1
|
Song L, Wang R, Cao Y, Yu L. Mutual regulations between Toxoplasma gondii and type I interferon. Front Immunol 2024; 15:1428232. [PMID: 39040112 PMCID: PMC11260619 DOI: 10.3389/fimmu.2024.1428232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
In the decades since the discovery, Type I interferon (IFN-I) has been intensively studied for their antiviral activity. However, increasing evidences suggest that it may also play an important role in the infection of Toxoplasma gondii, a model organism for intracellular parasites. Recent studies demonstrated that the induction of IFN-I by the parasite depends on cell type, strain genotype, and mouse strain. IFN-I can inhibit the proliferation of T. gondii, but few studies showed that it is beneficial to the growth of the parasite. Meanwhile, T. gondii also can secrete proteins that impact the pathway of IFN-I production and downstream induced interferon-stimulated genes (ISGs) regulation, thereby escaping immune destruction by the host. This article reviews the major findings and progress in the production, function, and regulation of IFN-I during T. gondii infection, to thoroughly understand the innate immune mechanism of T. gondii infection, which provides a new target for subsequent intervention and treatment.
Collapse
Affiliation(s)
- Lingling Song
- Department of Microbiology and Parasitology, Anhui Province Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ruoyu Wang
- The Rausser College of Natural Resources, University of California, Berkeley, CA, United States
| | - Yuanyuan Cao
- Department of Microbiology and Parasitology, Anhui Province Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Province Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Wang W, Lopez McDonald MC, Kim C, Ma M, Pan Z(T, Kaufmann C, Frank DA. The complementary roles of STAT3 and STAT1 in cancer biology: insights into tumor pathogenesis and therapeutic strategies. Front Immunol 2023; 14:1265818. [PMID: 38022653 PMCID: PMC10663227 DOI: 10.3389/fimmu.2023.1265818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
STATs are a family of transcription factors that regulate many critical cellular processes such as proliferation, apoptosis, and differentiation. Dysregulation of STATs is frequently observed in tumors and can directly drive cancer pathogenesis. STAT1 and STAT3 are generally viewed as mediating opposite roles in cancer development, with STAT1 suppressing tumorigenesis and STAT3 promoting oncogenesis. In this review, we investigate the specific roles of STAT1 and STAT3 in normal physiology and cancer biology, explore their interactions with each other, and offer insights into therapeutic strategies through modulating their transcriptional activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David A. Frank
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
3
|
de Groot J, Ott M, Wei J, Kassab C, Fang D, Najem H, O'Brien B, Weathers SP, Matsouka CK, Majd NK, Harrison RA, Fuller GN, Huse JT, Long JP, Sawaya R, Rao G, MacDonald TJ, Priebe W, DeCuypere M, Heimberger AB. A first-in-human Phase I trial of the oral p-STAT3 inhibitor WP1066 in patients with recurrent malignant glioma. CNS Oncol 2022; 11:CNS87. [PMID: 35575067 PMCID: PMC9134932 DOI: 10.2217/cns-2022-0005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Aim: To ascertain the maximum tolerated dose (MTD)/maximum feasible dose (MFD) of WP1066 and p-STAT3 target engagement within recurrent glioblastoma (GBM) patients. Patients & methods: In a first-in-human open-label, single-center, single-arm 3 + 3 design Phase I clinical trial, eight patients were treated with WP1066 until disease progression or unacceptable toxicities. Results: In the absence of significant toxicity, the MFD was identified to be 8 mg/kg. The most common adverse event was grade 1 nausea and diarrhea in 50% of patients. No treatment-related deaths occurred; 6 of 8 patients died from disease progression and one was lost to follow-up. Of 8 patients with radiographic follow-up, all had progressive disease. The longest response duration exceeded 3.25 months. The median progression-free survival (PFS) time was 2.3 months (95% CI: 1.7 months-NA months), and 6-month PFS (PFS6) rate was 0%. The median overall survival (OS) rate was 25 months (95% CI: 22.5 months-NA months), with an estimated 1-year OS rate of 100%. Pharmacokinetic (PK) data demonstrated that at 8 mg/kg, the T1/2 was 2-3 h with a dose dependent increase in the Cmax. Immune monitoring of the peripheral blood demonstrated that there was p-STAT3 suppression starting at a dose of 1 mg/kg. Conclusion: Immune analyses indicated that WP1066 inhibited systemic immune p-STAT3. WP1066 had an MFD identified at 8 mg/kg which is the target allometric dose based on prior preclinical modeling in combination with radiation therapy and a Phase II study is being planned for newly diagnosed MGMT promoter unmethylated glioblastoma patients.
Collapse
Affiliation(s)
- John de Groot
- Departments of Neurology & Neurosurgery, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, USA
| | - Martina Ott
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jun Wei
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Cynthia Kassab
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Dexing Fang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Hinda Najem
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 259 E Erie St, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E Superior St, Chicago, IL 60611, USA
| | - Barbara O'Brien
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Shiao-Pei Weathers
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Carlos Kamiya Matsouka
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Nazanin K Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Rebecca A Harrison
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Gregory N Fuller
- Department of Neuropathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jason T Huse
- Department of Neuropathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - James P Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Raymond Sawaya
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Tobey J MacDonald
- Department of Pediatrics, Emory University School of Medicine, Aflac Cancer & Blood Disorders Center of Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, GA 30322, USA
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Michael DeCuypere
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 259 E Erie St, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E Superior St, Chicago, IL 60611, USA
- Department of Neurological Surgery, Ann & Robert H Lurie Children's Hospital of Chicago, 225 E Chicago Ave, Chicago, IL 60611, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 259 E Erie St, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E Superior St, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Fares J, Cordero A, Kanojia D, Lesniak MS. The Network of Cytokines in Brain Metastases. Cancers (Basel) 2021; 13:E142. [PMID: 33466236 PMCID: PMC7795138 DOI: 10.3390/cancers13010142] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
Brain metastases are the most common of all intracranial tumors and a major cause of death in patients with cancer. Cytokines, including chemokines, interferons, interleukins, lymphokines, and tumor necrosis factors are key regulators in the formation of brain metastases. They regulate the infiltration of different cellular subsets into the tumor microenvironment and affect the therapeutic outcomes in patients. Elucidating the cancer cell-cytokine interactions in the setting of brain metastases is crucial for the development of more accurate diagnostics and efficacious therapies. In this review, we focus on cytokines that are found in the tumor microenvironment of brain metastases and elaborate on their trends of expression, regulation, and roles in cellular recruitment and tumorigenesis. We also explore how cytokines can alter the anti-tumor response in the context of brain metastases and discuss ways through which cytokine networks can be manipulated for diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (J.F.); (A.C.); (D.K.)
| |
Collapse
|
5
|
Gough MJ, Sharon S, Crittenden MR, Young KH. Using Preclinical Data to Design Combination Clinical Trials of Radiation Therapy and Immunotherapy. Semin Radiat Oncol 2020; 30:158-172. [PMID: 32381295 PMCID: PMC7213059 DOI: 10.1016/j.semradonc.2019.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunotherapies are rapidly entering the clinic as approved treatments for diverse cancer pathologies. Radiation therapy is an integral partner in cancer therapy, commonly as part of complicated multimodality approaches that optimize patient outcomes. Preclinical studies have demonstrated that the success of radiation therapy in tumor control is due in part to immune mechanisms, and that outcomes following radiation therapy can be improved through combination with a range of immunotherapies. However, preclinical models of cancer are very different from patient tumors, and the way these preclinical tumors are treated is often very different from standard of care treatment of patients. This review examines the preclinical and clinical data for the role of the immune system in radiation therapy outcomes, and how to integrate preclinical findings into clinical trials, using ongoing studies as examples.
