: 12/23/2022] Open
Abstract
Ubiquitin ligases have been shown to regulate drug sensitivity. This study aimed to explore the role of the ubiquitin ligase WD repeat and HMG-box DNA binding protein 1 (WDHD1) in regulating cisplatin sensitivity in lung adenocarcinoma (LUAD). A quantitative analysis of the global proteome identified differential protein expression between LUAD A549 cells and the cisplatin-resistant strain A549/DDP. Public databases revealed the relationship between ubiquitin ligase expression and the prognosis of patients with LUAD. Quantitative real-time polymerase chain reaction and Western blotting were used to estimate the WDHD1 expression levels. Analysis of public databases predicted the substrate of WDHD1. Western blotting detected the effect of WDHD1 on microtubule-associated protein RP/EB family member 2 (MAPRE2) and DSTN. Functional analysis of MAPRE2 verified the interaction between WDHD1 and MAPRE2, as well as the interacting sites by methyl-thiazolyl-tetrazolium assay and flow cytometry, immunoprecipitation, protein stability, and immunofluorescence. Cell and animal experiments confirmed the effect of WDHD1 and MAPRE2 on cisplatin sensitivity in LUAD. Clinical data evaluated the impact of WDHD1 expression level on cisplatin sensitivity. Quantitative analysis of the global proteome revealed ubiquitin-dependent protein catabolism to be more active in A549/DDP cells than in A549 cells. WDHD1 expression was higher in A549/DDP cells than in A549 cells, and knocking out WDHD1 increased the sensitivity of A549/DDP cells to cisplatin. WDHD1 overexpression negatively correlated with the overall survival of LUAD patients. We observed that MAPRE2 was upregulated when WDHD1 was knocked out. A MAPRE2 knockout in A549 cells resulted in increased cell viability while decreasing apoptosis when the A549 cells exposed to cisplatin. WDHD1 and MAPRE2 were found to interact in the nucleus, and WDHD1 promoted the ubiquitination of MAPRE2. Following cisplatin exposure, the WDHD1 and MAPRE2 knockout groups facilitated cell proliferation and migration, inhibited apoptosis in A549/DDP cells, decreased apoptosis, and increased tumor size and growth rate in animal experiments. Immunohistochemistry showed that Ki67 levels increased, and levels of apoptotic indicators significantly decreased in the WDHD1 and MAPRE2 knockout groups. Clinical data confirmed that WDHD1 overexpression negatively correlated with cisplatin sensitivity. Thus, the ubiquitin ligase WDHD1 induces cisplatin resistance in LUAD by promoting MAPRE2 ubiquitination.
Collapse
Affiliation(s)
- Lian Gong
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Dong He
- Department of Respiratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Yi Hu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Liang Xiang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ying Bao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoming Liu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianye Liu
- Department of Urology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ming Zhou
- Cancer Research Institute and Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Central South University, Changsha, China
| | - Yanhong Zhou
- Cancer Research Institute and Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Central South University, Changsha, China
| | - Yaxin Cheng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yeyu Zhang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Liping Deng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Rongrong Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Hua Lan
- Department of Gynaecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
23
|
Sarathi A, Palaniappan A. Novel significant stage-specific differentially expressed genes in hepatocellular carcinoma. BMC Cancer 2019; 19:663. [PMID: 31277598 PMCID: PMC6612102 DOI: 10.1186/s12885-019-5838-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 06/16/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Liver cancer is among top deadly cancers worldwide with a very poor prognosis, and the liver is a vulnerable site for metastases of other cancers. Early diagnosis is crucial for treatment of the predominant liver cancers, namely hepatocellular carcinoma (HCC). Here we developed a novel computational framework for the stage-specific analysis of HCC. METHODS Using publicly available clinical and RNA-Seq data of cancer samples and controls and the AJCC staging system, we performed a linear modelling analysis of gene expression across all stages and found significant genome-wide changes in the log fold-change of gene expression in cancer samples relative to control. To identify genes that were stage-specific controlling for confounding differential expression in other stages, we developed a set of six pairwise contrasts between the stages and enforced a p-value threshold (< 0.05) for each such contrast. Genes were specific for a stage if they passed all the significance filters for that stage. The monotonicity of gene expression with cancer progression was analyzed with a linear model using the cancer stage as a numeric variable. RESULTS Our analysis yielded two stage-I specific genes (CA9, WNT7B), two stage-II specific genes (APOBEC3B, FAM186A), ten stage-III specific genes including DLG5, PARI, NCAPG2, GNMT and XRCC2, and 35 stage-IV specific genes including GABRD, PGAM2, PECAM1 and CXCR2P1. Overexpression of DLG5 was found to be tumor-promoting contrary to the cancer literature on this gene. Further, GABRD was found to be signifincantly monotonically upregulated across stages. Our work has revealed 1977 genes with significant monotonic patterns of expression across cancer stages. NDUFA4L2, CRHBP and PIGU were top genes with monotonic changes of expression across cancer stages that could represent promising targets for therapy. Comparison with gene signatures from the BCLC staging system identified two genes, HSP90AB1 and ARHGAP42. Gene set enrichment analysis indicated overrepresented pathways specific to each stage, notably viral infection pathways in HCC initiation. CONCLUSIONS Our study identified novel significant stage-specific differentially expressed genes which could enhance our understanding of the molecular determinants of hepatocellular carcinoma progression. Our findings could serve as biomarkers that potentially underpin diagnosis as well as pinpoint therapeutic targets.
