1
|
Yang XY, Chen N, Wen Q, Zhou Y, Zhang T, Zhou J, Liang CH, Han LP, Wang XY, Kang QM, Zheng XX, Zhai XJ, Jiang HY, Shen TH, Xiao JW, Zou YX, Deng Y, Lin S, Duan JJ, Wang J, Yu SC. The microenvironment cell index is a novel indicator for the prognosis and therapeutic regimen selection of cancers. J Transl Med 2025; 23:61. [PMID: 39806464 PMCID: PMC11727790 DOI: 10.1186/s12967-024-05950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND It is worthwhile to establish a prognostic prediction model based on microenvironment cells (MCs) infiltration and explore new treatment strategies for triple-negative breast cancer (TNBC). METHODS The xCell algorithm was used to quantify the cellular components of the TNBC microenvironment based on bulk RNA sequencing (bulk RNA-seq) data. The MCs index (MCI) was constructed using the least absolute shrinkage and selection operator Cox (LASSO-Cox) regression analysis. Single-cell RNA sequencing (scRNA-seq), spatially resolved transcriptomics (SRT), and multiplex immunofluorescence (mIF) staining analyses verified MCI. The mechanism of action of the MCI was investigated in tumor-bearing mice. RESULTS MCI consists of the six types of MCs, which can precisely predict the prognosis of the TNBC patients. scRNA-seq, SRT, and mIF analyses verified the existence and proportions of these cells. Furthermore, combined with the spatial distribution characteristics of the six types of MCs, an MCI-enhanced (MCI-e) model was constructed, which could predict the prognosis of the TNBC patients more accurately. More importantly, inhibition of the insulin signaling pathway activated in the cancer cells of the MCIhigh the TNBC patients significantly prolonged the survival time of tumor-bearing mice. CONCLUSIONS Overall, our results demonstrate that MCs infiltration can be exploited as a novel indicator for the prognosis and therapeutic regimen selection of the TNBC patients.
Collapse
Affiliation(s)
- Xian-Yan Yang
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-Feng Laboratory, Chongqing, 401329, China
| | - Nian Chen
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Qian Wen
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Yu Zhou
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Tao Zhang
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Ji Zhou
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Cheng-Hui Liang
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Li-Ping Han
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Xiao-Ya Wang
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Qing-Mei Kang
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Xiao-Xia Zheng
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Xue-Jia Zhai
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Hong-Ying Jiang
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Tian-Hua Shen
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Jin-Wei Xiao
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Yu-Xin Zou
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Yun Deng
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Shuang Lin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiang-Jie Duan
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-Feng Laboratory, Chongqing, 401329, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China.
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China.
- Jin-Feng Laboratory, Chongqing, 401329, China.
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China.
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China.
- Jin-Feng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
2
|
Bullock E, Brunton VG. E-Cadherin-Mediated Cell-Cell Adhesion and Invasive Lobular Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:259-275. [PMID: 39821030 DOI: 10.1007/978-3-031-70875-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
E-cadherin is a transmembrane protein and central component of adherens junctions (AJs). The extracellular domain of E-cadherin forms homotypic interactions with E-cadherin on adjacent cells, facilitating the formation of cell-cell adhesions, known as AJs, between neighbouring cells. The intracellular domain of E-cadherin interacts with α-, β- and p120-catenins, linking the AJs to the actin cytoskeleton. Functional AJs maintain epithelial tissue identity and integrity. Transcriptional downregulation of E-cadherin is the first step in epithelial-to-mesenchymal transition (EMT), a process essential in development and tissue repair, which, in breast cancer, can contribute to tumour progression and metastasis. In addition, loss-of-function mutations in E-cadherin are a defining feature of invasive lobular breast cancer (also known as invasive lobular carcinoma (ILC)), the second most common histological subtype of breast cancer. ILC displays a discohesive, single-file invasive growth pattern due to the loss of functional AJs. Despite being so prevalent, until recently there has been limited ILC-focused research and historically ILC patients have often been excluded from clinical trials. Despite displaying a number of good prognostic indicators, such as low grade and high rates of estrogen receptor positivity, ILC patients tend to have similar or poorer outcomes relative to the most common subtype of breast cancer, invasive ductal carcinoma (IDC). In ILC, E-cadherin loss promotes hyperactivation of growth factor receptors, in particular insulin-like growth factor 1 receptor, anoikis resistance and synthetic lethality with ROS1 inhibition. These features introduce clinical vulnerabilities that could potentially be exploited to improve outcomes for ILC patients, for whom there are currently limited tailored treatments available.
