1
|
Doghish AS, Elshaer SS, Fathi D, Rizk NI, Elrebehy MA, Al-Noshokaty TM, Elballal MS, Abdelmaksoud NM, Abdel-Reheim MA, Abdel Mageed SS, Zaki MB, Mohammed OA, Tabaa MME, Elballal AS, Saber S, El-Husseiny HM, Abulsoud AI. Unraveling the role of miRNAs in the diagnosis, progression, and drug resistance of oral cancer. Pathol Res Pract 2024; 253:155027. [PMID: 38101159 DOI: 10.1016/j.prp.2023.155027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Oral cancer (OC) is a widely observed neoplasm on a global scale. Over time, there has been an increase in both its fatality and incidence rates. Oral cancer metastasis is a complex process that involves a number of cellular mechanisms, including invasion, migration, proliferation, and escaping from malignant tissue through either lymphatic or vascular channels. MicroRNAs (miRNAs) are a crucial class of short non-coding RNAs recognized as significant modulators of diverse cellular processes and exert a pivotal influence on the carcinogenesis pathway, functioning either as tumor suppressors or as oncogenes. It has been shown that microRNAs (miRNAs) have a role in metastasis at several stages, including epithelial-mesenchymal transition, migration, invasion, and colonization. This regulation is achieved by targeting key genes involved in these pathways by miRNAs. This paper aims to give a contemporary analysis of OC, focusing on its molecular genetics. The current literature and emerging advancements in miRNA dysregulation in OC are thoroughly examined. This project would advance OC diagnosis, prognosis, therapy, and therapeutic implications.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni, Suef 62521, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Ahmed S Elballal
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Cairo University, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| |
Collapse
|
2
|
Cheng YC, Chang KW, Pan JH, Chen CY, Chou CH, Tu HF, Li WC, Lin SC. Cold Atmospheric Plasma Jet Irradiation Decreases the Survival and the Expression of Oncogenic miRNAs of Oral Carcinoma Cells. Int J Mol Sci 2023; 24:16662. [PMID: 38068984 PMCID: PMC10705903 DOI: 10.3390/ijms242316662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Despite recent advancements, therapies against advanced oral squamous cell carcinoma (OSCC) remain ineffective, resulting in unsatisfactory therapeutic outcomes. Cold atmospheric plasma (CAP) offers a promising approach in the treatment of malignant neoplasms. Although the effects of CAP in abrogating OSCC have been explored, the exact mechanisms driving CAP-induced cancer cell death and the changes in microRNA (miRNA) expression are not fully understood. We fabricated and calibrated an argon-CAP device to explore the effects of CAP irradiation on the growth and expression of oncogenic miRNAs in OSCC. The analysis revealed that, in OSCC cell lines following CAP irradiation, there was a significant reduction in viability; a downregulation of miR-21, miR-31, miR-134, miR-146a, and miR-211 expression; and an inactivation of the v-akt murine thymoma viral oncogene homolog (AKT) and extracellular signal-regulated kinase (ERK) signals. Pretreatment with blockers of apoptosis, autophagy, and ferroptosis synergistically reduced CAP-induced cell death, indicating a combined induction of variable death pathways via CAP. Combined treatments using death inhibitors and miRNA mimics, alongside the activation of AKT and ERK following the exogenous expression, counteracted the cell mortality associated with CAP. The CAP-induced downregulation of miR-21, miR-31, miR-187, and miR-211 expression was rescued through survival signaling. Additionally, CAP irradiation notably inhibited the growth of SAS OSCC cell xenografts on nude mice. The reduced expression of oncogenic miRNAs in vivo aligned with in vitro findings. In conclusion, our study provides new lines of evidence demonstrating that CAP irradiation diminishes OSCC cell viability by abrogating survival signals and oncogenic miRNA expression.
Collapse
Affiliation(s)
- Yun-Chien Cheng
- Department of Mechanical Engineering, College of Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan; (Y.-C.C.); (C.-Y.C.)
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
| | - Kuo-Wei Chang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112304, Taiwan
| | - Jian-Hua Pan
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
| | - Chao-Yu Chen
- Department of Mechanical Engineering, College of Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan; (Y.-C.C.); (C.-Y.C.)
| | - Chung-Hsien Chou
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
| | - Hsi-Feng Tu
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Wan-Chun Li
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112304, Taiwan
| |
Collapse
|
3
|
Babadag S, Çelebi-Saltik B. A cellular regulator of the niche: telocyte. Tissue Barriers 2023; 11:2131955. [PMID: 36218299 PMCID: PMC10606812 DOI: 10.1080/21688370.2022.2131955] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 10/17/2022] Open
Abstract
Interstitial cells are present in the environment of stem cells in order to increase stem cell proliferation and differentiation and they are important to increase the efficiency of their transplantation. Telocytes (TCs) play an important role both in the preservation of tissue organ integrity and in the pathophysiology of many diseases, especially cancer. They make homo- or heterocellular contacts to form the structure of 3D network through their telopodes and deliver signaling molecules via a juxtacrine and/or paracrine association by budding shed vesicles into the vascular, nervous and endocrine systems. During this interaction, along with organelles, mRNA, microRNA, long non-coding RNA, and genomic DNA are transferred. This review article not only specifies the properties of TCs and their roles in the tissue organ microenvironment but also gives information about the factors that play a role in the transport of epigenetic information by TCs.
Collapse
Affiliation(s)
- Sena Babadag
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| |
Collapse
|
4
|
Shi Y, Pan J, Hang C, Tan L, Hu L, Yan Z, Zhu J. The estrogen/miR-338-3p/ADAM17 axis enhances the viability of breast cancer cells via suppressing NK cell's function. ENVIRONMENTAL TOXICOLOGY 2023; 38:1618-1627. [PMID: 37052432 DOI: 10.1002/tox.23791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Natural killer (NK) cells are the critical elements of the innate immune response and implicated in rapidly recognizing and eliminating cancer cells. However, the tumor-suppressive ability of NK cells is often impaired in several cancer types. The critical roles of microRNAs have been elucidated by increasing evidences, while the regulation of miR-338-3p in anti-tumor activation of NK cells and its relationship with estrogen in breast cancer (BC) are still confusing. Here, miR-338-3p level was found to be significantly downregulated in BC tissues and estrogen receptor positive (ER+ ) cells, this difference was more obvious in ER+ patients or BC patients at advanced stage (TNM III and IV). MiR-338-3p level was shown to be downregulated by 17β-estradiol in BC cells (MDA-MB-231 cells and MCF-7) in vitro. MiR-338-3p overexpression decreased disintegrin and metalloprotease-17 (ADAM17) secretion in MDA-MB-231 (ER- ) and MCF-7 (ER+ ) cells. In addition, miR-338-3p overexpression or treatment with anti-ADAM17 antibody could down-regulate granzyme B, CD16, and NKG2D in NK cells, which was reversed by human recombinant ADAM17. Furthermore, these educated NK cells could promote the viability of MDA-MB-231 or MCF-7 cells. Taken together, our results demonstrate that miR-338-3p was negatively regulated by estrogen in BC cells, impairing NK cell's activity by the up-regulation of ADAM17, and conversely promoted the viability of BC cells. Therefore, the estrogen/miR-338-3p/ADAM17 axis is critically implicated in BC pathogenesis and may provide potential targets for BC diagnosis and treatment.
Collapse
Affiliation(s)
- Yijiu Shi
- Department of general surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of general surgery, The first affiliated hospital of Ningbo University (Yuehu Campus), Ningbo, Zhejiang province, China
| | - Jianhui Pan
- Department of colorectal surgery, The first affiliated hospital of Ningbo University (Waitan Campus), Ningbo, Zhejiang province, China
| | - Chen Hang
- Department of general surgery, The first affiliated hospital of Ningbo University (Yuehu Campus), Ningbo, Zhejiang province, China
| | - Lin Tan
- Department of general surgery, The first affiliated hospital of Ningbo University (Yuehu Campus), Ningbo, Zhejiang province, China
| | - Li Hu
- Department of general surgery, The first affiliated hospital of Ningbo University (Yuehu Campus), Ningbo, Zhejiang province, China
| | - Zhilong Yan
- Department of general surgery, The first affiliated hospital of Ningbo University (Yuehu Campus), Ningbo, Zhejiang province, China
| | - Jiangfan Zhu
- Department of general surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Galindo Torres BP, García Girón C, Alcaraz Ortega R, Saiz López P, Adiego Leza MI, Grijalba Uche MV. Knowledge and expectations about miRNAs as biomarkers in head and neck squamous cell cancers. Am J Otolaryngol 2023; 44:103771. [PMID: 36603378 DOI: 10.1016/j.amjoto.2022.103771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022]
Abstract
Head and neck squamous cell cancer patients suffer from a high postoperative recurrence rate and poor prognosis. Thus, it is essential to better understand the underlying molecular mechanisms and identify the role of new biomarkers. Recent research has shown that the dysregulation of microRNAs is a potential biomarker as a screening or prognostic tool. Moreover, the literature reveals its promising usefulness to select the best treatment strategy and monitor tumour response. The purpose of this review is to identify and synthesize the available literature on microRNAs as biomarkers that could help manage patients with head and neck squamous cell cancer. A search in scientific databases was completed, including all relevant articles related to circulating microRNAs in head and neck squamous cell cancer published in English or Spanish. We focused on articles whose main findings were related to their usefulness in diagnosis and prognosis. Conclusion: Knowledge of microRNAs opens the possibilities that these molecules offer in terms of monitoring cancer disease in a less-invasive, simple manner, allowing for serial sampling to assess the response to treatment and minimal residual disease. It is yet to be determined whether liquid biopsy will replace the traditional biopsy in the future but it represents a change in the paradigm of management of head and neck squamous cell cancer.
Collapse
Affiliation(s)
| | | | | | - Patricia Saiz López
- Pathological Anatomy Department, Universitary Hospital of Burgos, Burgos, Spain
| | | | | |
Collapse
|
6
|
Khosravi T, Oladnabi M. The role of miRNAs and lncRNAs in neurofibromatosis type 1. J Cell Biochem 2023; 124:17-30. [PMID: 36345594 DOI: 10.1002/jcb.30349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Neurofibromatosis Type 1 (NF1) is a frequent cancer predisposition syndrome. The common hallmark of patients with this multisystemic genetic disorder is the formation of peripheral nerve sheath tumors, which can be seen as either dermal, plexiform, and malignant forms. MicroRNA (miRNA) is an essential gene regulation factor and consists of 22-25 nucleotides. MiRNAs are identified to act as both tumor suppressors and oncogenes (oncomirs) in a wide variety of human cancers. They play multiple roles in molecular pathways responsible for tumor homing, progression, and invasion. Long noncoding RNA (lncRNA) also has a key role in cancer transcriptomics. Altered lncRNA expression levels have been found in various malignancies. This review aims to summarize the role of two noncoding RNA groups, miRNAs and lncRNAs, in NF1 establishment, development, and progression. We also highlight their potential for future clinical interventions and devising new diagnostic tools.
Collapse
Affiliation(s)
- Teymoor Khosravi
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Morteza Oladnabi
- Gorgan Congenital Malformations Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
7
|
The Role of microRNAs in Inflammation. Int J Mol Sci 2022; 23:ijms232415479. [PMID: 36555120 PMCID: PMC9779565 DOI: 10.3390/ijms232415479] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a biological response of the immune system to various insults, such as pathogens, toxic compounds, damaged cells, and radiation. The complex network of pro- and anti-inflammatory factors and their direction towards inflammation often leads to the development and progression of various inflammation-associated diseases. The role of small non-coding RNAs (small ncRNAs) in inflammation has gained much attention in the past two decades for their regulation of inflammatory gene expression at multiple levels and their potential to serve as biomarkers and therapeutic targets in various diseases. One group of small ncRNAs, microRNAs (miRNAs), has become a key regulator in various inflammatory disease conditions. Their fine-tuning of target gene regulation often turns out to be an important factor in controlling aberrant inflammatory reactions in the system. This review summarizes the biogenesis of miRNA and the mechanisms of miRNA-mediated gene regulation. The review also briefly discusses various pro- and anti-inflammatory miRNAs, their targets and functions, and provides a detailed discussion on the role of miR-10a in inflammation.