Collapse
Affiliation(s)
- Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR.
| | - Shay Sharon
- Department of Oral and Maxillofacial Surgery, Hadassah and Hebrew University Medical Center, Jerusalem, ISRAEL
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR; The Oregon Clinic, Portland, OR
| | - Kristina H Young
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR; The Oregon Clinic, Portland, OR
| |
Collapse
|
6
|
Zhang YG, Zhu X, Lu R, Messer JS, Xia Y, Chang EB, Sun J. Intestinal epithelial HMGB1 inhibits bacterial infection via STAT3 regulation of autophagy. Autophagy 2019; 15:1935-1953. [PMID: 30894054 PMCID: PMC6844505 DOI: 10.1080/15548627.2019.1596485] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/30/2022] Open
Abstract
Extracellular HMGB1 (high mobility group box 1) is considered as a damage-associated molecular pattern protein. However, little is known about its intracellular role. We studied the mechanism whereby intestinal epithelial HMGB1 contributes to host defense, using cell culture, colonoids, conditional intestinal epithelial HMGB1-knockout mice with Salmonella-colitis, il10-/- mice, and human samples. We report that intestinal HMGB1 is an important contributor to host protection from inflammation and infection. We identified a physical interaction between HMGB1 and STAT3. Lacking intestinal epithelial HMGB1 led to redistribution of STAT3 and activation of STAT3 post bacterial infection. Indeed, Salmonella-infected HMGB1-deficient cells exhibited less macroautophagy/autophagy due to decreased expression of autophagy proteins and transcriptional repression by activated STAT3. Then, increased p-STAT3 and extranuclear STAT3 reduced autophagic responses and increased inflammation. STAT3 inhibition restored autophagic responses and reduced bacterial invasion in vitro and in vivo. Moreover, low level of HMGB1 was correlated with reduced nuclear STAT3 and enhanced p-STAT3 in inflamed intestine of il10-/- mice and inflammatory bowel disease (IBD) patients. We revealed that colonic epithelial HMGB1 was directly involved in the suppression of STAT3 activation and the protection of intestine from bacterial infection and injury. Abbreviations: ATG16L1: autophagy-related 16-like 1 (S. cerevisiae); DAMP: damage-associated molecular pattern; HBSS: Hanks balanced salt solution; HMGB1: high mobility group box 1; IBD: inflammatory bowel disease; IL1B/Il-1β: interleukin 1 beta; IL10: interleukin 10; IL17/IL-17: interleukin 17; MEFs: mouse embryonic fibroblasts; STAT3: signal transducer and activator of transcription 3; TLR: toll-like receptor; TNF/TNF-α: tumor necrosis factor.
Collapse
Affiliation(s)
- Yong-Guo Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaorong Zhu
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - Rong Lu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jeannette S. Messer
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - Yinglin Xia
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Eugene B. Chang
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - Jun Sun
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Thymoquinone Enhances the Effect of Gamma Knife in B16-F10 Melanoma Through Inhibition of Phosphorylated STAT3. World Neurosurg 2019; 128:e570-e581. [PMID: 31054338 DOI: 10.1016/j.wneu.2019.04.205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Patients with brain metastasis from melanoma have a dismal prognosis with poor survival time. Gamma Knife (GK) is an effective treatment to control brain metastasis from melanoma. Thymoquinone (TQ) has emerged as a potential therapeutic option due to its antiproliferative effects on various cancers. The purpose of the study was to assess the effect of GK on B16-F10 melanoma cells in vitro and intracerebral melanoma in vivo, and its synergistic effect in combination with TQ. METHODS The effects of GK and combination treatment of GK and TQ were studied on B16-F10 melanoma cells by evaluating cytotoxicity with an adenosine triphosphate assay, apoptosis by acridine orange staining, and genotoxicity by comet assay. Western blot analysis was performed to investigate the expression of STAT3, p-STAT3 (Tyr705), JAK2, p-JAK2, caspase-3, Bax, Bcl-2, survivin, and β-actin. Expression of inflammatory cytokines was assessed by enzyme-linked immunosorbent assay. GK alone and in combination with TQ was assessed in an established intracerebral melanoma tumor in mice. RESULTS The effects of GK on cytotoxicity, genotoxicity, and apoptosis were enhanced by TQ in B16-F10 melanoma cells. GK induced apoptosis through inhibition of p-STAT3 expression, which in turn regulated pro- and antiapoptotic proteins such as caspase-3, Bax, Bcl-2, and survivin. Adding TQ to GK irradiation further enhanced this apoptotic effect of GK irradiation. GK was shown to reduce the levels of tumor-related inflammatory cytokines in B16-F10 melanoma cells. This effect was more pronounced when TQ was added to GK irradiation. GK with 15 Gy increased the survival of mice with intracerebral melanoma compared with untreated mice. However, despite the additive effect of TQ in addition to GK irradiation on B16-F10 melanoma cells in vitro, TQ did not add any significant survival benefit to GK treatment in mice with intracerebral melanoma. CONCLUSIONS Our findings suggest that TQ would be a potential therapeutic agent in addition to GK to enhance the antitumor effect of irradiation. Further studies are required to support our findings.
Collapse
|
8
|
Zou MZ, Liu WL, Li CX, Zheng DW, Zeng JY, Gao F, Ye JJ, Zhang XZ. A Multifunctional Biomimetic Nanoplatform for Relieving Hypoxia to Enhance Chemotherapy and Inhibit the PD-1/PD-L1 Axis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801120. [PMID: 29882235 DOI: 10.1002/smll.201801120] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/29/2018] [Indexed: 05/13/2023]
Abstract
Hypoxia is reported to participate in tumor progression, promote drug resistance, and immune escape within tumor microenvironment, and thus impair therapeutic effects including the chemotherapy and advanced immunotherapy. Here, a multifunctional biomimetic core-shell nanoplatform is reported for improving synergetic chemotherapy and immunotherapy. Based on the properties including good biodegradability and functionalities, the pH-sensitive zeolitic imidazolate framework 8 embedded with catalase and doxorubicin constructs the core and serves as an oxygen generator and drug reservoir. Murine melanoma cell membrane coating on the core provides tumor targeting ability and elicits an immune response due to abundance of antigens. It is demonstrated that this biomimetic core-shell nanoplatform with oxygen generation can be partial to accumulate in tumor and downregulate the expression of hypoxia-inducible factor 1α, which can further enhance the therapeutic effects of chemotherapy and reduce the expression of programmed death ligand 1 (PD-L1). Combined with immune checkpoints blockade therapy by programmed death 1 (PD-1) antibody, the dual inhibition of the PD-1/PD-L1 axis elicits significant immune response and presents a robust effect in lengthening tumor recurrent time and inhibiting tumor metastasis. Consequently, the multifunctional nanoplatform provides a potential strategy of synergetic chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Mei-Zhen Zou
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Wen-Long Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jin-Yue Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Fan Gao
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jing-Jie Ye
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
9
|
Hatiboglu MA, Kocyigit A, Guler EM, Akdur K, Nalli A, Karatas E, Tuzgen S. Thymoquinone Induces Apoptosis in B16-F10 Melanoma Cell Through Inhibition of p-STAT3 and Inhibits Tumor Growth in a Murine Intracerebral Melanoma Model. World Neurosurg 2018; 114:e182-e190. [DOI: 10.1016/j.wneu.2018.02.136] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 02/23/2018] [Indexed: 11/16/2022]
|
10
|
The role of STAT3 in leading the crosstalk between human cancers and the immune system. Cancer Lett 2017; 415:117-128. [PMID: 29222039 DOI: 10.1016/j.canlet.2017.12.003] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022]
Abstract
The development and progression of human cancers are continuously and dynamically regulated by intrinsic and extrinsic factors. As a converging point of multiple oncogenic pathways, signal transducer and activator of transcription 3 (STAT3) is constitutively activated both in tumor cells and tumor-infiltrated immune cells. Activated STAT3 persistently triggers tumor progression through direct regulation of oncogenic gene expression. Apart from its oncogenic role in regulating gene expression in tumor cells, STAT3 also paves the way for human cancer growth through immunosuppression. Activated STAT3 in immune cells results in inhibition of immune mediators and promotion of immunosuppressive factors. Therefore, STAT3 modulates the interaction between tumor cells and host immunity. Accumulating evidence suggests that targeting STAT3 may enhance anti-cancer immune responses and rescue the suppressed immunologic microenvironment in tumors. Taken together, STAT3 has emerged as a promising target in cancer immunotherapy.