Collapse
Affiliation(s)
- Arjun Sarathi
- Department of Bioengineering, School of Chemical and BioTechnology, SASTRA deemed University, Thanjavur, Tamil Nadu 613401 India
| | - Ashok Palaniappan
- Department of Bioinformatics, School of Chemical and BioTechnology, SASTRA deemed University, Thanjavur, Tamil Nadu 613401 India
| |
Collapse
|
24
|
Liu B, Hu Y, Qin L, Peng XB, Huang YX. MicroRNA-494-dependent WDHDI inhibition suppresses epithelial-mesenchymal transition, tumor growth and metastasis in cholangiocarcinoma. Dig Liver Dis 2019; 51:397-411. [PMID: 30314946 DOI: 10.1016/j.dld.2018.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) represents a devastating malignancy characterized by high mortality, and notoriously problematic to diagnose. Recently, microRNAs (miRs) have been intensively investigated due to their potential usefulness from a tumor treatment perspective. AIMS The current study was aimed to investigate whether miR-494 influences epithelial-mesenchymal transition (EMT), tumor growth and metastasis of CCA. METHODS The regulatory miRNAs of WDHD1 in CCA expression chip were predicted, followed by determination of the miR-494 and WDHD1 expression in normal cholangiocyte tissues and CCA tissues. The related protein levels were determined. CCA cell migration, invasion, viability, and cell cycle distribution and the dosage-dependent effect of miR-494 on CCA cell growth were subsequently detected. Finally, tumorigenicity and lymph node metastasis (LNM) were measured. RESULTS Initially, miR-194 affected the CCA development via negatively regulating WDHD1 and miR-494 which were downregulated while WDHD1 was upregulated in CCA. In addition, miR-494 overexpression elevated E-cadherin expression while decreased expressions of WDHD1, N-cadherin, Vimentin, Snail, Twist and MMP-9. Finally, overexpressed miR-494 was observed to suppress EMT, cell viability, migration, invasion, arrest cell cycle progression, tumor formation, and LNM while accelerating cell apoptosis in vivo. CONCLUSION This study indicated that miR-494 overexpression suppresses EMT, tumor formation and LNM while promoting CCA cell apoptosis through inhibiting WDHD1 in CCA.
Collapse
Affiliation(s)
- Bo Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Yu Hu
- Center for Experimental Medical Research, Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Lu Qin
- Department of Intestinal Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Xu-Bin Peng
- Department of Neurosurgery, The Cancer Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Ya-Xun Huang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, PR China.
| |
Collapse
|
25
|
The 3'UTR signature defines a highly metastatic subgroup of triple-negative breast cancer. Oncotarget 2018; 7:59834-59844. [PMID: 27494850 PMCID: PMC5312352 DOI: 10.18632/oncotarget.10975] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 07/18/2016] [Indexed: 01/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous disease with an aggressive clinical course. Prognostic models are needed to chart potential patient outcomes. To address this, we used alternative 3′UTR patterns to improve postoperative risk stratification. We collected 327 publicly available microarrays and generated the 3′UTR landscape based on expression ratios of alternative 3′UTR. After initial feature filtering, we built a 17-3′UTR-based classifier using an elastic net model. Time-dependent ROC comparisons and Kaplan–Meier analyses confirmed an outstanding discriminating power of our prognostic model for TNBC patients. In the training cohort, 5-year event-free survival (EFS) was 78.6% (95% CI 71.2–86.0) for the low-risk group, and 16.3% (95% CI 2.3–30.4) for the high-risk group (log-rank p<0.0001; hazard ratio [HR] 8.29, 95% CI 4.78–14.4), In the validation set, 5-year EFS was 75.6% (95% CI 68.0–83.2) for the low-risk group, and 33.2% (95% CI 17.1–49.3) for the high-risk group (log-rank p<0.0001; HR 3.17, 95% CI 1.66–5.42). In conclusion, the 17-3′UTR-based classifier provides a superior prognostic performance for estimating disease recurrence and metastasis in TNBC patients and it may permit personalized management strategies.
Collapse
|
26
|
Regulation of HMGB3 by antitumor miR-205-5p inhibits cancer cell aggressiveness and is involved in prostate cancer pathogenesis. J Hum Genet 2017; 63:195-205. [PMID: 29196733 DOI: 10.1038/s10038-017-0371-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 12/16/2022]
Abstract
Our recent determination of a microRNA (miRNA) expression signature in prostate cancer (PCa) revealed that miR-205-5p was significantly reduced in PCa tissues and that it acted as an antitumor miRNA. The aim of this study was to identify oncogenic genes and pathways in PCa cells that were regulated by antitumor miR-205-5p. Genome-wide gene expression analyses and in silico miRNA database searches showed that 37 genes were putative targets of miR-205-5p regulation. Among those genes, elevated expression levels of seven in particular (HMGB3, SPARC, MKI67, CENPF, CDK1, RHOU, and POLR2D) were associated with a shorter disease-free survival in a large number of patients in the The Cancer Genome Atlas (TCGA) database. We focused on high-mobility group box 3 (HMGB3) because it was the most downregulated by ectopic expression of miR-205-5p in PC3 cells and its expression was involved in PCa pathogenesis. Luciferase reporter assays showed that HMGB3 was directly regulated by miR-205-5p in PCa cells. Knockdown studies using si-HMGB3 showed that expression of HMGB3 enhanced PCa cell aggressiveness. Overexpression of HMGB3/HMGB3 was confirmed in naive PCa and castration-resistant PCa (CRPC) clinical specimens. Novel approaches to analysis of antitumor miRNA-regulated RNA networks in PCa cells may provide new insights into the pathogenic mechanisms of the disease.
