1
|
Manoharan J, Albers MB, Rinke A, Adelmeyer J, Görlach J, Bartsch DK. Multiple Endocrine Neoplasia Type 1. DEUTSCHES ARZTEBLATT INTERNATIONAL 2024; 121:527-533. [PMID: 38863299 PMCID: PMC11542567 DOI: 10.3238/arztebl.m2024.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Multiple endocrine neoplasia type 1 (MEN1) is a rare genetic disease of autosomal dominant inheritance, with an estimated prevalence of 3-20/100 000. Its main feature is neuroendocrine neoplasia in the parathyroid glands, the endocrine pancreas, the duodenum, and the pituitary gland. In this article, we review the diagnostic and therapeutic options for MEN1-associated tumors. METHODS We present an analysis and evaluation of retrospective case studies retrieved from PubMed, guidelines from Germany and abroad, and our own experience. RESULTS The disease is caused by mutations in the MEN1 gene. Mutation carriers should participate in a regular, specialized screening program from their twenties onward. The early diagnosis and individualized treatment of MEN1-associated tumors can prevent the development of life-threatening hormonal syndromes and prolong the expected life span of MEN1 patients from 55 to 70 years, as well as improving their quality of life. Surgical treatment is based on the location, size, growth dynamics, and functional activity of the tumors. The evidence for treatment strategies is derived from retrospective studies only (level III evidence) and the optimal treatment is often a matter of debate. This is a further reason for treatment in specialized centers. CONCLUSION MEN1 is a rare disease, and, consequently, the evidence base for its treatment is limited. Carriers of disease-causing mutations in the MEN1 gene should be cared for in specialized interdisciplinary centers, so that any appreciable tumor growth or hormonal activity can be detected early and organ-sparing treatment can be provided.
Collapse
Affiliation(s)
- Jerena Manoharan
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Max B. Albers
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Anja Rinke
- Department of Gastroenterology and Endocrinology, Philipps University Marburg, Marburg, Germany
| | - Jan Adelmeyer
- Department of Gastroenterology and Endocrinology, Philipps University Marburg, Marburg, Germany
| | - Jannis Görlach
- Department of Diagnostic and Interventional Radiology, Philipps University Marburg, Marburg, Germany
| | - Detlef K. Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
2
|
Ito T, Ramos-Alvarez I, Jensen RT. Long-Term Proton Pump Inhibitor-Acid Suppressive Treatment Can Cause Vitamin B 12 Deficiency in Zollinger-Ellison Syndrome (ZES) Patients. Int J Mol Sci 2024; 25:7286. [PMID: 39000391 PMCID: PMC11242121 DOI: 10.3390/ijms25137286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Whether the long-term treatment of patients with proton pump inhibitors (PPIs) with different diseases [GERD, Zollinger-Ellison syndrome (ZES), etc.] can result in vitamin B12 (VB12) deficiency is controversial. In this study, in 175 patients undergoing long-term ZES treatment with anti-acid therapies, drug-induced control acid secretory rates were correlated with the presence/absence of VB12 deficiency, determined by assessing serum VB12 levels, measurements of VB12 body stores (blood methylmalonic acid (MMA) and total homocysteine[tHYC]), and other features of ZES. After a mean of 10.2 yrs. of any acid treatment (5.6 yrs. with PPIs), 21% had VB12 deficiency with significantly lower serum and body VB12 levels (p < 0.0001). The presence of VB12 deficiency did not correlate with any feature of ZES but was associated with a 12-fold lower acid control rate, a 2-fold higher acid control pH (6.4 vs. 3.7), and acid control secretory rates below those required for the activation of pepsin (pH > 3.5). Over a 5-yr period, the patients with VB12 deficiency had a higher rate of achlorhydria (73% vs. 24%) and a lower rate of normal acid secretion (0% vs. 49%). In conclusion, in ZES patients, chronic long-term PPI treatment results in marked acid hyposecretion, resulting in decreased serum VB12 levels and decreased VB12-body stores, which can result in VB12 deficiency.
Collapse
Affiliation(s)
- Tetsuhide Ito
- Neuroendocrine Tumor Centra, Fukuoka Sanno Hospital, International University of Health and Welfare, 3-6-45 Momochihama, Sawara-Ku, Fukuoka 814-0001, Japan
| | | | - Robert T Jensen
- Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD 20892-1804, USA
| |
Collapse
|
3
|
Graillon T, Romanet P, Camilla C, Gélin C, Appay R, Roche C, Lagarde A, Mougel G, Farah K, Le Bras M, Engelhardt J, Kalamarides M, Peyre M, Amelot A, Emery E, Magro E, Cebula H, Aboukais R, Bauters C, Jouanneau E, Berhouma M, Cuny T, Dufour H, Loiseau H, Figarella-Branger D, Bauchet L, Binquet C, Barlier A, Goudet P. A Cohort Study of CNS Tumors in Multiple Endocrine Neoplasia Type 1. Clin Cancer Res 2024; 30:2835-2845. [PMID: 38630553 DOI: 10.1158/1078-0432.ccr-23-3308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/02/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Multiple endocrine neoplasia type 1 (MEN1) is thought to increase the risk of meningioma and ependymoma. Thus, we aimed to describe the frequency, incidence, and specific clinical and histological features of central nervous system (CNS) tumors in the MEN1 population (except pituitary tumors). EXPERIMENTAL DESIGN The study population included patients harboring CNS tumors diagnosed with MEN1 syndrome after 1990 and followed up in the French MEN1 national cohort. The standardized incidence ratio (SIR) was calculated based on the French Gironde CNS Tumor Registry. Genomic analyses were performed on somatic DNA from seven CNS tumors, including meningiomas and ependymomas from patients with MEN1, and then on 50 sporadic meningiomas and ependymomas. RESULTS A total of 29 CNS tumors were found among the 1,498 symptomatic patients (2%; incidence = 47.4/100,000 person-years; SIR = 4.5), including 12 meningiomas (0.8%; incidence = 16.2/100,000; SIR = 2.5), 8 ependymomas (0.5%; incidence = 10.8/100,000; SIR = 17.6), 5 astrocytomas (0.3%; incidence = 6.7/100,000; SIR = 5.8), and 4 schwannomas (0.3%; incidence = 5.4/100,000; SIR = 12.7). Meningiomas in patients with MEN1 were benign, mostly meningothelial, with 11 years earlier onset compared with the sporadic population and an F/M ratio of 1/1. Spinal and cranial ependymomas were mostly classified as World Health Organization grade 2. A biallelic MEN1 inactivation was observed in 4/5 ependymomas and 1/2 meningiomas from patients with MEN1, whereas MEN1 deletion in one allele was present in 3/41 and 0/9 sporadic meningiomas and ependymomas, respectively. CONCLUSIONS The incidence of each CNS tumor was higher in the MEN1 population than in the French general population. Meningiomas and ependymomas should be considered part of the MEN1 syndrome, but somatic molecular data are missing to conclude for astrocytomas and schwannomas.
Collapse
Affiliation(s)
- Thomas Graillon
- Neurosurgery Departement, Aix Marseille Univ, INSERM, APHM, MMG, UMR1251, Marmara Institute, La Timone Hospital, Marseille, France
| | - Pauline Romanet
- Laboratory of Molecular Biology, Aix Marseille Univ, INSERM, APHM, MMG, UMR1251, Marmara Institute, La Conception Hospital, Marseille, France
- Laboratory of Molecular Biology, APHM, La Conception Hospital, Marseille, France
| | - Clara Camilla
- Laboratory of Molecular Biology, APHM, La Conception Hospital, Marseille, France
| | - Camille Gélin
- INSERM, U1231, Epidemiology and Clinical Research in Digestive Cancers Team, University of Burgundy-Franche-Comte, Dijon, France
- Dijon-Bourgogne University Hospital, Inserm, University of Burgundy-Franche-Comté, CIC1432, Clinical Epidemiology Unit, Dijon, France
| | - Romain Appay
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Catherine Roche
- Laboratory of Molecular Biology, APHM, La Conception Hospital, Marseille, France
| | - Arnaud Lagarde
- Laboratory of Molecular Biology, APHM, La Conception Hospital, Marseille, France
| | - Grégory Mougel
- Laboratory of Molecular Biology, Aix Marseille Univ, INSERM, APHM, MMG, UMR1251, Marmara Institute, La Conception Hospital, Marseille, France
- Laboratory of Molecular Biology, APHM, La Conception Hospital, Marseille, France
| | - Kaissar Farah
- Neurosurgery Departement, Aix-Marseille Univ, APHM, La Timone Hospital, Marseille, France
| | - Maëlle Le Bras
- CHU de Nantes PHU2 Institut du Thorax et du Système Nerveux, Service d'Endocrinologie, Diabétologie et Nutrition, Nantes, France
| | - Julien Engelhardt
- CNRS UMR5293, Université de Bordeaux, Bordeaux, France
- Service de Neurochirurgie B - CHU de Bordeaux, Bordeaux, France
| | - Michel Kalamarides
- Department of Neurosurgery, Pitie-Salpetriere Hospital, AP-HP Sorbonne Université, Paris, France
| | - Matthieu Peyre
- Department of Neurosurgery, Pitie-Salpetriere Hospital, AP-HP Sorbonne Université, Paris, France
| | - Aymeric Amelot
- Service de Neurochirurgie, Hôpital Bretonneau, CHU Tours, Tours, France
| | - Evelyne Emery
- Department of Neurosurgery, CHU de Caen, Caen, France
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
- Medical School, Université Caen Normandie, Caen, France
| | | | - Hélène Cebula
- Service de Neurochirurgie CHRU Hôpital de Hautepierre, Strasbourg, France
| | - Rabih Aboukais
- Univ. Lille, INSERM, CHU Lille, U1189-ONCO-THAI-Image Assisted Laser Therapy for Oncology, Lille, France
- Department of Neurosurgery, Lille University Hospital, Lille, France
| | - Catherine Bauters
- Service d'Endocrinologie, Hôpital Huriez, CHU de Lille, Lille, France
| | - Emmanuel Jouanneau
- Département de Neurochirurgie de la base du crâne et de l'hypophyse, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
- Université Lyon 1, Lyon, France
- INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon, Lyon, France
| | - Moncef Berhouma
- Department of Neurosurgery, University Hospital of Lyon, Lyon, France
- CREATIS Lab, CNRS UMR 5220, INSERM U1206, University of Lyon, Lyon, France
| | - Thomas Cuny
- Endocrinology Departement, Aix Marseille Univ, INSERM, APHM, MMG, UMR1251, Marmara Institute, La Conception Hospital, Marseille, France
| | - Henry Dufour
- Neurosurgery Departement, Aix Marseille Univ, INSERM, APHM, MMG, UMR1251, Marmara Institute, La Timone Hospital, Marseille, France
| | - Hugues Loiseau
- CNRS UMR5293, Université de Bordeaux, Bordeaux, France
- Service de Neurochirurgie B - CHU de Bordeaux, Bordeaux, France
| | - Dominique Figarella-Branger
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Luc Bauchet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Christine Binquet
- INSERM, U1231, Epidemiology and Clinical Research in Digestive Cancers Team, University of Burgundy-Franche-Comte, Dijon, France
- Dijon-Bourgogne University Hospital, Inserm, University of Burgundy-Franche-Comté, CIC1432, Clinical Epidemiology Unit, Dijon, France
| | - Anne Barlier
- Laboratory of Molecular Biology, Aix Marseille Univ, INSERM, APHM, MMG, UMR1251, Marmara Institute, La Conception Hospital, Marseille, France
- Laboratory of Molecular Biology, APHM, La Conception Hospital, Marseille, France
| | - Pierre Goudet
- Department of Digestive and Endocrine Surgery, Dijon University Hospital, Dijon, France
- INSERM, U1231, EPICAD Team UMR "Lipids, Nutrition, Cancer", Dijon, France
- INSERM, CIC1432, Clinical Epidemiology, Dijon, France
| |
Collapse
|
4
|
Guo AX, Job A, Pacione D, Agrawal N. Risk of intracranial meningioma in patients with acromegaly: a systematic review. Front Endocrinol (Lausanne) 2024; 15:1407615. [PMID: 38919490 PMCID: PMC11196394 DOI: 10.3389/fendo.2024.1407615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Acromegaly is a rare endocrine disorder caused by hypersecretion of growth hormone (GH) from a pituitary adenoma. Elevated GH levels stimulate excess production of insulin-like growth factor 1 (IGF-1) which leads to the insidious onset of clinical manifestations. The most common primary central nervous system (CNS) tumors, meningiomas originate from the arachnoid layer of the meninges and are typically benign and slow-growing. Meningiomas are over twice as common in women as in men, with age-adjusted incidence (per 100,000 individuals) of 10.66 and 4.75, respectively. Several reports describe co-occurrence of meningiomas and acromegaly. We aimed to determine whether patients with acromegaly are at elevated risk for meningioma. Investigation of the literature showed that co-occurrence of a pituitary adenoma and a meningioma is a rare phenomenon, and the majority of cases involve GH-secreting adenomas. To the best of our knowledge, a systematic review examining the association between meningiomas and elevated GH levels (due to GH-secreting adenomas in acromegaly or exposure to exogenous GH) has never been conducted. The nature of the observed coexistence between acromegaly and meningioma -whether it reflects causation or mere co-association -is unclear, as is the pathophysiologic etiology. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022376998.