Collapse
|
11
|
Abstract
As an oncogene, over-activated signal transducer and activator of transcription 3 (STAT3) has been detected in many tumors. STAT3 controls cell differentiation, proliferation, and survival, and is associated with angiogenesis and immune dysfunction during tumorigenesis. Double-stranded decoy oligodeoxynucleotide (ODN) targeting over-activated STAT3 in tumor cells have shown significant antitumor efficiency. Here, we describe the materials and methods involved in STAT3 decoy ODN therapy for cancer including both the antitumor effect directly and immunotherapy indirectly.
Collapse
|
12
|
Ferguson SD, Srinivasan VM, Heimberger AB. The role of STAT3 in tumor-mediated immune suppression. J Neurooncol 2015; 123:385-94. [PMID: 25700834 DOI: 10.1007/s11060-015-1731-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 02/01/2015] [Indexed: 02/07/2023]
Abstract
The role of tumor-induced immune modulation in cancer progression is currently a focus of investigation. The signal transducer and activator of transcription 3 (STAT3) is an established molecular hub of immunosuppression, and its signaling pathways are classically overactivated within malignancies. This article will review STAT3 operational mechanisms within the immune system and the tumor microenvironment, with a focus on therapeutic strategies that may impact outcomes for patients with cancer.
Collapse
Affiliation(s)
- Sherise D Ferguson
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, 1400 Holcombe Blvd., Unit 442, Houston, TX, 77030, USA,
| | | | | |
Collapse
|
13
|
Schrama D, Ugurel S, Sucker A, Ritter C, Zapatka M, Schadendorf D, Becker JC. STAT3 Single Nucleotide Polymorphism rs4796793 SNP Does Not Correlate with Response to Adjuvant IFNα Therapy in Stage III Melanoma Patients. Front Med (Lausanne) 2015; 1:47. [PMID: 25593920 PMCID: PMC4292185 DOI: 10.3389/fmed.2014.00047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/12/2014] [Indexed: 11/13/2022] Open
Abstract
Interferon alpha (IFNα) is approved for adjuvant treatment of stage III melanoma in Europe and the US. Its clinical efficacy, however, is restricted to a subpopulation of patients while side effects occur in most of treated patients. Thus, the identification of predictive biomarkers would be highly beneficial to improve the benefit to risk ratio. In this regard, STAT3 is important for signaling of the IFNα receptor. Moreover, the STAT3 single-nucleotide polymorphism (SNP) rs4796793 has recently been reported to be associated with IFNα sensitivity in metastatic renal cell carcinoma. To translate this notion to melanoma, we scrutinized the impact of rs4796793 functionally and clinically in this cancer. Interestingly, melanoma cells carrying the minor allele of rs4796793 were the most sensitive to IFNα in vitro. However, we did not detect a correlation between SNP genotype and STAT3 mRNA expression for either melanoma cells or for peripheral blood lymphocytes. Next, we analyzed the impact of rs4796793 on the clinical outcome of 259 stage III melanoma patients of which one-third had received adjuvant IFNα treatment. These analyses did not reveal a significant association between the STAT3 rs4796793 SNP and patients’ progression free or overall survival when IFNα treated and untreated patients were compared. In conclusion, STAT3 rs4796793 SNP is no predictive marker for the efficacy of adjuvant IFNα treatment in melanoma patients.
Collapse
Affiliation(s)
- David Schrama
- Department of Dermatology, University Hospital Würzburg , Würzburg , Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Würzburg , Würzburg , Germany ; Department of Dermatology, University Hospital Essen , Essen , Germany
| | - Antje Sucker
- Department of Dermatology, University Hospital Essen , Essen , Germany
| | - Cathrin Ritter
- Department of Dermatology, Medical University of Graz , Graz , Austria ; Department of Translational Skin Cancer Research, German Cancer Research Center , Heidelberg , Germany
| | - Marc Zapatka
- Department of Molecular Genetics, German Cancer Research Center , Heidelberg , Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen , Essen , Germany
| | - Jürgen Christian Becker
- Department of Dermatology, University Hospital Essen , Essen , Germany ; Department of Dermatology, Medical University of Graz , Graz , Austria ; Department of Translational Skin Cancer Research, German Cancer Research Center , Heidelberg , Germany
| |
Collapse
|
14
|
Drug delivery nanoparticles in skin cancers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:895986. [PMID: 25101298 PMCID: PMC4102061 DOI: 10.1155/2014/895986] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/28/2014] [Indexed: 12/17/2022]
Abstract
Nanotechnology involves the engineering of functional systems at nanoscale, thus being attractive for disciplines ranging from materials science to biomedicine. One of the most active research areas of the nanotechnology is nanomedicine, which applies nanotechnology to highly specific medical interventions for prevention, diagnosis, and treatment of diseases, including cancer disease. Over the past two decades, the rapid developments in nanotechnology have allowed the incorporation of multiple therapeutic, sensing, and targeting agents into nanoparticles, for detection, prevention, and treatment of cancer diseases. Nanoparticles offer many advantages as drug carrier systems since they can improve the solubility of poorly water-soluble drugs, modify pharmacokinetics, increase drug half-life by reducing immunogenicity, improve bioavailability, and diminish drug metabolism. They can also enable a tunable release of therapeutic compounds and the simultaneous delivery of two or more drugs for combination therapy. In this review, we discuss the recent advances in the use of different types of nanoparticles for systemic and topical drug delivery in the treatment of skin cancer. In particular, the progress in the treatment with nanocarriers of basal cell carcinoma, squamous cell carcinoma, and melanoma has been reported.
Collapse
|
15
|
Lesinski GB. The potential for targeting the STAT3 pathway as a novel therapy for melanoma. Future Oncol 2014; 9:925-7. [PMID: 23837753 DOI: 10.2217/fon.13.83] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
16
|
Therapeutic modulators of STAT signalling for human diseases. Nat Rev Drug Discov 2013; 12:611-29. [PMID: 23903221 DOI: 10.1038/nrd4088] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The signal transducer and activator of transcription (STAT) proteins have important roles in biological processes. The abnormal activation of STAT signalling pathways is also implicated in many human diseases, including cancer, autoimmune diseases, rheumatoid arthritis, asthma and diabetes. Over a decade has passed since the first inhibitor of a STAT protein was reported and efforts to discover modulators of STAT signalling as therapeutics continue. This Review discusses the outcomes of the ongoing drug discovery research endeavours against STAT proteins, provides perspectives on new directions for accelerating the discovery of drug candidates, and highlights the noteworthy candidate therapeutics that have progressed to clinical trials.