Collapse
|
27
|
Zhao XK, Mao YM, Meng H, Song X, Hu SJ, Lv S, Cheng R, Zhang TJ, Han XN, Ren JL, Qi YJ, Wang LD. Shared susceptibility loci at 2q33 region for lung and esophageal cancers in high-incidence areas of esophageal cancer in northern China. PLoS One 2017; 12:e0177504. [PMID: 28542283 PMCID: PMC5436667 DOI: 10.1371/journal.pone.0177504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/30/2017] [Indexed: 11/19/2022] Open
Abstract
Background Cancers from lung and esophagus are the leading causes of cancer-related deaths in China and share many similarities in terms of histological type, risk factors and genetic variants. Recent genome-wide association studies (GWAS) in Chinese esophageal cancer patients have demonstrated six high-risk candidate single nucleotide polymorphisms (SNPs). Thus, the present study aimed to determine the risk of these SNPs predisposing to lung cancer in Chinese population. Methods A total of 1170 lung cancer patients and 1530 normal subjects were enrolled in this study from high-incidence areas for esophageal cancer in Henan, northern China. Five milliliters of blood were collected from all subjects for genotyping. Genotyping of 20 high-risk SNP loci identified from genome-wide association studies (GWAS) on esophageal, lung and gastric cancers was performed using TaqMan allelic discrimination assays. Polymorphisms were examined for deviation from Hardy-Weinberg equilibrium (HWE) using Х2 test. Bonferroni correction was performed to correct the statistical significance of 20 SNPs with the risk of lung cancer. The Pearson’s Х2 test was used to compare the distributions of gender, TNM stage, histopathological type, smoking and family history by lung susceptibility genotypes. Kaplan-Meier and Cox regression analyses were carried out to evaluate the associations between genetic variants and overall survival. Results Four of the 20 SNPs identified as high-risk SNPs in Chinese esophageal cancer showed increased risk for Chinese lung cancer, which included rs3769823 (OR = 1.26; 95% CI = 1.107–1.509; P = 0.02), rs10931936 (OR = 1.283; 95% CI = 1.100–1.495; P = 0.04), rs2244438 (OR = 1.294; 95% CI = 1.098–1.525; P = 0.04) and rs13016963 (OR = 1.268; 95% CI = 1.089–1.447; P = 0.04). All these SNPs were located at 2q33 region harboringgenes of CASP8, ALS2CR12 and TRAK2. However, none of these susceptibility SNPs was observed to be significantly associated with gender, TNM stage, histopathological type, smoking, family history and overall survival. Conclusions The present study identified four high-risk SNPs at 2q33 locus for Chinese lung cancer and demonstrated the shared susceptibility loci at 2q33 region for Chinese lung and esophageal cancers.
Collapse
Affiliation(s)
- Xue Ke Zhao
- Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Min Mao
- Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Meng
- Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Song
- Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shou Jia Hu
- Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuang Lv
- Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rang Cheng
- Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tang Juan Zhang
- Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xue Na Han
- Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Li Ren
- Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Jun Qi
- Henan Key Laboratory of Cancer Epigenetic, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Li Dong Wang
- Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- * E-mail:
| |
Collapse
|
28
|
Role of WDHD1 in Human Papillomavirus-Mediated Oncogenesis Identified by Transcriptional Profiling of E7-Expressing Cells. J Virol 2016; 90:6071-6084. [PMID: 27099318 DOI: 10.1128/jvi.00513-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/16/2016] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED The E7 oncoprotein of the high-risk human papillomavirus (HPV) plays a major role in HPV-induced carcinogenesis. E7 abrogates the G1 cell cycle checkpoint and induces genomic instability, but the mechanism is not fully understood. In this study, we performed RNA sequencing (RNA-seq) to characterize the transcriptional profile of keratinocytes expressing HPV 16 (HPV-16) E7. At the transcriptome level, 236 genes were differentially expressed between E7 and vector control cells. A subset of the differentially expressed genes, most of them novel to E7-expressing cells, was further confirmed by real-time PCR. Of interest, the activities of multiple transcription factors were altered in E7-expressing cells. Through bioinformatics analysis, pathways altered in E7-expressing cells were investigated. The upregulated genes were enriched in cell cycle and DNA replication, as well as in the DNA metabolic process, transcription, DNA damage, DNA repair, and nucleotide metabolism. Specifically, we focused our studies on the gene encoding WDHD1 (WD repeat and high mobility group [HMG]-box DNA-binding protein), one of the genes that was upregulated in E7-expressing cells. WDHD1 is a component of the replisome that regulates DNA replication. Recent studies suggest that WDHD1 may also function as a DNA replication initiation factor as well as a G1 checkpoint regulator. We found that in E7-expressing cells, the steady-state level of WDHD1 protein was increased along with the half-life. Moreover, downregulation of WDHD1 reduced E7-induced G1 checkpoint abrogation and rereplication, demonstrating a novel function for WDHD1. These studies shed light on mechanisms by which HPV induces genomic instability and have therapeutic implications. IMPORTANCE The high-risk HPV types induce cervical cancer and encode an E7 oncoprotein that plays a major role in HPV-induced carcinogenesis. However, the mechanism by which E7 induces carcinogenesis is not fully understood; specific anti-HPV agents are not available. In this study, we performed RNA-seq to characterize transcriptional profiling of keratinocytes expressing HPV-16 E7 and identified more than 200 genes that were differentially expressed between E7 and vector control cells. Through bioinformatics analysis, pathways altered in E7-expressing cells were identified. Significantly, the WDHD1 gene, one of the genes that is upregulated in E7-expressing cells, was found to play an important role in E7-induced G1 checkpoint abrogation and rereplication. These studies shed light on mechanisms by which HPV induces genomic instability and have therapeutic implications.