Collapse
Affiliation(s)
- Amy X. Guo
- NYU Grossman School of Medicine, NYU Langone Health, New York, NY, United States
| | - Asha Job
- NYU Grossman School of Medicine, NYU Langone Health, New York, NY, United States
| | - Donato Pacione
- NYU Grossman School of Medicine, NYU Langone Health, New York, NY, United States
- Division of Neurosurgery, NYU Langone Health, New York, NY, United States
| | - Nidhi Agrawal
- NYU Grossman School of Medicine, NYU Langone Health, New York, NY, United States
- Division of Endocrinology, Diabetes and Metabolism, NYU Langone Medical Center/Bellevue Hospital Center New York, New York, NY, United States
| |
Collapse
|
5
|
Taher MM, Ashour KM, Althaqafi BA, Mansouri A, Al-Harbi AA, Filfilan W, Bakhsh GY, Bantan NA, Saeed M, AlQuthami K. Next-Generation DNA Sequencing of Grade 1 Meningioma Tumours: A Case Report of Angiomatous and Psammomatous Meningiomas. Cureus 2024; 16:e54009. [PMID: 38476782 PMCID: PMC10929682 DOI: 10.7759/cureus.54009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 03/14/2024] Open
Abstract
We performed the next-generation sequencing (NGS) analysis of a rare grade 1 brain meningioma (angiomatous type) and a common grade 1 spinal meningioma (psammomatous type) and compared their mutation profiling. The data were analysed using the Ion Reporter 5.16 programme (Thermo Fisher Scientific, Waltham, MA). Sequencing analysis identified 10 novel variants and two previously reported variants that were common between these two tumours. Nine variants were missense, which included an insertion in EGFR c.1819_1820insCA, causing frameshifting, and a single nucleotide deletion in HRAS and HNF1A genes, causing frameshifting in these genes. These were common variants identified for both tumours. Also, 10 synonymous variants and 10 intronic variants were common between these two tumours. In intronic variants, two were splice site_5' variants (acceptor site variants). Typical of the angiomatous type tumour, there were 11 novel and six previously reported variants that were not found in the psammomatous tumour; three variants were synonymous, 11 were missense mutations, and three were deletions causing frameshifting. The deletion variants were in the SMARCB1, CDH1, and KDR genes. In contrast, eight novel and five previously reported variants were found in the psammomatous meningioma tumour. In this tumour, two variants were synonymous: a deletion causing a frameshifting in [(c.3920delT; p. (Ile1307fs)], and a two-base pair insertion and deletion (INDEL) [(c.3986_3987delACinsGT; p. (His1329Arg)] both in the APC gene were also found. Among our findings, we have identified that ALK, VHL, CTNNB1, EGFR, ERBB4, PDGFRA, KDR, SMO, ABL1, HRAS, ATM, HNF1A, FLT3, and RB1 mutations are common for psammomatous meningioma and angiomatous tumours. Variants typical for angiomatous (brain) meningioma are PIK3CA, KIT, PTPN11, CDH1, SMAD4, and SMARCB1; the variants typical for psammomatous meningioma are APC, FGFR2, HNF1A, STK11, and JAK3. The RET splice variant (c.1880-2A>C) found in both meningioma tumours is reported (rs193922699) as likely pathogenic in the Single Nucleotide Polymorphism Database (dbSNP). All missense variants detected in these two meningiomas are found in the cancer-driver genes. The eight variants we found in genes such as EGFR, PDGFRA, SMO, FLT3, PIK3CA, PTPN11, CDH1, and RB1 are glioma-driver genes. We did not find any mutations in genes such as BRAF, IDH1, CDKN2A, PTEN, and TP53, which are also listed as cancer-driver genes in gliomas. Mutation profiling utilising NGS technology in meningiomas could help in the accurate diagnosis and classification of these tumours and also in developing more effective treatments.
Collapse
Affiliation(s)
- Mohiuddin M Taher
- Science and Technology Unit and Deanship of Scientific Research, Umm Al-Qura University, Makkah, SAU
- Medical Genetics, Umm Al-Qura University, Makkah, SAU
| | - Khalid M Ashour
- Neurological Surgery, Alexandria University, Alexandria, EGY
- Neurosurgery, Al-Noor Specialty Hospital, Ministry of Health, Makkah, SAU
| | | | - Albatool Mansouri
- Neurosurgey, Al-Noor Specialty Hospital, Ministry of Health, Makkah, SAU
| | | | - Weam Filfilan
- Pathology and Laboratory Medicine, Al-Noor Specialty Hospital, Ministry of Health, Makkah, SAU
| | - Ghassan Y Bakhsh
- General Medicine, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Makkah, SAU
| | - Najwa A Bantan
- Radiology, Al-Noor Specialty Hospital, Ministry of Health, Makkah, SAU
| | - Muhammad Saeed
- Radiology, Al-Noor Specialty Hospital, Ministry of Health, Makkah, SAU
| | - Khalid AlQuthami
- Laboratory Medicine and Blood Bank, Al-Noor Specialty Hospital, Ministry of Health, Makkah, SAU
| |
Collapse
|
6
|
Tomanelli M, Florio T, Vargas GC, Pagano A, Modesto P. Domestic Animal Models of Central Nervous System Tumors: Focus on Meningiomas. Life (Basel) 2023; 13:2284. [PMID: 38137885 PMCID: PMC10744527 DOI: 10.3390/life13122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
Intracranial primary tumors (IPTs) are aggressive forms of malignancies that cause high mortality in both humans and domestic animals. Meningiomas are frequent adult IPTs in humans, dogs, and cats, and both benign and malignant forms cause a decrease in life quality and survival. Surgery is the primary therapeutic approach to treat meningiomas, but, in many cases, it is not resolutive. The chemotherapy and targeted therapy used to treat meningiomas also display low efficacy and many side effects. Therefore, it is essential to find novel pharmacological approaches to increase the spectrum of therapeutic options for meningiomas. This review analyzes the similarities between human and domestic animal (dogs and cats) meningiomas by evaluating the molecular and histological characteristics, diagnosis criteria, and treatment options and highlighting possible research areas to identify novel targets and pharmacological approaches, which are useful for the diagnosis and therapy of this neoplasia to be used in human and veterinary medicine.
Collapse
Affiliation(s)
- Michele Tomanelli
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
| | - Tullio Florio
- Pharmacology Section, Department of Internal Medicine (DIMI), University of Genova, 16126 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Gabriela Coronel Vargas
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Paola Modesto
- National Reference Center for Veterinary and Comparative Oncology, Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Torino, Italy
| |
Collapse
|
7
|
Jha S, Simonds WF. Molecular and Clinical Spectrum of Primary Hyperparathyroidism. Endocr Rev 2023; 44:779-818. [PMID: 36961765 PMCID: PMC10502601 DOI: 10.1210/endrev/bnad009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Recent data suggest an increase in the overall incidence of parathyroid disorders, with primary hyperparathyroidism (PHPT) being the most prevalent parathyroid disorder. PHPT is associated with morbidities (fractures, kidney stones, chronic kidney disease) and increased risk of death. The symptoms of PHPT can be nonspecific, potentially delaying the diagnosis. Approximately 15% of patients with PHPT have an underlying heritable form of PHPT that may be associated with extraparathyroidal manifestations, requiring active surveillance for these manifestations as seen in multiple endocrine neoplasia type 1 and 2A. Genetic testing for heritable forms should be offered to patients with multiglandular disease, recurrent PHPT, young onset PHPT (age ≤40 years), and those with a family history of parathyroid tumors. However, the underlying genetic cause for the majority of patients with heritable forms of PHPT remains unknown. Distinction between sporadic and heritable forms of PHPT is useful in surgical planning for parathyroidectomy and has implications for the family. The genes currently known to be associated with heritable forms of PHPT account for approximately half of sporadic parathyroid tumors. But the genetic cause in approximately half of the sporadic parathyroid tumors remains unknown. Furthermore, there is no systemic therapy for parathyroid carcinoma, a rare but potentially fatal cause of PHPT. Improved understanding of the molecular characteristics of parathyroid tumors will allow us to identify biomarkers for diagnosis and novel targets for therapy.
Collapse
Affiliation(s)
- Smita Jha
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| |
Collapse
|
8
|
Caruso G, Ferrarotto R, Curcio A, Metro L, Pasqualetti F, Gaviani P, Barresi V, Angileri FF, Caffo M. Novel Advances in Treatment of Meningiomas: Prognostic and Therapeutic Implications. Cancers (Basel) 2023; 15:4521. [PMID: 37760490 PMCID: PMC10526192 DOI: 10.3390/cancers15184521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Meningiomas are the most frequent histotypes of tumors of the central nervous system. Their incidence is approximately 35% of all primary brain tumors. Although they have the status of benign lesions, meningiomas are often associated with a decreased quality of life due to focal neurological deficits that may be related. The optimal treatment is total resection. Histological grading is the most important prognostic factor. Recently, molecular alterations have been identified that are specifically related to particular phenotypes and, probably, are also responsible for grading, site, and prognostic trend. Meningiomas recur in 10-25% of cases. In these cases, and in patients with atypical or anaplastic meningiomas, the methods of approach are relatively insufficient. To date, data on the molecular biology, genetics, and epigenetics of meningiomas are insufficient. To achieve an optimal treatment strategy, it is necessary to identify the mechanisms that regulate tumor formation and progression. Combination therapies affecting multiple molecular targets are currently opening up and have significant promise as adjuvant therapeutic options. We review the most recent literature to identify studies investigating recent therapeutic treatments recently used for meningiomas.
Collapse
Affiliation(s)
- Gerardo Caruso
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy; (R.F.); (A.C.); (L.M.); (F.F.A.); (M.C.)
| | - Rosamaria Ferrarotto
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy; (R.F.); (A.C.); (L.M.); (F.F.A.); (M.C.)
| | - Antonello Curcio
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy; (R.F.); (A.C.); (L.M.); (F.F.A.); (M.C.)
| | - Luisa Metro
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy; (R.F.); (A.C.); (L.M.); (F.F.A.); (M.C.)
| | | | - Paola Gaviani
- Neuro Oncology Unit, IRCCS Foundation Carlo Besta Neurological Institute, 20133 Milan, Italy;
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy;
| | - Filippo Flavio Angileri
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy; (R.F.); (A.C.); (L.M.); (F.F.A.); (M.C.)
| | - Maria Caffo
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy; (R.F.); (A.C.); (L.M.); (F.F.A.); (M.C.)
| |
Collapse
|
9
|
Jannin A, Coppin L, Chevalier B, Maurage CA, Odou MF, Bauters CC. MEN1 and the brain: Don't just look only at the pituitary gland. A case report of anaplastic pleomorphic xanthoastrocytoma in a MEN1 patient, and systematic review. ANNALES D'ENDOCRINOLOGIE 2023; 84:424-426. [PMID: 37169283 DOI: 10.1016/j.ando.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023]
Affiliation(s)
- Arnaud Jannin
- CHU de Lille, Department of Endocrinology, Diabetology, and Metabolism, 59000 Lille, France; University Lille, CNRS, Inserm, CHU de Lille, UMR9020-U1277, CANTHER, Cancer, Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France.