Collapse
Affiliation(s)
- Esme Bullock
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK
| | - Valerie G Brunton
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Kotsifaki A, Maroulaki S, Karalexis E, Stathaki M, Armakolas A. Decoding the Role of Insulin-like Growth Factor 1 and Its Isoforms in Breast Cancer. Int J Mol Sci 2024; 25:9302. [PMID: 39273251 PMCID: PMC11394947 DOI: 10.3390/ijms25179302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Insulin-like Growth Factor-1 (IGF-1) is a crucial mitogenic factor with important functions in the mammary gland, mainly through its interaction with the IGF-1 receptor (IGF-1R). This interaction activates a complex signaling network that promotes cell proliferation, epithelial to mesenchymal transition (EMT) and inhibits apoptosis. Despite extensive research, the precise molecular pathways and intracellular mechanisms activated by IGF-1, in cancer, remain poorly understood. Recent evidence highlights the essential roles of IGF-1 and its isoforms in breast cancer (BC) development, progression, and metastasis. The peptides that define the IGF-1 isoforms-IGF-1Ea, IGF-1Eb, and IGF-1Ec-act as key points of convergence for various signaling pathways that influence the growth, metastasis and survival of BC cells. The aim of this review is to provide a detailed exami-nation of the role of the mature IGF-1 and its isoforms in BC biology and their potential use as possible therapeutical targets.
Collapse
Affiliation(s)
- Amalia Kotsifaki
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sousanna Maroulaki
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efthymios Karalexis
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Martha Stathaki
- Surgical Clinic, "Elena Venizelou" General Hospital, 11521 Athens, Greece
| | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
4
|
Ho AN, Kiesel VA, Gates CE, Brosnan BH, Connelly SP, Glenny EM, Cozzo AJ, Hursting SD, Coleman MF. Exogenous Metabolic Modulators Improve Response to Carboplatin in Triple-Negative Breast Cancer. Cells 2024; 13:806. [PMID: 38786030 PMCID: PMC11119195 DOI: 10.3390/cells13100806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Triple-negative breast cancer (TNBC) lacks targeted therapies, leaving cytotoxic chemotherapy as the current standard treatment. However, chemotherapy resistance remains a major clinical challenge. Increased insulin-like growth factor 1 signaling can potently blunt chemotherapy response, and lysosomal processes including the nutrient scavenging pathway autophagy can enable cancer cells to evade chemotherapy-mediated cell death. Thus, we tested whether inhibition of insulin receptor/insulin-like growth factor 1 receptor with the drug BMS-754807 and/or lysosomal disruption with hydroxychloroquine (HCQ) could sensitize TNBC cells to the chemotherapy drug carboplatin. Using in vitro studies in multiple TNBC cell lines, in concert with in vivo studies employing a murine syngeneic orthotopic transplant model of TNBC, we show that BMS-754807 and HCQ each sensitized TNBC cells and tumors to carboplatin and reveal that exogenous metabolic modulators may work synergistically with carboplatin as indicated by Bliss analysis. Additionally, we demonstrate the lack of overt in vivo toxicity with our combination regimens and, therefore, propose that metabolic targeting of TNBC may be a safe and effective strategy to increase sensitivity to chemotherapy. Thus, we conclude that the use of exogenous metabolic modulators, such as BMS-754807 or HCQ, in combination with chemotherapy warrants additional study as a strategy to improve therapeutic responses in women with TNBC.
Collapse
Affiliation(s)
- Alyssa N. Ho
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Violet A. Kiesel
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Claire E. Gates
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bennett H. Brosnan
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scott P. Connelly
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elaine M. Glenny
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alyssa J. Cozzo
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael Francis Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| |
Collapse
|
5
|
Jaradat SK, Ayoub NM, Al Sharie AH, Aldaod JM. Targeting Receptor Tyrosine Kinases as a Novel Strategy for the Treatment of Triple-Negative Breast Cancer. Technol Cancer Res Treat 2024; 23:15330338241234780. [PMID: 38389413 PMCID: PMC10894558 DOI: 10.1177/15330338241234780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Triple-negative breast cancer (TNBC) comprises a group of aggressive and heterogeneous breast carcinoma. Chemotherapy is the mainstay for the treatment of triple-negative tumors. Nevertheless, the success of chemotherapeutic treatments is limited by their toxicity and development of acquired resistance leading to therapeutic failure and tumor relapse. Hence, there is an urgent need to explore novel targeted therapies for TNBC. Receptor tyrosine kinases (RTKs) are a family of transmembrane receptors that are key regulators of intracellular signaling pathways controlling cell proliferation, differentiation, survival, and motility. Aberrant activity and/or expression of several types of RTKs have been strongly connected to tumorigenesis. RTKs are frequently overexpressed and/or deregulated in triple-negative breast tumors and are further associated with tumor progression and reduced survival in patients. Therefore, targeting RTKs could be an appealing therapeutic strategy for the treatment of TNBC. This review summarizes the current evidence regarding the antitumor activity of RTK inhibitors in preclinical models of TNBC. The review also provides insights into the clinical trials evaluating the use of RTK inhibitors for the treatment of patients with TNBC.