Collapse
|
29
|
Fujitomo T, Daigo Y, Matsuda K, Ueda K, Nakamura Y. Identification of a nuclear protein, LRRC42, involved in lung carcinogenesis. Int J Oncol 2014; 45:147-56. [PMID: 24806090 DOI: 10.3892/ijo.2014.2418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/20/2014] [Indexed: 11/06/2022] Open
Abstract
On the basis of the gene expression profiles of 120 lung cancer cases using a cDNA microarray containing 27,648 genes or expressed sequence tags (ESTs), we identified LRRC42 (Leucine-rich repeat containing 42) to be significantly upregulated in the majority of lung cancers. Northern blot analysis demonstrated that LRRC42 was expressed only in testis among normal tissues examined. Knockdown of LRRC42 expression by siRNA against LRRC42 significantly suppressed the growth of lung cancer cells. On the other hand, stable induction of LRRC42 expression significantly promoted cell growth. LRRC42, which was found to localize in the nucleus of mammalian cells, is likely to interact with and stabilize GATAD2B (GATA zinc finger domain-containing 2B) and MBD3 (Methyl-CpG-binding domain protein 3) proteins that could contribute to lung cancer cell proliferation partly through the regulation of p21Waf1/Cip1. Our findings suggest that LRRC42 overexpression as well as its interaction with LRRC42-GATAD2B might play essential roles in lung carcinogenesis, and be a promising molecular target for lung cancer therapy.
Collapse
Affiliation(s)
- Takashi Fujitomo
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yataro Daigo
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Koichi Matsuda
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Koji Ueda
- Laboratory for Biomarker Development, Center for Genomic Medicine, RIKEN, Yokohama 230-0045, Japan
| | - Yusuke Nakamura
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
30
|
Kobayashi Y, Takano A, Miyagi Y, Tsuchiya E, Sonoda H, Shimizu T, Okabe H, Tani T, Fujiyama Y, Daigo Y. Cell division cycle-associated protein 1 overexpression is essential for the malignant potential of colorectal cancers. Int J Oncol 2013; 44:69-77. [PMID: 24247253 DOI: 10.3892/ijo.2013.2177] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/21/2013] [Indexed: 11/06/2022] Open
Abstract
To identify new cancer biomarkers and therapeutic targets for colorectal cancers (CRCs), we performed immunohistochemical analysis using tissue microarrays covering archival tumor tissue samples from 434 CRC patients and antibodies to cell division cycle-associated protein 1 (CDCA1) that was originally identified as an oncoantigen by our gene expression profile database, and compared its expression with several clinicopathological factors. Strong CDCA1 positivity was associated with poorer prognosis for patients with CRC (P=0.019) and multivariate analysis confirmed its independent prognostic value. In addition, transfection of siRNAs against CDCA1 suppressed its expression and induced apoptosis of CRC cells. These results suggest that CDCA1 could be a prognostic biomarker and a potential therapeutic target for CRCs.
Collapse
Affiliation(s)
- Yu Kobayashi
- Department of Medical Oncology, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Oshita H, Nishino R, Takano A, Fujitomo T, Aragaki M, Kato T, Akiyama H, Tsuchiya E, Kohno N, Nakamura Y, Daigo Y. RASEF is a novel diagnostic biomarker and a therapeutic target for lung cancer. Mol Cancer Res 2013; 11:937-51. [PMID: 23686708 DOI: 10.1158/1541-7786.mcr-12-0685-t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Genome-wide gene expression profiling revealed that the Ras and EF-hand domain containing (RASEF) transcript was significantly transactivated in the majority of lung cancers. Using lung cancer cells, transient expression of RASEF promoted cell growth, whereas RASEF knockdown not only reduced its expression but resulted in growth suppression of the cancer cells. Immunohistochemical staining using tumor tissue microarrays consisting of 341 archived non-small cell lung cancers (NSCLC) revealed the association of strong RASEF positivity with poor prognosis (P = 0.0034 by multivariate analysis). Mechanistically, RASEF interacted with extracellular signal-regulated kinase (ERK) 1/2 and enhanced ERK1/2 signaling. Importantly, inhibiting the interaction between RASEF and ERK1/2 using a cell-permeable peptide that corresponded to the ERK1/2-interacting site of RASEF, suppressed growth of lung cancer cells. This study demonstrates that elevated RASEF promoted cell growth via enhanced ERK signaling and is associated with poor prognosis of NSCLC. IMPLICATIONS RASEF may play an important role in lung carcinogenesis and could serve as a vaiable prognostic biomarker and target for the development of new molecular therapies.