Collapse
|
17
|
Regulation of HGF expression by ΔEGFR-mediated c-Met activation in glioblastoma cells. Neoplasia 2013; 15:73-84. [PMID: 23359207 DOI: 10.1593/neo.121536] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 11/18/2022]
Abstract
The hepatocyte growth factor receptor (c-Met) and a constitutively active mutant of the epidermal growth factor receptor (ΔEGFR/EGFRvIII) are frequently overexpressed in glioblastoma (GBM) and promote tumorigenesis. The mechanisms underlying elevated hepatocyte growth factor (HGF) production in GBM are not understood. We found higher, coordinated mRNA expression levels of HGF and c-Met in mesenchymal (Mes) GBMs, a subtype associated with poor treatment response and shorter overall survival. In an HGF/c-Met-dependent GBM cell line, HGF expression declined upon silencing of c-Met using RNAi or by inhibiting its activity with SU11274. Silencing c-Met decreased anchorage-independent colony formation and increased the survival of mice bearing intracranial GBM xenografts. Consistent with these findings, c-Met activation by ΔEGFR also elevated HGF expression, and the inhibition of ΔEGFR with AG1478 reduced HGF levels. Interestingly, c-Met expression was required for ΔEGFR-mediated HGF production, anchorage-independent growth, and in vivo tumorigenicity, suggesting that these pathways are coupled. Using an unbiased mass spectrometry-based screen, we show that signal transducer and activator of transcription 3 (STAT3) Y705 is a downstream target of c-Met signaling. Suppression of STAT3 phosphorylation with WP1193 reduced HGF expression in ΔEGFR-expressing GBM cells, whereas constitutively active STAT3 partially rescued HGF expression and colony formation in c-Met knockdown cells expressing ΔEGFR. These results suggest that the c-Met/HGF signaling axis is enhanced by ΔEGFR through increased STAT3-dependent HGF expression and that targeting c-Met in Mes GBMs may be an important strategy for therapy.
Collapse
|
18
|
Sun X, Sui Q, Zhang C, Tian Z, Zhang J. Targeting blockage of STAT3 in hepatocellular carcinoma cells augments NK cell functions via reverse hepatocellular carcinoma-induced immune suppression. Mol Cancer Ther 2013; 12:2885-96. [PMID: 24107450 DOI: 10.1158/1535-7163.mct-12-1087] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
STAT3 is an important transcriptional factor for cell growth, differentiation, and apoptosis. Although evidence suggests a positive role for STAT3 in cancer, the inhibitory effects of tumor STAT3 on natural killer (NK) cell functions in human hepatocellular carcinoma are unclear. In this study, we found that blocking STAT3 in hepatocellular carcinoma cells enhanced NK-cell antitumor function. In the case of STAT3-blocked hepatocellular carcinoma cells, NKG2D ligands were upregulated, which promoted recognition by NK cells. Importantly, the cytokine profile of hepatocellular carcinoma cells was altered; in particular, TGF-β and interleukin 10 (IL-10) expression was reduced, and type I interferon (IFN) was induced, thus facilitating NK-cell activation. Indeed, the cytotoxicity of NK cells treated with supernatant from STAT3-blocked hepatocellular carcinoma cells was augmented, with a concomitant elevation of molecules associated with NK cytolysis. Further experiments confirmed that the recovery of NK cells depended on the downregulation of TGF-β and upregulation of type I IFN derived from STAT3-blocked hepatocellular carcinoma cells. These findings demonstrated a pivotal role for STAT3 in hepatocellular carcinoma-mediated NK-cell dysfunction, and highlighted the importance of STAT3 blockade for hepatocellular carcinoma immunotherapy, which could restore NK-cell cytotoxicity in addition to its direct influence on tumor cells.
Collapse
Affiliation(s)
- Xiaoxia Sun
- Corresponding Author: Jian Zhang, Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China.
| | | | | | | | | |
Collapse
|
19
|
Borghouts C, Delis N, Brill B, Weiss A, Mack L, Lucks P, Groner B. A membrane penetrating peptide aptamer inhibits STAT3 function and suppresses the growth of STAT3 addicted tumor cells. JAKSTAT 2013; 1:44-54. [PMID: 24058750 PMCID: PMC3670134 DOI: 10.4161/jkst.18947] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/05/2011] [Accepted: 12/05/2011] [Indexed: 01/05/2023] Open
Abstract
Cancer cells are characterized by the aberrant activation of signaling pathways governing proliferation, survival, angiogenesis, migration and immune evasion. These processes are partially regulated by the transcription factor STAT3. This factor is inappropriately activated in diverse tumor types. Since tumor cells can become dependent on its persistent activation, STAT3 is a favorable drug target. Here, we describe the functional characterization of the recombinant STAT3 inhibitor, rS3-PA. This inhibitor is based on a 20 amino acid peptide which specifically interacts with the dimerization domain of STAT3. It is integrated into a thioredoxin scaffold and fused to a protein transduction domain. Protein gel blot and immunofluorescence analyses showed that rS3-PA is efficiently taken up by cells via an endocytosis independent mechanism. Intracellularly, it reduces the phosphorylation of STAT3 and enhances its degradation. This leads to the downregulation of STAT3 target gene expression on the mRNA and protein levels. Subsequently, tumor cell proliferation, survival and migration and the induction of angiogenesis are inhibited. In contrast, normal cells remain unaffected. Systemic administration of rS3-PA at doses of 7.5 mg/kg reduced P-STAT3 levels and significantly inhibited tumor growth up to 35% in a glioblastoma xenograft mouse model.
Collapse
Affiliation(s)
- Corina Borghouts
- Georg-Speyer-Haus; Institute for Biomedical Research; Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Durante M, Reppingen N, Held KD. Immunologically augmented cancer treatment using modern radiotherapy. Trends Mol Med 2013; 19:565-82. [DOI: 10.1016/j.molmed.2013.05.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
|
21
|
Chen J, Shao R, Zhang XD, Chen C. Applications of nanotechnology for melanoma treatment, diagnosis, and theranostics. Int J Nanomedicine 2013; 8:2677-88. [PMID: 23926430 PMCID: PMC3728269 DOI: 10.2147/ijn.s45429] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Melanoma is the most aggressive type of skin cancer and has very high rates of mortality. An early stage melanoma can be surgically removed, with a survival rate of 99%. However, metastasized melanoma is difficult to cure. The 5-year survival rates for patients with metastasized melanoma are still below 20%. Metastasized melanoma is currently treated by chemotherapy, targeted therapy, immunotherapy and radiotherapy. The outcome of most of the current therapies is far from optimistic. Although melanoma patients with a mutation in the oncogene v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) have an initially higher positive response rate to targeted therapy, the majority develop acquired drug resistance after 6 months of the therapy. To increase treatment efficacy, early diagnosis, more potent pharmacological agents, and more effective delivery systems are urgently needed. Nanotechnology has been extensively studied for melanoma treatment and diagnosis, to decrease drug resistance, increase therapeutic efficacy, and reduce side effects. In this review, we summarize the recent progress on the development of various nanoparticles for melanoma treatment and diagnosis. Several common nanoparticles, including liposome, polymersomes, dendrimers, carbon-based nanoparticles, and human albumin, have been used to deliver chemotherapeutic agents, and small interfering ribonucleic acids (siRNAs) against signaling molecules have also been tested for the treatment of melanoma. Indeed, several nanoparticle-delivered drugs have been approved by the US Food and Drug Administration and are currently in clinical trials. The application of nanoparticles could produce side effects, which will need to be reduced so that nanoparticle-delivered drugs can be safely applied in the clinical setting.