| | - Lucie Coppin
- University Lille, CNRS, Inserm, CHU de Lille, UMR9020-U1277, CANTHER, Cancer, Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Benjamin Chevalier
- CHU de Lille, Department of Endocrinology, Diabetology, and Metabolism, 59000 Lille, France
| | - Claude-Alain Maurage
- University Lille, U1172-LilNCog, Lille Neuroscience & Cognition, 59000 Lille, France
| | - Marie Françoise Odou
- University Lille, Inserm, CHU de Lille, U1286, Infinite, Institute for Translational Research Inflammation, 59000 Lille, France
| | | |
Collapse
|
10
|
Pierotti L, Pardi E, Dinoi E, Piaggi P, Borsari S, Della Valentina S, Sardella C, Michelucci A, Caligo MA, Bogazzi F, Marcocci C, Cetani F. Cutaneous lesions and other non-endocrine manifestations of Multiple Endocrine Neoplasia type 1 syndrome. Front Endocrinol (Lausanne) 2023; 14:1191040. [PMID: 37484956 PMCID: PMC10360178 DOI: 10.3389/fendo.2023.1191040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Background Multiple Endocrine Neoplasia type 1 is a rare genetic syndrome mainly caused by mutations of MEN1 gene and characterized by a combination of several endocrine and non-endocrine manifestations. The objective of this study was to describe cutaneous lesions and other non-endocrine manifestations of MEN1 in a cohort of patients with familial (F) and sporadic (S) MEN1, compare the prevalence of these manifestations between the two cohorts, and investigate the correlation with MEN1 mutation status. Methods We collected phenotypic and genotypic data of 185 patients with F-MEN1 and S-MEN1 followed from 1997 to 2022. The associations between F-MEN1 and S-MEN1 or MEN1 mutation-positive and mutation-negative patients and non-endocrine manifestations were determined using chi-square or Fisher's exact tests or multivariate exact logistic regression analyses. Results The prevalence of angiofibromas was significantly higher in F-MEN1 than in S-MEN1 in both the whole (p < 0.001) and index case (p = 0.003) cohorts. The prevalence of lipomas was also significantly higher in F-MEN1 than in S-MEN1 (p = 0.009) and in MEN1 mutation-positive than in MEN1 mutation-negative (p = 0.01) index cases. In the whole cohort, the prevalence of lipomas was significantly higher in MEN1 mutation-positive compared to MEN1 mutation-negative patients (OR = 2.7, p = 0.02) and in F-MEN1 than in S-MEN1 (p = 0.03), only after adjustment for age. No significant differences were observed for the other non-endocrine manifestations between the two cohorts. Hibernoma and collagenoma were each present in one patient (0.5%) and meningioma and neuroblastoma in 2.7% and 0.5%, respectively. Gastric leiomyoma was present in 1.1% of the patients and uterine leiomyoma in 14% of women. Thyroid cancer, breast cancer, lung cancer, basal cell carcinoma, melanoma, and colorectal cancer were present in 4.9%, 2.7%, 1.6%, 1.6%, 2.2%, and 0.5% of the whole series, respectively. Conclusions We found a significantly higher prevalence of angiofibromas and lipomas in F-MEN1 compared with S-MEN1 and in MEN1 mutation-positive compared to MEN1 mutation-negative patients. In patients with one major endocrine manifestation of MEN1 , the presence of cutaneous lesions might suggest the diagnosis of MEN1 and a possible indication for genetic screening.
Collapse
Affiliation(s)
- Laura Pierotti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Pardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisa Dinoi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo Piaggi
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Simona Borsari
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Chiara Sardella
- Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Angela Michelucci
- Laboratory of Molecular Genetics, University Hospital of Pisa, Pisa, Italy
| | | | - Fausto Bogazzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Filomena Cetani
- Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Li Y, Drappatz J. Advances in the systemic therapy for recurrent meningiomas and the challenges ahead. Expert Rev Neurother 2023; 23:995-1004. [PMID: 37695700 DOI: 10.1080/14737175.2023.2254498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
INTRODUCTION Meningiomas represent the most common primary neoplasms of the central nervous system (CNS). 20% present with atypical (WHO grade II) or malignant (grade III) meningiomas, which show aggressive biologic behavior and high recurrence. Although surgical resection and radiation therapy are the primary treatment options for these tumors, there is a subgroup of patients who do not respond well to or are poor candidates for these approaches, leading to the exploration of systemic therapies as an alternative. AREAS COVERED The literature on different therapeutic groups of systemic drugs for recurrent meningiomas is reviewed, with a focus on the different molecular targets. Past and current ongoing clinical trials are also discussed. EXPERT OPINION To date, there is no recognized treatment that has demonstrated a substantial increase in progression-free or overall survival rates. Nonetheless, therapies targeting anti-VEGF have exhibited more encouraging results in general. The examination of genomic and epigenomic traits of meningiomas, along with the integration of molecular markers into the latest WHO tumor grading system, has provided valuable insights. This has opened avenues for exploring numerous intracellular and extracellular pathways, as well as mutations, that have been targeted in ongoing clinical trials.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurology and Medicine, Division of Hematology and Oncology, Center for Neuro-Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jan Drappatz
- Department of Neurology and Medicine, Division of Hematology and Oncology, Center for Neuro-Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Miller D, Hosna A, Makhoul K, Amin T, Fuchs D. Gastrointestinal Stromal Tumor With a Rare Associated Meningioma: A Case Report. Cureus 2022; 14:e31361. [DOI: 10.7759/cureus.31361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 11/13/2022] Open
|
13
|
Understanding Acquired Brain Injury: A Review. Biomedicines 2022; 10:biomedicines10092167. [PMID: 36140268 PMCID: PMC9496189 DOI: 10.3390/biomedicines10092167] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 01/19/2023] Open
Abstract
Any type of brain injury that transpires post-birth is referred to as Acquired Brain Injury (ABI). In general, ABI does not result from congenital disorders, degenerative diseases, or by brain trauma at birth. Although the human brain is protected from the external world by layers of tissues and bone, floating in nutrient-rich cerebrospinal fluid (CSF); it remains susceptible to harm and impairment. Brain damage resulting from ABI leads to changes in the normal neuronal tissue activity and/or structure in one or multiple areas of the brain, which can often affect normal brain functions. Impairment sustained from an ABI can last anywhere from days to a lifetime depending on the severity of the injury; however, many patients face trouble integrating themselves back into the community due to possible psychological and physiological outcomes. In this review, we discuss ABI pathologies, their types, and cellular mechanisms and summarize the therapeutic approaches for a better understanding of the subject and to create awareness among the public.
Collapse
|
14
|
Waguespack SG. Beyond the "3 Ps": A critical appraisal of the non-endocrine manifestations of multiple endocrine neoplasia type 1. Front Endocrinol (Lausanne) 2022; 13:1029041. [PMID: 36325452 PMCID: PMC9618614 DOI: 10.3389/fendo.2022.1029041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1), an autosomal-dominantly inherited tumor syndrome, is classically defined by tumors arising from the "3 Ps": Parathyroids, Pituitary, and the endocrine Pancreas. From its earliest descriptions, MEN1 has been associated with other endocrine and non-endocrine neoplastic manifestations. High quality evidence supports a direct association between pathogenic MEN1 variants and neoplasms of the skin (angiofibromas and collagenomas), adipose tissue (lipomas and hibernomas), and smooth muscle (leiomyomas). Although CNS tumors, melanoma, and, most recently, breast cancer have been reported as MEN1 clinical manifestations, the published evidence to date is not yet sufficient to establish causality. Well-designed, multicenter prospective studies will help us to understand better the relationship of these tumors to MEN1, in addition to verifying the true prevalence and penetrance of the well-documented neoplastic associations. Nevertheless, patients affected by MEN1 should be aware of these non-endocrine manifestations, and providers should be encouraged always to think beyond the "3 Ps" when treating an MEN1 patient.
Collapse
|
15
|
Ganapathy A, Diaz EJ, Coleman JT, Mackey KA. Tumor Syndromes: Neurosurgical Evaluation and Management. Neurosurg Clin N Am 2021; 33:91-104. [PMID: 34801146 DOI: 10.1016/j.nec.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There are multiple syndromes associated with tumors of the central nervous system (CNS). The most common CNS tumor syndrome is neurofibromatosis-1, with well-defined major and minor criteria needed for diagnosis. Other syndromes with variable degree of CNS and extra-CNS involvement that the neurosurgeon should be aware of include neurofibromatosis-2; Turcot syndrome; Cowden syndrome; Gorlin syndrome; Li-Fraumeni syndrome; ataxia-telangiectasia; multiple endocrine neoplasia type 1; von Hippel-Lindau syndrome; and tuberous sclerosis complex. Although most CNS tumor syndromes follow an autosomal dominant pattern of inheritance, the genetic underpinnings of each disease are complex and increasingly better understood.
Collapse
Affiliation(s)
- Aravinda Ganapathy
- Washington University School of Medicine, 660 S Euclid Avenue, St Louis, MO 63110, USA
| | - Elizabeth Juarez Diaz
- Washington University School of Medicine, 660 S Euclid Avenue, St Louis, MO 63110, USA
| | - Justin T Coleman
- South Georgia Medical Center, 2409 North Patterson Street, Suite 210, Valdosta, GA 31605, USA
| | - Kimberly A Mackey
- South Georgia Medical Center, 2409 North Patterson Street, Suite 210, Valdosta, GA 31605, USA; Department of Neurosurgery, Children's Hospital of the King's Daughters, 601 Children's Ln, Norfolk, VA 23507, USA.
| |
Collapse
|
16
|
Nguyen DV, Duong NV, Tran TT. Rhabdoid Meningioma Metastases Cervical Lymph Nodes: A Rare Clinical Case Report and Treatment Outcome. J Investig Med High Impact Case Rep 2021; 9:23247096211029789. [PMID: 34229471 PMCID: PMC8267018 DOI: 10.1177/23247096211029789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Meningioma is the most common central nervous system tumor that usually behaves benignly and has a good prognosis after treatment with tumor gross resection and with or without adjuvant therapy. Malignancy in meningioma is very rare and extracranial metastasis to cervical lymph nodes is even rarer. We report a case of a 40-year-old woman diagnosed with metastatic rhabdoid meningioma. She had recurrent primary disease and metastasis to bilateral cervical lymph nodes. She previously had intracranial tumor twice resected. We also review relevant, previously published cases in the literature. I hope you find these suggestions helpful.
Collapse
Affiliation(s)
- Dang Van Nguyen
- Hanoi Medical University, Hanoi, Vietnam.,Vietnam National Cancer Hospital, Hanoi, Vietnam
| | | | | |
Collapse
|
17
|
Kowalchuk RO, Shepard MJ, Sheehan K, Sheehan D, Faramand A, Niranjan A, Kano H, Gurewitz J, Bernstein K, Liscak R, Guseynova K, Grills IS, Parzen JS, Cifarelli CP, Rehman AA, Atik A, Bakhsheshian J, Zada G, Chang E, Giannotta S, Speckter H, Wu HM, Kondziolka D, Mathieu D, Lee CC, Warnick RE, Lunsford LD, Trifiletti DM, Sheehan JP. Treatment of WHO Grade 2 Meningiomas With Stereotactic Radiosurgery: Identification of an Optimal Group for SRS Using RPA. Int J Radiat Oncol Biol Phys 2021; 110:804-814. [PMID: 33548341 DOI: 10.1016/j.ijrobp.2021.01.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/12/2021] [Accepted: 01/23/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE This study assesses a large multi-institutional database to present the outcomes of World Health Organization grade 2 meningiomas treated with stereotactic radiosurgery (SRS). We also compare the 3-year progression-free survival (PFS) to that reported in the Radiation Therapy Oncology Group 0539 phase 2 cooperative group meningioma trial. METHODS AND MATERIALS From an international, multicenter group, data were collected for grade 2 meningioma patients treated with SRS for demonstrable tumor from 1994 to 2019. Statistical methods used included the Kaplan-Meier method, Cox proportional hazards analysis, and recursive partitioning analysis. RESULTS Two hundred thirty-three patients treated at 12 institutions were included. Patients presented at a median age of 60 years (range, 13-90), and many had at least 2 prior resections (30%) or radiation therapy (22%). Forty-eight percent of patients had prior gross total resection. At SRS, the median treatment volume was 6.1 cm3 (0.1-97.6). A median 15 Gy (10-30) was delivered to a median percent isodose of 50 (30-80), most commonly in 1 fraction (95%). A model was developed using recursive partitioning analysis, with one point attributed to age >50 years, treatment volume >11.5 cm3, and prior radiation therapy or multiple surgeries. The good-prognostic group (score, 0-1) had improved PFS (P < .005) and time to local failure (P < .005) relative to the poor-prognostic group (score, 2-3). Age >50 years (hazard ratio = 1.85 [95% confidence interval, 1.09-3.14]) and multiple prior surgeries (hazard ratio = 1.80 [1.09-2.99]) also portended reduced PFS in patients without prior radiation therapy. Two hundred eighteen of 233 patients in this study qualified for the high-risk group of Radiation Therapy Oncology Group 0539, and they demonstrated similar outcomes (3-year PFS: 53.9% vs 58.8%). The good-prognostic group of SRS patients demonstrated slightly improved outcomes (3-year PFS: 63.1% vs 58.8%). CONCLUSIONS SRS should be considered in carefully selected patients with atypical meningiomas. We suggest the use of our good-prognostic group to optimize patient selection, and we strongly encourage the initiation of a clinical trial to prospectively validate these outcomes.