Collapse
|
8
|
Dai F, Xie Z, Yang Q, Zhong Z, Zhong C, Qiu Y. MicroRNA-375 inhibits laryngeal squamous cell carcinoma progression via targeting CST1. Braz J Otorhinolaryngol 2022; 88 Suppl 4:S108-S116. [PMID: 35953439 DOI: 10.1016/j.bjorl.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/20/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE This study aims to explore the effect and mechanism of miR-375 in Laryngeal Squamous Cell Carcinoma (LSCC) cell progression. METHODS LSCC cells (LSC-1 and TU177) were transfected with miR-375-mimic, miR-375-inhibitor or miR-375-mimic+oe-CST1. The expression of miR-375, CST1, MMP-2, and MMP-9 was measured. The effect of miR-375-mimic, miR-375-inhibitor or miR-375-mimic+oe-CST1 on cell biological functions, including cell proliferation, migration, invasion, and apoptosis, was also assessed. The potential relationship between CST1 and miR-375 was predicted by Jefferson software and validated by dual luciferase reporter gene assay. RESULTS Downregulated miR-375 expression was found in LSCC cells. Overexpression of miR-375 inhibited the viability and migration and promoted apoptosis of LSCC cells. Jefferson database and dual luciferase reporter gene assay confirmed that miR-375 directly targeted CST1. Overexpression of CST1 could reverse the anti-cancer effect of miR-375 overexpression in LSCC cells. CONCLUSION Collected evidence showed that miR-375/CST1 axis was implicated in LSCC progression. LEVEL OF EVIDENCE Level 3.
Collapse
Affiliation(s)
- Feng Dai
- Jiangxi Pingxiang People's Hospital, Department of Otorhinolaryngology Head and Neck Surgery, Pingxiang, China.
| | - Zuojun Xie
- Jiangxi Pingxiang People's Hospital, Department of Otorhinolaryngology Head and Neck Surgery, Pingxiang, China
| | - Qiming Yang
- Jiangxi Pingxiang People's Hospital, Department of Otorhinolaryngology Head and Neck Surgery, Pingxiang, China
| | - Zhuanglong Zhong
- Jiangxi Pingxiang People's Hospital, Department of Otorhinolaryngology Head and Neck Surgery, Pingxiang, China
| | - Chun Zhong
- Jiangxi Pingxiang People's Hospital, Department of Otorhinolaryngology Head and Neck Surgery, Pingxiang, China
| | - Yongliang Qiu
- Jiangxi Pingxiang People's Hospital, Department of Otorhinolaryngology Head and Neck Surgery, Pingxiang, China
| |
Collapse
|
9
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|
10
|
Zhang C, Ren L, Zhang H, Yang S, Deng M, He L, Cao R, Zhao C, Xia J. SESN1, negatively regulated by miR-377-3p, suppresses invasive growth of head and neck squamous cell carcinoma by interaction with SMAD3. Hum Cell 2022; 35:1100-1113. [PMID: 35622213 DOI: 10.1007/s13577-022-00719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/06/2022] [Indexed: 11/30/2022]
Abstract
Sestrin 1 (SESN1) is a stress-inducible protein that suppresses tumors in numerous cancers. However, the function of SESN1 in head and neck squamous cell carcinoma (HNSCC) is not clear and needs to be elucidated. Here, SESN1 expression was downregulated in HNSCC tissues and cell lines, and low SESN1 expression was positively correlated with poor prognosis in patients with HNSCC. Moreover, SESN1 overexpression inhibited the proliferation, migration, and invasion of HSC-6 and CAL-33 cells. In addition, the binding relationship between miR-377-3p and SESN1 was confirmed using luciferase reporter and RNA immunoprecipitation assays. Downregulation of SESN1 expression was consistent with high levels of miR-377-3p in HNSCC tissues. Linear regression analysis of clinical HNSCC tissues revealed a negative correlation between miR-377-3p and SESN1 expression. Moreover, co-immunoprecipitation mass spectrometry analysis revealed that SESN1 interacted with SMAD3, and SMAD3 reversed the increased proliferation, migration, and invasion of HSC-6 and CAL-33 cells caused by SESN1 knockdown. In conclusion, these findings provide evidence that SESN1 functions as a tumor suppressor and reveal the miR-377-3p-SESN1-SMAD3 regulatory axis that contributes to proliferation, migration, and invasion in HNSCC development, which may represent an interventional target for HNSCC therapy.
Collapse
Affiliation(s)
- Chi Zhang
- Hostpital of Stomatology, Sun Yat-Sen University, No.55 Linyuan Xi Road, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Lin Ren
- Hostpital of Stomatology, Sun Yat-Sen University, No.55 Linyuan Xi Road, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Hongjian Zhang
- Hostpital of Stomatology, Sun Yat-Sen University, No.55 Linyuan Xi Road, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Shiwen Yang
- Hostpital of Stomatology, Sun Yat-Sen University, No.55 Linyuan Xi Road, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Miao Deng
- Hostpital of Stomatology, Sun Yat-Sen University, No.55 Linyuan Xi Road, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Lihong He
- Hostpital of Stomatology, Sun Yat-Sen University, No.55 Linyuan Xi Road, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Ruoyan Cao
- Hostpital of Stomatology, Sun Yat-Sen University, No.55 Linyuan Xi Road, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Chuanjiang Zhao
- Hostpital of Stomatology, Sun Yat-Sen University, No.55 Linyuan Xi Road, Guangzhou, People's Republic of China. .,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, People's Republic of China.
| | - Juan Xia
- Hostpital of Stomatology, Sun Yat-Sen University, No.55 Linyuan Xi Road, Guangzhou, People's Republic of China. .,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, People's Republic of China.
| |
Collapse
|
11
|
Chen X, Liu Y, Liu H, Wang ZW, Zhu X. Unraveling diverse roles of noncoding RNAs in various human papillomavirus negative cancers. Pharmacol Ther 2022; 238:108188. [PMID: 35421419 DOI: 10.1016/j.pharmthera.2022.108188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 12/17/2022]
Abstract
Human papillomavirus (HPV)-negative tumors distinguish from cancers associated with HPV infection. Due to its high rate of lymph node metastasis and difficulty in inchoate discover and diagnosis, the treatment efficacy of HPV-negative cancers is unsatisfactory. Epidemiological evidence suggests that HPV-negative tumor patients have a poor prognosis, and the mortality is higher than that of cancer patients caused by HPV infection. Evidence has demonstrated that noncoding RNAs (ncRNAs) play a crucial role in regulation of physiological and developmental processes. Therefore, dysregulated ncRNAs are involved in the occurrence of diversified diseases, including cancer. In cumulative studies, ncRNAs are concerned with pathogenetic mechanisms of HPV-negative tumors via regulating gene expression and signal transduction. It is important to decipher the functions of ncRNAs in HPV-negative cancers and identify the potential biomarkers, which will bring new treatment strategies for improving outcome of cancer therapy. In this review, we demonstrated the effects of ncRNAs via regulating the development and progression of HPV- negative tumors by directly or indirectly acting on target molecules, which provide a basis for future tumor targeted therapy by targeting ncRNAs for HPV-negative cancers.
Collapse
Affiliation(s)
- Xin Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Hejing Liu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China; Department of Research and Development, Beijing Zhongwei Research Center of Biological and Translational Medicine, Beijing 100161, China.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
12
|
Sun S, Zhao S, Yang H, Wang F. microRNA 21 Promotes the Proliferation and Metastasis of Oral Squamous Cell Carcinoma by Targeting RECK. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuntao Sun
- Department of Stomatology, Tongde Hospital of Zhejiang Province
| | - Shanshan Zhao
- Department of Stomatology, Tongde Hospital of Zhejiang Province
| | - Hongyu Yang
- Department of Stomatology, Shenzhen Hospital, Peking University
| | - Feng Wang
- Department of Stomatology, Shenzhen Hospital, Peking University
| |
Collapse
|
13
|
Morales-Pison S, Jara L, Carrasco V, Gutiérrez-Vera C, Reyes JM, Gonzalez-Hormazabal P, Carreño LJ, Tapia JC, Contreras HR. Genetic Variation in MicroRNA-423 Promotes Proliferation, Migration, Invasion, and Chemoresistance in Breast Cancer Cells. Int J Mol Sci 2021; 23:ijms23010380. [PMID: 35008806 PMCID: PMC8745459 DOI: 10.3390/ijms23010380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-423 (miR-423) is highly expressed in breast cancer (BC). Previously, our group showed that the SNP rs6505162:C>A located in the pre-miR-423 was significantly associated with increased familial BC risk in patients with a strong family history of BC. Therefore, in this study, we evaluated the functional role of rs6505162 in mammary tumorigenesis in vitro to corroborate the association of this SNP with BC risk. We found that rs6505162:C>A upregulated expression of both mature miR-423 sequences (3p and 5p). Moreover, pre-miR-423-A enhanced proliferation, and promoted cisplatin resistance in BC cell lines. We also showed that pre-miR-423-A expression decreased cisplatin-induced apoptosis, and increased BC cell migration and invasion. We propose that the rs6505162-A allele promotes miR-423 overexpression, and that the rs6505162-A allele induces BC cell proliferation, viability, chemoresistance, migration, and invasion, and decreases cell apoptosis as a consequence. We suggest that rs6505162:C>A is a functional SNP site with potential utility as a marker for early diagnosis, prognosis, and treatment efficacy monitoring in BRCA1/2-negative BC patients, as well as a possible therapeutic target.
Collapse
Affiliation(s)
- Sebastian Morales-Pison
- Laboratorio de Genética Humana, Programa de Genética Humana, Instituto de Ciencia Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (S.M.-P.); (L.J.); (P.G.-H.)
| | - Lilian Jara
- Laboratorio de Genética Humana, Programa de Genética Humana, Instituto de Ciencia Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (S.M.-P.); (L.J.); (P.G.-H.)
| | - Valentina Carrasco
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 8380453, Chile;
| | - Cristian Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (C.G.-V.); (L.J.C.)
| | | | - Patricio Gonzalez-Hormazabal
- Laboratorio de Genética Humana, Programa de Genética Humana, Instituto de Ciencia Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (S.M.-P.); (L.J.); (P.G.-H.)
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (C.G.-V.); (L.J.C.)
| | - Julio C. Tapia
- Laboratorio de Transformación Celular, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Correspondence: (J.C.T.); (H.R.C.); Tel.: +56-2-9788647 (J.C.T.)
| | - Héctor R. Contreras
- Laboratorio de Biología Celular y Molecular, Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Correspondence: (J.C.T.); (H.R.C.); Tel.: +56-2-9788647 (J.C.T.)
| |
Collapse
|
14
|
Sais D, Munger K, Tran N. The dynamic interactome of microRNAs and the human papillomavirus in head and neck cancers. Curr Opin Virol 2021; 51:87-95. [PMID: 34627109 DOI: 10.1016/j.coviro.2021.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022]
Abstract
The Human Papillomavirus type 16 is a major etiologic factor for a subset of Head and Neck cancers. These cancers of the oropharyngeal region are growing, and it is expected to exceed cervical cancers in the near future. The major oncogenes E6 and E7 mediate many of the early transformation stages targeting p53 and other tumour suppressor genes. The majority of this regulation is centred on protein coding genes but more recently small non-coding RNAs, such as miRNAs are also regulated by HPV16. However, the system-wide impact of HPV16 on miRNAs is yet to be fully understood. To fully gauge the overall relationship between HPV16 and miRNAs, several studies have devised dynamic interactomes which encompass viral oncogenes, miRNAs and gene targets. These interactomes map potential pathways which permit the identification of possible mechanistic links. Our review will discuss the latest developments in using viral interactomes to understand viral mechanisms and how these approaches may aid in the elucidation of potential druggable pathways.