Collapse
Affiliation(s)
- Sara K. Jaradat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Nehad M. Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Ahmed H. Al Sharie
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Julia M. Aldaod
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| |
Collapse
|
6
|
Preclinical evaluation of Insulin-like growth factor receptor 1 (IGF1R) and Insulin Receptor (IR) as a therapeutic targets in triple negative breast cancer. PLoS One 2023; 18:e0282512. [PMID: 36920947 PMCID: PMC10016661 DOI: 10.1371/journal.pone.0282512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/16/2023] [Indexed: 03/16/2023] Open
Abstract
Triple Negative Breast Cancer (TNBC), a subtype of breast cancer, has fewer successful therapeutic therapies than other types of breast cancer. Insulin-like growth factor receptor 1 (IGF1R) and the Insulin receptor (IR) are associated with poor outcomes in TNBC. Targeting IGF1R has failed clinically. We aimed to test if inhibiting both IR/IGF1R was a rationale therapeutic approach to treat TNBC. We showed that despite IGF1R and IR being expressed in TNBC, their expression is not associated with a negative survival outcome. Furthermore, targeting both IR/IGF1R with inhibitors in multiple TNBC cell lines did not inhibit cell growth. Linsitinib, a small molecule inhibitor of both IGF1R and IR, did not block tumour formation and had no effect on tumour growth in vivo. Cumulatively these data suggest that while IGF1R and IR are expressed in TNBC, they are not good therapeutic targets. A potential reason for the limited anti-cancer impact when IR/IGF1R was targeted may be because multiple signalling pathways are altered in TNBC. Therefore, targeting individual signalling pathways may not be sufficient to inhibit cancer growth.
Collapse
|
7
|
Lee JS, Tocheny CE, Shaw LM. The Insulin-like Growth Factor Signaling Pathway in Breast Cancer: An Elusive Therapeutic Target. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121992. [PMID: 36556357 PMCID: PMC9782138 DOI: 10.3390/life12121992] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
In this review, we provide an overview of the role of the insulin-like growth factor (IGF) signaling pathway in breast cancer and discuss its potential as a therapeutic target. The IGF pathway ligands, IGF-1 and IGF-2, and their receptors, primarily IGF-1R, are important for normal mammary gland biology, and dysregulation of their expression and function drives breast cancer risk and progression through activation of downstream signaling effectors, often in a subtype-dependent manner. The IGF signaling pathway has also been implicated in resistance to current therapeutic strategies, including ER and HER2 targeting drugs. Unfortunately, efforts to target IGF signaling for the treatment of breast cancer have been unsuccessful, due to a number of factors, most significantly the adverse effects of disrupting IGF signaling on normal glucose metabolism. We highlight here the recent discoveries that provide enthusiasm for continuing efforts to target IGF signaling for the treatment of breast cancer patients.
Collapse
Affiliation(s)
| | | | - Leslie M. Shaw
- Correspondence: ; Tel.: +1-508-856-8675; Fax: +1-508-856-1310
| |
Collapse
|
8
|
Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B, Liu B. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol 2022; 15:44. [PMID: 35414025 PMCID: PMC9006445 DOI: 10.1186/s13045-022-01260-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of human breast cancer with one of the worst prognoses, with no targeted therapeutic strategies currently available. Regulated cell death (RCD), also known as programmed cell death (PCD), has been widely reported to have numerous links to the progression and therapy of many types of human cancer. Of note, RCD can be divided into numerous different subroutines, including autophagy-dependent cell death, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis and anoikis. More recently, targeting the subroutines of RCD with small-molecule compounds has been emerging as a promising therapeutic strategy, which has rapidly progressed in the treatment of TNBC. Therefore, in this review, we focus on summarizing the molecular mechanisms of the above-mentioned seven major RCD subroutines related to TNBC and the latest progress of small-molecule compounds targeting different RCD subroutines. Moreover, we further discuss the combined strategies of one drug (e.g., narciclasine) or more drugs (e.g., torin-1 combined with chloroquine) to achieve the therapeutic potential on TNBC by regulating RCD subroutines. More importantly, we demonstrate several small-molecule compounds (e.g., ONC201 and NCT03733119) by targeting the subroutines of RCD in TNBC clinical trials. Taken together, these findings will provide a clue on illuminating more actionable low-hanging-fruit druggable targets and candidate small-molecule drugs for potential RCD-related TNBC therapies.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Eke I, Aryankalayil MJ, Bylicky MA, Makinde AY, Liotta L, Calvert V, Petricoin EF, Graves EE, Coleman CN. Radiotherapy alters expression of molecular targets in prostate cancer in a fractionation- and time-dependent manner. Sci Rep 2022; 12:3500. [PMID: 35241721 PMCID: PMC8894377 DOI: 10.1038/s41598-022-07394-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
The efficacy of molecular targeted therapy depends on expression and enzymatic activity of the target molecules. As radiotherapy modulates gene expression and protein phosphorylation dependent on dose and fractionation, we analyzed the long-term effects of irradiation on the post-radiation efficacy of molecular targeted drugs. We irradiated prostate cancer cells either with a single dose (SD) of 10 Gy x-ray or a multifractionated (MF) regimen with 10 fractions of 1 Gy. Whole genome arrays and reverse phase protein microarrays were used to determine gene expression and protein phosphorylation. Additionally, we evaluated radiation-induced pathway activation with the Ingenuity Pathway Analysis software. To measure cell survival and sensitivity to clinically used molecular targeted drugs, we performed colony formation assays. We found increased activation of several pathways regulating important cell functions such as cell migration and cell survival at 24 h after MF irradiation or at 2 months after SD irradiation. Further, cells which survived a SD of 10 Gy showed a long-term upregulation and increased activity of multiple molecular targets including AKT, IGF-1R, VEGFR2, or MET, while HDAC expression was decreased. In line with this, 10 Gy SD cells were more sensitive to target inhibition with Capivasertib or Ipatasertib (AKTi), BMS-754807 (IGF-1Ri), or Foretinib (VEGFR2/METi), but less sensitive to Panobinostat or Vorinostat (HDACi). In summary, understanding the molecular short- and long-term changes after irradiation can aid in optimizing the efficacy of multimodal radiation oncology in combination with post-irradiation molecularly-targeted drug treatment and improving the outcome of prostate cancer patients.