Collapse
Affiliation(s)
- Roman O Kowalchuk
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Matthew J Shepard
- Department of Neurologic Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Kimball Sheehan
- Department of Neurologic Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Darrah Sheehan
- Department of Neurologic Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Andrew Faramand
- Center of Image Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ajay Niranjan
- Center of Image Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Hideyuki Kano
- Center of Image Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jason Gurewitz
- Department of Neurosurgery, NYU Langone Health System, New York, New York
| | - Kenneth Bernstein
- Department of Medical Physics, NYU Langone Health System, New York, New York
| | - Roman Liscak
- Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Khumar Guseynova
- Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Inga S Grills
- Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan
| | - Jacob S Parzen
- Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan
| | | | - Azeem A Rehman
- Department of Neurologic Surgery, West Virginia University, Morgantown, West Virginia
| | - Ahmet Atik
- Department of Neurologic Surgery, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Joshua Bakhsheshian
- Department of Neurologic Surgery, University of Southern California, Los Angeles, California
| | - Gabriel Zada
- Department of Neurologic Surgery, University of Southern California, Los Angeles, California
| | - Eric Chang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Steven Giannotta
- Department of Neurologic Surgery, University of Southern California, Los Angeles, California
| | - Herwin Speckter
- Centro Gamma Knife Dominicano, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Hsiu-Mei Wu
- Department of Radiology, Taipei Veteran General Hospital, Taipei, Taiwan; National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Douglas Kondziolka
- Department of Neurosurgery, NYU Langone Health System, New York, New York
| | - David Mathieu
- Department of Neurosurgery, Université de Sherbrooke, Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Cheng-Chia Lee
- National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Neurosurgery, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Ronald E Warnick
- Department of Neurologic Surgery, Mayfield Clinic, Cincinnati, Ohio
| | - L Dade Lunsford
- Center of Image Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Daniel M Trifiletti
- Mayo Clinic, Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| | - Jason P Sheehan
- Department of Neurologic Surgery, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
18
|
Al-Salameh A, Cadiot G, Calender A, Goudet P, Chanson P. Clinical aspects of multiple endocrine neoplasia type 1. Nat Rev Endocrinol 2021; 17:207-224. [PMID: 33564173 DOI: 10.1038/s41574-021-00468-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 01/31/2023]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare syndrome characterized by the co-occurrence of primary hyperparathyroidism, duodenopancreatic neuroendocrine tumours (NETs) and/or pituitary adenomas. MEN1 can predispose patients to other endocrine and non-endocrine tumours, such as cutaneous tumours, central nervous system tumours and breast cancer. Endocrine tumours in patients with MEN1 differ from sporadic tumours in that they have a younger age at onset, present as multiple tumours in the same organ and have a different clinical course. Therefore, patients with overt MEN1 and those who carry a MEN1 mutation should be offered tailored biochemical and imaging screening to detect tumours and evaluate their progression over time. Fortunately, over the past 10 years, knowledge about the clinical phenotype of these tumours has markedly progressed, thanks to the implementation of national registries, particularly in France and the Netherlands. This Review provides an update on the clinical management of MEN1-related tumours. Epidemiology, the clinical picture, diagnostic work-up and the main lines of treatment for MEN1-related tumours are summarized. Controversial therapeutic aspects and issues that still need to be addressed are also discussed. Moreover, special attention is given to MEN1 manifestations in children and adolescents.
Collapse
Affiliation(s)
- Abdallah Al-Salameh
- Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Le Kremlin-Bicêtre, France
- Service d'Endocrinologie, Maladies Métaboliques et Nutrition, CHU Amiens Picardie, Amiens, France
| | - Guillaume Cadiot
- Service d'Hépato-Gastro-Entérologie et de Cancérologie Digestive, Hôpital Robert Debré, Reims, France
| | - Alain Calender
- Unité Médicale des Cancers et Maladies Multifactorielles, Service de Génétique, Hospices Civils de Lyon, Lyon, France
| | - Pierre Goudet
- Service de Chirurgie Endocrinienne, Hôpital du Bocage, Dijon, France
| | - Philippe Chanson
- Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Le Kremlin-Bicêtre, France.
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France.
| |
Collapse
|
19
|
Engelhardt J, Nunes ML, Pouchieu C, Ferrière A, San-Galli F, Gimbert E, Vignes JR, Laurent F, Berge J, Baldi I, Tabarin A, Loiseau H. Increased Incidence of Intracranial Meningiomas in Patients With Acromegaly. Neurosurgery 2021; 87:639-646. [PMID: 31625569 DOI: 10.1093/neuros/nyz438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 08/04/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND An increased incidence of various neoplasms has been described in patients with acromegaly, and there is evidence to suggest that growth factors are risk factors for the development of meningiomas. OBJECTIVE To study if patients with acromegaly are more at risk for developing intracranial meningiomas. METHODS We conducted an observational study on 221 consecutive acromegalic patients recruited between January 1, 2000 and December 31, 2015, and 357 consecutive patients with a nonsomatotropic pituitary adenoma recruited between March 1, 2015 and December 31, 2016, in our institution. Patients underwent a gadolinium-enhanced 3D T1 brain magnetic resonance imaging to look for meningiomas. The proportion of meningiomas was compared between the 2 groups, and the standardized incidence ratio (SIR) was computed from the incidence rates of meningiomas observed in the population of acromegalic patients and compared to that of the general population given by the local registry of central nervous system tumors. RESULTS Patients with acromegaly had a significant risk for developing intracranial meningiomas as compared to patients without acromegaly (7.7% vs 2.2%, P = .005, OR = 3.45 [1.46; 8.15]). There was a significant increased incidence of intracranial meningiomas in patients with acromegaly (SIR = 126 [25; 367]) as compared to the general population. CONCLUSION Our study suggests strongly that patients with acromegaly are more at risk for developing intracranial meningiomas.
Collapse
Affiliation(s)
- Julien Engelhardt
- Department of Neurosurgery, Hôpital Pellegrin, Bordeaux University Hospital, Bordeaux, France
| | - Marie-Laure Nunes
- Department of Endocrinology, Hôpital du Haut-Lévêque, Bordeaux University Hospital, Pessac, France
| | - Camille Pouchieu
- Bordeaux Population Health Research Center, Team Epicene, UMR 1219, University of Bordeaux, INSERM, Bordeaux, France
| | - Amandine Ferrière
- Department of Endocrinology, Hôpital du Haut-Lévêque, Bordeaux University Hospital, Pessac, France
| | - François San-Galli
- Department of Neurosurgery, Hôpital Pellegrin, Bordeaux University Hospital, Bordeaux, France
| | - Edouard Gimbert
- Department of Neurosurgery, Hôpital Pellegrin, Bordeaux University Hospital, Bordeaux, France
| | - Jean-Rodolphe Vignes
- Department of Neurosurgery, Hôpital Pellegrin, Bordeaux University Hospital, Bordeaux, France
| | - François Laurent
- Department of Thoracic, Digestive and Endocrine Imaging, Hôpital du Haut-Lévêque, Bordeaux University Hospital, Pessac, France
| | - Jérôme Berge
- Department of Diagnostic and Interventional Neuroradiology, Hôpital Pellegrin, Bordeaux University Hospital, Bordeaux, France
| | - Isabelle Baldi
- Bordeaux Population Health Research Center, Team Epicene, UMR 1219, University of Bordeaux, INSERM, Bordeaux, France
| | - Antoine Tabarin
- Department of Endocrinology, Hôpital du Haut-Lévêque, Bordeaux University Hospital, Pessac, France
| | - Hugues Loiseau
- Department of Neurosurgery, Hôpital Pellegrin, Bordeaux University Hospital, Bordeaux, France.,EA 7435 - IMOTION, University of Bordeaux, Bordeaux, France
| |
Collapse
|
20
|
Pediatric applications of Dotatate: early diagnostic and therapeutic experience. Pediatr Radiol 2020; 50:882-897. [PMID: 32495176 DOI: 10.1007/s00247-020-04688-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/17/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
In recent years, new somatostatin receptor agents (SSTRs) have become available for diagnostic imaging and therapy in neuroendocrine tumors. The novel SSTR ligand DOTA-DPhel-Tyr3-octreotate (Dotatate) in particular can be linked with 68Gallium for diagnostic imaging purposes, and with the β-emitter 177Lutetium for radiotherapy in the setting of neuroendocrine tumors. Dotatate imaging offers distinct advantages in the evaluation of neuroendocrine tumors compared to standard techniques, including greater target-to-background ratio and lesion conspicuity, high sensitivity/specificity, improved spatial resolution with positron emission tomography (PET)/CT or PET/MR, and decreased radiation exposure. Although currently off-label in pediatrics, Dotatate theranostics in children are being explored, most notably in the setting of neuroblastoma and hereditary neuroendocrine syndromes. This article provides a multicenter case series of Dotatate imaging and therapy in pediatric patients in order to highlight the spectrum of potential clinical applications.
Collapse
|
21
|
Macfarland S, Mostoufi-Moab S. Genetic syndromes associated with endocrine tumors in children. Semin Pediatr Surg 2020; 29:150919. [PMID: 32571504 DOI: 10.1016/j.sempedsurg.2020.150919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Suzanne Macfarland
- Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Sogol Mostoufi-Moab
- Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States; Division of Endocrinology, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
22
|
Zhu H, Miao Y, Shen Y, Guo J, Xie W, Zhao S, Dong W, Zhang Y, Li C. Germline mutations in MEN1 are associated with the tumorigenesis of pituitary adenoma associated with meningioma. Oncol Lett 2020; 20:561-568. [PMID: 32565981 PMCID: PMC7285847 DOI: 10.3892/ol.2020.11601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Pituitary adenoma and meningioma are two of the most common benign tumors in the central nervous system. Pituitary adenoma associated with meningioma (PAM) is a rare disease, the tumorigenesis of which remains unclear. Therefore, the aim of the present study was to investigate the tumorigenesis of PAM. A total of 8,197 patients with pituitary adenoma were analyzed. Furthermore, the clinical data of 57 patients with PAM were compared with patients with multiple endocrine neoplasia 1 (MEN-1) syndrome. Whole exome sequencing (WES) was performed on 23 samples from patients with PAM and the germline mutation was verified by Sanger sequencing. The age of tumor penetrance (age of patients at diagnosis) for PAM was significantly higher than that for patients with MEN-1. Compared with MEN-1 patients, there was a significant association between PAM and female sex (P=0.004). Clonal analysis and phylogenetic tree construction suggested that the pituitary adenoma and meningioma in PAM don't originate from a common progenitor. WES revealed that 5/23 PAM samples had the recurrent germline mutation MEN1 c.1523G>A; p.G508D, which may be a genetic risk factor for PAM. Compared with patients with sporadic pituitary adenoma, the difference was statistically significant (P=0.0004). Compared with wild-type MEN1, there was a significant association between the MEN1 mutation and recurrence of pituitary adenoma, young age and larger diameter of the meningioma. The present study indicated that germline mutations in MEN1 may be associated with the tumorigenesis of PAM.