Collapse
Affiliation(s)
- Hideto Oshita
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Daigo Y, Takano A, Teramoto K, Chung S, Nakamura Y. A systematic approach to the development of novel therapeutics for lung cancer using genomic analyses. Clin Pharmacol Ther 2013; 94:218-23. [PMID: 23657161 DOI: 10.1038/clpt.2013.90] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/30/2013] [Indexed: 12/16/2022]
Abstract
Molecularly targeted drugs for cancer therapy represent a therapeutic advance, but the proportion of patients who receive clinical benefit is still very limited. We present here the rationale and initial results of our program to define molecules involved in lung carcinogenesis with the goal of identifying new therapeutic targets and/or predictive biomarkers for drug response. We have used gene expression analysis of 120 lung cancers followed by RNA interference, tumor-tissue microarray analysis, and functional analyses to systematically distinguish potential target molecules specifically expressed in cancer cells. Through this approach, we have identified oncoproteins that provide the starting point for the development of therapeutic antibodies, dominant negative peptides, small-molecule inhibitors, and therapeutic cancer vaccines. We believe that the approach we describe should result in new molecularly targeted therapies with minimal risk of adverse events.
Collapse
Affiliation(s)
- Y Daigo
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | |
Collapse
|
33
|
Wang Q, Ma C, Kemmner W. Wdr66 is a novel marker for risk stratification and involved in epithelial-mesenchymal transition of esophageal squamous cell carcinoma. BMC Cancer 2013; 13:137. [PMID: 23514407 PMCID: PMC3610187 DOI: 10.1186/1471-2407-13-137] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 03/11/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND We attempted to identify novel biomarkers and therapeutic targets for esophageal squamous cell carcinoma by gene expression profiling of frozen esophageal squamous carcinoma specimens and examined the functional relevance of a newly discovered marker gene, WDR66. METHODS Laser capture microdissection technique was applied to collect the cells from well-defined tumor areas in collaboration with an experienced pathologist. Whole human gene expression profiling of frozen esophageal squamous carcinoma specimens (n = 10) and normal esophageal squamous tissue (n = 18) was performed using microarray technology. A gene encoding WDR66, WD repeat-containing protein 66 was significantly highly expressed in esophageal squamous carcinoma specimens. Microarray results were validated by quantitative real-time polymerase chain reaction (qRT-PCR) in a second and independent cohort (n = 71) consisting of esophageal squamous cell carcinoma (n = 25), normal esophagus (n = 11), esophageal adenocarcinoma (n = 13), gastric adenocarcinoma (n = 15) and colorectal cancers (n = 7). In order to understand WDR66's functional relevance siRNA-mediated knockdown was performed in a human esophageal squamous cell carcinoma cell line, KYSE520 and the effects of this treatment were then checked by another microarray analysis. RESULTS High WDR66 expression was significantly associated with poor overall survival (P = 0.031) of patients suffering from esophageal squamous carcinomas. Multivariate Cox regression analysis revealed that WDR66 expression remained an independent prognostic factor (P = 0.042). WDR66 knockdown by RNA interference resulted particularly in changes of the expression of membrane components. Expression of vimentin was down regulated in WDR66 knockdown cells while that of the tight junction protein occludin was markedly up regulated. Furthermore, siRNA-mediated knockdown of WDR66 resulted in suppression of cell growth and reduced cell motility. CONCLUSIONS WDR66 might be a useful biomarker for risk stratification of esophageal squamous carcinomas. WDR66 expression is likely to play an important role in esophageal squamous cell carcinoma growth and invasion as a positive modulator of epithelial-mesenchymal transition. Furthermore, due to its high expression and possible functional relevance, WDR66 might be a novel drug target for the treatment of squamous carcinoma.