Collapse
Affiliation(s)
- Iris Eke
- Department of Radiation Oncology, Center for Clinical Sciences Research (CCSR), Stanford University School of Medicine, 269 Campus Dr., Room 1260, Stanford, CA, 94305, USA.
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michelle A Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adeola Y Makinde
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Edward E Graves
- Department of Radiation Oncology, Center for Clinical Sciences Research (CCSR), Stanford University School of Medicine, 269 Campus Dr., Room 1260, Stanford, CA, 94305, USA
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| |
Collapse
|
10
|
Dias CJ, Helguero L, Faustino MAF. Current Photoactive Molecules for Targeted Therapy of Triple-Negative Breast Cancer. Molecules 2021; 26:7654. [PMID: 34946732 PMCID: PMC8709347 DOI: 10.3390/molecules26247654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer is the second leading cause of death worldwide; therefore, there is an urgent need to find safe and effective therapies. Triple-negative breast cancer (TNBC) is diagnosed in ca. 15-20% of BC and is extremely aggressive resulting in reduced survival rate, which is mainly due to the low therapeutic efficacy of available treatments. Photodynamic therapy (PDT) is an interesting therapeutic approach in the treatment of cancer; the photosensitizers with good absorption in the therapeutic window, combined with their specific targeting of cancer cells, have received particular interest. This review aims to revisit the latest developments on chlorin-based photoactive molecules for targeted therapy in TNBC. Photodynamic therapy, alone or combined with other therapies (such as chemotherapy or photothermal therapy), has potential to be a safe and a promising approach against TNBC.
Collapse
Affiliation(s)
- Cristina J. Dias
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Luisa Helguero
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal;
| | | |
Collapse
|
11
|
Ghadaksaz A, Imani Fooladi AA, Mahmoodzadeh Hosseini H, Nejad Satari T, Amin M. ARA-linker-TGFαL3: a novel chimera protein to target breast cancer cells. Med Oncol 2021; 38:96. [PMID: 34273028 DOI: 10.1007/s12032-021-01546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Targeted cancer therapies based on overexpressed receptors and the fractions containing immunotoxins and bacterial metabolites are one of the well-known methods to overcome the chemotherapy resistance of cancer cells. In this paper, we designed ARA-linker-TGFαL3, using Arazyme, a Serratia proteamaculans metabolite, and a third loop segment of TGFα to target EGFR-expressing breast cancer cells. After cloning in pET28a (+), the expression of recombinant protein was optimized in Escherichia coli strain BL21 (DE3). MDA-MB-468 (EGFR positive) and MDA-MB-453 (EGFR negative) breast cancer cell lines were employed. Also, the chemotherapeutic drug, Taxotere (Docetaxel), was employed to compare cytotoxicity effects. Cell ELISA assessed the binding affinity of recombinant proteins to the receptor, and the cytotoxicity was detected by MTT and lactate dehydrogenase release assays. The interfacing with cancer cell adhesion was evaluated. Furthermore, the induction of apoptosis was examined utilizing flow cytometric analysis, and caspase-3 activity assay. Moreover, RT-PCR was conducted to study the expression of apoptosis (bax, bcl2, and casp3), angiogenesis (vegfr2), and metastasis (mmp2 and mmp9) genes. ARA-linker-TGFαL3 revealed a higher binding affinity, cytotoxicity, and early apoptosis induction in MDA-MB-468 cells compared to the effects of Arazyme while both recombinant proteins showed similar effects on MDA-MB-453. In addition, the Taxotere caused the highest cytotoxicity on cancer cells through induction of late apoptosis. Meanwhile, the expression of angiogenesis and metastasis genes was decreased in both cell lines after treatment with either ARA-linker-TGFαL3 or Arazyme. Our in vitro results indicated the therapeutic effect of ARA-linker-TGFαL3 on breast cancer cells.
