1
|
Mullapudi N, Ye B, Suzuki M, Fazzari M, Han W, Shi MK, Marquardt G, Lin J, Wang T, Keller S, Zhu C, Locker JD, Spivack SD. Genome Wide Methylome Alterations in Lung Cancer. PLoS One 2015; 10:e0143826. [PMID: 26683690 PMCID: PMC4684329 DOI: 10.1371/journal.pone.0143826] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/10/2015] [Indexed: 01/03/2023] Open
Abstract
Aberrant cytosine 5-methylation underlies many deregulated elements of cancer. Among paired non-small cell lung cancers (NSCLC), we sought to profile DNA 5-methyl-cytosine features which may underlie genome-wide deregulation. In one of the more dense interrogations of the methylome, we sampled 1.2 million CpG sites from twenty-four NSCLC tumor (T)-non-tumor (NT) pairs using a methylation-sensitive restriction enzyme- based HELP-microarray assay. We found 225,350 differentially methylated (DM) sites in adenocarcinomas versus adjacent non-tumor tissue that vary in frequency across genomic compartment, particularly notable in gene bodies (GB; p<2.2E-16). Further, when DM was coupled to differential transcriptome (DE) in the same samples, 37,056 differential loci in adenocarcinoma emerged. Approximately 90% of the DM-DE relationships were non-canonical; for example, promoter DM associated with DE in the same direction. Of the canonical changes noted, promoter (PR) DM loci with reciprocal changes in expression in adenocarcinomas included HBEGF, AGER, PTPRM, DPT, CST1, MELK; DM GB loci with concordant changes in expression included FOXM1, FERMT1, SLC7A5, and FAP genes. IPA analyses showed adenocarcinoma-specific promoter DMxDE overlay identified familiar lung cancer nodes [tP53, Akt] as well as less familiar nodes [HBEGF, NQO1, GRK5, VWF, HPGD, CDH5, CTNNAL1, PTPN13, DACH1, SMAD6, LAMA3, AR]. The unique findings from this study include the discovery of numerous candidate The unique findings from this study include the discovery of numerous candidate methylation sites in both PR and GB regions not previously identified in NSCLC, and many non-canonical relationships to gene expression. These DNA methylation features could potentially be developed as risk or diagnostic biomarkers, or as candidate targets for newer methylation locus-targeted preventive or therapeutic agents.
Collapse
Affiliation(s)
- Nandita Mullapudi
- Department of Medicine/Pulmonary, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Bin Ye
- Department of Bioinformatics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Melissa Fazzari
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Weiguo Han
- Department of Medicine/Pulmonary, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Miao K. Shi
- Department of Medicine/Pulmonary, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gaby Marquardt
- Department of Medicine/Pulmonary, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Juan Lin
- Department of Epidemiology & Population Health, Division of Biostatistics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Tao Wang
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Steven Keller
- Department of Cardiovascular &Thoracic Surgery, Montefiore Medical Center, Bronx, New York, United States of America
| | - Changcheng Zhu
- Department of Pathology, Montefiore Medical Center, Bronx, New York, United States of America
| | - Joseph D. Locker
- Department of Pathology, Montefiore Medical Center, Bronx, New York, United States of America
| | - Simon D. Spivack
- Department of Medicine/Pulmonary, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
2
|
Abstract
Diseases and death caused by exposure to tobacco smoke have become the single most serious preventable public health concern. Thus, biomarkers that can monitor tobacco exposure and health effects can play a critical role in tobacco product regulation and public health policy. Biomarkers of exposure to tobacco toxicants are well established and have been used in population studies to establish public policy regarding exposure to second-hand smoke, an example being the nicotine metabolite cotinine, which can be measured in urine. Biomarkers of biological response to tobacco smoking range from those indicative of inflammation to mRNA and microRNA patterns related to tobacco use and/or disease state. Biomarkers identifying individuals with an increased risk for a pathological response to tobacco have also been described. The challenge for any novel technology or biomarker is its translation to clinical and/or regulatory application, a process that requires first technical validation of the assay and then careful consideration of the context the biomarker assay may be used in the regulatory setting. Nonetheless, the current efforts to investigate new biomarker of tobacco smoke exposure promise to offer powerful new tools in addressing the health hazards of tobacco product use. This review will examine such biomarkers, albeit with a focus on those related to cigarette smoking.