Collapse
Affiliation(s)
- Qing Wang
- Experimental Clinical Research Center at the Max-Delbrueck-Center for Molecular Medicine, Charité Campus Buch, Lindenbergerweg 80, Berlin, 13125, Germany
| | | | | |
Collapse
|
34
|
Nguyen MH, Ueda K, Nakamura Y, Daigo Y. Identification of a novel oncogene, MMS22L, involved in lung and esophageal carcinogenesis. Int J Oncol 2012; 41:1285-96. [PMID: 22895565 DOI: 10.3892/ijo.2012.1589] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/12/2012] [Indexed: 11/06/2022] Open
Abstract
Genome-wide gene expression profile analyses using a cDNA microarray containing 27,648 genes or expressed sequence tags identified MMS22L (methyl methanesulfonate-sensitivity protein 22-like) to be overexpressed in the majority of clinical lung and esophageal cancers, but not expressed in normal organs except testis. Transfection of siRNAs against MMS22L into cancer cells suppressed its expression and inhibited cell growth, while exogenous expression of MMS22L enhanced the growth of mammalian cells. MMS22L protein was translocated to the nucleus and stabilized by binding to C-terminal portion of NFKBIL2 [nuclear factor of kappa (NFKB) light polypeptide gene enhancer in B-cells inhibitor-like 2]. Expression of a C-terminal portion of NFKBIL2 protein including the MMS22L-interacting site in cancer cells could reduce the levels of MMS22L in nucleus and suppressed cancer cell growth. Interestingly, reduction of MMS22L by siRNAs in cancer cells inhibited the TNF-α-dependent activation of RelA/p65 in the NFKB pathway and expression of its downstream anti-apoptotic molecules such as Bcl-XL and TRAF1. In addition, knockdown of MMS22L expression also enhanced the apoptosis of cancer cells that were exposed to DNA-damaging agents including 5-FU and CDDP. Our data strongly suggest that targeting MMS22L as well as its interaction with NFKBIL2 could be a promising strategy for novel cancer treatments, and also improve the efficacy of DNA damaging anticancer drugs.
Collapse
Affiliation(s)
- Minh-Hue Nguyen
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
35
|
Fujitomo T, Daigo Y, Matsuda K, Ueda K, Nakamura Y. Critical function for nuclear envelope protein TMEM209 in human pulmonary carcinogenesis. Cancer Res 2012; 72:4110-8. [PMID: 22719065 DOI: 10.1158/0008-5472.can-12-0159] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Therapeutic targets for more effective and less toxic treatments of lung cancer remain important. Here we report the identification of the integral nuclear envelope protein TMEM209 as a critical driver of human lung cancer growth and survival. TMEM209 expression was normally limited to testis, but we found that it was widely expressed in lung cancer, in which it localized to the nuclear envelope, Golgi apparatus, and the cytoplasm of lung cancer cells. Ectopic overexpression of TMEM209 promoted cell growth, whereas TMEM209 attenuation was sufficient to block growth. Mass spectrometric analysis identified the nucleoporin protein NUP205 as a TMEM209-interacting protein, stabilizing NUP205 and increasing the level of c-Myc in the nucleus. Taken together, our findings indicate that TMEM209 overexpression and TMEM209-NUP205 interaction are critical drivers of lung cancer proliferation, suggesting a promising new target for lung cancer therapy.
Collapse
Affiliation(s)
- Takashi Fujitomo
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
36
|
Koinuma J, Akiyama H, Fujita M, Hosokawa M, Tsuchiya E, Kondo S, Nakamura Y, Daigo Y. Characterization of an Opa interacting protein 5 involved in lung and esophageal carcinogenesis. Cancer Sci 2012; 103:577-86. [PMID: 22129094 DOI: 10.1111/j.1349-7006.2011.02167.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To identify potential molecular targets for diagnosis, treatment and/or prevention of lung and esophageal carcinomas, we screened for genes that were overexpressed in tumors through gene expression analyses of 120 lung cancers and 19 esophageal squamous-cell carcinomas using a cDNA microarray consisting of 27,648 cDNA or expressed sequence tags. In this process, we identified a gene, Opa interacting protein 5 (OIP5), to be highly transactivated in the majority of lung and esophageal cancers. Immunohistochemical staining using 336 archived non-small cell lung cancers and 305 esophageal squamous-cell carcinomas specimens demonstrated that OIP5 expression was significantly associated with poor prognosis of lung and esophageal cancer patients (P = 0.0053 and 0.0168, respectively), and multivariate analysis confirmed its independent prognostic value for non-small cell lung cancers (P = 0.0112). Suppression of OIP5 expression with siRNA effectively suppressed the growth of cancer cells, whereas the exogenous expression of OIP5 enhanced the growth of cancer cells. In addition, OIP5 protein is likely to be stabilized through its interaction with Raf1. OIP5 is a promising target for developing new prognostic biomarkers and anti-cancer drugs.
Collapse
Affiliation(s)
- Junkichi Koinuma
- Laboratory of Molecular Medicine, Human Genome Center, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Masuda K, Takano A, Oshita H, Akiyama H, Tsuchiya E, Kohno N, Nakamura Y, Daigo Y. Chondrolectin is a novel diagnostic biomarker and a therapeutic target for lung cancer. Clin Cancer Res 2011; 17:7712-22. [PMID: 22016508 DOI: 10.1158/1078-0432.ccr-11-0619] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE This study aims to identify molecules that might be useful as diagnostic/prognostic biomarkers and as targets for the development of new molecular therapies for lung cancer. EXPERIMENTAL DESIGN We screened for genes that were highly transactivated in a large proportion of 120 lung cancers by means of a cDNA microarray representing 27,648 genes and found chondrolectin (CHODL) as a candidate. Tumor tissue microarray was applied to examine the expression of CHODL protein and its clinicopathologic significance in archival non-small cell lung cancer (NSCLC) tissues from 295 patients. A role of CHODL in cancer cell growth and/or survival was examined by siRNA experiments. Cellular invasive effect of CHODL on mammalian cells was examined by Matrigel assays. RESULTS Immunohistochemical staining revealed that strong positivity of CHODL protein was associated with shorter survival of patients with NSCLC (P = 0.0006), and multivariate analysis confirmed it to be an independent prognostic factor. Treatment of lung cancer cells with siRNAs against CHODL suppressed growth of the cancer cells. Furthermore, induction of exogenous expression of CHODL conferred growth and invasive activity of mammalian cells. CONCLUSIONS CHODL is likely to be a prognostic biomarker in the clinic and targeting CHODL might be a strategy for the development of anticancer drugs.