Collapse
Affiliation(s)
- Abdolamir Ghadaksaz
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Taher Nejad Satari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, and The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Durrani IA, Bhatti A, John P. The prognostic outcome of 'type 2 diabetes mellitus and breast cancer' association pivots on hypoxia-hyperglycemia axis. Cancer Cell Int 2021; 21:351. [PMID: 34225729 PMCID: PMC8259382 DOI: 10.1186/s12935-021-02040-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Type 2 diabetes mellitus and breast cancer are complex, chronic, heterogeneous, and multi-factorial diseases; with common risk factors including but not limited to diet, obesity, and age. They also share mutually inclusive phenotypic features such as the metabolic deregulations resulting from hyperglycemia, hypoxic conditions and hormonal imbalances. Although, the association between diabetes and cancer has long been speculated; however, the exact molecular nature of this link remains to be fully elucidated. Both the diseases are leading causes of death worldwide and a causal relationship between the two if not addressed, may translate into a major global health concern. Previous studies have hypothesized hyperglycemia, hyperinsulinemia, hormonal imbalances and chronic inflammation, as some of the possible grounds for explaining how diabetes may lead to cancer initiation, yet further research still needs to be done to validate these proposed mechanisms. At the crux of this dilemma, hyperglycemia and hypoxia are two intimately related states involving an intricate level of crosstalk and hypoxia inducible factor 1, at the center of this, plays a key role in mediating an aggressive disease state, particularly in solid tumors such as breast cancer. Subsequently, elucidating the role of HIF1 in establishing the diabetes-breast cancer link on hypoxia-hyperglycemia axis may not only provide an insight into the molecular mechanisms underlying the association but also, illuminate on the prognostic outcome of the therapeutic targeting of HIF1 signaling in diabetic patients with breast cancer or vice versa. Hence, this review highlights the critical role of HIF1 signaling in patients with both T2DM and breast cancer, potentiates its significance as a prognostic marker in comorbid patients, and further discusses the potential prognostic outcome of targeting HIF1, subsequently establishing the pressing need for HIF1 molecular profiling-based patient selection leading to more effective therapeutic strategies emerging from personalized medicine.
Collapse
Affiliation(s)
- Ilhaam Ayaz Durrani
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Attya Bhatti
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan.
| | - Peter John
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| |
Collapse
|
13
|
Lero MW, Shaw LM. Diversity of insulin and IGF signaling in breast cancer: Implications for therapy. Mol Cell Endocrinol 2021; 527:111213. [PMID: 33607269 PMCID: PMC8035314 DOI: 10.1016/j.mce.2021.111213] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
This review highlights the significance of the insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathway in cancer and assesses its potential as a therapeutic target. Our emphasis is on breast cancer, but this pathway is central to the behavior of many cancers. An understanding of how IR/IGF-1R signaling contributes to the function of the normal mammary gland provides a foundation for understanding its aberrations in breast cancer. Specifically, dysregulation of the expression and function of ligands (insulin, IGF-1 and IGF-2), receptors and their downstream signaling effectors drive breast cancer initiation and progression, often in a subtype-dependent manner. Efforts to target this pathway for the treatment of cancer have been hindered by several factors including a lack of biomarkers to select patients that could respond to targeted therapy and adverse effects on normal metabolism. To this end, we discuss ongoing efforts aimed at overcoming such obstacles.
Collapse
Affiliation(s)
- Michael W Lero
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Leslie M Shaw
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
14
|
Lantvit DD, Unterberger CJ, Lazar M, Arneson PD, Longhurst CA, Swanson SM, Marker PC. Mammary Tumors Growing in the Absence of Growth Hormone Are More Sensitive to Doxorubicin Than Wild-Type Tumors. Endocrinology 2021; 162:bqab013. [PMID: 33475144 PMCID: PMC7881836 DOI: 10.1210/endocr/bqab013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Previously, we reported that N-methyl-N-nitrosourea (MNU)-induced mammary tumors could be established in mutant spontaneous dwarf rats (SDRs), which lack endogenous growth hormone (GH) by supplementing with exogenous GH, and almost all such tumors regressed upon GH withdrawal. When the highly inbred SDR line was outcrossed to wild-type (WT) Sprague-Dawley rats, MNU-induced mammary tumors could still be established in resulting outbred SDRs by supplementing with exogenous GH. However, unlike tumors in inbred SDRs, 65% of mammary tumors established in outbred SDRs continued growth after GH withdrawal. We further tested whether these tumors were more sensitive to doxorubicin than their WT counterparts. To accomplish this, MNU-induced mammary tumors were established in WT rats and in SDRs supplemented with exogenous GH. Once mammary tumors reached 1 cm3 in size, exogenous GH was withdrawn from SDRs, and the subset that harbored tumors that continued or resumed growth in the absence of GH were selected for doxorubicin treatment. Doxorubicin was then administered in 6 injections over 2 weeks at 2.5 mg/kg or 1.25 mg/kg for both the WT and SDR groups. The SDR mammary tumors that had been growing in the absence of GH regressed at both doxorubicin doses while WT tumors continued to grow robustly. The regression of SDR mammary tumors treated with 1.25 mg/kg doxorubicin was accompanied by reduced proliferation and dramatically higher apoptosis relative to the WT mammary tumors treated with 1.25 mg/kg doxorubicin. These data suggest that downregulating GH signaling may decrease the doxorubicin dose necessary to effectively treat breast cancer.