Collapse
Affiliation(s)
- Jiezhong Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia.
| | | | | | | |
Collapse
|
22
|
Development of novel molecular probes of the Rio1 atypical protein kinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1292-301. [PMID: 23523885 DOI: 10.1016/j.bbapap.2013.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 11/21/2022]
Abstract
The RIO kinases are essential protein factors required for the synthesis of new ribosomes in eukaryotes. Conserved in archaeal organisms as well, RIO kinases are among the most ancient of protein kinases. Their exact molecular mechanisms are under investigation and progress of this research would be significantly improved with the availability of suitable molecular probes that selectively block RIO kinases. RIO kinases contain a canonical eukaryotic protein kinase fold, but also display several unusual structural features that potentially create opportunity for the design of selective inhibitors. In an attempt to identify structural leads to target the RIO kinases, a series of pyridine caffeic acid benzyl amides (CABA) were tested for their ability to inhibit the autophosphorylation activity of Archeaoglobus fulgidus Rio1 (AfRio1). Screening of a small library of CABA molecules resulted in the identification of four compounds that measurably inhibited AfRio1 activity. Additional biochemical characterization of binding and inhibition activity of these compounds demonstrated an ATP competitive inhibition mode, and allowed identification of the functional groups that result in the highest binding affinity. In addition, docking of the compound to the structure of Rio1 and determination of the X-ray crystal structure of a model compound (WP1086) containing the desired functional groups allowed detailed analysis of the interactions between these compounds and the enzyme. Furthermore, the X-ray crystal structure demonstrated that these compounds stabilize an inactive form of the enzyme. Taken together, these results provide an important step in identification of a scaffold for the design of selective molecular probes to study molecular mechanisms of Rio1 kinases in vitro and in vivo. In addition, it provides a rationale for the future design of potent inhibitors with drug-like properties targeting an inactive form of the enzyme. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
|
23
|
Mutant B-RAF-Mcl-1 survival signaling depends on the STAT3 transcription factor. Oncogene 2013; 33:1158-66. [DOI: 10.1038/onc.2013.45] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 12/23/2022]
|
24
|
Hamilton A, Sibson NR. Role of the systemic immune system in brain metastasis. Mol Cell Neurosci 2013; 53:42-51. [PMID: 23073146 DOI: 10.1016/j.mcn.2012.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 09/24/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022] Open
Abstract
Metastatic disease in the central nervous system (CNS) is a cause of increasing mortality amongst cancer patients. As with other types of cancer, cells of the systemic immune system play a range of important roles in the development of metastatic lesions in the CNS, both repressing and promoting tumour growth. Recent advances in immunotherapy have changed the emphasis in cancer treatment away from conventional chemotherapy and radiotherapy for certain tumour types. Despite this, our understanding of systemic immune system involvement in CNS metastases remains poor. The blood-brain barrier prevents the majority of diagnostic and therapeutic agents from crossing into the brain parenchyma until the late stages of metastatic disease. Thus, the development of immunotherapy for CNS pathologies is particularly desirable. This review draws together our current understanding in the relationships between CNS metastases and circulating systemic immune cells. We discuss the roles that circulating systemic immune cells may play in the homing of metastatic cells to the perivascular space, and the pro-metastatic and antagonistic roles that infiltrating systemic immune cells may play at sites of metastasis. This article is part of a Special Issue entitled 'Neuroinflammation in neurodegeneration and neurodysfunction'.
Collapse
Affiliation(s)
- Alastair Hamilton
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, UK
| | | |
Collapse
|
25
|
Takeuchi A, Shiota M, Tatsugami K, Yokomizo A, Kuroiwa K, Dejima T, Tanaka S, Itsumi M, Eto M, Naito S. YB-1 suppression induces STAT3 proteolysis and sensitizes renal cancer to interferon-α. Cancer Immunol Immunother 2013; 62:517-27. [PMID: 23052245 PMCID: PMC11029031 DOI: 10.1007/s00262-012-1356-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 09/17/2012] [Indexed: 01/15/2023]
Abstract
Renal cell carcinoma (RCC) accounts for 80-95 % of kidney tumors, and approximately 30 % of RCC patients have metastatic disease at diagnosis. Conventional chemotherapy is not effective in patients with metastatic RCC (MRCC); therefore, immunotherapy with interferon-α (IFN-α) has been employed to improve survival. However, the response rate of MRCC to IFN-α therapy is low. We previously reported that a signal transducer and activator 3 (STAT3) polymorphism was a useful diagnostic marker to predict the response to IFN-α therapy in patients with MRCC. Therefore, we hypothesized the inhibition of STAT3 in the addition of IFN-α therapy might be useful. Moreover, the blockage of STAT3 itself has been reported to enhance the antitumor effects. However, because IFN-α is thought to elicit its therapeutic effect via enhancement of an antitumor immune response mediated by lymphocytes that can be activated by IFN-α administrations, it is probable that the suppression of STAT3 in vivo relates to autoimmune disorders. In the present study, we found Y-box binding protein-1 (YB-1) was poorly expressed in T lymphocytes, as compared with cancer tissues. YB-1 was reported to have an important effect on the STAT3 pathway. Suppression of STAT3 by YB-1 inhibition did not seem to enhance the potential risk for autoimmune disorders. Moreover, we found sensitivity to IFN-α was increased by YB-1 suppression, and this suppression did not down-regulate IFN-α activation of T lymphocytes.
Collapse
Affiliation(s)
- Ario Takeuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cao Y, Zhou X, Huang X, Li Q, Gao L, Jiang L, Huang M, Zhou J. Tim-3 expression in cervical cancer promotes tumor metastasis. PLoS One 2013; 8:e53834. [PMID: 23335978 PMCID: PMC3545875 DOI: 10.1371/journal.pone.0053834] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/06/2012] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND T cell immunoglobulin mucin-3 (Tim-3) has been identified as a negative regulator of anti-tumor immunity. Recent studies highlight the important role of Tim-3 in the CD8(+) T cell exhaustion that takes place in both human and animal cancer models. However, the nature of Tim-3 expression in the tumor cell and the mechanism by which it inhibits anti-tumor immunity are unclear. This present study aims to determine Tim-3 is expressed in cervical cancer cells and to evaluate the role of Tim-3 in cervical cancer progression. METHODOLOGY A total of 85 cervical tissue specimens including 43 human cervical cancer, 22 cervical intraepithelial neoplasia (CIN) and 20 chronic cervicitis were involved. Tim-3 expression in tumor cells was detected and was found to correlate with clinicopathological parameters. Meanwhile, expression of Tim-3 was assessed by RT-PCR, Western Blot and confocal microscopy in cervical cancer cell lines, HeLa and SiHa. The migration and invasion potential of Hela cells was evaluated after inhibiting Tim-3 expression by ADV-antisense Tim-3. CONCLUSIONS We found that Tim-3 was expressed at a higher level in the clinical cervical cancer cells compared to the CIN and chronic cervicitis controls. We supported this finding by confirming the presence of Tim-3 mRNA and protein in the cervical cell lines. Tim-3 expression in tumor cells correlated with clinicopathological parameters. Patients with high expression of Tim-3 had a significant metastatic potential, advanced cancer grades and shorter overall survival than those with lower expression. Multivariate analysis showed that Tim-3 expression was an independent factor for predicting the prognosis of cervical cancer. Significantly, down-regulating the expression of Tim-3 protein inhibited migration and invasion of Hela cells. Our study suggests that the expression of Tim-3 in tumor cells may be an independent prognostic factor for patients with cervical cancer. Moreover, Tim-3 expression may promote metastatic potential in cervical cancers.