Collapse
Affiliation(s)
- William Mattes
- Division of Systems Biology, Food & Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA.
| | - Xi Yang
- Division of Systems Biology, Food & Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Michael S Orr
- Office of Science, Food & Drug Administration, Center for Tobacco Products, Rockville, Maryland, USA
| | - Patricia Richter
- Office of Science, Food & Drug Administration, Center for Tobacco Products, Rockville, Maryland, USA
| | - Donna L Mendrick
- Division of Systems Biology, Food & Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
3
|
Lin J, Marquardt G, Mullapudi N, Wang T, Han W, Shi M, Keller S, Zhu C, Locker J, Spivack SD. Lung cancer transcriptomes refined with laser capture microdissection. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2868-84. [PMID: 25128906 DOI: 10.1016/j.ajpath.2014.06.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/16/2014] [Accepted: 06/06/2014] [Indexed: 12/27/2022]
Abstract
We evaluated the importance of tumor cell selection for generating gene signatures in non-small cell lung cancer. Tumor and nontumor tissue from macroscopically dissected (Macro) surgical specimens (31 pairs from 32 subjects) was homogenized, extracted, amplified, and hybridized to microarrays. Adjacent scout sections were histologically mapped; sets of approximately 1000 tumor cells and nontumor cells (alveolar or bronchial) were procured by laser capture microdissection (LCM). Within histological strata, LCM and Macro specimens exhibited approximately 67% to 80% nonoverlap in differentially expressed (DE) genes. In a representative subset, LCM uniquely identified 300 DE genes in tumor versus nontumor specimens, largely attributable to cell selection; 382 DE genes were common to Macro, Macro with preamplification, and LCM platforms. RT-qPCR validation in a 33-gene subset was confirmatory (ρ = 0.789 to 0.964, P = 0.0013 to 0.0028). Pathway analysis of LCM data suggested alterations in known cancer pathways (cell growth, death, movement, cycle, and signaling components), among others (eg, immune, inflammatory). A unique nine-gene LCM signature had higher tumor-nontumor discriminatory accuracy (100%) than the corresponding Macro signature (87%). Comparison with Cancer Genome Atlas data sets (based on homogenized Macro tissue) revealed both substantial overlap and important differences from LCM specimen results. Thus, cell selection via LCM enhances expression profiling precision, and confirms both known and under-appreciated lung cancer genes and pathways.
Collapse
Affiliation(s)
- Juan Lin
- Biostatistics Core Division, Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Gabrielle Marquardt
- Division of Pulmonary Medicine, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Nandita Mullapudi
- Division of Pulmonary Medicine, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Tao Wang
- Biostatistics Core Division, Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Weiguo Han
- Division of Pulmonary Medicine, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Miao Shi
- Division of Pulmonary Medicine, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Steven Keller
- Department of Cardiovascular and Thoracic Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - Changcheng Zhu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Joseph Locker
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Simon D Spivack
- Division of Pulmonary Medicine, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
4
|
McHale CM, Zhang L, Thomas R, Smith MT. Analysis of the transcriptome in molecular epidemiology studies. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:500-517. [PMID: 23907930 PMCID: PMC5142298 DOI: 10.1002/em.21798] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 05/29/2023]
Abstract
The human transcriptome is complex, comprising multiple transcript types, mostly in the form of non-coding RNA (ncRNA). The majority of ncRNA is of the long form (lncRNA, ≥ 200 bp), which plays an important role in gene regulation through multiple mechanisms including epigenetics, chromatin modification, control of transcription factor binding, and regulation of alternative splicing. Both mRNA and ncRNA exhibit additional variability in the form of alternative splicing and RNA editing. All aspects of the human transcriptome can potentially be dysregulated by environmental exposures. Next-generation RNA sequencing (RNA-Seq) is the best available methodology to measure this although it has limitations, including experimental bias. The third phase of the MicroArray Quality Control Consortium project (MAQC-III), also called Sequencing Quality Control (SeQC), aims to address these limitations through standardization of experimental and bioinformatic methodologies. A limited number of toxicogenomic studies have been conducted to date using RNA-Seq. This review describes the complexity of the human transcriptome, the application of transcriptomics by RNA-Seq or microarray in molecular epidemiology studies, and limitations of these approaches including the type of cell or tissue analyzed, experimental variation, and confounding. By using good study designs with precise, individual exposure measurements, sufficient power and incorporation of phenotypic anchors, studies in human populations can identify biomarkers of exposure and/or early effect and elucidate mechanisms of action underlying associated diseases, even at low doses. Analysis of datasets at the pathway level can compensate for some of the limitations of RNA-Seq and, as more datasets become available, will increasingly elucidate the exposure-disease continuum.