Collapse
Affiliation(s)
- Daniel D Lantvit
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher J Unterberger
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle Lazar
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Paige D Arneson
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Colin A Longhurst
- School of Medicine and Public Health, Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Steven M Swanson
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul C Marker
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
15
|
Pérez-Treviño P, Aguayo-Millán CD, Santuario-Facio SK, Vela-Guajardo JE, Salazar E, Camacho-Morales A, Ortiz R, García N. Metastatic TNBC is closely associated with a fused mitochondrial morphology and a glycolytic and lipogenic metabolism. Biochem Cell Biol 2020; 99:447-456. [PMID: 33342359 DOI: 10.1139/bcb-2020-0439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mitochondria modify their function and morphology to satisfy the bioenergetic demand of the cells. Cancer cells take advantage of these features to sustain their metabolic, proliferative, metastatic, and survival necessities. Understanding the morphological changes to mitochondria in the different grades of triple-negative breast cancer (TNBC) could help to design new treatments. Consequently, this research explored mitochondrial morphology and the gene expression of some proteins related to mitochondrial dynamics, as well as proteins associated with oxidative and non-oxidative metabolism in metastatic and non-metastatic TNBC. We found that mitochondrial morphology and metabolism are different in metastatic and non-metastatic TNBC. In metastatic TNBC, there is overexpression of genes related to mitochondrial dynamics, fatty-acid metabolism, and glycolysis. These features are accompanied by a fused mitochondrial morphology. By comparison, in non-metastatic TNBC, there is a stress-associated mitochondrial morphology with hyperfragmented mitochondria, accompanied by the upregulated expression of genes associated with the biogenesis of mitochondria; both of which are characteristics related to the higher production of reactive oxygen species observed in this cell line. These differences between metastatic and non-metastatic TNBC should provide a better understanding of metastasis and contribute to the development of improved specific and personalized therapies for TNBC.
Collapse
Affiliation(s)
- Perla Pérez-Treviño
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, GIEE Medicina Cardiovascular y Metabólica, Nuevo Leon, Mexico
| | - Claudia D Aguayo-Millán
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, GIEE Investigación en Cáncer, Nuevo Leon, Mexico
| | - Sandra K Santuario-Facio
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, GIEE Investigación en Cáncer, Nuevo Leon, Mexico
| | - Jorge E Vela-Guajardo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, GIEE Medicina Cardiovascular y Metabólica, Nuevo Leon, Mexico
| | - Esteban Salazar
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, GIEE Medicina Cardiovascular y Metabólica, Nuevo Leon, Mexico
| | - Alberto Camacho-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Nuevo Leon, Mexico.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Nuevo Leon, Mexico
| | - Rocío Ortiz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, GIEE Investigación en Cáncer, Nuevo Leon, Mexico
| | - Noemí García
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, GIEE Medicina Cardiovascular y Metabólica, Nuevo Leon, Mexico
| |
Collapse
|
16
|
Vella V, De Francesco EM, Lappano R, Muoio MG, Manzella L, Maggiolini M, Belfiore A. Microenvironmental Determinants of Breast Cancer Metastasis: Focus on the Crucial Interplay Between Estrogen and Insulin/Insulin-Like Growth Factor Signaling. Front Cell Dev Biol 2020; 8:608412. [PMID: 33364239 PMCID: PMC7753049 DOI: 10.3389/fcell.2020.608412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
The development and progression of the great majority of breast cancers (BCs) are mainly dependent on the biological action elicited by estrogens through the classical estrogen receptor (ER), as well as the alternate receptor named G-protein–coupled estrogen receptor (GPER). In addition to estrogens, other hormones and growth factors, including the insulin and insulin-like growth factor system (IIGFs), play a role in BC. IIGFs cooperates with estrogen signaling to generate a multilevel cross-communication that ultimately facilitates the transition toward aggressive and life-threatening BC phenotypes. In this regard, the majority of BC deaths are correlated with the formation of metastatic lesions at distant sites. A thorough scrutiny of the biological and biochemical events orchestrating metastasis formation and dissemination has shown that virtually all cell types within the tumor microenvironment work closely with BC cells to seed cancerous units at distant sites. By establishing an intricate scheme of paracrine interactions that lead to the expression of genes involved in metastasis initiation, progression, and virulence, the cross-talk between BC cells and the surrounding microenvironmental components does dictate tumor fate and patients’ prognosis. Following (i) a description of the main microenvironmental events prompting BC metastases and (ii) a concise overview of estrogen and the IIGFs signaling and their major regulatory functions in BC, here we provide a comprehensive analysis of the most recent findings on the role of these transduction pathways toward metastatic dissemination. In particular, we focused our attention on the main microenvironmental targets of the estrogen-IIGFs interplay, and we recapitulated relevant molecular nodes that orientate shared biological responses fostering the metastatic program. On the basis of available studies, we propose that a functional cross-talk between estrogens and IIGFs, by affecting the BC microenvironment, may contribute to the metastatic process and may be regarded as a novel target for combination therapies aimed at preventing the metastatic evolution.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria Grazia Muoio