Collapse
Affiliation(s)
- Yang Cao
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Xiaoxi Zhou
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Xiaoyuan Huang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Qinlu Li
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Lili Gao
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Lijun Jiang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Mei Huang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jianfeng Zhou
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
27
|
Blackham AU, Northrup SA, Willingham M, D'Agostino RB, Lyles DS, Stewart JH. Variation in susceptibility of human malignant melanomas to oncolytic vesicular stomatitis virus. Surgery 2012; 153:333-43. [PMID: 23102637 DOI: 10.1016/j.surg.2012.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 09/04/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Vesicular stomatitis virus (VSV) is a novel, anti-cancer therapy that targets cancer cells selectively with defective antiviral responses; however, not all malignant cells are sensitive to the oncolytic effects of VSV. Herein, we have explored the mechanistic determinants of mutant M protein VSV (M51R-VSV) susceptibility in malignant melanoma cells. METHODS Cell viability after VSV infection was measured by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) viability assay in a panel of melanoma cell lines. VSV infectability, viral protein synthesis, and viral progeny production were quantified by flow cytometry, (35)S-methionine electrophoresis, and viral plaque assays, respectively. Interferon (IFN) responsiveness was determined using MTS assay after β-IFN pretreatment. Xenografts were established in athymic nude mice and treated with intratumoral M51R-VSV. RESULTS Cell viability after M51R-VSV infection at a multiplicity of infection of 10 pfu/mL, 48 hours postinfection) ranged between 0 ± 1% and 59 ± 9% (mean ± standard deviation). Sensitive cell lines supported VSV infection, viral protein synthesis, and viral progeny production. In addition, when pretreated with β-IFN, sensitive cells became resistant to M51R-VSV, suggesting that IFN-mediated antiviral signaling is defective in these cells. In contrast, resistant melanoma cells do not support VSV infection, viral protein synthesis, or viral replication, indicating that antiviral defenses remain intact. In a murine xenograft model, intratumoral M51R-VSV treatment decreased tumor growth relative to controls after 26 days in SK-Mel 5 (-21 ± 19% vs. 2,100 ± 770%; P < .0001) and in SK-Mel 3 (2,000 ± 810% vs. 7,000 ± 3,000%; P = .008) established tumors. CONCLUSION M51R-VSV is a viable anti-cancer therapy, but susceptibility varies among melanomas. Future work will exploit specific mechanisms of resistance to expand the therapeutic efficacy of M51R-VSV.
Collapse
Affiliation(s)
- Aaron U Blackham
- Department of General Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
28
|
Delivery of interferons and siRNA targeting STAT3 using lentiviral vectors suppresses the growth of murine melanoma. Cancer Gene Ther 2012; 19:822-7. [PMID: 23018621 DOI: 10.1038/cgt.2012.65] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Interferons (IFNs) have been investigated as important cytokines in immunotherapy. The use of IFNs in cancer immunotherapy has had limited success. In this study, IFN genes were delivered into B16 melanoma cells by lentiviral vectors, and their effects on B16 melanoma were comprehensively analyzed. Type II IFN significantly impaired the viability of B16 cells in vitro. Expression of IFNα and IFNβ in B16 cells efficiently suppressed the establishment of inoculated melanoma. However, intratumoral delivery of IFNs alone with lentiviral vectors had no therapeutic effects on established melanoma. To address the lack of response, a lentivector was constructed to simultaneously transfer therapeutic genes and small interfering RNAs (siRNAs). IFNs and siRNA targeting signal transducer and activator of transcription 3 (STAT3), which is a major immune suppressive transcription factor in melanoma, were delivered simultaneously into the tumor milieu. This treatment successfully rescued the response to IFNγ and attenuated the growth of established tumors. This method has the potential to improve the therapeutic effects of IFNs in cancer immunotherapy.
Collapse
|
29
|
Bill MA, Nicholas C, Mace TA, Etter JP, Li C, Schwartz EB, Fuchs JR, Young GS, Lin L, Lin J, He L, Phelps M, Li PK, Lesinski GB. Structurally modified curcumin analogs inhibit STAT3 phosphorylation and promote apoptosis of human renal cell carcinoma and melanoma cell lines. PLoS One 2012; 7:e40724. [PMID: 22899991 PMCID: PMC3416819 DOI: 10.1371/journal.pone.0040724] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 06/13/2012] [Indexed: 12/18/2022] Open
Abstract
The Janus kinase-2 (Jak2)-signal transducer and activator of transcription-3 (STAT3) pathway is critical for promoting an oncogenic and metastatic phenotype in several types of cancer including renal cell carcinoma (RCC) and melanoma. This study describes two small molecule inhibitors of the Jak2-STAT3 pathway, FLLL32 and its more soluble analog, FLLL62. These compounds are structurally distinct curcumin analogs that bind selectively to the SH2 domain of STAT3 to inhibit its phosphorylation and dimerization. We hypothesized that FLLL32 and FLLL62 would induce apoptosis in RCC and melanoma cells and display specificity for the Jak2-STAT3 pathway. FLLL32 and FLLL62 could inhibit STAT3 dimerization in vitro. These compounds reduced basal STAT3 phosphorylation (pSTAT3), and induced apoptosis in four separate human RCC cell lines and in human melanoma cell lines as determined by Annexin V/PI staining. Apoptosis was also confirmed by immunoblot analysis of caspase-3 processing and PARP cleavage. Pre-treatment of RCC and melanoma cell lines with FLLL32/62 did not inhibit IFN-γ-induced pSTAT1. In contrast to FLLL32, curcumin and FLLL62 reduced downstream STAT1-mediated gene expression of IRF1 as determined by Real Time PCR. FLLL32 and FLLL62 significantly reduced secretion of VEGF from RCC cell lines in a dose-dependent manner as determined by ELISA. Finally, each of these compounds inhibited in vitro generation of myeloid-derived suppressor cells. These data support further investigation of FLLL32 and FLLL62 as lead compounds for STAT3 inhibition in RCC and melanoma.
Collapse
Affiliation(s)
- Matthew A. Bill
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Courtney Nicholas
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas A. Mace
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Jonathan P. Etter
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Chenglong Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Eric B. Schwartz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - James R. Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Gregory S. Young
- Center for Biostatistics, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Li Lin
- Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, Columbus, Ohio, United States of America
| | - Jiayuh Lin
- Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, Columbus, Ohio, United States of America
| | - Lei He
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Mitch Phelps
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Pui-Kai Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Gregory B. Lesinski
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
30
|
Induction of cell-cycle arrest and apoptosis in glioblastoma stem-like cells by WP1193, a novel small molecule inhibitor of the JAK2/STAT3 pathway. J Neurooncol 2012; 107:487-501. [PMID: 22249692 DOI: 10.1007/s11060-011-0786-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 12/26/2011] [Indexed: 01/08/2023]
Abstract
Glioma stem-like cells (GSCs) may be the initiating cells in glioblastoma (GBM) and contribute to the resistance of these tumors to conventional therapies. Development of novel chemotherapeutic agents and treatment approaches against GBM, especially those specifically targeting GSCs are thus necessary. In the present study, we found that a novel Janus kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) pathway inhibitor (WP1193) significantly decreased the proliferation of established glioma cell lines in vitro and inhibit the growth of glioma in vivo. To test the efficacy of WP1193 against GSCs, we then administrated WP1193 to GSCs isolated and expanded from multiple human GBM tumors. We revealed that WP1193 suppressed phosphorylation of JAK2 and STAT3 with high potency and demonstrated a dose-dependent inhibition of proliferation and neurosphere formation of GSCs. These effects were at least due in part to G1 arrest associated with down-regulation of cyclin D1 and up-regulation of p21( Cip1/Waf-1 ). Furthermore, WP1193 exposure decreased expression of stem cell markers including CD133 and c-myc, and induced cell death in GSCs through apoptosis. Taken together, our data indicate that WP1193 is a potent small molecule inhibitor of the JAK2/STAT3 pathway that shows promise as a therapeutic agent against GBM by targeting GSCs.