Collapse
Affiliation(s)
- Dayna Sais
- School Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, New South Wales, Australia
| | - Karl Munger
- Biochemistry Program, Graduate School of Biomedical Sciences, Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nham Tran
- School Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, New South Wales, Australia; The Sydney Head and Neck Cancer Institute, Sydney Cancer Centre, Royal Prince Alfred Hospital, New South Wales, Australia.
| |
Collapse
|
15
|
Head and Neck Cancers Are Not Alike When Tarred with the Same Brush: An Epigenetic Perspective from the Cancerization Field to Prognosis. Cancers (Basel) 2021; 13:cancers13225630. [PMID: 34830785 PMCID: PMC8616074 DOI: 10.3390/cancers13225630] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Squamous cell carcinomas affect different head and neck subsites and, although these tumors arise from the same epithelial lining and share risk factors, they differ in terms of clinical behavior and molecular carcinogenesis mechanisms. Differences between HPV-negative and HPV-positive tumors are those most frequently explored, but further data suggest that the molecular heterogeneity observed among head and neck subsites may go beyond HPV infection. In this review, we explore how alterations of DNA methylation and microRNA expression contribute to head and neck squamous cell carcinoma (HNSCC) development and progression. The association of these epigenetic alterations with risk factor exposure, early carcinogenesis steps, transformation risk, and prognosis are described. Finally, we discuss the potential application of the use of epigenetic biomarkers in HNSCC. Abstract Head and neck squamous cell carcinomas (HNSCC) are among the ten most frequent types of cancer worldwide and, despite all efforts, are still diagnosed at late stages and show poor overall survival. Furthermore, HNSCC patients often experience relapses and the development of second primary tumors, as a consequence of the field cancerization process. Therefore, a better comprehension of the molecular mechanisms involved in HNSCC development and progression may enable diagnosis anticipation and provide valuable tools for prediction of prognosis and response to therapy. However, the different biological behavior of these tumors depending on the affected anatomical site and risk factor exposure, as well as the high genetic heterogeneity observed in HNSCC are major obstacles in this pursue. In this context, epigenetic alterations have been shown to be common in HNSCC, to discriminate the tumor anatomical subsites, to be responsive to risk factor exposure, and show promising results in biomarker development. Based on this, this review brings together the current knowledge on alterations of DNA methylation and microRNA expression in HNSCC natural history, focusing on how they contribute to each step of the process and on their applicability as biomarkers of exposure, HNSCC development, progression, and response to therapy.
Collapse
|
16
|
Vageli DP, Doukas SG, Doukas PG, Judson BL. Bile reflux and hypopharyngeal cancer (Review). Oncol Rep 2021; 46:244. [PMID: 34558652 PMCID: PMC8485019 DOI: 10.3892/or.2021.8195] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 12/26/2022] Open
Abstract
Laryngopharyngeal reflux, a variant of gastroesophageal reflux disease, has been considered a risk factor in the development of hypopharyngeal cancer. Bile acids are frequently present in the gastroesophageal refluxate and their effect has been associated with inflammatory and neoplastic changes in the upper aerodigestive tract. Recent in vitro and in vivo studies have provided direct evidence of the role of acidic bile refluxate in hypopharyngeal carcinogenesis and documented the crucial role of NF-κB as a key mediator of early oncogenic molecular events in this process and also suggested a contribution of STAT3. Acidic bile can cause premalignant changes and invasive squamous cell cancer in the affected hypopharynx accompanied by DNA damage, elevated p53 expression and oncogenic mRNA and microRNA alterations, previously linked to head and neck cancer. Weakly acidic bile can also increase the risk for hypopharyngeal carcinogenesis by inducing DNA damage, exerting anti-apoptotic effects and causing precancerous lesions. The most important findings that strongly support bile reflux as an independent risk factor for hypopharyngeal cancer are presented in the current review and the underlying mechanisms are provided.
Collapse
Affiliation(s)
- Dimitra P Vageli
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sotirios G Doukas
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Panagiotis G Doukas
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Benjamin L Judson
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
17
|
Cheng AJ, You GR, Lee CJ, Lu YC, Tang SJ, Huang YF, Huang YC, Lee LY, Fan KH, Chen YC, Huang SF, Chang JTC. Systemic Investigation Identifying Salivary miR-196b as a Promising Biomarker for Early Detection of Head-Neck Cancer and Oral Precancer Lesions. Diagnostics (Basel) 2021; 11:diagnostics11081411. [PMID: 34441345 PMCID: PMC8392418 DOI: 10.3390/diagnostics11081411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Liquid biopsy is a rapidly growing field, for it may provide a minimally invasive way to acquire pathological data for personalized medicine. This study developed a systemic strategy to discover an effective salivary biomarker for early detection of patients with head-neck squamous carcinoma (HNSC) and oral precancer lesion (OPC). Methods: A total of 10 miRNAs were examined in parallel with multiple independent cohorts. These included a training set of salivary samples from HNSC patients, the TCGA-HNSC and GSE31277 cohorts to differentiate miRNAs between tumor and normal tissues, and groups of salivary samples from healthy individuals, patients with HNSC and OPC. Results: The combined results from the salivary training set and the TCGA-HNSC cohort showed that four miRNAs (miR-148b, miR-155, miR-196b, and miR-31) consistently increased in HNSC patients. Further integration with the GSE31277 cohort, two miRNAs (miR-31 and miR-196b) maintained at high significances. Further assessment showed that salivary miR-196b was a prominent diagnostic biomarker, as it remarkably discriminated between healthy individuals and patients with HNSC (p < 0.0001, AUC = 0.767, OR = 5.64) or OPC (p < 0.0001, AUC = 0.979, OR = 459). Conclusion: Salivary miR-196b could be an excellent biomarker for diagnosing OPC and early detection of HNSC. This molecule may be used for early screening high-risk groups of HNSC.
Collapse
Affiliation(s)
- Ann-Joy Cheng
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33302, Taiwan; (A.-J.C.); (K.-H.F.); (S.-F.H.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (C.-J.L.); (Y.-C.L.); (S.-J.T.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Guo-Rung You
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (C.-J.L.); (Y.-C.L.); (S.-J.T.)
| | - Che-Jui Lee
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (C.-J.L.); (Y.-C.L.); (S.-J.T.)
| | - Ya-Ching Lu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (C.-J.L.); (Y.-C.L.); (S.-J.T.)
| | - Shang-Ju Tang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (C.-J.L.); (Y.-C.L.); (S.-J.T.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Fang Huang
- Department of General Dentistry, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Dental and Craniofacial Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Chen Huang
- Department of Oral and Maxillofacial Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Li-Yu Lee
- Department of Pathology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Kang-Hsing Fan
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33302, Taiwan; (A.-J.C.); (K.-H.F.); (S.-F.H.)
- Department of Radiation Oncology, New Taipei Municipal TuCheng Hospital, New Taipei City 236017, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yen-Chao Chen
- Department of Radiation Oncology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
| | - Shiang-Fu Huang
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33302, Taiwan; (A.-J.C.); (K.-H.F.); (S.-F.H.)
| | - Joseph Tung-Chieh Chang
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33302, Taiwan; (A.-J.C.); (K.-H.F.); (S.-F.H.)
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200
| |
Collapse
|
18
|
The upregulation of oncogenic miRNAs in swabbed samples obtained from oral premalignant and malignant lesions. Clin Oral Investig 2021; 26:1343-1351. [PMID: 34342761 DOI: 10.1007/s00784-021-04108-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/24/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Oncogenic miRNAs upregulated in OSCC play a range of versatile roles in oral carcinogenesis. Oral potentially malignant disorders (OPMDs) are the antecedent lesions to oral squamous carcinoma (OSCC) and they require a definitive diagnosis and early intervention. This study hypothesizes the presence of aberrant oncogenic miRNA expression in swabbed oral lesions. MATERIALS AND METHODS The expression of miR-21, miR-31, miR-134, miR-146a, and miR-211 in swabbed samples from 36 dysplastic or hyperplastic OPMDs and 10 OSCCs, relative to respective normal mucosa within the same patient, is analyzed with qRT-PCR to develop a diagnosis. RESULTS Upregulation of all tested miRNAs in OPMD and OSCC samples comparing to controls is found to have occurred. Receiver operating characteristics curve analysis shows that miR-31 gives the best diagnostic accuracy of 0.91 when differentiating OPMD/OSCC from controls. An analysis of miR-134 and miR-211 expression allows the discrimination of the dysplastic state associated with OPMD, while the use of expression of the combined miRNAs further improves the analytical performances when identifying the dysplastic state. The concordant upregulation of miR-21, miR-31, and miR-146a is found to occur during an early stage of OSCC carcinogenesis. CONCLUSION This study demonstrates the upregulation of multiple oncogenic miRNAs in swabbed OPMD and OSCC samples. miRNA expression in swabbed collectives enables the differentiation between normal mucosa and OPMD/OSCC, independent of their histopathological severity. CLINICAL RELEVANCE This conventional and convenient sampling tool, when coupled with an assessment of miR-31 expression, would seem to be an adjuvant approach to the diagnosis of OPMD and OSCC.
Collapse
|
19
|
Wang JH, Shi CW, Lu YY, Zeng Y, Cheng MY, Wang RY, Sun Y, Jiang YL, Yang WT, Zhao DD, Huang HB, Ye LP, Cao X, Yang GL, Wang CF. MicroRNA and circRNA Expression Analysis in a Zbtb1 Gene Knockout Monoclonal EL4 Cell Line. Front Cell Infect Microbiol 2021; 11:706919. [PMID: 34290994 PMCID: PMC8287301 DOI: 10.3389/fcimb.2021.706919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Zinc finger and BTB domain containing 1(Zbtb1) is a transcriptional suppressor protein, and a member of the mammalian Zbtb gene family. Previous studies have shown that Zbtb1 is essential for T-cell development. However, the role of Zbtb1 in T-cell lymphoma is undetermined. In this study, an EL4 cell line with Zbtb1 deletion was constructed using the CRISPR-Cas9 technique. The expression profiles of microRNA and circRNA produced by the control and gene deletion groups were determined by RNA-seq. In general, 24 differentially expressed microRNA and 16 differentially expressed circRNA were found between normal group and gene deletion group. Through further analysis of differentially expressed genes, GO term histogram and KEGG scatter plot were drawn, and three pairs of miRNA and circRNA regulatory relationships were found. This study describes the differentially expressed microRNA and circRNA in normal and Zbtb1-deficient EL4 cell lines, thus providing potential targets for drug development and clinical treatment of T-cell lymphoma.
Collapse
Affiliation(s)
- Jun-Hong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yi-Yuan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming-Yang Cheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ru-Yu Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yu Sun
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Dan-Dan Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Li-Ping Ye
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
20
|
Karimi F, Mollaei H. Potential of miRNAs in cervical cancer chemoresistance. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Lack of Conserved miRNA Deregulation in HPV-Induced Squamous Cell Carcinomas. Biomolecules 2021; 11:biom11050764. [PMID: 34065237 PMCID: PMC8160722 DOI: 10.3390/biom11050764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/26/2022] Open
Abstract
Squamous cell carcinomas (SCCs) in the anogenital and head and neck regions are associated with high-risk types of human papillomaviruses (HR-HPV). Deregulation of miRNA expression is an important contributor to carcinogenesis. This study aimed to pinpoint commonly and uniquely deregulated miRNAs in cervical, anal, vulvar, and tonsillar tumors of viral or non-viral etiology, searching for a common set of deregulated miRNAs linked to HPV-induced carcinogenesis. RNA was extracted from tumors and nonmalignant tissues from the same locations. The miRNA expression level was determined by next-generation sequencing. Differential expression of miRNAs was calculated, and the patterns of miRNA deregulation were compared between tumors. The total of deregulated miRNAs varied between tumors of different locations by two orders of magnitude, ranging from 1 to 282. The deregulated miRNA pool was largely tumor-specific. In tumors of the same location, a low proportion of miRNAs were exclusively deregulated and no deregulated miRNA was shared by all four types of HPV-positive tumors. The most significant overlap of deregulated miRNAs was found between tumors which differed in location and HPV status (HPV-positive cervical tumors vs. HPV-negative vulvar tumors). Our results imply that HPV infection does not elicit a conserved miRNA deregulation in SCCs.