Collapse
Affiliation(s)
- Haibo Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, P.R. China
| | - Yazhou Miao
- Cell Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China
| | - Yutao Shen
- Cell Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China
| | - Jing Guo
- Cell Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China
| | - Weiyan Xie
- Cell Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China
| | - Sida Zhao
- Cell Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China
| | - Wei Dong
- Cell Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China
| | - Yazhuo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, P.R. China.,Cell Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China.,Cell Laboratory, Beijing Institute for Brain Disorders Brain Tumor Center, Beijing 100070, P.R. China.,Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases, Beijing 100070, P.R. China
| | - Chuzhong Li
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, P.R. China.,Cell Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China.,Cell Laboratory, Beijing Institute for Brain Disorders Brain Tumor Center, Beijing 100070, P.R. China.,Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases, Beijing 100070, P.R. China
| |
Collapse
|
23
|
Muskens IS, Wu AH, Porcel J, Cheng I, Le Marchand L, Wiemels JL, Setiawan VW. Body mass index, comorbidities, and hormonal factors in relation to meningioma in an ethnically diverse population: the Multiethnic Cohort. Neuro Oncol 2020; 21:498-507. [PMID: 30615143 DOI: 10.1093/neuonc/noz005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Meningioma is the most common intracranial tumor in the US and its etiology remains poorly understood. Meningioma has been predominantly studied among white populations. The aim of this study was to evaluate the associations of anthropometric, comorbidity, and hormonal factors with meningioma in an ethnically diverse population. METHODS A nested case-control analysis was performed within the Multiethnic Cohort (MEC). Meningioma cases were identified via linkage with Medicare and the California Office of Statewide Health Planning and Development Hospital Discharge data and were matched to up to 10 controls. Anthropometric, comorbidities, physical activity level, and hormonal factors at baseline based on questionnaires were evaluated for association with meningioma. RESULTS A total of 894 cases and 8918 matched controls were included in this study. Increasing body mass index (BMI) (P-trend = 0.041) and weight increases since age 21 (P-trend = 0.0052) were positively associated with meningioma. Hormonal factors including oral contraceptive use (odds ratio [OR]: 1.24; 95% CI: 1.01-1.51) and estrogen hormonal therapy use (per 5 years, OR: 1.07; 95% CI: 1.01-1.15) were associated with meningioma risk. Hypertension was positively associated with meningioma (OR: 1.26; 95% CI: 1.09-1.47), with individuals who reported a history of both hypertension and diabetes showing a stronger association (OR: 1.54; 95% CI: 1.17-2.03). The tests for heterogeneity across race/ethnicity were not statistically significant (P heterogeneity ≥ 0.17); however, the association of BMI with meningioma was mainly observed in Japanese Americans (P-trend = 0.0036) and hypertension in Japanese Americans (OR: 1.63; 95% CI: 1.17-2.27) and Native Hawaiians (OR: 1.86; 95% CI: 1.02-3.40). CONCLUSION Obesity, hormonal factors, and hypertension were associated with meningioma in an ethnically diverse population.
Collapse
Affiliation(s)
- Ivo S Muskens
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,Norris Comprehensive Cancer Center, Los Angeles, California
| | - Jacqueline Porcel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Iona Cheng
- University of California San Francisco, San Francisco, California
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Joseph L Wiemels
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Veronica Wendy Setiawan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,Norris Comprehensive Cancer Center, Los Angeles, California
| |
Collapse
|
24
|
La néoplasie endocrinienne multiple de type 1 : mise au point après le congrès de l’ENETS 2019. ANNALES D'ENDOCRINOLOGIE 2020; 80 Suppl 1:S19-S28. [PMID: 31606058 DOI: 10.1016/s0003-4266(19)30113-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple Endocrine Neoplasia Type 1 (NEM1) is related to mutations of the menin gene. It is an autosomal dominant disease. Its prevalence is about 1/30 000 with a hugh penetrance. There is no genotype-phenotype correlation. This hereditary syndrome is characterized by the presence of tumors of the endocrine system (parathyroid, endocrine pancreas, pituitary and adrenal gland). Other disorders have also been described (bronchial and thymic carcinoid tumor, breast cancer, skin lesions). Management must take into account the specificities of these pathologies in NEM1 compared to sporadic forms (young age at diagnosis, multiple lesions within the same gland, multi-focal disease). © 2019 Published by Elsevier Masson SAS. All rights reserved. Cet article fait partie du numéro supplément Les Must de l'Endocrinologie 2019 réalisé avec le soutien institutionnel de Ipsen-Pharma.
Collapse
|
25
|
Zhu H, Miao Y, Shen Y, Guo J, Xie W, Zhao S, Dong W, Zhang Y, Li C. The clinical characteristics and molecular mechanism of pituitary adenoma associated with meningioma. J Transl Med 2019; 17:354. [PMID: 31665029 PMCID: PMC6821033 DOI: 10.1186/s12967-019-2103-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pituitary adenoma and meningioma are the most common benign tumors in the central nervous system. Pituitary adenoma associated with meningioma (PAM) is a rare disease and the clinical features and mechanisms of PAM are unclear. METHODS We summarized the clinical data of 57 PAM patients and compared with sporadic pituitary adenoma (SPA) and sporadic meningioma (SM). 5 pituitary adenomas of PAM and 5 SPAs were performed ceRNA microarray. qRT-PCR, Western Blot, siMEN1 and rapamycin inhibition experiment were validated for ceRNA microarray. RESULTS Clinical variable analyses revealed that significant correlations between PAM and female sex as well as older age when compared with SPA and significant correlations between PAM and transitional meningioma as well as older age when compared with SM. Additionally, the characteristics of PAM were significantly different for MEN1 patients. Functional experiments showed lower expression of MEN1 can upregulate mTOR signaling, in accordance with the result of ceRNA microarray. Rapamycin treatment promotes apoptosis in primary pituitary adenoma and meningioma cells of PAM. CONCLUSIONS MEN1 plays an important role in PAM by upregulating mTOR signaling pathway. Rapamycin represents a potential therapeutic strategy for PAM in the future.
Collapse
Affiliation(s)
- Haibo Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Yazhou Miao
- Beijing Neurosurgical Institute, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Yutao Shen
- Beijing Neurosurgical Institute, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Jing Guo
- Beijing Neurosurgical Institute, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Weiyan Xie
- Beijing Neurosurgical Institute, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Sida Zhao
- Beijing Neurosurgical Institute, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Wei Dong
- Beijing Neurosurgical Institute, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
- Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
- Beijing Institute for Brain Disorders Brain Tumor Center, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
- China National Clinical Research Center for Neurological Diseases, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
- Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
- Beijing Institute for Brain Disorders Brain Tumor Center, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
- China National Clinical Research Center for Neurological Diseases, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| |
Collapse
|
26
|
Kerr K, Qualmann K, Esquenazi Y, Hagan J, Kim DH. Familial Syndromes Involving Meningiomas Provide Mechanistic Insight Into Sporadic Disease. Neurosurgery 2019; 83:1107-1118. [PMID: 29660026 PMCID: PMC6235681 DOI: 10.1093/neuros/nyy121] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/12/2018] [Indexed: 12/20/2022] Open
Abstract
Currently, there is an incomplete understanding of the molecular pathogenesis of meningiomas, the most common primary brain tumor. Several familial syndromes are characterized by increased meningioma risk, and the genetics of these syndromes provides mechanistic insight into sporadic disease. The best defined of these syndromes is neurofibromatosis type 2, which is caused by a mutation in the NF2 gene and has a meningioma incidence of approximately 50%. This finding led to the subsequent discovery that NF2 loss-of-function occurs in up to 60% of sporadic tumors. Other important familial diseases with increased meningioma risk include nevoid basal cell carcinoma syndrome, multiple endocrine neoplasia 1 (MEN1), Cowden syndrome, Werner syndrome, BAP1 tumor predisposition syndrome, Rubinstein-Taybi syndrome, and familial meningiomatosis caused by germline mutations in the SMARCB1 and SMARCE1 genes. For each of these syndromes, the diagnostic criteria, incidence in the population, and frequency of meningioma are presented to review the relevant clinical information for these conditions. The genetic mutations, molecular pathway derangements, and relationship to sporadic disease for each syndrome are described in detail to identify targets for further investigation. Familial syndromes characterized by meningiomas often affect genes and pathways that are also implicated in a subset of sporadic cases, suggesting key molecular targets for therapeutic intervention. Further studies are needed to resolve the functional relevance of specific genes whose significance in sporadic disease remains to be elucidated.
Collapse
Affiliation(s)
- Keith Kerr
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Texas
| | - Krista Qualmann
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Texas
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Texas
| | - John Hagan
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Texas
| | - Dong H Kim
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Texas
| |
Collapse
|
27
|
Goliusova DV, Klementieva NV, Mokrysheva NG, Kiselev SL. Molecular Mechanisms of Carcinogenesis Associated with MEN1 Gene Mutation. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419080052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
The Role of Particle Therapy for the Treatment of Skull Base Tumors and Tumors of the Central Nervous System (CNS). Top Magn Reson Imaging 2019; 28:49-61. [PMID: 31022048 DOI: 10.1097/rmr.0000000000000197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Radiation therapy (RT) is a mainstay in the interdisciplinary treatment of brain tumors of the skull base and brain. Technical innovations during the past 2 decades have allowed for increasingly precise treatment with better sparing of adjacent healthy tissues to prevent treatment-related side effects that influence patients' quality of life. Particle therapy with protons and charged ions offer favorable kinetics with sharp dose deposition in a well-defined depth (Bragg-Peak) and a steep radiation fall-off beyond that maximum. This review highlights the role of particle therapy in the management of primary brain tumors and tumors of the skull base.
Collapse
|
29
|
Wu Y, Gao L, Guo X, Wang Z, Lian W, Deng K, Lu L, Xing B, Zhu H. Pituitary adenomas in patients with multiple endocrine neoplasia type 1: a single-center experience in China. Pituitary 2019; 22:113-123. [PMID: 30637623 DOI: 10.1007/s11102-019-00939-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To explore the clinical characteristics of pituitary adenomas in patients with MEN1 and to summarize treatment strategies for MEN1 in a Chinese population. METHODS We retrospectively analyzed 54 MEN1 patients with pituitary adenomas diagnosed at Peking Union Medical College Hospital from March 2003 to January 2017. Clinical data, laboratory testing results, treatments of involved glands and treatment responses were collected and analyzed. RESULTS The mean age at pituitary adenoma diagnosis was 53.9 ± 17.8. The patients initially consulted the Endocrinology, General Surgery and Neurosurgery departments, in descending frequency. The nonfunctioning adenoma, prolactinoma, GH-secreting adenoma, cosecreting adenoma, and ACTH-secreting adenoma subtypes accounted for 48.1%, 27.8%, 9.3%, 9.3% and 5.6% of the cases, respectively. The remission rate for prolactinomas was 46.2% (6/13) treated with bromocriptine. And the remission rates were 87.5% (7/8) and 100% (3/3) for GH-secreting adenomas and ACTH-secreting adenomas respectively achieved by transsphenoidal surgery. Nineteen (35.2%) patients with asymptomatic nonfunctioning pituitary adenomas showed no progression after a 35-month follow-up with close observation. Regarding treatment priority, patients with thymic carcinoid tumors received first-line surgery, 54% of the patients with enteropancreatic tumors had these tumors treated first, and 26% of all patients had their pituitary adenomas treated first. In acromegalic patients, pituitary lesions tended to be treated first (75%, p = 0.002). PHPT and adrenocortical adenomas can be managed with elective surgery. CONCLUSIONS The treatment of MEN1 requires cooperation between multidisciplinary teams. Individualized treatment according to the severity of glandular involvement is needed. GH-secreting and ACTH-secreting pituitary adenomas require active treatment, while nonfunctioning pituitary adenomas can be observed closely.
Collapse
Affiliation(s)
- Yanyan Wu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Specialist Council, Beijing, 100730, China
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Beijing, 100730, China
| | - Lu Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Specialist Council, Beijing, 100730, China
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Beijing, 100730, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Specialist Council, Beijing, 100730, China
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Beijing, 100730, China
| | - Zihao Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Specialist Council, Beijing, 100730, China
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Beijing, 100730, China
| | - Wei Lian
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Specialist Council, Beijing, 100730, China
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Beijing, 100730, China
| | - Kan Deng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Specialist Council, Beijing, 100730, China
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Beijing, 100730, China
| | - Lin Lu
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Specialist Council, Beijing, 100730, China.
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Beijing, 100730, China.
| | - Huijuan Zhu
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
30
|
Kamilaris CDC, Stratakis CA. Multiple Endocrine Neoplasia Type 1 (MEN1): An Update and the Significance of Early Genetic and Clinical Diagnosis. Front Endocrinol (Lausanne) 2019; 10:339. [PMID: 31263451 PMCID: PMC6584804 DOI: 10.3389/fendo.2019.00339] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare hereditary tumor syndrome inherited in an autosomal dominant manner and characterized by a predisposition to a multitude of endocrine neoplasms primarily of parathyroid, enteropancreatic, and anterior pituitary origin, as well as nonendocrine neoplasms. Other endocrine tumors in MEN1 include foregut carcinoid tumors, adrenocortical tumors, and rarely pheochromocytoma. Nonendocrine manifestations include meningiomas and ependymomas, lipomas, angiofibromas, collagenomas, and leiomyomas. MEN1 is caused by inactivating mutations of the tumor suppressor gene MEN1 which encodes the protein menin. This syndrome can affect all age groups, with 17% of patients developing MEN1-associated tumors before 21 years of age. Despite advances in the diagnosis and treatment of MEN1-associated tumors, patients with MEN1 continue to have decreased life expectancy primarily due to malignant neuroendocrine tumors. The most recent clinical practice guidelines for MEN1, published in 2012, highlight the need for early genetic and clinical diagnosis of MEN1 and recommend an intensive surveillance approach for both patients with this syndrome and asymptomatic carriers starting at the age of 5 years with the goal of timely detection and management of MEN1-associated neoplasms and ultimately decreased disease-specific morbidity and mortality. Unfortunately, there is no clear genotype-phenotype correlation and individual mutation-dependent surveillance is not possible currently.