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy.,Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Livia Manzella
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico Vittorio Emanuele, Catania, Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| |
Collapse
|
17
|
He Z, Khatib AM, Creemers JWM. Loss of Proprotein Convertase Furin in Mammary Gland Impairs proIGF1R and proIR Processing and Suppresses Tumorigenesis in Triple Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12092686. [PMID: 32962246 PMCID: PMC7563341 DOI: 10.3390/cancers12092686] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/27/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) is known to have a poor prognosis and limited treatment options. The aim of the current study is to evaluate the role of Furin, a proprotein convertase involved in the activation of wide range of protein precursors in TNBC progression. The generation of a TNBC mouse model lacking Furin specifically in the mammary gland confirmed that Furin is implicated in TNBC tumor progression and the derived lung metastasis. Further analysis revealed that the proteolytic activation of proIGF1R and proIR receptors, two substrates of Furin involved in TNBC were inhibited in these mice and was associated with reduced AKT and ERK1/2 expression and phosphorylation. In addition, Furin is frequently overexpressed in TNBC tumors and correlates with poor patient prognosis, suggesting the use of Furin inhibition as a potential adjunct therapy in TNBC. Abstract In triple negative breast cancer (TNBC) cell lines, the proprotein convertase Furin cleaves and then activates several protein precursors involved in oncogenesis. However, the in vivo role of Furin in the mammary gland and how mammary gland-specific Furin knockout specifically influences tumor initiation and progression of TNBC is unknown. Here, we report that Furin is frequently overexpressed in TNBC tumors and this correlates with poor prognosis in patients with TNBC tumors. In a whey acidic protein (WAP)-induced mammary epithelial cell-specific Furin knockout mouse model, mice show normal mammary development. However, loss of Furin in mammary glands inhibits primary tumor growth and lung metastasis in an oncogene-induced TNBC mouse model. Further analysis of TNBC mice lacking Furin revealed repressed maturation of the Furin substrates proIGF1R and proIR that are associated with reduced expression and activation of their downstream effectors PI3K/AKT and MAPK/ERK1/2. In addition, these tissues showed enhanced apoptotic signaling. In conclusion, our findings reveal that upregulated Furin expression reflects the poor prognosis of TNBC patients and highlights the therapeutic potential of inhibiting Furin in TNBC tumors.
Collapse
Affiliation(s)
- Zongsheng He
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven (Katholieke Universiteit Leuven), 3000 Leuven, Belgium;
| | - Abdel-Majid Khatib
- INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, 33615 Pessac, France
- Digestive group, Institut Bergonié, 33000 Bordeaux, France
- Correspondence: (A.-M.K.); (J.W.M.C.)
| | - John W. M. Creemers
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven (Katholieke Universiteit Leuven), 3000 Leuven, Belgium;
- Correspondence: (A.-M.K.); (J.W.M.C.)
| |
Collapse
|
18
|
Xue L, Chen F, Yue F, Camacho L, Kothapalli S, Wei G, Huang S, Mo Q, Ma F, Li Y, Jiralerspong S. Metformin and an insulin/IGF-1 receptor inhibitor are synergistic in blocking growth of triple-negative breast cancer. Breast Cancer Res Treat 2020; 185:73-84. [PMID: 32940848 DOI: 10.1007/s10549-020-05927-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with poor survival outcomes. Metformin has been shown to have antitumor effects by lowering serum levels of the mitogen insulin and having pleiotropic effects on cancer cell signaling pathways. BMS-754807 is a potent and reversible inhibitor of both insulin-like growth factor 1 receptor (IGF-1R) and insulin receptor (IR). Both drugs have been reported to have some efficacy in TNBC. However, it is unclear whether the combination of the two drugs is more effective than single drug treatment in TNBC. METHODS We treated a panel of TNBC cell lines with metformin and BMS-754807 alone and in combination and tested cell viability using MTS assays. We used the CompuSyn software to analyze for additivity, synergism, or antagonism. We also examined the molecular mechanism by performing reverse phase protein assay (RPPA) to detect the candidate pathways altered by single drugs and the drug combination and used Western blotting to verify and expand the findings. RESULTS The combination of metformin and BMS-754807 showed synergy in 11 out of 13 TNBC cell lines tested (85%). RPPA analysis detected significant alterations by the drug combination of multiple proteins known to regulate cell cycle and tumor growth. In particular, the drug combination significantly increased levels of total and phosphorylated forms of the cell cycle inhibitor p27Kip1 and decreased the level of the p27Kip1 E3 ligase SCFSkp2. CONCLUSIONS We conclude that the combination of metformin and BMS-754807 is more effective than either drug alone in inhibiting cell proliferation in the majority of TNBC cell lines, and that one important mechanism may be suppression of SCFSkp2 and subsequent stabilization of the cell cycle inhibitor p27Kip1. This combination treatment may represent an effective targeted therapy for a significant subset of TNBC cases and should be further evaluated.