Collapse
|
22
|
Manifar S, Koopaie M, Lahiji SS. Assessment of MicroRNA-15a and MicroRNA-16-1 Salivary Level in Oral Squamous Cell Carcinoma Patients. Microrna 2021; 10:74-79. [PMID: 33970852 DOI: 10.2174/2211536610666210506125036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Squamous Cell Carcinoma (SCC) includes more than 90% of malignancies of the oral cavity. Early diagnosis could effectively improve patients' quality of life and treatment outcomes of oral cancers. MicroRNAs as non-encoding genes have great potential to initiate or suppress cancer progression. Recent studies have shown that disruption of micro-RNA regulation is a common occurrence in cancers. OBJECTIVE This study set out to evaluate the expression of microRNA-15a (miR-15a) and microRNA-16-1 (miR-16-1) in the saliva of Oral Squamous Cell Carcinoma (OSCC) patients in comparison with a healthy control group. METHODS This case-control study was performed on fifteen patients with OSCC and fifteen healthy volunteers as the control group. A 5 ml of non-stimulating whole saliva was collected by spitting method from patients and controls and stored at -70oC. The expression of miR-15a and miR-16-1 was investigated using quantitative Reverse-Transcription Polymerase Chain Reaction (RT-qPCR). RESULTS MiR-15a and miR-16-1 were downregulated in OSCC patients compared with the control group (p<0.001). The sensitivity of miR-15a and miR-16-1 in differentiating OSCC patients from healthy individuals was 93.3% and 86.67%, respectively, and their specificity was 86.67% and 92.33%, respectively. The diagnostic accuracy of miR-15a was 90%, and miR-16-1 was 93.3%. CONCLUSION The present study showed a decrease in the relative expression of miR-15a and miR-16-1 in OSCC patients compared with healthy individuals. It is probable to introduce salivary values of miR-15a and miR-16-1 as a non-invasive tool for early detection of OSCC. Decreased expression of miR-15a and miR-16-1 in OSCC indicates the possible effective role of these genes in OSCC etiopathogenesis.
Collapse
Affiliation(s)
- Soheila Manifar
- Department of Oral Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Koopaie
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahab Shokouhi Lahiji
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Genetic Drivers of Head and Neck Squamous Cell Carcinoma: Aberrant Splicing Events, Mutational Burden, HPV Infection and Future Targets. Genes (Basel) 2021; 12:genes12030422. [PMID: 33804181 PMCID: PMC7998272 DOI: 10.3390/genes12030422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Head and neck cancers include cancers that originate from a variety of locations. These include the mouth, nasal cavity, throat, sinuses, and salivary glands. These cancers are the sixth most diagnosed cancers worldwide. Due to the tissues they arise from, they are collectively named head and neck squamous cell carcinomas (HNSCC). The most important risk factors for head and neck cancers are infection with human papillomavirus (HPV), tobacco use and alcohol consumption. The genetic basis behind the development and progression of HNSCC includes aberrant non-coding RNA levels. However, one of the most important differences between healthy tissue and HNSCC tissue is changes in the alternative splicing of genes that play a vital role in processes that can be described as the hallmarks of cancer. These changes in the expression profile of alternately spliced mRNA give rise to various protein isoforms. These protein isoforms, alternate methylation of proteins, and changes in the transcription of non-coding RNAs (ncRNA) can be used as diagnostic or prognostic markers and as targets for the development of new therapeutic agents. This review aims to describe changes in alternative splicing and ncRNA patterns that contribute to the development and progression of HNSCC. It will also review the use of the changes in gene expression as biomarkers or as the basis for the development of new therapies.
Collapse
|
24
|
Rishabh K, Khadilkar S, Kumar A, Kalra I, Kumar AP, Kunnumakkara AB. MicroRNAs as Modulators of Oral Tumorigenesis-A Focused Review. Int J Mol Sci 2021; 22:ijms22052561. [PMID: 33806361 PMCID: PMC7961687 DOI: 10.3390/ijms22052561] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
Oral cancers constitute the majority of head and neck tumors, with a relatively high incidence and poor survival rate in developing countries. While the five-year survival rates of the oral cancer patients have increased to 65%, the overall survival for advanced stages has been at 27% for the past ten years, emphasizing the necessity for further understanding the etiology of the disease, diagnosis, and formulating possible novel treatment regimens. MicroRNAs (miRNAs), a family of small non-coding RNA, have emerged as master modulators of gene expression in various cellular and biological process. Aberrant expression of these dynamic molecules has been associated with many human diseases, including oral cancers. The deregulated miRNAs have been shown to control various oncogenic processes, including sustaining proliferative signaling, evading growth suppressors, resisting cell death activating invasion and metastasis, and inducing angiogenesis. Hence, the aberrant expression of miRNAs associated with oral cancers, makes them potential candidates for the investigation of functional markers, which will aid in the differential diagnosis, prognosis, and development of novel therapeutic regimens. This review presents a holistic insight into our understanding of the role of miRNAs in regulating various hallmarks of oral tumorigenesis.
Collapse
Affiliation(s)
- Kumar Rishabh
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
| | - Soham Khadilkar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
| | - Aviral Kumar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
| | - Ishu Kalra
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
- Correspondence: authors: (A.P.K.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
- Correspondence: authors: (A.P.K.); (A.B.K.)
| |
Collapse
|
25
|
Li LJ, Chang WM, Hsiao M. Aberrant Expression of microRNA Clusters in Head and Neck Cancer Development and Progression: Current and Future Translational Impacts. Pharmaceuticals (Basel) 2021; 14:ph14030194. [PMID: 33673471 PMCID: PMC7997248 DOI: 10.3390/ph14030194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are small non-coding RNAs known to negative regulate endogenous genes. Some microRNAs have high sequence conservation and localize as clusters in the genome. Their coordination is regulated by simple genetic and epigenetic events mechanism. In cells, single microRNAs can regulate multiple genes and microRNA clusters contain multiple microRNAs. MicroRNAs can be differentially expressed and act as oncogenic or tumor suppressor microRNAs, which are based on the roles of microRNA-regulated genes. It is vital to understand their effects, regulation, and various biological functions under both normal and disease conditions. Head and neck squamous cell carcinomas are some of the leading causes of cancer-related deaths worldwide and are regulated by many factors, including the dysregulation of microRNAs and their clusters. In disease stages, microRNA clusters can potentially control every field of oncogenic function, including growth, proliferation, apoptosis, migration, and intercellular commutation. Furthermore, microRNA clusters are regulated by genetic mutations or translocations, transcription factors, and epigenetic modifications. Additionally, microRNA clusters harbor the potential to act therapeutically against cancer in the future. Here, we review recent advances in microRNA cluster research, especially relative to head and neck cancers, and discuss their regulation and biological functions under pathological conditions as well as translational applications.
Collapse
Affiliation(s)
- Li-Jie Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-2-2789–8752
| |
Collapse
|
26
|
Chang XS, Zhu J, Yang T, Gao Y. MiR-524 suppressed the progression of oral squamous cell carcinoma by suppressing Metadherin and NF-κB signaling pathway in OSCC cell lines. Arch Oral Biol 2021; 125:105090. [PMID: 33676362 DOI: 10.1016/j.archoralbio.2021.105090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of the present study was to explore the functional role of miR-524 in oral squamous cell carcinoma (OSCC) and determine its underlying mechanism. MATERIALS AND METHODS Tumor tissues and adjacent tissues were obtained from 55 patients with OSCC (20 females and 35 males) with a mean age of 54 years (range from 24 to 72 years). Additionally, OSCC cell lines culture was used and Reverse transcription‑quantitative PCR (RT-qPCR) was applied to measure the expression of miR-524 in OSCC tissues and cells. The protein density of Metadherin (MTDH) in OSCC tissues was detected by Immunohistochemistry (IHC) assay. MiR-524 mimic was employed to investigate the impact of miR-524 on proliferation, migration, and invasion using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and transwell assays. The dual luciferase reporter assay was utilized to investigate the interaction between MTDH and miR-524 expression. Cells transfected with miR-524 mimic and pcDNA-MTDH were subjected to western blot to investigate the role of NF-κB signaling in miR-524/MTDH axis mediated cell proliferation, migration, and invasion. RESULTS MiR-524 expression was decreased significantly in OSCC tissues compared to adjacent tissues, and closely related to clinical stage, tumor size, and lymph node metastasis. Over-expression of miR-524 suppressed the proliferation, migration, and invasion of OSCC cells. Luciferase reporter assay results demonstrated that MTDH was the target gene of miR-524. Over-expression of miR-524 reduced MTDH expression and inhibited NF-κB signaling pathway. Rescue experiments revealed that over-expression of MTDH partially reversed the efficacy of miR-524 mimic on OSCC cells. CONCLUSIONS These results indicated that miR-524 inhibits the activation of NF-κB signaling pathway via inhibiting MTDH, resulting in the suppression of cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Xiang-Shuang Chang
- Department of Stomatology, The 964st Hospital, Changchun City, Jilin Province, China
| | - Jing Zhu
- Department of Nursing, The 964st Hospital, Changchun City, Jilin Province, China
| | - Tao Yang
- Department of Health Team, The 93313 Army, Changchun City, Jilin Province, China
| | - Ying Gao
- Department of Stomatology, The 964st Hospital, Changchun City, Jilin Province, China.
| |
Collapse
|
27
|
Weakly Acidic Bile Is a Risk Factor for Hypopharyngeal Carcinogenesis Evidenced by DNA Damage, Antiapoptotic Function, and Premalignant Dysplastic Lesions In Vivo. Cancers (Basel) 2021; 13:cancers13040852. [PMID: 33670587 PMCID: PMC7923205 DOI: 10.3390/cancers13040852] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The etiologic role of biliary reflux in hypopharyngeal cancer is supported by clinical data. Although, reflux episodes often occur at pH 4.0, they can also occur at weakly acidic pH (5.5–6.0). The carcinogenic effect of bile at strongly acidic pH (pH 3.0) was recently documented in vivo. Here, we provide novel in vivo evidence that a weakly acidic pH of 5.5, similarly to a strongly acidic pH of 3.0, increases the risk of bile-related hypopharyngeal neoplasia. We document that chronic exposure of hypopharyngeal mucosa to bile at pH 5.5 promotes premalignant lesions with DNA damage, NF-κB activation, and deregulated mRNA and miRNA phenotypes, including Bcl-2 and miR-451a. The oncogenic effects of bile over a wider pH range suggests that antacid therapy may be insufficient to fully modify the effects of a bile induced oncogenic effect. Abstract Background: There is recent in vivo discovery documenting the carcinogenic effect of bile at strongly acidic pH 3.0 in hypopharynx, while in vitro data demonstrate that weakly acidic bile (pH 5.5) has a similar oncogenic effect. Because esophageal refluxate often occurs at pH > 4.0, here we aim to determine whether weakly acidic bile is also carcinogenic in vivo. Methods: Using 32 wild-type mice C57B16J, we performed topical application of conjugated primary bile acids with or without unconjugated secondary bile acid, deoxycholic acid (DCA), at pH 5.5 and controls, to hypopharyngeal mucosa (HM) twice per day, for 15 weeks. Results: Chronic exposure of HM to weakly acidic bile, promotes premalignant lesions with microinvasion, preceded by significant DNA/RNA oxidative damage, γH2AX (double strand breaks), NF-κB and p53 expression, overexpression of Bcl-2, and elevated Tnf and Il6 mRNAs, compared to controls. Weakly acidic bile, without DCA, upregulates the “oncomirs”, miR-21 and miR-155. The presence of DCA promotes Egfr, Wnt5a, and Rela overexpression, and a significant downregulation of “tumor suppressor” miR-451a. Conclusion: Weakly acidic pH increases the risk of bile-related hypopharyngeal neoplasia. The oncogenic properties of biliary esophageal reflux on the epithelium of the upper aerodigestive tract may not be fully modified when antacid therapy is applied. We believe that due to bile content, alternative therapeutic strategies using specific inhibitors of relevant molecular pathways or receptors may be considered in patients with refractory GERD.