Collapse
|
31
|
Wasserman JD, Tomlinson GE, Druker H, Kamihara J, Kohlmann WK, Kratz CP, Nathanson KL, Pajtler KW, Parareda A, Rednam SP, States LJ, Villani A, Walsh MF, Zelley K, Schiffman JD. Multiple Endocrine Neoplasia and Hyperparathyroid-Jaw Tumor Syndromes: Clinical Features, Genetics, and Surveillance Recommendations in Childhood. Clin Cancer Res 2018; 23:e123-e132. [PMID: 28674121 DOI: 10.1158/1078-0432.ccr-17-0548] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/02/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022]
Abstract
Children and adolescents who present with neuroendocrine tumors are at extremely high likelihood of having an underlying germline predisposition for the multiple endocrine neoplasia (MEN) syndromes, including MEN1, MEN2A and MEN2B, MEN4, and hyperparathyroid-jaw tumor (HPT-JT) syndromes. Each of these autosomal dominant syndromes results from a specific germline mutation in unique genes: MEN1 is due to pathogenic MEN1 variants (11q13), MEN2A and MEN2B are due to pathogenic RET variants (10q11.21), MEN4 is due to pathogenic CDKN1B variants (12p13.1), and the HPT-JT syndrome is due to pathogenic CDC73 variants (1q25). Although each of these genetic syndromes share the presence of neuroendocrine tumors, each syndrome has a slightly different tumor spectrum with specific surveillance recommendations based upon tumor penetrance, including the age and location for which specific tumor types most commonly present. Although the recommended surveillance strategies for each syndrome contain similar approaches, important differences do exist among them. Therefore, it is important for caregivers of children and adolescents with these syndromes to become familiar with the unique diagnostic criteria for each syndrome, and also to be aware of the specific tumor screening and prophylactic surgery recommendations for each syndrome. Clin Cancer Res; 23(13); e123-e32. ©2017 AACRSee all articles in the online-only CCR Pediatric Oncology Series.
Collapse
Affiliation(s)
- Jonathan D Wasserman
- Division of Endocrinology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.
| | - Gail E Tomlinson
- Department of Pediatrics, Division of Hematology and Oncology and Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Harriet Druker
- Division of Haematology-Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Junne Kamihara
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wendy K Kohlmann
- Huntsmann Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Katherine L Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kristian W Pajtler
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital, Heidelberg, Germany.,Division of Pediatric Neuro-Oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreu Parareda
- Division of Oncology, Predisposition and Survivorship Units, Sant Joan de Déu - Barcelona Children's Hospital, Barcelona, Spain
| | - Surya P Rednam
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| | - Lisa J States
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Anita Villani
- Division of Haematology-Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Michael F Walsh
- Departments of Medicine and Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kristin Zelley
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joshua D Schiffman
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
32
|
Naydenov E, Bussarsky V, Angelov K, Penkov M, Nachev S, Hadjidekova S, Toncheva D. Metachronous Development of Meningothelial Meningioma, Basal Cell Carcinoma, and Glioblastoma Multiforme in a Patient with Pancreatic Incidentaloma. Case Rep Oncol 2017; 10:1023-1028. [PMID: 29279708 PMCID: PMC5731176 DOI: 10.1159/000484404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 01/17/2023] Open
Abstract
We report the unique case of a 61-year-old male patient with known pancreatic incidentaloma who additionally developed 3 other histologically different tumors: left sphenoid wing meningothelial meningioma, basal cell carcinoma of the occiput, and right occipital lobe glioblastoma multiforme. The latter were totally removed with a favorable clinical outcome. The patient's family history was unremarkable, and no data on any previous head and neck irradiation were found.
Collapse
Affiliation(s)
- Emanuil Naydenov
- Department of Neurosurgery, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| | - Venceslav Bussarsky
- Department of Neurosurgery, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| | - Kostadin Angelov
- Department of General Surgery, University Hospital "Alexandrovska", Sofia, Bulgaria
| | - Marin Penkov
- Department of Radiology, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| | - Sevdalin Nachev
- Laboratory of Neuropathology, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| | | | - Draga Toncheva
- Department of Medical Genetics, Medical University, Sofia, Bulgaria
| |
Collapse
|
33
|
Coexistence of GH-Producing Pituitary Macroadenoma and Meningioma in a Patient with Multiple Endocrine Neoplasia Type 1 with Hyperglycemia and Ketosis as First Clinical Sign. Case Rep Endocrinol 2017; 2017:2390797. [PMID: 29225978 PMCID: PMC5687133 DOI: 10.1155/2017/2390797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/10/2017] [Indexed: 12/26/2022] Open
Abstract
We present the clinical case of a patient who was admitted with an onset of diabetes mellitus (DM) with associated ketosis and whose clinical, hormonal, and radiological evolution revealed the presence of primary hyperparathyroidism, pancreatic neuroendocrine tumor, and GH-producing pituitary macroadenoma in the context of multiple endocrine neoplasia type 1 (MEN1). DM is relatively common in cases of acromegaly, but it is not generally associated with ketosis. Simultaneously, the patient presented a meningioma, which is associated with pituitary macroadenoma only in extremely rare cases.
Collapse
|
34
|
Yang MA, Lee WK, Shin HS, Park SH, Kim BS, Kim JW, Cho JW, Yun SH. Neuroendocrine Tumors in the Stomach, Duodenum, and Pancreas Accompanied by Novel MEN1 Gene Mutation. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2017; 69:181-186. [PMID: 28329921 DOI: 10.4166/kjg.2017.69.3.181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) syndrome is a relatively rare disease, characterized by the occurrence of multiple endocrine tumors in the parathyroid and pituitary glands as well as the pancreas. Here, we report a case of MEN1 with neuroendocrine tumors (NETs) in the stomach, duodenum, and pancreas. A 53-year-old man visited our hospital to manage gastric NET. Five years prior to his visit, he had undergone surgery for incidental meningioma. His brother had pancreatic nodules and a history of surgery for adrenal adenoma. His brother's daughter also had pancreatic nodules, but had not undergone surgery. The lesion was treated by endoscopic submucosal dissection and diagnosed as a grade 1 NET. Another small NET was detected in the second duodenal portion, resected by endoscopic submucosal dissection, which was also diagnosed as a grade 1 NET. During evaluation, three nodules were detected in the pancreas, and no evidence of pituitary, parathyroid tumors, or metastasis was observed. After surgery, the pancreatic lesions were diagnosed as NETs, with the same immunohistochemical patterns as those of the stomach and duodenum. Genetic testing was performed, and a heterozygous mutation was detected in the MEN1 gene, which is located on 11q13.
Collapse
Affiliation(s)
- Min A Yang
- Division of Gastroenterology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Korea
| | - Woong Ki Lee
- Division of Gastroenterology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Korea
| | - Hong Shik Shin
- Division of Gastroenterology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Korea
| | - Sung Hyun Park
- Division of Gastroenterology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Korea
| | - Byung Sun Kim
- Division of Gastroenterology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Korea
| | - Ji Woong Kim
- Division of Gastroenterology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Korea
| | - Jin Woong Cho
- Division of Gastroenterology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Korea
| | - So Hee Yun
- Division of Gastroenterology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Korea
| |
Collapse
|
35
|
Ripperger T, Bielack SS, Borkhardt A, Brecht IB, Burkhardt B, Calaminus G, Debatin KM, Deubzer H, Dirksen U, Eckert C, Eggert A, Erlacher M, Fleischhack G, Frühwald MC, Gnekow A, Goehring G, Graf N, Hanenberg H, Hauer J, Hero B, Hettmer S, von Hoff K, Horstmann M, Hoyer J, Illig T, Kaatsch P, Kappler R, Kerl K, Klingebiel T, Kontny U, Kordes U, Körholz D, Koscielniak E, Kramm CM, Kuhlen M, Kulozik AE, Lamottke B, Leuschner I, Lohmann DR, Meinhardt A, Metzler M, Meyer LH, Moser O, Nathrath M, Niemeyer CM, Nustede R, Pajtler KW, Paret C, Rasche M, Reinhardt D, Rieß O, Russo A, Rutkowski S, Schlegelberger B, Schneider D, Schneppenheim R, Schrappe M, Schroeder C, von Schweinitz D, Simon T, Sparber-Sauer M, Spix C, Stanulla M, Steinemann D, Strahm B, Temming P, Thomay K, von Bueren AO, Vorwerk P, Witt O, Wlodarski M, Wössmann W, Zenker M, Zimmermann S, Pfister SM, Kratz CP. Childhood cancer predisposition syndromes-A concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genet A 2017; 173:1017-1037. [PMID: 28168833 DOI: 10.1002/ajmg.a.38142] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022]
Abstract
Heritable predisposition is an important cause of cancer in children and adolescents. Although a large number of cancer predisposition genes and their associated syndromes and malignancies have already been described, it appears likely that there are more pediatric cancer patients in whom heritable cancer predisposition syndromes have yet to be recognized. In a consensus meeting in the beginning of 2016, we convened experts in Human Genetics and Pediatric Hematology/Oncology to review the available data, to categorize the large amount of information, and to develop recommendations regarding when a cancer predisposition syndrome should be suspected in a young oncology patient. This review summarizes the current knowledge of cancer predisposition syndromes in pediatric oncology and provides essential information on clinical situations in which a childhood cancer predisposition syndrome should be suspected.
Collapse
Affiliation(s)
- Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Stefan S Bielack
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - Arndt Borkhardt
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Ines B Brecht
- General Pediatrics, Hematology/Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany.,Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Birgit Burkhardt
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Gabriele Calaminus
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Hedwig Deubzer
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Uta Dirksen
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Cornelia Eckert
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Miriam Erlacher
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Gudrun Fleischhack
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Michael C Frühwald
- Children's Hospital Augsburg, Swabian Children's Cancer Center, Augsburg, Germany
| | - Astrid Gnekow
- Children's Hospital Augsburg, Swabian Children's Cancer Center, Augsburg, Germany
| | - Gudrun Goehring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Norbert Graf
- Department of Pediatric Hematology and Oncology, University of Saarland, Homburg, Germany
| | - Helmut Hanenberg
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany.,Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - Julia Hauer
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Barbara Hero
- Department of Pediatric Hematology and Oncology, University of Cologne, Cologne, Germany
| | - Simone Hettmer
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Katja von Hoff
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Horstmann
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Juliane Hoyer
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.,Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Peter Kaatsch
- German Childhood Cancer Registry (GCCR), Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Kornelius Kerl
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Thomas Klingebiel
- Hospital for Children and Adolescents, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Aachen, Germany
| | - Uwe Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter Körholz
- Department of Pediatric Hematology and Oncology, Justus Liebig University, Giessen, Germany
| | - Ewa Koscielniak
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - Christof M Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Michaela Kuhlen
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Britta Lamottke
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Ivo Leuschner
- Kiel Paediatric Tumor Registry, Department of Paediatric Pathology, University of Kiel, Kiel, Germany
| | - Dietmar R Lohmann
- Institute of Human Genetics, University Hospital Essen, Essen, Germany.,Eye Oncogenetics Research Group, University Hospital Essen, Essen, Germany
| | - Andrea Meinhardt
- Department of Pediatric Hematology and Oncology, Justus Liebig University, Giessen, Germany
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Lüder H Meyer
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Olga Moser
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Aachen, Germany
| | - Michaela Nathrath
- Department of Pediatric Oncology, Klinikum Kassel, Kassel, Germany.,Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum Munich, Neuherberg, Germany.,Pediatric Oncology Center, Technical University Munich, Munich, Germany
| | - Charlotte M Niemeyer
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Rainer Nustede
- Department of Surgery, Children's Hospital, Hannover Medical School, Hannover, Germany
| | - Kristian W Pajtler
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Paret
- Department of Pediatric Hematology/Oncology, University Medical Center Mainz, Mainz, Germany
| | - Mareike Rasche
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Dirk Reinhardt
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Olaf Rieß
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Alexandra Russo
- Department of Pediatric Hematology/Oncology, University Medical Center Mainz, Mainz, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Reinhard Schneppenheim
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Dietrich von Schweinitz
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Thorsten Simon
- Department of Pediatric Hematology and Oncology, University of Cologne, Cologne, Germany
| | - Monika Sparber-Sauer
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - Claudia Spix
- German Childhood Cancer Registry (GCCR), Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Brigitte Strahm
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Petra Temming
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany.,Eye Oncogenetics Research Group, University Hospital Essen, Essen, Germany
| | - Kathrin Thomay
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Andre O von Bueren
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany.,Division of Pediatric Hematology and Oncology, University Hospital of Geneva, Geneva, Switzerland
| | - Peter Vorwerk
- Pediatric Oncology, Otto von Guericke University Children's Hospital, Magdeburg, Germany
| | - Olaf Witt
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcin Wlodarski
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Willy Wössmann
- Department of Pediatric Hematology and Oncology, Justus Liebig University, Giessen, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanie Zimmermann
- Hospital for Children and Adolescents, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Stefan M Pfister
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
36
|
Norton JA, Krampitz G, Jensen RT. Multiple Endocrine Neoplasia: Genetics and Clinical Management. Surg Oncol Clin N Am 2015; 24:795-832. [PMID: 26363542 DOI: 10.1016/j.soc.2015.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Early diagnosis of multiple endocrine neoplasia (MEN) syndromes is critical for optimal clinical outcomes; before the MEN syndromes can be diagnosed, they must be suspected. Genetic testing for germline alterations in both the MEN type 1 (MEN1) gene and RET proto-oncogene is crucial to identifying those at risk in affected kindreds and directing timely surveillance and surgical therapy to those at greatest risk of potentially life-threatening neoplasia. Pancreatic, thymic, and bronchial neuroendocrine tumors are the leading cause of death in patients with MEN1 and should be aggressively considered by at least biannual computed tomography imaging.