Collapse
Affiliation(s)
- Ken Masuda
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Nishino R, Takano A, Oshita H, Ishikawa N, Akiyama H, Ito H, Nakayama H, Miyagi Y, Tsuchiya E, Kohno N, Nakamura Y, Daigo Y. Identification of Epstein-Barr Virus–Induced Gene 3 as a Novel Serum and Tissue Biomarker and a Therapeutic Target for Lung Cancer. Clin Cancer Res 2011; 17:6272-86. [DOI: 10.1158/1078-0432.ccr-11-0060] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Aragaki M, Takahashi K, Akiyama H, Tsuchiya E, Kondo S, Nakamura Y, Daigo Y. Characterization of a cleavage stimulation factor, 3' pre-RNA, subunit 2, 64 kDa (CSTF2) as a therapeutic target for lung cancer. Clin Cancer Res 2011; 17:5889-900. [PMID: 21813631 DOI: 10.1158/1078-0432.ccr-11-0240] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE This study aims to discover novel biomarkers and therapeutic targets for lung cancers. EXPERIMENTAL DESIGN We screened for genes showing elevated expression in the majority of lung cancers by genome-wide gene expression profile analysis of 120 lung cancers obtained by cDNA microarray representing 27,648 genes or expressed sequence tags. In this process, we detected a gene encoding cleavage stimulation factor, 3' pre-RNA, subunit 2, 64 kDa (CSTF2) as a candidate. Immunohistochemical staining using tissue microarray consisting of 327 lung cancers was applied to examine the expression of CSTF2 protein and its prognostic value. A role of CSTF2 in cancer cell growth was examined by siRNA experiments. RESULTS Northern blot and immunohistochemical analyses detected the expression of CSTF2 only in testis among 16 normal tissues. Immunohistochemical analysis using tissue microarray showed an association of strong CSTF2 expression with poor prognosis of patients with non-small cell lung cancer (P = 0.0079), and multivariate analysis showed that CSTF2 positivity is an independent prognostic factor. In addition, suppression of CSTF2 expression by siRNAs suppressed lung cancer cell growth, whereas exogenous expression of CSTF2 promoted growth and invasion of mammalian cells. CONCLUSIONS CSTF2 is likely to play an important role in lung carcinogenesis and be a prognostic biomarker in the clinic.
Collapse
Affiliation(s)
- Masato Aragaki
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Toyokawa G, Masuda K, Daigo Y, Cho HS, Yoshimatsu M, Takawa M, Hayami S, Maejima K, Chino M, Field HI, Neal DE, Tsuchiya E, Ponder BAJ, Maehara Y, Nakamura Y, Hamamoto R. Minichromosome Maintenance Protein 7 is a potential therapeutic target in human cancer and a novel prognostic marker of non-small cell lung cancer. Mol Cancer 2011; 10:65. [PMID: 21619671 PMCID: PMC3125391 DOI: 10.1186/1476-4598-10-65] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 05/28/2011] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The research emphasis in anti-cancer drug discovery has always been to search for a drug with the greatest antitumor potential but fewest side effects. This can only be achieved if the drug used is against a specific target located in the tumor cells. In this study, we evaluated Minichromosome Maintenance Protein 7 (MCM7) as a novel therapeutic target in cancer. RESULTS Immunohistochemical analysis showed that MCM7 was positively stained in 196 of 331 non-small cell lung cancer (NSCLC), 21 of 29 bladder tumor and 25 of 70 liver tumor cases whereas no significant staining was observed in various normal tissues. We also found an elevated expression of MCM7 to be associated with poor prognosis for patients with NSCLC (P = 0.0055). qRT-PCR revealed a higher expression of MCM7 in clinical bladder cancer tissues than in corresponding non-neoplastic tissues (P < 0.0001), and we confirmed that a wide range of cancers also overexpressed MCM7 by cDNA microarray analysis. Suppression of MCM7 using specific siRNAs inhibited incorporation of BrdU in lung and bladder cancer cells overexpressing MCM7, and suppressed the growth of those cells more efficiently than that of normal cell strains expressing lower levels of MCM7. CONCLUSIONS Since MCM7 expression was generally low in a number of normal tissues we examined, MCM7 has the characteristics of an ideal candidate for molecular targeted cancer therapy in various tumors and also as a good prognostic biomarker for NSCLC patients.