Collapse
|
28
|
Qi CL, Sheng JF, Huang ML, Zou Y, Wang YP, Wang F, Zeng F, Hua QQ, Chen SM. Integrated analysis of deregulation microRNA expression in head and neck squamous cell carcinoma. Medicine (Baltimore) 2021; 100:e24618. [PMID: 33578572 PMCID: PMC7886409 DOI: 10.1097/md.0000000000024618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) play critical roles in carcinogenesis and development of cancers. In this study, we analyzed the eccentrically expressed miRNAs in head and neck squamous cell carcinoma (HNSCC) tissues based on the miRNA-Seq data of HNSCC patients available in the Cancer Genome Atlas database. Aberrant expression of 2589 miRNAs was detected in HNSCC tissues (1128 downregulated and 1461 upregulated). The differential expression levels of the miRNAs were further validated by analysis of 25 HNSCC samples and paired control tissues and compared with the Gene Expression Omnibus database to determine the candidate miRNAs. Quantitative reverse transcription polymerase chain reaction was used to compare the expression of these candidate miRNAs between 22 fresh HNSCC tissue samples and 11 control samples. In addition, the relationship between the expression of these candidate miRNAs and Tumor, Node, Metastases staging of HNSCC was analyzed. Compared with the expression in control tissues, the levels of hsa-miR-410-3p, hsa-miR-411-5p, hsa-miR-125b-2-3p, and hsa-miR-99a-3p were significantly lower in HNSCC. According to the Cancer Genome Atlas dataset analyzed, all 4 miRNAs were shown to inhibit tumor progression (T stage), positive lymph node metastasis (N stage), and distant metastasis (M stage) in HNSCC. Kyoto Encyclopedia of Genes and Genomes analysis showed that genes regulated by these 4 miRNAs were enriched in certain pathways, including the transforming growth factor-β signaling pathway and the Hippo pathway. Enriched gene ontology terms mainly included regulation of transcription, cell proliferation, and apoptosis, which are well-characterized functions of miRNAs. Moreover, all 4 miRNAs inhibited the progression of primary tumors (T stage) and metastasis of regional lymph nodes (N stage). The top 4 aberrantly expressed miRNAs identified in this study have great clinical value in developing strategies for early diagnosis and treatment of HNSCC. More intensive studies are required to elucidate the mechanism underlying the roles of these miRNAs in HNSCC.
Collapse
Affiliation(s)
- Cheng-Lin Qi
- Department of Otolaryngology-Head and Neck Surgery
| | | | | | - You Zou
- Department of Otolaryngology-Head and Neck Surgery
| | | | - Fei Wang
- Department of Otolaryngology-Head and Neck Surgery
| | - Feng Zeng
- Department of Otolaryngology-Head and Neck Surgery
| | - Qing-Quan Hua
- Department of Otolaryngology-Head and Neck Surgery
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| |
Collapse
|
29
|
Zhang C, Wang H, Deng M, He L, Ping F, He Y, Fan Z, Cheng B, Xia J. Upregulated miR‑411‑5p levels promote lymph node metastasis by targeting RYBP in head and neck squamous cell carcinoma. Int J Mol Med 2021; 47:36. [PMID: 33537835 PMCID: PMC7891818 DOI: 10.3892/ijmm.2021.4869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/15/2020] [Indexed: 01/01/2023] Open
Abstract
Metastasis is the primary cause of the high mortality rates in head and neck squamous cell carcinoma (HNSCC). MicroRNA (miR)‑411‑5p has been discovered to serve an important role in cancer metastases. However, to the best of our knowledge, the association between miR‑411‑5p expression levels and HNSCC metastasis has not been thoroughly investigated. The present study aimed to research the function of miR‑411‑5p in HNSCC metastasis. The results of the present study revealed that miR‑411‑5p expression levels were upregulated in patients with HNSCC with lymph node metastasis and the upregulated expression levels of miR‑411‑5p were positively associated with the metastatic potential of HNSCC. Moreover, miR‑411‑5p promoted HNSCC cell migration, invasion and epithelial‑mesenchymal transition (EMT). The results of the dual‑luciferase reporter assays identified RING1 and YY1 binding protein (RYBP) as a functional downstream target gene for miR‑411‑5p. Therefore, whether miR‑411‑5p downregulated the expression levels of RYBP in HNSCC cells was subsequently investigated. Notably, the silencing of RYBP expression restored the stimulatory effects of miR‑411‑5p on HNSCC cell migration, invasion and EMT. In addition, the mRNA expression levels of miR‑411‑5p and RYBP were found to be inversely correlated in HNSCC samples. In conclusion, the results of the present study indicated that the miR‑411‑5p‑mediated downregulation of RYBP expression levels may exert an important role in HNSCC metastasis and may provide a novel target for the treatment of HNSCC.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongfei Wang
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Miao Deng
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Lihong He
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Fan Ping
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yuan He
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Zhaona Fan
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Bin Cheng
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Juan Xia
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
30
|
Emmett SE, Stark MS, Pandeya N, Panizza B, Whiteman DC, Antonsson A. MicroRNA expression is associated with human papillomavirus status and prognosis in mucosal head and neck squamous cell carcinomas. Oral Oncol 2021; 113:105136. [PMID: 33422804 DOI: 10.1016/j.oraloncology.2020.105136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 01/29/2023]
Abstract
OBJECTIVES The major cause of mucosal squamous cell carcinomas of the head and neck (HNSCCs) has been attributed to human papillomavirus (HPV) infection. Here we investigate if microRNA expression in HNSCC can be used as a prognostic tool with or without HPV status. MATERIALS AND METHODS We performed a discovery miRNA microarray (miRBase v.21) profiling of 52 tonsillar SCCs with TaqMan real-time PCR validation of 228 HNSCCs. Patients had a histologically confirmed primary SCC of the oropharynx, oral cavity, hypopharynx or larynx. Logistic regression models were used to estimate the magnitude of the effect of association with clinical factors and miRNAs associated with HPV status. For recurrence and survival analysis, we used unadjusted and multivariable adjusted Cox proportional hazard regression models. RESULTS Seventeen miRNAs were significantly associated with better prognosis in the discovery phase and were validated in the extended dataset. The best fitting model (AUC = 0.92) for HPV status included age, smoking, and miRNAs: miR-15b, miR-20b, miR-29a, miR-29c, miR-142, miR-146a and miR-205. Using Cox regression model for recurrence, miR-29a was associated with 49% increased risk of recurrence while miR-30e and miR-342 were associated with decreased risk of recurrence with HRs 0.92 (95% CI 0.85-0.99) and 0.84 (95% CI 0.73-0.98), respectively. Our best fitting model for survival included age, gender, alcohol consumption, N stage, recurrence, HPV status, together with miRNAs-20b, 29a, and 342. CONCLUSION miRNAs show potential to serve as usual biomarkers to predict the clinical course of patients with mucosal HNSCC.
Collapse
Affiliation(s)
- S E Emmett
- Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - M S Stark
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - N Pandeya
- Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - B Panizza
- Faculty of Medicine, University of Queensland, Brisbane, Australia; Department of Otolaryngology - Head and Neck Surgery, Princess Alexandra Hospital, Brisbane, Australia
| | - D C Whiteman
- Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - A Antonsson
- Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Faculty of Medicine, University of Queensland, Brisbane, Australia.
| |
Collapse
|
31
|
Ke R, Lv L, Zhang S, Zhang F, Jiang Y. Functional mechanism and clinical implications of MicroRNA-423 in human cancers. Cancer Med 2020; 9:9036-9051. [PMID: 33174687 PMCID: PMC7724490 DOI: 10.1002/cam4.3557] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/16/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs play a vital role in the regulatory mechanisms of tumorigenesis. Current research indicates that microRNA-423 (miR-423) is abnormally expressed in various human tumors and participates in multiple signaling pathways of cancer progression. In most studies, miR-423 was confirmed as oncomiR, while a few contradictory reports considered miR-423 as an anticancer miRNA. The paradoxical role in cancer may hinder the application of miR-423 as a diagnostic and therapeutic target. Simultaneously, the interaction mechanism between miR-423 and lncRNA also needs attention. In this review, we have summarized the dual role of aberrant miR-423 expression and its mechanisms in tumorigenesis, and the therapeutic potential of miR-423 in human tumors.
Collapse
Affiliation(s)
- RuiSheng Ke
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China.,The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou City, China
| | - LiZhi Lv
- The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou City, China.,Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou City, China
| | - SiYu Zhang
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - FuXing Zhang
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yi Jiang
- The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou City, China.,Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou City, China
| |
Collapse
|
32
|
Holt J, Walter V, Yin X, Marron D, Wilkerson MD, Choi HY, Zhao X, Jo H, Hayes DN, Ko YH. Integrative Analysis of miRNAs Identifies Clinically Relevant Epithelial and Stromal Subtypes of Head and Neck Squamous Cell Carcinoma. Clin Cancer Res 2020; 27:831-842. [PMID: 33148669 DOI: 10.1158/1078-0432.ccr-20-0557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/24/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE The objective of this study is to characterize the role of miRNAs in the classification of head and neck squamous cell carcinoma (HNSCC). EXPERIMENTAL DESIGN Here, we analyzed 562 HNSCC samples, 88 from a novel cohort and 474 from The Cancer Genome Atlas, using miRNA microarray and miRNA sequencing, respectively. Using an integrative correlations method followed by miRNA expression-based hierarchical clustering, we validated miRNA clusters across cohorts. Evaluation of clusters by logistic regression and gene ontology approaches revealed subtype-based clinical and biological characteristics. RESULTS We identified two independently validated and statistically significant (P < 0.01) tumor subtypes and named them "epithelial" and "stromal" based on associations with functional target gene ontology relating to differing stages of epithelial cell differentiation. miRNA-based subtypes were correlated with individual gene expression targets based on miRNA seed sequences, as well as with miRNA families and clusters including the miR-17 and miR-200 families. These correlated genes defined pathways relevant to normal squamous cell function and pathophysiology. miRNA clusters statistically associated with differential mutation patterns including higher proportions of TP53 mutations in the stromal class and higher NSD1 and HRAS mutation frequencies in the epithelial class. miRNA classes correlated with previously reported gene expression subtypes, clinical characteristics, and clinical outcomes in a multivariate Cox proportional hazards model with stromal patients demonstrating worse prognoses (HR, 1.5646; P = 0.006). CONCLUSIONS We report a reproducible classification of HNSCC based on miRNA that associates with known pathologically altered pathways and mutations of squamous tumors and is clinically relevant.
Collapse
Affiliation(s)
- Jeremiah Holt
- Division of Hematology and Oncology, Department of Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Vonn Walter
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Xiaoying Yin
- School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - David Marron
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Matthew D Wilkerson
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Hyo Young Choi
- Division of Hematology and Oncology, Department of Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Xiaobei Zhao
- Division of Hematology and Oncology, Department of Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Heejoon Jo
- Division of Hematology and Oncology, Department of Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - David Neil Hayes
- Division of Hematology and Oncology, Department of Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee.