Collapse
Affiliation(s)
- Jeffrey A Norton
- Department of Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Geoffrey Krampitz
- Department of Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Robert T Jensen
- Cell Biology Section, Digestive Diseases Branch, National Institute of Arthritis, Diabetes, Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892-2560, USA
| |
Collapse
|
37
|
Rogers L, Barani I, Chamberlain M, Kaley T, McDermott M, Raizer J, Schiff D, Weber DC, Wen PY, Vogelbaum MA. Meningiomas: knowledge base, treatment outcomes, and uncertainties. A RANO review. J Neurosurg 2015; 122:4-23. [PMID: 25343186 PMCID: PMC5062955 DOI: 10.3171/2014.7.jns131644] [Citation(s) in RCA: 410] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Evolving interest in meningioma, the most common primary brain tumor, has refined contemporary management of these tumors. Problematic, however, is the paucity of prospective clinical trials that provide an evidence-based algorithm for managing meningioma. This review summarizes the published literature regarding the treatment of newly diagnosed and recurrent meningioma, with an emphasis on outcomes stratified by WHO tumor grade. Specifically, this review focuses on patient outcomes following treatment (either adjuvant or at recurrence) with surgery or radiation therapy inclusive of radiosurgery and fractionated radiation therapy. Phase II trials for patients with meningioma have recently completed accrual within the Radiation Therapy Oncology Group and the European Organisation for Research and Treatment of Cancer consortia, and Phase III studies are being developed. However, at present, there are no completed prospective, randomized trials assessing the role of either surgery or radiation therapy. Successful completion of future studies will require a multidisciplinary effort, dissemination of the current knowledge base, improved implementation of WHO grading criteria, standardization of response criteria and other outcome end points, and concerted efforts to address weaknesses in present treatment paradigms, particularly for patients with progressive or recurrent low-grade meningioma or with high-grade meningioma. In parallel efforts, Response Assessment in Neuro-Oncology (RANO) subcommittees are developing a paper on systemic therapies for meningioma and a separate article proposing standardized end point and response criteria for meningioma.
Collapse
Affiliation(s)
- Leland Rogers
- GammaWest Cancer Services, Radiation Oncology, Salt Lake City, UT
| | - Igor Barani
- University of California San Francisco, Department of Radiation Oncology, San Francisco, CA
| | - Marc Chamberlain
- University of Washington, Department of Neurology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Thomas Kaley
- Memorial Sloan-Kettering Cancer Center, Division of Neuro-Oncology, New York, NY
| | - Michael McDermott
- University of California, San Francisco, Department of Neurosurgery, San Francisco, CA
| | - Jeffrey Raizer
- Northwestern University, Department of Neurology, Chicago, IL
| | - David Schiff
- Neuro-Oncology Center, University of Virginia. Charlottesville, VA
| | - Damien C. Weber
- Geneva University Hospital, Radiation Oncology, Geneva, Switzerland
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Center, Boston, MA
| | - Michael A. Vogelbaum
- Cleveland Clinic, Brain Tumor and NeuroOncology Center and Department of Neurosurgery, Cleveland, OH
| |
Collapse
|
38
|
Gastrinoma and neurofibromatosis type 2: the first case report and review of the literature. BMC Gastroenterol 2014; 14:110. [PMID: 24961548 PMCID: PMC4082280 DOI: 10.1186/1471-230x-14-110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 06/13/2014] [Indexed: 02/08/2023] Open
Abstract
Background Gastroenteropancreatic neuroendocrine tumors have occasionally been described in association with neurofibromatosis type 1, whereas an association with neurofibromatosis type 2 has never been reported. Case presentation This report refers to an Italian 69 year old woman with neurofibromatosis type 2 and a pancreatic gastrinoma. In the past she had encephalic meningiomas, a tongue schwannoma and bilateral acoustic neurinomas. She presented with weight loss and a long-term history of diarrhea, responsive to proton pump inhibitors. Upper gastrointestinal endoscopy revealed peptic ulcer of the duodenal bulb. Blood tests were normal, except for the elevation of plasma gastrin (1031 pg/ml; reference value <108) and chromogranin A (337 U/L; reference value <36). After secretin stimulation testing, the plasma gastrin level rose to 3789 pg/ml. The abdomen magnetic resonance imaging and gallium68-DOTATOC positron emission tomography scan demonstrated the presence of a 1.2 x 2 cm lesion in the pancreatic head and a liver metastatis. Pancreatic endoscopic ultrasound with fine needle aspiration revealed cytomorphologic features suggestive of pancreatic gastrinoma. Brain magnetic resonance showed a pituitary microadenoma. There was no evidence of hyperparathyroidism. The genetic test for multiple endocrine neoplasia type 1 syndrome mutation was negative. Conclusion This report focuses on the first case of coexistence of gastrinoma with neurofibromatosis type 2. Although the clinical relevance of this association remains to be determined, our case report will surely give cause for due consideration.
Collapse
|
39
|
Nunes VS, Souza GL, Perone D, Conde SJ, Nogueira CR. Frequency of multiple endocrine neoplasia type 1 in a group of patients with pituitary adenoma: genetic study and familial screening. Pituitary 2014; 17:30-7. [PMID: 23334809 DOI: 10.1007/s11102-013-0462-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The purpose of this study it was to evaluate the frequency of Multiple Endocrine Neoplasia type 1 (MEN1) in patients with pituitary adenoma and to perform genetic analysis and familial screening of those individuals afflicted with MEN1. 144 patients with pituitary adenoma at Botucatu Medical School, UNESP-Univ Estadual Paulista, were assessed retrospectively for MEN1 during the years of 2005-2011. The patients were evaluated for the presence of primary hyperparathyroidism (PHP) and enteropancreatic tumors. Genetic analysis was performed for the individuals with clinically diagnosed MEN1. Thirteen patients met the diagnostic criteria for MEN1, but three individuals belong to the same family and they were considered as a single MEN1 event, revealing 7.7 % frequency of MEN1 in this patient group. Genetic analysis showed MEN1 mutations in four index cases: IVS4+1 G>A, IVS3-6 C>T, c.1547insC and a new D180A mutation. One patient did not agree to participate in the genetic study and another one was referred for follow up in other hospital. Only polymorphisms were found in the other individuals, one of which was novel. We identified a high frequency of MEN1 in pituitary adenoma patients. Since PHP is one of the most common MEN1 tumor and patients are mostly asymptomatic, we suggest that all pituitary adenoma patients have their calcium profile analyzed.
Collapse
Affiliation(s)
- V S Nunes
- Laboratory of Molecular Biology, Department of Internal Medicine, Botucatu Medical School, UNESP, Univ Estadual Paulista, Botucatu, Brazil,
| | | | | | | | | |
Collapse
|
40
|
Abstract
Although advances in surgery, radiation therapy and stereotactic radiosurgery have significantly improved the treatment of meningiomas, there remains an important subset of patients who remain refractory to conventional therapy. Treatment with chemotherapeutic agents such as hydroxyurea and alpha-interferon has provided minimal benefit. In this review, the role of newly emerging novel therapies for meningiomas, with a focus on targeted molecular agents, will be discussed.
Collapse
Affiliation(s)
- Patrick Y Wen
- Center for Neuro-Oncology Dana-Farber/Brigham and Women's Cancer Center, and Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
41
|
Hannah JB, Kissel P, Russell B, Hose JE. Dystextia: An Early Sign of Pregnancy-Associated Meningioma. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojmn.2014.42015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Funayama T, Sakane M, Yoshizawa T, Takeuchi Y, Ochiai N. Tanycytic ependymoma of the filum terminale associated with multiple endocrine neoplasia type 1: first reported case. Spine J 2013; 13:e49-54. [PMID: 23562332 DOI: 10.1016/j.spinee.2013.02.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 02/25/2013] [Accepted: 02/25/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Ependymoma associated with multiple endocrine neoplasia type 1 (MEN-1) is an extremely rare clinical entity. To the best of our knowledge, only five cases of ependymoma associated with MEN-1 have been previously described. Furthermore, there has been no case of tanycytic ependymoma of the filum terminale associated with MEN-1. PURPOSE The present case report illustrates a 53-year-old man with tanycytic ependymoma of the filum terminale associated with MEN-1. We review the literature on ependymoma with MEN-1 and tanycytic ependymoma of the cauda equina region and also discuss the risk of recurrence. STUDY DESIGN A case report. METHODS The patient presented with complaints of nocturnal pain in the lower back, accompanied by numbness around the anus and intermittent claudication for approximately 1 year. Magnetic resonance imaging (MRI) identified an intradural-enhancing, large mass lesion at the level from Th12 to L2 vertebrae, with a cranial cystic lesion. RESULTS Open-door laminoplasty of the Th12, L1, and L2 and en bloc tumor resection with thickened filum terminale were performed. Histopathologic examination of the tumor specimens showed tanycytic ependymoma (World Health Organization Classification Grade II). At the time of the 2-year and 8-month follow-up examination, MRI did not show tumor recurrence. CONCLUSIONS This is the first reported case of this clinical entity. A careful follow-up of patients with this unusual tumor is strongly recommended.
Collapse
Affiliation(s)
- Toru Funayama
- Department of Orthopaedic Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan.
| | | | | | | | | |
Collapse
|
43
|
Manchester CS. Multiple Endocrine Neoplasia. AACN Adv Crit Care 2013. [DOI: 10.4037/nci.0b013e31829b7eff] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Multiple endocrine neoplasia (MEN) is an array of tumors found in various endocrine glands throughout the human body. A wide spectrum of clinical manifestations accompanies this syndrome. The complexities of the glandular function and subtle development of symptoms can cause the diagnosis to be missed, and individuals with MEN can be an enigma to the care team. Appropriate differential diagnosis and assessment are critical for these individuals to receive optimal care. An interprofessional team of health care providers, including an endocrinologist and an advanced practice endocrine nurse, must work in concert to orchestrate a plan of care across the continuum. Those specialized nurses who encounter individuals with MEN in a critical care setting are positioned to support the patient, the family, and the care team through this maze of multiple endocrinopathies and tumors.