Collapse
Affiliation(s)
- Gouji Toyokawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Surgery and Science, Graduate School of Medical Science, Kyusyu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ken Masuda
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yataro Daigo
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Medical Oncology, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Hyun-Soo Cho
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masanori Yoshimatsu
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Surgery and Science, Graduate School of Medical Science, Kyusyu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masashi Takawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shinya Hayami
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kazuhiro Maejima
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Makoto Chino
- Specialty Chemicals & International Division Pharmaceuticals Group, Nippon Kayaku Co., Ltd., 11-2, Fujimi 1 Chome, Chiyoda-ku, Tokyo, 102-8172, Japan
| | - Helen I Field
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - David E Neal
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Eiju Tsuchiya
- Department of Pathology, Saitama Cancer Center, Saitama 362-0806, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Kanagawa 241-0815, Japan
| | - Bruce AJ Ponder
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Science, Kyusyu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yusuke Nakamura
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ryuji Hamamoto
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
41
|
Hsieh CL, Lin CL, Liu H, Chang YJ, Shih CJ, Zhong CZ, Lee SC, Tan BCM. WDHD1 modulates the post-transcriptional step of the centromeric silencing pathway. Nucleic Acids Res 2011; 39:4048-62. [PMID: 21266480 PMCID: PMC3105424 DOI: 10.1093/nar/gkq1338] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The centromere is a highly specialized chromosomal element that is essential for chromosome segregation during mitosis. Centromere integrity must therefore be properly preserved and is strictly dependent upon the establishment and maintenance of surrounding chromatin structure. Here we identify WDHD1, a WD40-domain and HMG-domain containing protein, as a key regulator of centromere function. We show that WDHD1 associates with centromeres in a cell cycle-dependent manner, coinciding with mid-to-late S phase. WDHD1 down-regulation compromises HP1α localization to pericentric heterochromatin and leads to altered expression of epigenetic markers associated with this chromatin region. As a consequence, such reduced epigenetic silencing is manifested in disrupted heterochromatic state of the centromere and a defective mitosis. Moreover, we demonstrate that a possible underlying mechanism of WDHD1's involvement lies in the proper generation of the small non-coding RNAs encoded by the centromeric satellite repeats. This role is mediated at the post-transcriptional level and likely through stabilizing Dicer association with centromeric RNA. Collectively, these findings suggest that WDHD1 may be a critical component of the RNA-dependent epigenetic control mechanism that sustains centromere integrity and genomic stability.
Collapse
Affiliation(s)
- Chia-Ling Hsieh
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Nguyen MH, Koinuma J, Ueda K, Ito T, Tsuchiya E, Nakamura Y, Daigo Y. Phosphorylation and activation of cell division cycle associated 5 by mitogen-activated protein kinase play a crucial role in human lung carcinogenesis. Cancer Res 2010; 70:5337-47. [PMID: 20551060 DOI: 10.1158/0008-5472.can-09-4372] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We analyzed the gene expression profiles of clinical lung carcinomas using a cDNA microarray containing 27,648 genes or expressed sequence tags, and identified CDCA5 (cell division cycle associated 5) to be upregulated in the majority of lung cancers. Tumor tissue microarray analysis of 262 non-small cell lung cancer patients revealed that CDCA5 positivity was an independent prognostic factor for lung cancer patients. Suppression of CDCA5 expression with siRNAs inhibited the growth of lung cancer cells; concordantly, induction of exogenous expression of CDCA5 conferred growth-promoting activity in mammalian cells. We also found that extracellular signal-regulated kinase (ERK) kinase phosphorylated CDCA5 at Ser79 and Ser209 in vivo. Exogenous expression of phospho-mimicking CDCA5 protein whose Ser209 residue was replaced with glutamine acid further enhanced the growth of cancer cells. In addition, functional inhibition of the interaction between CDCA5 and ERK kinase by a cell-permeable peptide corresponding to a 20-amino-acid sequence part of CDCA5, which included the Ser209 phosphorylation site by ERK, significantly reduced phosphorylation of CDCA5 and resulted in growth suppression of lung cancer cells. Our data suggest that transactivation of CDCA5 and its phosphorylation at Ser209 by ERK play an important role in lung cancer proliferation, and that the selective suppression of the ERK-CDCA5 pathway could be a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Minh-Hue Nguyen
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Sato N, Yamabuki T, Takano A, Koinuma J, Aragaki M, Masuda K, Ishikawa N, Kohno N, Ito H, Miyamoto M, Nakayama H, Miyagi Y, Tsuchiya E, Kondo S, Nakamura Y, Daigo Y. Wnt inhibitor Dickkopf-1 as a target for passive cancer immunotherapy. Cancer Res 2010; 70:5326-36. [PMID: 20551066 DOI: 10.1158/0008-5472.can-09-3879] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dickkopf-1 (DKK1) is an inhibitor of Wnt/beta-catenin signaling that is overexpressed in most lung and esophageal cancers. Here, we show its utility as a serum biomarker for a wide range of human cancers, and we offer evidence favoring the potential application of anti-DKK1 antibodies for cancer treatment. Using an original ELISA system, high levels of DKK1 protein were found in serologic samples from 906 patients with cancers of the pancreas, stomach, liver, bile duct, breast, and cervix, which also showed elevated expression levels of DKK1. Additionally, anti-DKK1 antibody inhibited the invasive activity and the growth of cancer cells in vitro and suppressed the growth of engrafted tumors in vivo. Tumor tissues treated with anti-DKK1 displayed significant fibrotic changes and a decrease in viable cancer cells without apparent toxicity in mice. Our findings suggest DKK1 as a serum biomarker for screening against a variety of cancers, and anti-DKK1 antibodies as potential theranostic tools for diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Nagato Sato
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|