Collapse
Affiliation(s)
- Cliona M McHale
- Division of Environmental Health Sciences, Genes and Environment Laboratory, School of Public Health, University of California, Berkeley, California 94720, USA.
| | | | | | | |
Collapse
|
5
|
Peng J, Xu X, Mace BE, Vanderveer LA, Workman LR, Slifker MJ, Sullivan PM, Veenstra TD, Clapper ML. Estrogen metabolism within the lung and its modulation by tobacco smoke. Carcinogenesis 2013; 34:909-15. [PMID: 23276798 PMCID: PMC3616670 DOI: 10.1093/carcin/bgs402] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/06/2012] [Accepted: 12/19/2012] [Indexed: 11/14/2022] Open
Abstract
Although estrogen and the enzymes responsible for its metabolism have been detected within the lung, the ability of this tissue to metabolize estrogen has not been demonstrated previously. The goal of this study was to characterize the profile of estrogen metabolites within the murine lung and to determine the effect of tobacco smoke exposure on metabolite levels. Use of liquid chromatography-tandem mass spectrometry led to the detection of three estrogens (E1, E2 and E3) and five estrogen metabolites (2-OHE1, 4-OHE1, 4-OHE2, 2-OMeE1 and 2-OMeE2) within the perfused lung, with 4-OHE1 being the most abundant species. Levels of 4-OHEs, carcinogenic derivatives produced primarily by cytochrome P450 1B1 (Cyp1b1), were 2-fold higher in females than males. Deletion of Cyp1b1 in females led to a dramatic reduction (21-fold) in 4-OHEs, whereas levels of 2-OHE1 and the putative protective estrogen metabolite 2-OMeE2 were increased (2.4- and 5.0-fold, respectively) (P = 0.01). Similar quantitative differences in estrogen metabolite levels were observed between Cyp1b1 null and wild-type males. Exposure of female mice to tobacco smoke for 8 weeks (2h per day, 5 days per week) increased the levels of 4-OHE1 (4-fold) and 2-OHE2 (2-fold) within the lung while reducing the total concentration of 2-OMeEs to 70% of those of unexposed controls. These data suggest that tobacco smoke accelerates the production of 4-OHEs within the lung; carcinogenic metabolites that could potentially contribute to lung tumor development. Thus, inhibition of CYP1B1 may represent a promising strategy for the prevention and treatment of lung cancer.
Collapse
Affiliation(s)
- Jing Peng
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Xia Xu
- Laboratory of Proteomics and Analytics Technologies, SAIC-Frederick, Frederick, MD 21702, USA
| | - Brian E. Mace
- Department of Medicine, Duke University, Geriatric Research Education Clinical Center DVAMC, Durham, NC 27705, USA and
| | - Lisa A. Vanderveer
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Laura R. Workman
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Michael J. Slifker
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Patrick M. Sullivan
- Department of Medicine, Duke University, Geriatric Research Education Clinical Center DVAMC, Durham, NC 27705, USA and
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytics Technologies, SAIC-Frederick, Frederick, MD 21702, USA
| | - Margie L. Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
6
|
Brody JS. Transcriptome alterations induced by cigarette smoke. Int J Cancer 2012; 131:2754-62. [PMID: 22961494 DOI: 10.1002/ijc.27829] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/16/2012] [Indexed: 12/24/2022]
Abstract
Cigarette smoke alters the transcriptome of multiple tissues; those directly exposed to toxic products and those exposed to circulating components and metabolic products of tobacco smoke. In most tissues and organs that have been studied, the smoking transcriptome is characterized by increased expression of antioxidant and xenobiotic genes as well as a wide spectrum of inflammation-related genes, and potential oncogenic genes. Smoking is associated with an increased incidence of cancer in a number of organs both those directly exposed (lungs and airways) and those indirectly exposed (bladder, liver, pancreas). Individual transcriptomic responses vary, based to some degree on as yet to be clarified genetic factors, and likely how and what the individual has smoked. The complexity of individual responses to tobacco exposure and of smoking-related cancers in various organs is beginning to be revealed in transcriptomic and whole genome sequencing studies, of both tumors and cytologically normal appearing cells that have been exposed to cigarette smoke or its products creating a genomic "field of injury." The recent application of next generation sequencing to defining the transcriptome alterations induced by cigarette smoke holds the promise of discovering new approaches to personalized prevention and treatment of smoking-related lung diseases in the future.