Collapse
|
31
|
Abstract
With an incidence that is increasing at 2–5% per year, cutaneous melanoma is an international scourge that disproportionately targets young individuals. Despite much research, the treatment of advanced disease is still quite challenging. Immunotherapy with high-dose interferon-α2b or interleukin-2 benefits a select group of patients in the adjuvant and metastatic settings, respectively, with significant attendant toxicity. Advances in the biology of malignant melanoma and the role of immunomodulatory therapy have produced advances that have stunned the field. In this paper, we review the data for the use of interferon-α2b in various dosing ranges, vaccine therapy, and the role of radiotherapy in the adjuvant setting for malignant melanoma. Recent trials in the metastatic setting using anticytoxic T-lymphocyte antigen-4 (anti-CTLA-4) monoclonal antibody therapy and BRAF inhibitor therapy have demonstrated clear benefit with prolongation of survival. Trials investigating combinations of these novel agents with existing immunomodulators are at present underway.
Collapse
|
32
|
Hatiboglu MA, Kong LY, Wei J, Wang Y, McEnery KA, Fuller GN, Qiao W, Davies MA, Priebe W, Heimberger AB. The tumor microenvironment expression of p-STAT3 influences the efficacy of cyclophosphamide with WP1066 in murine melanoma models. Int J Cancer 2011; 131:8-17. [PMID: 21792892 DOI: 10.1002/ijc.26307] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/28/2011] [Indexed: 02/04/2023]
Abstract
Melanoma is a common and deadly tumor that upon metastasis to the central nervous system (CNS) has median survival duration of less than 5 months. Activation of the signal transducer and activator of transcription 3 (STAT3) has been identified as a key mediator that drives the fundamental components of melanoma. We hypothesized that WP1066, a novel inhibitor of STAT3 signaling, would enhance the antitumor activity of cyclophosphamide (CTX) against melanoma, including disease within the CNS. The mechanisms of efficacy were investigated by tumor- and immune-mediated cytotoxic assays, in vivo evaluation of the reduction of regulatory T cells (Tregs) and by determining intratumoral p-STAT3 expression by immunohistochemistry. Combinational therapy of WP1066, with both metronomic and cytotoxic dosing of CTX, was investigated in a model system of systemic and intracerebral melanoma in syngeneic mice. Inhibition of p-STAT3 by WP1066 was enhanced with CTX in a dose-dependent manner. However, in mice with intracerebral melanoma, the greatest therapeutic benefit was seen in animals treated with cytotoxic CTX dosing and WP1066, whose median survival time was 120 days, an increase of 375%, with 57% long-term survivors. This treatment efficacy correlated with p-STAT3 expression levels within the tumor microenvironment. The efficacy of the combination of cytotoxic dosing of CTX with WP1066 is attributed to the direct tumor cytotoxic effects of the agents and has the greatest therapeutic potential for the treatment of CNS melanoma.
Collapse
Affiliation(s)
- Mustafa Aziz Hatiboglu
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Current world literature. Curr Opin Oncol 2011; 23:227-34. [PMID: 21307677 DOI: 10.1097/cco.0b013e328344b687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Cruz-Muñoz W, Kerbel RS. Preclinical approaches to study the biology and treatment of brain metastases. Semin Cancer Biol 2010; 21:123-30. [PMID: 21147227 DOI: 10.1016/j.semcancer.2010.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 12/02/2010] [Indexed: 12/22/2022]
Abstract
Metastatic spread to the central nervous system (CNS) is a common and devastating manifestation of major cancer types. Its incidence is associated with poor prognosis manifested by neurological deterioration leading to diminished quality of life and an extremely short median survival. CNS metastasis is becoming an increasingly important clinical problem. This is especially the case for certain types of cancers for which effective treatments of visceral disease are available. As a result of the present limitations in treating CNS metastases, this manifestation of tumor progression remains an unmet clinical need. Despite its significance, our general understanding of the mechanisms that regulate the brain-metastatic phenotype is currently meager. Both the analysis of mechanistic aspects of brain metastasis and the development of effective treatments necessitate the use of appropriate in vivo models that recapitulate the interaction of the tumor cells with the microenvironment of the brain. Here we review the available preclinical models of CNS metastasis and their use as tools to advance knowledge of the biology of the disease (with the aim of identifying relevant molecular determinants, prognostic biomarkers, and therapeutic targets) as well as examining effective approaches for treatment.
Collapse
Affiliation(s)
- William Cruz-Muñoz
- Sunnybrook Health Sciences Centre, Molecular and Cellular Biology Research, S-217, 2075 Bayview Ave., Toronto, Ontario M4N 3M5, Canada
| | | |
Collapse
|
35
|
Kong LY, Wu AS, Doucette T, Wei J, Priebe W, Fuller GN, Qiao W, Sawaya R, Rao G, Heimberger AB. Intratumoral mediated immunosuppression is prognostic in genetically engineered murine models of glioma and correlates to immunotherapeutic responses. Clin Cancer Res 2010; 16:5722-33. [PMID: 20921210 PMCID: PMC2999668 DOI: 10.1158/1078-0432.ccr-10-1693] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE Preclinical murine model systems used for the assessment of therapeutics have not been predictive of human clinical responses, primarily because their clonotypic nature does not recapitulate the heterogeneous biology and immunosuppressive mechanisms of humans. Relevant model systems with mice that are immunologically competent are needed to evaluate the efficacy of therapeutic agents, especially immunotherapeutics. EXPERIMENTAL DESIGN Using the RCAS/Ntv-a system, mice were engineered to coexpress platelet-derived growth factor B (PDGF-B) receptor + B-cell lymphoma 2 (Bcl-2) under the control of the glioneuronal specific Nestin promoter. The degree and type of tumor-mediated immunosuppression were determined in these endogenously arising gliomas on the basis of the presence of macrophages and regulatory T cells. The immunotherapeutic agent WP1066 was tested in vivo to assess therapeutic efficacy and immunomodulation. RESULTS Ntv-a mice were injected with RCAS vectors to express PDGF-B + Bcl-2, resulting in both low- and high-grade gliomas. Consistent with observations in human high-grade gliomas, mice with high-grade gliomas also developed a marked intratumoral influx of macrophages that was influenced by tumor signal transducer and activator of transduction 3 (STAT3) expression. The presence of intratumoral F4/80 macrophages was a negative prognosticator for long-term survival. In mice coexpressing PDGF-B + Bcl-2that were treated with WP1066, there was 55.5% increase in median survival time (P < 0.01), with an associated inhibition of intratumoral STAT3 and macrophages. CONCLUSIONS Although randomization is necessary for including mice in a therapeutic trial, these murine model systems are more suitable for testing therapeutics, especially immunotherapeutics, in the context of translational studies.