Collapse
Affiliation(s)
- Carol S. Manchester
- Carol S. Manchester is Diabetes Clinical Nurse Specialist, University of Minnesota Medical Center, Fairview, and University of Minnesota Amplatz Children’s Hospital, 420 Delaware St SE, MMC 732, Minneapolis, MN 55455
| |
Collapse
|
44
|
Ito T, Igarashi H, Uehara H, Berna MJ, Jensen RT. Causes of death and prognostic factors in multiple endocrine neoplasia type 1: a prospective study: comparison of 106 MEN1/Zollinger-Ellison syndrome patients with 1613 literature MEN1 patients with or without pancreatic endocrine tumors. Medicine (Baltimore) 2013; 92:135-181. [PMID: 23645327 PMCID: PMC3727638 DOI: 10.1097/md.0b013e3182954af1] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is classically characterized by the development of functional or nonfunctional hyperplasia or tumors in endocrine tissues (parathyroid, pancreas, pituitary, adrenal). Because effective treatments have been developed for the hormone excess state, which was a major cause of death in these patients in the past, coupled with the recognition that nonendocrine tumors increasingly develop late in the disease course, the natural history of the disease has changed. An understanding of the current causes of death is important to tailor treatment for these patients and to help identify prognostic factors; however, it is generally lacking.To add to our understanding, we conducted a detailed analysis of the causes of death and prognostic factors from a prospective long-term National Institutes of Health (NIH) study of 106 MEN1 patients with pancreatic endocrine tumors with Zollinger-Ellison syndrome (MEN1/ZES patients) and compared our results to those from the pooled literature data of 227 patients with MEN1 with pancreatic endocrine tumors (MEN1/PET patients) reported in case reports or small series, and to 1386 patients reported in large MEN1 literature series. In the NIH series over a mean follow-up of 24.5 years, 24 (23%) patients died (14 MEN1-related and 10 non-MEN1-related deaths). Comparing the causes of death with the results from the 227 patients in the pooled literature series, we found that no patients died of acute complications due to acid hypersecretion, and 8%-14% died of other hormone excess causes, which is similar to the results in 10 large MEN1 literature series published since 1995. In the 2 series (the NIH and pooled literature series), two-thirds of patients died from an MEN1-related cause and one-third from a non-MEN1-related cause, which agrees with the mean values reported in 10 large MEN1 series in the literature, although in the literature the causes of death varied widely. In the NIH and pooled literature series, the main causes of MEN1-related deaths were due to the malignant nature of the PETs, followed by the malignant nature of thymic carcinoid tumors. These results differ from the results of a number of the literature series, especially those reported before the 1990s. The causes of non-MEN1-related death for the 2 series, in decreasing frequency, were cardiovascular disease, other nonendocrine tumors > lung diseases, cerebrovascular diseases. The most frequent non-MEN1-related tumor deaths were colorectal, renal > lung > breast, oropharyngeal. Although both overall and disease-related survival are better than in the past (30-yr survival of NIH series: 82% overall, 88% disease-related), the mean age at death was 55 years, which is younger than expected for the general population.Detailed analysis of causes of death correlated with clinical, laboratory, and tumor characteristics of patients in the 2 series allowed identification of a number of prognostic factors. Poor prognostic factors included higher fasting gastrin levels, presence of other functional hormonal syndromes, need for >3 parathyroidectomies, presence of liver metastases or distant metastases, aggressive PET growth, large PETs, or the development of new lesions.The results of this study have helped define the causes of death of MEN1 patients at present, and have enabled us to identify a number of prognostic factors that should be helpful in tailoring treatment for these patients for both short- and long-term management, as well as in directing research efforts to better define the natural history of the disease and the most important factors determining long-term survival at present.
Collapse
Affiliation(s)
- Tetsuhide Ito
- From the Department of Medicine and Bioregulatory Science (TI, HI), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Digestive Diseases Branch (TI, HI, HU, MJB, RTJ), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; and Hôpital Kirchberg (MJB), Luxembourg, Luxembourg
| | | | | | | | | |
Collapse
|
45
|
Abstract
INTRODUCTION The role of pharmacotherapy in the management of patients with Zollinger-Ellison syndrome (ZES) is often equated with the medical management of acid hypersecretion. However, pharmacotherapy is also increasingly involved in the other management areas of these patients. AREAS COVERED This paper reviews the role of pharmacotherapy in all aspects of the management of patients with ZES. Newer aspects are emphasized. This includes the difficulty of diagnosing ZES in patients taking proton pump inhibitors. Also covered is the role of pharmacotherapy in controlling acid hypersecretion and other hormonal hypersecretory states these patients may develop, including hyperparathyroidism in patients with multiple endocrine neoplasia type 1 and ZES; tumor localization; and the treatment of advanced metastatic disease. The last includes chemotherapy, liver-directed therapies, biotherapy (somatostatin/interferon), peptide radio-receptor therapy and molecular-targeted therapies including the use of mTor inhibitors (everolimus) and tyrosine kinase inhibitors (sunitinib). EXPERT OPINION Pharmacotherapy is now involved in all aspects of the management of patients with ZES, with the result that ZES has progressed from being considered an entirely surgical disease initially to the present where medical treatment plays a major role in almost all aspects of the management of these patients.
Collapse
Affiliation(s)
- Tetsuhide Ito
- Kyushu University, Graduate School of Medical Sciences, Department of Medicine and Bioregulatory Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
46
|
Ito T, Igarashi H, Jensen RT. Pancreatic neuroendocrine tumors: clinical features, diagnosis and medical treatment: advances. Best Pract Res Clin Gastroenterol 2012; 26:737-53. [PMID: 23582916 PMCID: PMC3627221 DOI: 10.1016/j.bpg.2012.12.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/27/2012] [Indexed: 01/31/2023]
Abstract
Pancreatic neuroendocrine tumors (pNETs) comprise with gastrointestinal carcinoids, the main groups of gastrointestinal neuroendocrine tumors (GI-NETs). Although these two groups of GI-NETs share many features including histological aspects; over-/ectopic expression of somatostatin receptors; the ability to ectopically secrete hormones/peptides/amines which can result in distinct functional syndromes; similar approaches used for tumor localization and some aspects of treatment, it is now generally agreed they should be considered separate. They differ in their pathogenesis, hormonal syndromes produced, many aspects of biological behaviour and most important, in their response to certain anti-tumour treatment (chemotherapy, molecular targeted therapies). In this chapter the clinical features of the different types of pNETs will be considered as well as aspects of their diagnosis and medical treatment of the hormone-excess state. Emphasis will be on controversial areas or recent advances. The other aspects of the management of these tumors (surgery, treatment of advanced disease, tumor localization) are not dealt with here, because they are covered in other chapters in this volume.
Collapse
Affiliation(s)
- Tetsuhide Ito
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
47
|
Genetic and clinical features of multiple endocrine neoplasia types 1 and 2. JOURNAL OF ONCOLOGY 2012; 2012:705036. [PMID: 23209466 PMCID: PMC3503399 DOI: 10.1155/2012/705036] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/16/2012] [Indexed: 12/12/2022]
Abstract
Multiple endocrine neoplasia (MEN) are clinical inherited syndromes affecting different endocrine glands. Three different patterns of MEN syndromes can occur (MEN 1, MEN 2A, and MEN 2B). MEN syndromes are very rare, affect all ages and both sexes are equally affected. MEN 1 is characterized by the neoplastic transformation of the parathyroid glands, pancreatic islets, anterior pituitary, and gastrointestinal tract. Heterozygous MEN 1 germline mutations have been detected in about 70–80% of patients with MEN 1. The mutations are scattered throughout the entire genomic sequence of the gene. MEN 1 patients are characterized by variable clinical features, thus suggesting the lack of a genotype-phenotype correlation. Therapeutical approaches are different according to the different endocrinopathies. The prognosis is generally good if adequate treatment is provided. In MEN 2 syndromes, the medullary thyroid cancer (MTC) is almost invariably present and can be associated with pheochromocytoma (PHEO) and/or multiple adenomatosis of parathyroid glands with hyperparathyroidism (PHPT). The different combination of the endocrine neoplasia gives origin to 3 syndromes: MEN 2A, MEN 2B, and FMTC. The clinical course of MTC varies considerably in the three syndromes. It is very aggressive in MEN 2B, almost indolent in the majority of patients with FMTC and with variable degrees of aggressiveness in patients with MEN 2A. Activating germline point mutations of the RET protooncogene are present in 98% of MEN 2 families. A strong genotype-phenotype correlation has been observed and a specific RET mutation may be responsible for a more or less aggressive clinical course. The treatment of choice for primary MTC is total thyroidectomy with central neck lymph nodes dissection. Nevertheless, 30% of MTC patients, especially in MEN 2B and 2A, are not cured by surgery. Recently, developed molecular therapeutics that target the RET pathway have shown very promising activity in clinical trials of patients with advanced MTC. MEN 2 prognosis is strictly dependent on the MTC aggressiveness and thus on the success of the initial treatment.
Collapse
|
48
|
Thakker RV, Newey PJ, Walls GV, Bilezikian J, Dralle H, Ebeling PR, Melmed S, Sakurai A, Tonelli F, Brandi ML. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J Clin Endocrinol Metab 2012; 97:2990-3011. [PMID: 22723327 DOI: 10.1210/jc.2012-1230] [Citation(s) in RCA: 818] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim was to provide guidelines for evaluation, treatment, and genetic testing for multiple endocrine neoplasia type 1 (MEN1). PARTICIPANTS The group, which comprised 10 experts, including physicians, surgeons, and geneticists from international centers, received no corporate funding or remuneration. PROCESS Guidelines were developed by reviews of peer-reviewed publications; a draft was prepared, reviewed, and rigorously revised at several stages; and agreed-upon revisions were incorporated. CONCLUSIONS MEN1 is an autosomal dominant disorder that is due to mutations in the tumor suppressor gene MEN1, which encodes a 610-amino acid protein, menin. Thus, the finding of MEN1 in a patient has important implications for family members because first-degree relatives have a 50% risk of developing the disease and can often be identified by MEN1 mutational analysis. MEN1 is characterized by the occurrence of parathyroid, pancreatic islet, and anterior pituitary tumors. Some patients may also develop carcinoid tumors, adrenocortical tumors, meningiomas, facial angiofibromas, collagenomas, and lipomas. Patients with MEN1 have a decreased life expectancy, and the outcomes of current treatments, which are generally similar to those for the respective tumors occurring in non-MEN1 patients, are not as successful because of multiple tumors, which may be larger, more aggressive, and resistant to treatment, and the concurrence of metastases. The prognosis for MEN1 patients might be improved by presymptomatic tumor detection and undertaking treatment specific for MEN1 tumors. Thus, it is recommended that MEN1 patients and their families should be cared for by multidisciplinary teams comprising relevant specialists with experience in the diagnosis and treatment of patients with endocrine tumors.
Collapse
Affiliation(s)
- Rajesh V Thakker
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kim YL, Jang YW, Kim JT, Sung SA, Lee TS, Lee WM, Kim HJ. A rare case of primary hyperparathyroidism associated with primary aldosteronism, Hürthle cell thyroid cancer and meningioma. J Korean Med Sci 2012; 27:560-4. [PMID: 22563225 PMCID: PMC3342551 DOI: 10.3346/jkms.2012.27.5.560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 01/26/2012] [Indexed: 11/22/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) syndrome includes varying combinations of endocrine and non-endocrine tumors. There are also a considerable number of atypical MEN1 syndrome. In this case, a 68-yr-old woman was referred to the Department of Endocrinology for hypercalcemia. Five years ago, she had diagnosed as primary hyperaldosteronism and now newly diagnosed as parathyroid hyperplasia with laboratory and pathologic findings. Hürthle-cell thyroid cancer was also resected during the parathyroid exploration and small meningioma was found on brain MRI. Her general condition has markedly improved and her adrenal mass and meningioma are being closely observed now. We could find the loss of heterozygosity of the MEN1 locus in parathyroid glands, suggesting a MEN1-related tumor, but not a germline mutation. Considering a variety of phenotypic expression and a limitation of current molecular analysis, periodic follow up will be needed in patients with a MEN1-like phenotype.
Collapse
Affiliation(s)
- You Lim Kim
- Department of Internal Medicine, Eulji University School of Medicine, Seoul, Korea
| | - Young Woo Jang
- Department of Internal Medicine, Eulji University School of Medicine, Seoul, Korea
| | - Jin Taek Kim
- Department of Internal Medicine, Eulji University School of Medicine, Seoul, Korea
| | - Su Ah Sung
- Department of Internal Medicine, Eulji University School of Medicine, Seoul, Korea
| | - Tae Seok Lee
- Department of General Surgery, Eulji University School of Medicine, Seoul, Korea
| | - Won Mi Lee
- Department of Pathology, Eulji University School of Medicine, Seoul, Korea
| | - Hyo Jeong Kim
- Department of Internal Medicine, Eulji University School of Medicine, Seoul, Korea
| |
Collapse
|
50
|
Al-Salameh A, François P, Giraud S, Calender A, Bergemer-Fouquet AM, de Calan L, Goudet P, Lecomte P. Intracranial ependymoma associated with multiple endocrine neoplasia type 1. J Endocrinol Invest 2010; 33:353-6. [PMID: 20142633 DOI: 10.1007/bf03346599] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|