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Choi YS, Na HG, Bae CH, Song SY, Kim YD. Pepsin exposure in a non-acidic environment upregulates mucin 5AC (MUC5AC) expression via matrix metalloproteinase 9 (MMP9)/nuclear factor κB (NF-κB) in human airway epithelial cells. Int Forum Allergy Rhinol 2020; 11:894-901. [PMID: 32846027 DOI: 10.1002/alr.22685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Gastric reflux (GR) is a backflow of gastric content to the aerodigestive tract. GR was previously found to be associated with inflammatory airway diseases and a potential cause of airway remodeling. Chronic exposure to gastric content may induce damage from nose to lung, because digestive enzymes and acidity are toxic to airway epithelial cells. Recently, the toxicity of pepsin in a non-acidic environment was found to increase proinflammatory cytokines and receptors in the epithelium of the aerodigestive tract. However, the effect of pepsin in non-acidic conditions on mucin expression has not been investigated in human airway epithelial cells. The purpose of this study was to evaluate the effect of pepsin on mucin 5AC (MUC5AC) expression in upper and lower airway epithelial cells as an important potential factor of non-acidic GR-related airway inflammation. METHODS In NCI-H292 cells and human nasal epithelial cells (HNEpCs), the effects and signaling pathways of pepsin on MUC5AC expression were examined using reverse-transcription polymerase chain reaction (RT-PCR), real-time PCR, enzyme immunoassay, zymography, Western blot, and immunofluorescence staining. RESULTS Pepsin increased MUC5AC expression in non-acidic condition of NCI-H292 cells and HNEpCs. Further, pepsin activated matrix metalloproteinase 9 (MMP9) and phosphorylated nuclear factor κB (NF-κB). Moreover, inhibitors of MMP9 and NF-κB significantly attenuated pepsin-induced MUC5AC expression, and the knockdown of NF-κB by small interfering RNA (siRNA) significantly blocked pepsin-induced MUC5AC expression in human airway epithelial cells. CONCLUSION These findings suggest that pepsin increased MUC5AC expression in non-acidic conditions via the activation of MMP9 and NF-κB in human airway epithelial cells.
Collapse
Affiliation(s)
- Yoon Seok Choi
- Department of Otorhinolaryngology-Head and Neck surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hyung Gyun Na
- Department of Otorhinolaryngology-Head and Neck surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Chang Hoon Bae
- Department of Otorhinolaryngology-Head and Neck surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Si-Youn Song
- Department of Otorhinolaryngology-Head and Neck surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yong-Dae Kim
- Department of Otorhinolaryngology-Head and Neck surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea.,Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, Republic of Korea
| |
Collapse
|
34
|
Bissey PA, Teng M, Law JH, Shi W, Bruce JP, Petit V, Tsao SW, Yip KW, Liu FF. MiR-34c downregulation leads to SOX4 overexpression and cisplatin resistance in nasopharyngeal carcinoma. BMC Cancer 2020; 20:597. [PMID: 32586280 PMCID: PMC7318489 DOI: 10.1186/s12885-020-07081-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background A major cause of disease-related death in nasopharyngeal carcinoma (NPC) is the development of distant metastasis (DM) despite combination chemoradiotherapy treatment. We previously identified and validated a four microRNA (miRNA) signature that is prognostic for DM. In this study, characterization of a key component of this signature, miR-34c, revealed its role in chemotherapy resistance. Methods Two hundred forty-six NPC patient biopsy samples were subject to comprehensive miRNA profiling and immunohistochemistry (IHC). Two human normal nasopharyngeal cell lines (immortalized; NP69 and NP460), as well as the NPC cell line C666–1, were used for miR-34c gain-of-function and loss-of-function experiments. Signaling pathways were assessed using quantitative real-time PCR (qRT-PCR) and Western blot. Cell viability was measured using the ATPlite assay. Results MiR-34c was downregulated in NPC patient samples, and confirmed in vitro to directly target SOX4, a master regulator of epithelial-to-mesenchymal transition (EMT). MiR-34c downregulation triggered EMT-representative changes in NP69 and NP460 whereby Snail, ZEB1, CDH2, and SOX2 were upregulated, while Claudin-1 and CDH1 were downregulated. Phenotypically, inhibition of miR-34c led to cisplatin resistance, whereas miR-34c over-expression sensitized NPC cells to cisplatin. TGFβ1 decreased miR-34c and increased SOX4 expression in vitro. The TGFβ receptor 1 inhibitor SB431542 reduced SOX4 expression and increased cisplatin sensitivity. Finally, IHC revealed that lower SOX4 expression was associated with improved overall survival in chemotherapy-treated NPC patients. Conclusion miR-34c is downregulated in NPC. Repression of miR-34c was shown to increase SOX4 expression, which leads to cisplatin resistance, while TGFβ1 was found to repress miR-34c expression. Taken together, our study demonstrates that inhibition of the TGFβ1 pathway could be a strategy to restore cisplatin sensitivity in NPC.
Collapse
Affiliation(s)
| | - Mona Teng
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jacqueline H Law
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Wei Shi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Jeff P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Valentin Petit
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Sai W Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Kenneth W Yip
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Fei-Fei Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Canada. .,Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada. .,Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| |
Collapse
|
35
|
Poel D, Rustenburg F, Sie D, van Essen HF, Eijk PP, Bloemena E, Elhorst Benites T, van den Berg MC, Vergeer MR, Leemans RC, Buffart TE, Ylstra B, Brakenhoff RH, Verheul HM, Voortman J. Expression of let-7i and miR-192 is associated with resistance to cisplatin-based chemoradiotherapy in patients with larynx and hypopharynx cancer. Oral Oncol 2020; 109:104851. [PMID: 32585557 DOI: 10.1016/j.oraloncology.2020.104851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/18/2020] [Accepted: 06/07/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The majority of patients with locally advanced larynx or hypopharynx squamous cell carcinoma are treated with organ-preserving chemoradiotherapy (CRT). Clinical outcome following CRT varies greatly. We hypothesized that tumor microRNA (miRNA) expression is predictive for outcome following CRT. METHODS Next-generation sequencing (NGS) miRNA profiling was performed on 37 formalin-fixed paraffin-embedded (FFPE) tumor samples. Patients with a recurrence-free survival (RFS) of less than 2 years and patients with late/no recurrence within 2 years were compared by differential expression analysis. Tumor-specific miRNAs were selected based on normal mucosa miRNA expression data from The Cancer Genome Atlas database. A model was constructed to predict outcome using group-regularized penalized logistic ridge regression. Candidate miRNAs were validated by RT-qPCR in the initial sample set as well as in 46 additional samples. RESULTS Thirteen miRNAs were differentially expressed (p < 0.05, FDR < 0.1) according to outcome group. Initial class prediction in the NGS cohort (n = 37) resulted in a model combining five miRNAs and disease stage, able to predict CRT outcome with an area under the curve (AUC) of 0.82. In the RT-qPCR cohort (n = 83), 25 patients (30%) experienced early recurrence (median RFS 8 months; median follow-up 42 months). Class prediction resulted in a model combining let-7i-5p, miR-192-5p and disease stage, able to discriminate patients with good versus poor clinical outcome (AUC:0.80). CONCLUSION The combined miRNA expression and disease stage prediction model for CRT outcome is superior to using either factor alone. This study indicates NGS miRNA profiling using FFPE specimens is feasible, resulting in clinically relevant biomarkers.
Collapse
Affiliation(s)
- Dennis Poel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands; Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - François Rustenburg
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurosurgery, Cancer Center Amsterdam, the Netherlands
| | - Daoud Sie
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, the Netherlands
| | - Hendrik F van Essen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, the Netherlands
| | - Paul P Eijk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, the Netherlands
| | - Elisabeth Bloemena
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Maxillofacial Surgery/Oral Pathology, Academic Center for Dentistry Amsterdam (ACTA), the Netherlands
| | - Teresita Elhorst Benites
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands
| | - Madeleine C van den Berg
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands
| | - Marije R Vergeer
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiation Oncology, Cancer Center Amsterdam, the Netherlands
| | - René C Leemans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, the Netherlands
| | - Tineke E Buffart
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands; Antoni van Leeuwenhoek Hospital, Department of Gastrointestinal Oncology, Amsterdam, the Netherlands
| | - Bauke Ylstra
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, the Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, the Netherlands
| | - Henk M Verheul
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands; Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jens Voortman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands.
| |
Collapse
|
36
|
Dai T, Zhao X, Li Y, Yu L, Li Y, Zhou X, Gong Q. miR-423 Promotes Breast Cancer Invasion by Activating NF-κB Signaling. Onco Targets Ther 2020; 13:5467-5478. [PMID: 32606763 PMCID: PMC7297514 DOI: 10.2147/ott.s236514] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/19/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Breast cancer has become the most common malignancy among women worldwide; therefore, novel diagnostic and prognostic markers and therapeutic targets are urgently required. NF-κB signaling plays a pivotal role in enhancing breast cancer malignant phenotypes, especially cancer invasion and metastasis, which is the main cause of death in cancer patients. TNIP2, an important inhibitor of the NF-κB pathway, is known to involve a negative feedback loop of the NF-κB signaling cascade and to regulate tumor aggressiveness in various cancer types. However, the mRNA level of TNIP2 is barely altered in breast cancer; thus, the mechanism that regulates TNIP2 in breast cancer still needs to be elucidated. Methods We analyzed the expression and prognosis of miR-423 in a TCGA BRCA miRNA cohort and in clinical specimens. We detected the invasive capacity through a Matrigel-coated Transwell penetration assay, a three-dimensional (3D) spheroid invasion assay and a wound healing assay. Then, we applied luciferase assays, real-time PCR assays and Western blotting to further study the mechanism. Results In this study, analysis of the TCGA BRCA miRNA cohort and clinical specimens demonstrated that miR-423 was upregulated in human breast cancers and was positively correlated with clinical stage, poor overall survival and metastasis classification. Moreover, the invasiveness of breast cancer cells was enhanced by ectopic expression of miR-423 and inhibited by miR-423 downregulation. Mechanistically, upregulation of miR-423 led to activation of the NF-κB signaling pathway and elevated expression of snail and twist, while repression of miR-423 inhibited this pathway. Furthermore, the results indicated that TNIP2 is a target gene of miR-423, and suppression of TNIP2 resulted in increased invasiveness in miR-423-silenced cells. Conclusion Our results suggest that miR-423 is a crucial factor that enhances breast cancer cell invasion through the NF-κB signaling pathway and shed light on miR-423 as a promising prognostic and therapeutic marker for metastatic breast cancer.
Collapse
Affiliation(s)
- Ting Dai
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Xiaohui Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Yun Li
- Department of Immunobiology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Lihong Yu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Yanan Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Xiang Zhou
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Qing Gong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| |
Collapse
|
37
|
Ghosh RD, Pattatheyil A, Roychoudhury S. Functional Landscape of Dysregulated MicroRNAs in Oral Squamous Cell Carcinoma: Clinical Implications. Front Oncol 2020; 10:619. [PMID: 32547936 PMCID: PMC7274490 DOI: 10.3389/fonc.2020.00619] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
MicroRNA (miRNA) dysregulation is associated with the pathogenesis of oral squamous cell carcinoma (OSCC), and its elucidation could potentially provide information on patient outcome. A growing body of translational research on miRNA biology is focusing on precision oncology, aiming to decode the miRNA regulatory network in the development and progression of cancer. Tissue-specific expression and stable presence in all body fluids are unique features of miRNAs, which could be potentially exploited in the clinical setting. Recent understanding of miRNA properties has led them to be useful, attractive, and potential tools either as biomarkers (distinct miRNA expression signature) for diagnosis and prognostic outcomes or as targets for novel therapeutic entities, enabling personalized treatment for OSCC. In this review, we discuss recent research on different aspects of alterations in miRNA profiles along with their clinical significance and strive to identify probable potential miRNA biomarkers for diagnosis and prognosis of OSCC. We also discuss the current understanding and scope of development of miRNA-based therapeutics against OSCC.