Collapse
Affiliation(s)
- Jerome S Brody
- Boston University School of Medicine, Pulmonary Center (R-3), Boston, MA 02118, USA.
| |
Collapse
|
7
|
Tan XL, Marquardt G, Massimi AB, Shi M, Han W, Spivack SD. High-throughput library screening identifies two novel NQO1 inducers in human lung cells. Am J Respir Cell Mol Biol 2012; 46:365-71. [PMID: 22021338 PMCID: PMC3326428 DOI: 10.1165/rcmb.2011-0301oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 10/19/2011] [Indexed: 01/18/2023] Open
Abstract
Many phytochemicals possess antioxidant and cancer-preventive properties, some putatively through antioxidant response element-mediated phase II metabolism, entailing mutagen/oxidant quenching. In our recent studies, however, most candidate phytochemical agents were not potent in inducing phase II genes in normal human lung cells. In this study, we applied a messenger RNA (mRNA)-specific gene expression-based high throughput in vitro screening approach to discover new, potent plant-derived phase II inducing chemopreventive agents. Primary normal human bronchial epithelial (NHBE) cells and immortalized human bronchial epithelial cells (HBECs) were exposed to 800 individual compounds in the MicroSource Natural Products Library. At a level achievable in humans by diet (1.0 μM), 2,3-dihydroxy-4-methoxy-4'-ethoxybenzophenone (DMEBP), triacetylresveratrol (TRES), ivermectin, sanguinarine sulfate, and daunorubicin induced reduced nicotinamide adenine dinucleotide phosphate:quinone oxidoreductase 1 (NQO1) mRNA and protein expression in NHBE cells. DMEBP and TRES were the most attractive agents as coupling potency and low toxicity for induction of NQO1 (mRNA level, ≥3- to 10.8-fold that of control; protein level, ≥ two- to fourfold that of control). Induction of glutathione S-transferase pi mRNA expression was modest, and none was apparent for glutathione S-transferase pi protein expression. Measurements of reactive oxygen species and glutathione/oxidized glutathione ratio showed an antioxidant effect for DMEBP, but no definite effect was found for TRES in NHBE cells. Exposure of NHBE cells to H(2)O(2) induced nuclear translocation of nuclear factor erythroid 2-related factor 2, but this translocation was not significantly inhibited by TRES and DMEBP. These studies show that potency and low toxicity may align for two potential NQO1-inducing agents, DMEBP and TRES.
Collapse
Affiliation(s)
- Xiang-Lin Tan
- M.D. Department of Health Science Research, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Chen PH, Chang H, Chang JT, Lin P. Aryl hydrocarbon receptor in association with RelA modulates IL-6 expression in non-smoking lung cancer. Oncogene 2011; 31:2555-65. [PMID: 21996739 DOI: 10.1038/onc.2011.438] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is activated by cigarette smoke. Previously, we demonstrated that AhR is overexpressed in lung adenocarcinomas (ADs). In this study we observed that AhR expression is significantly correlated with nuclear RelA (a nuclear factor-κB (NFκB) subunit) and cytosolic interleukin-6 (IL-6) in 200 non-small cell lung cancer patients, especially among never smokers. Overexpression of AhR increased IL-6 expression in H1355 cells and immortalized human bronchial epithelial cells BEAS-2B. As NFκB inhibitor and knockdown RelA expression greatly reduced constitutive AhR-induced IL-6 expression, we hypothesized that AhR expression, in the absence of exogenous ligand, is able to modulate NFκB activity and subsequently upregulate IL-6 expression, thus promoting the development of lung AD. Specifically, AhR overexpression significantly increased NFκB activity, whereas interference with AhR expression significantly reduced NFκB activity and IL-6 expression in H1355 cells. We demonstrated that AhR associates with RelA in the cytosol and nucleus of human lung cells. Furthermore, AhR overexpression enhanced nuclear localization of AhR and RelA, and increased the association of AhR-RelA with the NFκB response element of the IL-6 promoter. However, p50 was not involved. Our results indicate that AhR, without exposure to a ligand, associates with RelA, which then positively modulates NFκB activity and then upregulates IL-6 expression in human lung cells. Thus we have identified a new mechanism for lung tumorigenesis in non-smokers.