Collapse
Affiliation(s)
- Ling-Yuan Kong
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Adam S. Wu
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Tiffany Doucette
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Jun Wei
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Gregory N. Fuller
- Department of Neuropathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Wei Qiao
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Raymond Sawaya
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Amy B. Heimberger
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
36
|
Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, Sawaya R, Heimberger AB. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol 2010; 12:1113-25. [PMID: 20667896 PMCID: PMC3098021 DOI: 10.1093/neuonc/noq082] [Citation(s) in RCA: 472] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 06/15/2010] [Indexed: 02/07/2023] Open
Abstract
Macrophages (MΦs)/microglia that constitute the dominant tumor-infiltrating immune cells in glioblastoma are recruited by tumor-secreted factors and are induced to become immunosuppressive and tumor supportive (M2). Glioma cancer stem cells (gCSCs) have been shown to suppress adaptive immunity, but their role in innate immunity with respect to the recruitment and polarization of MΦs/microglia is unknown. The innate immunosuppressive properties of the gCSCs were characterized based on elaborated MΦ inhibitory cytokine-1 (MIC-1), transforming growth factor (TGF-β1), soluble colony-stimulating factor (sCSF), recruitment of monocytes, inhibition of MΦ/microglia phagocytosis, induction of MΦ/microglia cytokine secretion, and the inhibition of T-cell proliferation. The role of the signal transducer and activator of transcription 3 (STAT3) in mediating innate immune suppression was evaluated in the context of the functional assays. The gCSCs produced sCSF-1, TGF-β1, and MIC-1, cytokines known to recruit and polarize the MΦs/microglia to become immunosuppressive. The gCSC-conditioned medium polarized the MΦ/microglia to an M2 phenotype, inhibited MΦ/microglia phagocytosis, induced the secretion of the immunosuppressive cytokines interleukin-10 (IL-10) and TGF-β1 by the MΦs/microglia, and enhanced the capacity of MΦs/microglia to inhibit T-cell proliferation. The inhibition of phagocytosis and the secretion of IL-10 were reversed when the STAT3 pathway was blocked in the gCSCs. The gCSCs modulate innate immunity in glioblastoma by inducing immunosuppressive MΦs/microglia, and this capacity can be reversed by inhibiting phosphorylated STAT3.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amy B. Heimberger
- Department of Neurosurgery (A.W., J.W., L.-Y.K., Y.W., R.S., A.B.H.), Department of Experimental Therapeutics (W.P.), Department of Biostatistics (W.Q.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
37
|
Caccia D, Miccichè F, Cassinelli G, Mondellini P, Casalini P, Bongarzone I. Dasatinib reduces FAK phosphorylation increasing the effects of RPI-1 inhibition in a RET/PTC1-expressing cell line. Mol Cancer 2010; 9:278. [PMID: 20955590 PMCID: PMC2967544 DOI: 10.1186/1476-4598-9-278] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 10/18/2010] [Indexed: 11/15/2022] Open
Abstract
Background TPC-1 is a papillary thyroid carcinoma (PTC)-derived cell line that spontaneously expresses the oncogene RET/PTC1. TPC-1 treated with the RET/PTC1 inhibitor RPI-1 displayed a cytostatic and reversible inhibition of cell proliferation and a strong activation of focal adhesion kinase (FAK). As dasatinib inhibition of Src results in reduction of FAK activation, we evaluated the effects of TPC-1 treatment with dasatinib in combination with RPI-1. Results Dasatinib (100 nM) strongly reduced TPC-1 proliferation and induced marked changes in TPC-1 morphology. Cells appeared smaller and more contracted, with decreased cell spreading, due to the inhibition of phosphorylation of important cytoskeletal proteins (p130CAS, Crk, and paxillin) by dasatinib. The combination of RPI-1 with dasatinib demonstrated enhanced effects on cell proliferation (more than 80% reduction) and on the phosphotyrosine protein profile. In particular, RPI-1 reduced the phosphorylation of RET, MET, DCDB2, CTND1, and PLCγ, while dasatinib acted on the phosphorylation of EGFR, EPHA2, and DOK1. Moreover, dasatinib completely abrogated the phosphorylation of FAK at all tyrosine sites (Y576, Y577, Y861, Y925) with the exception of the autoactivation site (Y397). Notably, the pharmacological treatments induced an overexpression of integrin β1 (ITB1) that was correlated with a mild enhancement in phosphorylation of ERK1/2 and STAT3, known for their roles in prevention of apoptosis and in increase of proliferation and survival. A reduction in Akt, p38 and JNK1/2 activation was observed. Conclusions All data demonstrate that the combination of the two drugs effectively reduced cell proliferation (by more than 80%), significantly decreased Tyr phosphorylation of almost all phosphorylable proteins, and altered the morphology of the cells, supporting high cytostatic effects. Following the combined treatment, cell survival pathways appeared to be mediated by STAT3 and ERK activities resulting from integrin clustering and FAK autophosphorylation. EphA2 may also contribute, at least in part, to integrin and FAK activation. In conclusion, these data implicate ITB1 and EphA2 as promising therapeutic targets in PTC.
Collapse
Affiliation(s)
- Dario Caccia
- Department of Experimental Oncology and Molecular Medicine, Proteomics Laboratory, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Bill MA, Fuchs JR, Li C, Yui J, Bakan C, Benson DM, Schwartz EB, Abdelhamid D, Lin J, Hoyt DG, Fossey SL, Young GS, Carson WE, Li PK, Lesinski GB. The small molecule curcumin analog FLLL32 induces apoptosis in melanoma cells via STAT3 inhibition and retains the cellular response to cytokines with anti-tumor activity. Mol Cancer 2010; 9:165. [PMID: 20576164 PMCID: PMC2902420 DOI: 10.1186/1476-4598-9-165] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 06/25/2010] [Indexed: 03/19/2023] Open
Abstract
Background We characterized the biologic effects of a novel small molecule STAT3 pathway inhibitor that is derived from the natural product curcumin. We hypothesized this lead compound would specifically inhibit the STAT3 signaling pathway to induce apoptosis in melanoma cells. Results FLLL32 specifically reduced STAT3 phosphorylation at Tyr705 (pSTAT3) and induced apoptosis at micromolar amounts in human melanoma cell lines and primary melanoma cultures as determined by annexin V/propidium iodide staining and immunoblot analysis. FLLL32 treatment reduced expression of STAT3-target genes, induced caspase-dependent apoptosis, and reduced mitochondrial membrane potential. FLLL32 displayed specificity for STAT3 over other homologous STAT proteins. In contrast to other STAT3 pathway inhibitors (WP1066, JSI-124, Stattic), FLLL32 did not abrogate IFN-γ-induced pSTAT1 or downstream STAT1-mediated gene expression as determined by Real Time PCR. In addition, FLLL32 did not adversely affect the function or viability of immune cells from normal donors. In peripheral blood mononuclear cells (PBMCs), FLLL32 inhibited IL-6-induced pSTAT3 but did not reduce signaling in response to immunostimulatory cytokines (IFN-γ, IL 2). Treatment of PBMCs or natural killer (NK) cells with FLLL32 also did not decrease viability or granzyme b and IFN-γ production when cultured with K562 targets as compared to vehicle (DMSO). Conclusions These data suggest that FLLL32 represents a lead compound that could serve as a platform for further optimization to develop improved STAT3 specific inhibitors for melanoma therapy.
Collapse
Affiliation(s)
- Matthew A Bill
- Department of Surgery, Arthur G, James Cancer Hospital and Richard J, Solove Research Institute, The Ohio State University, 410 W, 10th Ave, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|