Collapse
Affiliation(s)
- Ruma Dey Ghosh
- Tata Translational Cancer Research Center, Tata Medical Center, Kolkata, India
| | - Arun Pattatheyil
- Department of Head and Neck Surgical Oncology, Tata Medical Center, Kolkata, India
| | | |
Collapse
|
38
|
Peng M, Pang C. MicroRNA-140-5p inhibits the tumorigenesis of oral squamous cell carcinoma by targeting p21-activated kinase 4. Cell Biol Int 2020; 44:145-154. [PMID: 31393040 DOI: 10.1002/cbin.11213] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/03/2019] [Indexed: 01/24/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is a serious global health problem. Recently, accumulating microRNA (miRNA) has emerged as crucial players in the development and progression of carcinomas including OSCC. Our study aimed to further investigate the roles of miR-140-5p in OSCC tumorigenesis and related molecular basis. In this study, OSCC tissues and adjacent normal tissues were isolated from 34 OSCC patients who suffered from surgical resection at our hospital. MiR-140-5p level was measured by reverse-transcription quantitative polymerase chain reaction assay. p21-activated kinase 4 (PAK4) protein level was determined by western blot assay in OSCC cells at 48 h posttransfection or OSCC xenograft tumors at day 35 after OSCC cell injection. The cell proliferative ability was assessed by cell counting kit-8 assay in OSCC cells at 0, 24, 48, 72 h after transfection. Cell apoptosis and cell-cycle analysis was conducted using a flow cytometry in OSCC cells at 48 h after transfection. The interaction between miR-140-5p and PAK4 3'-untranslated region was tested by bioinformatics analysis and luciferase reporter assay in OSCC cells at 48 h after transfection. Mouse xenograft models of OSCC were established to examine the influence of miR-140-5p on OSCC tumorigenesis in vivo during 35 days after OSCC cell injection. Our data showed that miR-140-5p expression was notably downregulated in OSCC tissues and cell lines. MiR-140-5p inhibited the expression of PAK4 by direct interaction in OSCC cells. Functional analysis disclosed that miR-140-5p overexpression or PAK4 knockdown suppressed cell proliferation, promoted cell apoptosis, and induced cell-cycle arrest in OSCC. Moreover, PAK4 upregulation rescued the detrimental effects of miR-140-5p on cell proliferation and cell-cycle progression and hampered cell apoptosis induced by miR-140-5p in OSCC. In vivo experiments demonstrated that miR-140-5p overexpression suppressed the growth of OSCC xenograft tumors by downregulating PAK4. In conclusion, our data revealed miR-140-5p suppressed OSCC tumorigenesis by targeting PAK4 in vitro and in vivo, deepening our understanding on the function and molecular basis of miR-140-5p in the development of OSCC.
Collapse
Affiliation(s)
- Min Peng
- School of Medicine, University of Electronic Science and Technology of China, 4#, The second North Jianshe Road, Chengdu, Sichuan, 610054, China.,Department of Stomatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32#, West 2, the First Ring Road, 610072, Chengdu, Sichuan, China
| | - Chunyan Pang
- Department of Stomatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32#, West 2, the First Ring Road, 610072, Chengdu, Sichuan, China
| |
Collapse
|
39
|
Carofino BL, Dinshaw KM, Ho PY, Cataisson C, Michalowski AM, Ryscavage A, Alkhas A, Wong NW, Koparde V, Yuspa SH. Head and neck squamous cancer progression is marked by CLIC4 attenuation in tumor epithelium and reciprocal stromal upregulation of miR-142-3p, a novel post-transcriptional regulator of CLIC4. Oncotarget 2019; 10:7251-7275. [PMID: 31921386 PMCID: PMC6944452 DOI: 10.18632/oncotarget.27387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Chloride intracellular channel 4 (CLIC4) is a tumor suppressor implicated in processes including growth arrest, differentiation, and apoptosis. CLIC4 protein expression is diminished in the tumor parenchyma during progression in squamous cell carcinoma (SCC) and other neoplasms, but the underlying mechanisms have not been identified. Data from The Cancer Genome Atlas suggest this is not driven by genomic alterations. However, screening and functional assays identified miR-142-3p as a regulator of CLIC4. CLIC4 and miR-142-3p expression are inversely correlated in head and neck (HN) SCC and cervical SCC, particularly in advanced stage cancers. In situ localization revealed that stromal immune cells, not tumor cells, are the predominant source of miR-142-3p in HNSCC. Furthermore, HNSCC single-cell expression data demonstrated that CLIC4 is lower in tumor epithelial cells than in stromal fibroblasts and endothelial cells. Tumor-specific downregulation of CLIC4 was confirmed in an SCC xenograft model concurrent with immune cell infiltration and miR-142-3p upregulation. These findings provide the first evidence of CLIC4 regulation by miRNA. Furthermore, the distinct localization of CLIC4 and miR-142-3p within the HNSCC tumor milieu highlight the limitations of bulk tumor analysis and provide critical considerations for both future mechanistic studies and use of miR-142-3p as a HNSCC biomarker.
Collapse
Affiliation(s)
- Brandi L. Carofino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kayla M. Dinshaw
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Pui Yan Ho
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Aleksandra M. Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Andrew Ryscavage
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Nathan W. Wong
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Vishal Koparde
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
40
|
Bai H, Wu S. miR-451: A Novel Biomarker and Potential Therapeutic Target for Cancer. Onco Targets Ther 2019; 12:11069-11082. [PMID: 31908476 PMCID: PMC6924581 DOI: 10.2147/ott.s230963] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, non-coding, single-stranded small RNAs involved in a variety of cellular processes, including ontogeny, cell proliferation, differentiation, and apoptosis. They can also function as oncogenes or tumor suppressor genes. Recent studies have revealed that miRNA-451 (miR-451) is involved in the regulation of various human physiological and pathological processes. Furthermore, it has been shown that miR-451 not only directly affects the biological functions of tumor cells but also indirectly affects tumor cell invasion and metastasis upon secretion into the tumor microenvironment via exosomes. Thus, miR-451 also influences the progression of tumorigenesis and drug resistance. This review summarizes the expression of miR-451 in various cancer types and the relationship between miR-451 and the diagnosis, treatment, and drug resistance of solid tumors. In addition, we address possible mechanisms of action of miR-451 and its potential application as a biomarker in the diagnosis and treatment of human cancers.
Collapse
Affiliation(s)
- Hua Bai
- Department of Gynecology and Obstetrics, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Suhui Wu
- Department of Gynecology and Obstetrics, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
41
|
Sato S, Vasaikar S, Eskaros A, Kim Y, Lewis JS, Zhang B, Zijlstra A, Weaver AM. EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of ephrin reverse signaling. JCI Insight 2019; 4:132447. [PMID: 31661464 DOI: 10.1172/jci.insight.132447] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is a key process that allows nutrient uptake and cellular trafficking and is coopted in cancer to enable tumor growth and metastasis. Recently, extracellular vesicles (EVs) have been shown to promote angiogenesis; however, it is unclear what unique features EVs contribute to the process. Here, we studied the role of EVs derived from head and neck squamous cell carcinoma (HNSCC) in driving tumor angiogenesis. Small EVs (SEVs), in the size range of exosomes (50-150 nm), induced angiogenesis both in vitro and in vivo. Proteomic analysis of HNSCC SEVs revealed the cell-to-cell signaling receptor ephrin type B receptor 2 (EPHB2) as a promising candidate cargo to promote angiogenesis. Analysis of patient data further identified EPHB2 overexpression in HNSCC tumors to be associated with poor patient prognosis and tumor angiogenesis, especially in the context of overexpression of the exosome secretion regulator cortactin. Functional experiments revealed that EPHB2 expression in SEVs regulated angiogenesis both in vitro and in vivo and that EPHB2 carried by SEVs stimulates ephrin-B reverse signaling, inducing STAT3 phosphorylation. A STAT3 inhibitor greatly reduced SEV-induced angiogenesis. These data suggest a model in which EVs uniquely promote angiogenesis by transporting Eph transmembrane receptors to nonadjacent endothelial cells to induce ephrin reverse signaling.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Suhas Vasaikar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Adel Eskaros
- Department of Pathology, Microbiology and Immunology, and
| | - Young Kim
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James S Lewis
- Department of Pathology, Microbiology and Immunology, and
| | - Bing Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Pathology, Microbiology and Immunology, and
| |
Collapse
|
42
|
Reciprocal regulation of miR-1205 and E2F1 modulates progression of laryngeal squamous cell carcinoma. Cell Death Dis 2019; 10:916. [PMID: 31801947 PMCID: PMC6893029 DOI: 10.1038/s41419-019-2154-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
Abstract
The burgeoning functions of many microRNAs (miRs) have been well study in cancer. However, the level and function of miR-1205 in laryngeal squamous cell cancer remains unknown. In the current research, we validated that miR-1205 was notably downregulated in human laryngeal squamous cell carcinoma (LSCC) samples in comparison with tissues adjacent to LSCC, and correlated with T stage, lymph node metastasis, and clinical stage. Using Kaplan–Meier analysis indicates that high expression of miR-1205 has a favorable prognosis for patients with LSCC. Functional assays show that enforced miR-1205 expression attenuates the migration, growth, and invasion of LSCC cells. And E2F1 is verified to be a target of miR-1205, while E2F1 binds to miR-1205 promoter and transcriptionally inhibits miR-1205 expression. Overexpression of E2F1 reverses the inhibitory impacts of miR-1205 on LSCC cells in part. Importantly, E2F1 is abnormally increased in LSCC tissues, and its protein levels were inversely relevant to miR-1205 expression. High E2F1 protein level is in connection with clinical stage, T stage, lymph node metastasis, and poor prognosis. Consequently, reciprocal regulation of miR-1205 and E2F1 plays a crucial role in the progression of LSCC, suggesting a new miR-1205/E2F1-based clinical application for patients of LSCC.
Collapse
|
43
|
Xu X, Lu Z, Gross N, Li G, Zhang F, Lei D, Pan X. A 3-miRNA signature predicts survival of patients with hypopharyngeal squamous cell carcinoma after post-operative radiotherapy. J Cell Mol Med 2019; 23:8280-8291. [PMID: 31578816 PMCID: PMC6850940 DOI: 10.1111/jcmm.14702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/23/2019] [Accepted: 09/15/2019] [Indexed: 12/19/2022] Open
Abstract
Since the prognosis of hypopharyngeal squamous cell carcinoma (HSCC) remains poor, identification of miRNA as a potential prognostic biomarker for HSCC may help improve personalized therapy. In the 2 cohorts with a total of 511 patients with HSCC (discovery: N = 372 and validation: N = 139) after post-operative radiotherapy, we used miRNA microarray and qRT-PCR to screen out the significant miRNAs which might predict survival. Associations of miRNAs and the signature score of these miRNAs with survival were performed by Kaplan-Meier survival analysis and multivariate Cox hazard model. Among 9 candidate, miRNAs, miR-200a-3p, miR-30b-5p, miR-3161, miR-3605-5p, miR-378b and miR-4451 were up-regulated, while miR-200c-3p, miR-429 and miR-4701 were down-regulated after validation. Moreover, the patients with high expression of miR-200a-3p, miR-30b-5p and miR-4451 had significantly worse overall survival (OS) and disease-specific survival (DSS) than did those with low expression (log-rank P < .05). Patients with a high-risk score had significant worse OS and DSS than those with low-risk score. Finally, after adjusting for other important prognostic confounders, patients with high expression of miR-200a-3p, miR-30b-5p and miR-4451 had significantly high risk of overall death and death owing to HSCC and patients with a high-risk score has approximately 2-fold increased risk in overall death and death owing to HSCC compared with those with a low-risk score. These findings indicated that the 3-miRNA-based signature may be a novel independent prognostic biomarker for patients given surgery and post-operative radiotherapy, supporting that these miRNAs may jointly predict survival of HSCC.
Collapse
Affiliation(s)
- Xinbo Xu
- Department of Otolaryngology, Qilu Hospital of Shandong University, Jinan, China.,NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Zhongming Lu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Neil Gross
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fenghua Zhang
- Thyroid and Breast Surgery Department, Hebei General Hospital, Shijiazhuang, China
| | - Dapeng Lei
- Department of Otolaryngology, Qilu Hospital of Shandong University, Jinan, China.,NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Xinliang Pan
- Department of Otolaryngology, Qilu Hospital of Shandong University, Jinan, China.,NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| |
Collapse
|
44
|
Campa CC, Weisbach NR, Santinha AJ, Incarnato D, Platt RJ. Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat Methods 2019; 16:887-893. [PMID: 31406383 DOI: 10.1038/s41592-019-0508-6] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/07/2019] [Indexed: 12/28/2022]
Abstract
The ability to modify multiple genetic elements simultaneously would help to elucidate and control the gene interactions and networks underlying complex cellular functions. However, current genome engineering technologies are limited in both the number and the type of perturbations that can be performed simultaneously. Here, we demonstrate that both Cas12a and a clustered regularly interspaced short palindromic repeat (CRISPR) array can be encoded in a single transcript by adding a stabilizer tertiary RNA structure. By leveraging this system, we illustrate constitutive, conditional, inducible, orthogonal and multiplexed genome engineering of endogenous targets using up to 25 individual CRISPR RNAs delivered on a single plasmid. Our method provides a powerful platform to investigate and orchestrate the sophisticated genetic programs underlying complex cell behaviors.