Collapse
Affiliation(s)
- P-H Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | |
Collapse
|
9
|
Brody JS, Steiling K. Interaction of cigarette exposure and airway epithelial cell gene expression. Annu Rev Physiol 2011; 73:437-56. [PMID: 21090967 DOI: 10.1146/annurev-physiol-012110-142219] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cigarette smoking is responsible for lung cancer and chronic obstructive pulmonary disease (COPD), the leading cause of death from cancer and the second-leading cause of death in the United States. In the United States, 46 million people smoke, with an equal number of former smokers. Moreover, 20-25% of current or former smokers will develop either disease, and smokers with one disease are at increased risk for developing the other. There are no tools for predicting risk of developing either disease; no accepted tools for early diagnosis of potentially curable lung cancer; and no tools for defining molecular pathways or molecular subtypes of these diseases, for predicting rate of progression, or for assessing response to therapy at a biochemical or molecular level. This review discusses current studies and the future potential of measuring global gene expression in epithelial cells that are in the airway field of injury and of using the genomic information derived to begin to answer some of the above questions.
Collapse
Affiliation(s)
- Jerome S Brody
- Pulmonary Center, Boston University School of Medicine, Massachusetts 02218, USA.
| | | |
Collapse
|
10
|
Tan XL, Shi M, Tang H, Han W, Spivack SD. Candidate dietary phytochemicals modulate expression of phase II enzymes GSTP1 and NQO1 in human lung cells. J Nutr 2010; 140:1404-10. [PMID: 20554899 PMCID: PMC2903300 DOI: 10.3945/jn.110.121905] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many phytochemicals possess cancer-preventive properties, some putatively through phase II metabolism-mediated mutagen/oxidant quenching. We applied human lung cells in vitro to investigate the effects of several candidate phytopreventive agents, including green tea extracts (GTE), broccoli sprout extracts (BSE), epigallocatechin gallate (EGCG), sulforaphane (SFN), phenethyl isothiocyanate (PEITC), and benzyl isothiocyanate (BITC), on inducing phase II enzymes glutathione S-transferase P1 (GSTP1) and NAD(P)H:quinone oxidoreductase 1 (NQO1) at mRNA and protein levels. Primary normal human bronchial epithelial cells (NHBE), immortalized human bronchial epithelial cells (HBEC), and lung adenocarcinoma cells (A549) were exposed to diet-achievable levels of GTE and BSE (0.5, 1.0, 2.0 mg/L), or individual index components EGCG, SFN, PEITC, BITC (0.5, 1.0, 2.0 micromol/L) for 24 h, 48 h, and 6 d, respectively. mRNA assays employed RNA-specific quantitative RT-PCR and protein assays employed Western blotting. We found that in NHBE cells, while GSTP1 mRNA levels were slightly but significantly increased after exposure to GTE or BSE, NQO1 mRNA increased to 2- to 4-fold that of control when exposed to GTE, BSE, or SFN. Effects on NQO1 mRNA expression in HBEC cells were similar. NQO1 protein expression increased up to 11.8-fold in SFN-treated NHBE cells. Both GSTP1 and NQO1 protein expression in A549 cells were constitutively high but not induced under any condition. Our results suggest that NQO1 is more responsive to the studied chemopreventive agents than GSTP1 in human lung cells and there is discordance between single agent and complex mixture effects. We conclude that modulation of lung cell phase II metabolism by chemopreventive agents requires cell- and agent-specific discovery and testing.
Collapse
Affiliation(s)
- Xiang-Lin Tan
- Division of Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Miao Shi
- Division of Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY; Laboratory of Human Toxicology and Molecular Epidemiology, Wadsworth Center, New York State Department of Health, Albany, NY; Department of Health Sciences Research, Mayo Clinic, Rochester, MN; and Department of Genetics and Epidemiology, Albert Einstein College of Medicine, Bronx, NY
| | - Hui Tang
- Division of Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY; Laboratory of Human Toxicology and Molecular Epidemiology, Wadsworth Center, New York State Department of Health, Albany, NY; Department of Health Sciences Research, Mayo Clinic, Rochester, MN; and Department of Genetics and Epidemiology, Albert Einstein College of Medicine, Bronx, NY
| | - Weiguo Han
- Division of Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY; Laboratory of Human Toxicology and Molecular Epidemiology, Wadsworth Center, New York State Department of Health, Albany, NY; Department of Health Sciences Research, Mayo Clinic, Rochester, MN; and Department of Genetics and Epidemiology, Albert Einstein College of Medicine, Bronx, NY
| | - Simon D. Spivack
- Division of Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY; Laboratory of Human Toxicology and Molecular Epidemiology, Wadsworth Center, New York State Department of Health, Albany, NY; Department of Health Sciences Research, Mayo Clinic, Rochester, MN; and Department of Genetics and Epidemiology, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|