Collapse
Affiliation(s)
- Carlo C Campa
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Niels R Weisbach
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - António J Santinha
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
45
|
Jakob M, Mattes LM, Küffer S, Unger K, Hess J, Bertlich M, Haubner F, Ihler F, Canis M, Weiss BG, Kitz J. MicroRNA expression patterns in oral squamous cell carcinoma: hsa-mir-99b-3p and hsa-mir-100-5p as novel prognostic markers for oral cancer. Head Neck 2019; 41:3499-3515. [PMID: 31355988 DOI: 10.1002/hed.25866] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNA) recently evolved as potential cancer biomarkers. Therefore, the aim of the present study was to evaluate the prognostic impact of eight miRNAs connected to oral squamous cell carcinoma (OSCC). METHOD Expression levels of hsa-mir-21-5p, hsa-mir-29b-3p, hsa-mir-31-5p, hsa-mir-99a-5p, hsa-mir-99b-3p, hsa-mir-100-5p, hsa-mir-143-3p and hsa-mir-155-5p were analyzed in tumor tissue (n = 36) and healthy oral mucosal tissue (n = 17) and correlated with clinical variables. Results of the study cohort were validated in an OSCC cohort of The Cancer Genome Atlas. RESULTS Increased hsa-mir-99b-3p expression level showed a tendency toward advanced tumor stages, and high levels of hsa-mir-100-5p expression were associated with extracapsular extension. While a high expression level of hsa-mir-99b-3p was associated with better survival, a high expression level of hsa-mir-100-5p was correlated with a poorer survival in the study cohort. CONCLUSION Our results indicate that hsa-mir-99b-3p and hsa-mir-100-5p may serve as novel prognostic biomarkers in OSCC.
Collapse
Affiliation(s)
- Mark Jakob
- Department of Otorhinolaryngology, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lena M Mattes
- Department of Otorhinolaryngology, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Stefan Küffer
- Institute of Pathology, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Kristian Unger
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany.,Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany
| | - Julia Hess
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany.,Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany
| | - Mattis Bertlich
- Department of Otorhinolaryngology, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Frank Haubner
- Department of Otorhinolaryngology, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Friedrich Ihler
- Department of Otorhinolaryngology, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Vertigo and Balance Disorders (DSGZ), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bernhard G Weiss
- Department of Otorhinolaryngology, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julia Kitz
- Institute of Pathology, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany.,German Center for Vertigo and Balance Disorders (DSGZ), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
46
|
MicroRNA targeting by quercetin in cancer treatment and chemoprotection. Pharmacol Res 2019; 147:104346. [PMID: 31295570 DOI: 10.1016/j.phrs.2019.104346] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 02/08/2023]
Abstract
A growing number of evidences from clinical and preclinical studies have shown that dysregulation of microRNA (miRNA) function contributes to the progression of cancer and thus miRNA can be an effective target in therapy. Dietary phytochemicals, such as quercetin, are natural products that have potential anti-cancer properties due to their proven antioxidant, anti-inflammatory, and anti-proliferative effects. Available experimental studies indicate that quercetin could modulate multiple cancer-relevant miRNAs including let-7, miR-21, miR-146a and miR-155, thereby inhibiting cancer initiation and development. This paper reviews the data supporting the use of quercetin for miRNA-mediated chemopreventive and therapeutic strategies in various cancers, with the aim to comprehensively understand its health-promoting benefits and pharmacological potential. Integration of technology platforms for miRNAs biomarker and drug discovery is also presented.
Collapse
|
47
|
Gao W, Zhang Y, Niu M, Bo Y, Li H, Xue X, Lu Y, Zheng X, Tang Y, Cui J, He L, Thorne RF, Wang B, Wu Y. Identification of miR‐145‐5p‐Centered Competing Endogenous RNA Network in Laryngeal Squamous Cell Carcinoma. Proteomics 2019; 19:e1900020. [DOI: 10.1002/pmic.201900020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/02/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Otolaryngology Head and Neck Surgery Research Institute Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer Taiyuan 030001 Shanxi P. R. China
| | - Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Otolaryngology Head and Neck Surgery Research Institute Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer Taiyuan 030001 Shanxi P. R. China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Otolaryngology Head and Neck Surgery Research Institute Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer Taiyuan 030001 Shanxi P. R. China
| | - Yunfeng Bo
- Department of Pathology Shanxi Cancer Hospital Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
| | - Huizheng Li
- Department of Otolaryngology Head and Neck Surgery Dalian Municipal Friendship Hospital Dalian 116001 Liaoning P. R. China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Otolaryngology Head and Neck Surgery Research Institute Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer Taiyuan 030001 Shanxi P. R. China
| | - Yan Lu
- Department of Otolaryngology Head and Neck Surgery The First Hospital Jinzhou Medical University Jinzhou 121001 Liaoning P. R. China
| | - Xiwang Zheng
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Otolaryngology Head and Neck Surgery Research Institute Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer Taiyuan 030001 Shanxi P. R. China
| | - Yemei Tang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Otolaryngology Head and Neck Surgery Research Institute Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer Taiyuan 030001 Shanxi P. R. China
| | - Jiajia Cui
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Otolaryngology Head and Neck Surgery Research Institute Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer Taiyuan 030001 Shanxi P. R. China
| | - Long He
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Otolaryngology Head and Neck Surgery Research Institute Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer Taiyuan 030001 Shanxi P. R. China
| | - Rick F. Thorne
- Translational Research Institute Henan Provincial People's Hospital School of Medicine, Henan University Zhengzhou 450053 Henan P. R. China
- School of Environmental and Life Sciences The University of Newcastle Callaghan 2308 NSW Australia
| | - Binquan Wang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Otolaryngology Head and Neck Surgery Research Institute Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer Taiyuan 030001 Shanxi P. R. China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Otolaryngology Head and Neck Surgery Research Institute Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer Taiyuan 030001 Shanxi P. R. China
| |
Collapse
|
48
|
Knockdown of hsa_circ_0023028 inhibits cell proliferation, migration, and invasion in laryngeal cancer by sponging miR-194-5p. Biosci Rep 2019; 39:BSR20190177. [PMID: 31123169 PMCID: PMC6567676 DOI: 10.1042/bsr20190177] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
Emerging evidences have proposed that circular RNAs (circRNAs) play a major role in carcinogenesis. Hsa_circ_0023028 has been reported to be aberrantly expressed in laryngeal cancer (LCa). However, the role and the mechanism of hsa_circ_0023028 in LCa have not been adequately studied. In the present study, we demonstrated that hsa_circ_0023028 expression was up-regulated in LCa tissues and cell lines. miR-194-5p was down-regulated in LCa cells. Functionally, knockdown of hsa_circ_0023028 inhibited the proliferation, migration, and invasion of LCa cells, as evidenced by the reduced number of 5-Ethynyl-2'-deoxyuridine (EdU)-positive cells and decreased number of migrated and invaded cells. Additionally, hsa_circ_0023028 was identified as an miR-194-5p sink. A negative correlation between miR-194-5p and hsa_circ_0023028 expression was observed in LCa tissues. Besides, down-regulation of miR-194-5p attenuated the inhibitory effects of hsa_circ_0023028 silencing on LCa cell proliferation, migration, and invasion. In summary, hsa_circ_0023028 functions as an miR-194-5p sponge to promote the proliferation, migration, and invasion of LCa cells.
Collapse
|
49
|
Li J, Li Y, Wu X, Li Y. Identification and validation of potential long non-coding RNA biomarkers in predicting survival of patients with head and neck squamous cell carcinoma. Oncol Lett 2019; 17:5642-5652. [PMID: 31186787 PMCID: PMC6507327 DOI: 10.3892/ol.2019.10261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 03/21/2019] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are frequently dysregulated in cancer and their aberrant expression has been associated with cancer diagnosis and prognosis, which suggests that they may be promising molecular biomarkers. However, understanding of the expression pattern of lncRNAs and their prognostic roles in head and neck squamous cell carcinoma (HNSCC) is relatively limited. In the current study, the prognostic value of lncRNA expression profiles in predicting the OS of patients with HNSCC was investigated by integrating clinical and profiling data from The Cancer Genome Atlas. A total of ten lncRNAs closely associated with the prognosis of patients with HNSCC were identified and may serve as novel biomarkers. This 10-lncRNA signature was used to classify patients into 2 groups with significantly different overall survival (OS) times (median OS time, 1.65 vs. 13.04 years; P<0.0001). This lncRNA signature was validated in an independent testing cohort. The results of multivariable Cox regression and stratification analyses revealed that the prognostic value of the 10-lncRNA signature was independent of other clinical and pathological factors for the survival of patients with HNSCC. Functional analysis demonstrated that lncRNA expression-based risk scoring may reflect the basic status of the immune response in the tumor microenvironment. The presented study demonstrated the value of a lncRNA signature as a potential biomarker to improve the clinical prognosis of patients with HNSCC.
Collapse
Affiliation(s)
- Junyu Li
- Department of Radiotherapy, Cancer Hospital of Jiangxi Province, Nanchang, Jiangxi 330029, P.R. China
| | - Yuehua Li
- Department of Medical Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoping Wu
- Department of Medical Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ying Li
- Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
50
|
Wang R, Li G, Zhuang G, Sun S, Song Z. Overexpression of microRNA-423-3p indicates poor prognosis and promotes cell proliferation, migration, and invasion of lung cancer. Diagn Pathol 2019; 14:53. [PMID: 31164163 PMCID: PMC6549275 DOI: 10.1186/s13000-019-0831-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Lung cancer is one of the common malignant tumors worldwide with high incidence and mortality. MicroRNA-423-3p (miR-423-3p) acts as an oncogene in several types of cancers. The aim of this study is to reveal the clinical significance and biological function of miR-423-3p in lung cancer. METHODS The expression of miR-423-3p was detected in lung cancer specimens by reverse transcription-quantitative polymerase chain reaction (qRT-PCR) assay. Kaplan-Meier survival and Cox regression analyses were used to investigate the prognostic significance of miR-423-3p in lung cancer. CCK-8 and Transwell assays were used to determine the functional role of miR-423-3p in lung cancer. RESULTS We observed that miR-423-3p was significantly upregulated in lung cancer tissues and cell lines. Overexpression of miR-423-3p was significantly associated with lymph node metastasis, TNM stage, and poor prognosis. Multivariate Cox regression analysis results showed that miR-423-3p was an independent prognostic indicator for lung cancer patients. Results of functional analyses revealed that overexpression of miR-423-3p promoted cell proliferation, migration, and invasion in lung cancer cells. CONCLUSIONS These results indicated that miR-423-3p acts as an oncogene and promotes cell proliferation migration, and invasion of lung cancer. And miR-423-3p may serve as a potential prognostic biomarker and therapeutic target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Rukun Wang
- Department of Thoracic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, 261061, Shandong, China
| | - Gaofeng Li
- Department of Thyroid and Breast Surgery, Weifang Cancer Hospital, Weifang, 261041, Shandong, China
| | - Guoyan Zhuang
- Department of Outpatient, Weifang Cancer Hospital, Weifang, 261041, Shandong, China
| | - Shuying Sun
- Department of Nursing, Weifang Cancer Hospital, Weifang, 261041, Shandong, China
| | - Zhihui Song
- Department of Thoracic Surgery, Weifang Cancer Hospital, Weifang, 261041, Shandong, China.
| |
Collapse
|