Collapse
Affiliation(s)
- Lei Xue
- Laboratory for Comparative Genomics and Bioinformatics, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, Jiangsu, China.,Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Fengju Chen
- Dan L Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Fei Yue
- Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Laura Camacho
- Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Sushma Kothapalli
- Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Guanyun Wei
- Laboratory for Comparative Genomics and Bioinformatics, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, Jiangsu, China
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Dan L Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Qianxing Mo
- Dan L Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, Jiangsu, China
| | - Yi Li
- Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Sao Jiralerspong
- Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Section of Breast Medical Oncology, Division of Hematology and Oncology, University of Arizona Cancer Center, 1515 N. Campbell Ave, Tucson, AZ, 85724, USA.
| |
Collapse
|
19
|
Abstract
The insulin and insulin-like growth factor (IGF) family of proteins are part of a complex network that regulates cell proliferation and survival. While this system is undoubtedly important in prenatal development and postnatal cell growth, members of this family have been implicated in several different cancer types. Increased circulating insulin and IGF ligands have been linked to increased risk of cancer incidence. This observation has led to targeting the IGF system as a therapeutic strategy in a number of cancers. This chapter aims to describe the well-characterized biology of the IGF1R system, outline the rationale for targeting this system in cancer, summarize the clinical data as it stands, and discuss where we can go from here.
Collapse
|
20
|
IGF-1/IGF-1R/FAK/YAP Transduction Signaling Prompts Growth Effects in Triple-Negative Breast Cancer (TNBC) Cells. Cells 2020; 9:cells9041010. [PMID: 32325700 PMCID: PMC7225986 DOI: 10.3390/cells9041010] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast tumor subtype that currently lacks targeted treatment options. The role played by the insulin-like growth factor-1 (IGF-1) and its cognate receptor IGF-1R in TNBC has been reported. Nevertheless, the molecular mechanisms by which the IGF-1/IGF-1R system may contribute to TNBC progression still remains to be fully understood. By computational analysis of the vast cancer genomics information in public databases (TCGA and METABRIC), we obtained evidence that high IGF-1 or IGF-1R levels correlate with a worse clinical outcome in TNBC patients. Further bioinformatics analysis revealed that both the focal adhesion and the Hippo pathways are enriched in TNBC harboring an elevated expression of IGF-1 or IGF-1R. Mechanistically, we found that in TNBC cells, the IGF-1/IGF-1R system promotes the activation of the FAK signal transduction pathway, which in turn regulates the nuclear accumulation of YAP (yes-associated protein/yes-related protein) and the expression of its target genes. At the biological level, we found that the IGF-1/IGF-1R-FAK-YAP network cascade triggers the growth potential of TNBC cells, as evaluated in different experimental systems. Overall, our results suggest that the IGF-1/IGF-1R/FAK/YAP axis may contribute to the progression of the aggressive TNBC subtype.
Collapse
|
21
|
Gusscott S, Tamiro F, Giambra V, Weng AP. Insulin-like growth factor (IGF) signaling in T-cell acute lymphoblastic leukemia. Adv Biol Regul 2019; 74:100652. [PMID: 31543360 DOI: 10.1016/j.jbior.2019.100652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer, characterized by an uncontrolled expansion and accumulation of T-cell progenitors. During leukemic progression, immature T cells grow abnormally and occupy the bone marrow compartment, thereby interfering with the production of normal blood cells. Pediatric T-ALL is curable with intensive chemotherapy, but there are significant, long-term side effects and ~20% of patients suffer relapse for which there are limited treatment options. Adult T-ALL in contrast is largely incurable and refractory/relapsed disease is common despite multi-agent chemotherapy (5-year overall survival of ~40%), and thus new therapeutic targets are needed. We have reported previously on the role of insulin-like growth factor (IGF) signaling in T-ALL, and shown that it exerts potent phenotypes in both leukemia stem cell and bulk tumor cell populations. Modulators of IGF signaling may thus prove useful in improving outcomes in patients with T-ALL. In this review, we summarize the most recent findings relating to IGF signaling in T-ALL and outline therapeutic options using clinically relevant IGF signaling modulators.
Collapse
Affiliation(s)
- Samuel Gusscott
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada
| | - Francesco Tamiro
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada; Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, FG, Italy
| | - Vincenzo Giambra
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada; Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, FG, Italy
| | - Andrew P Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
22
|
Solomon VR, Alizadeh E, Bernhard W, Hartimath SV, Hill W, Chekol R, Barreto KM, Geyer CR, Fonge H. 111In- and 225Ac-Labeled Cixutumumab for Imaging and α-Particle Radiotherapy of IGF-1R Positive Triple-Negative Breast Cancer. Mol Pharm 2019; 16:4807-4816. [DOI: 10.1021/acs.molpharmaceut.9b00542] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | - Humphrey Fonge
- Department of Medical Imaging, Royal University Hospital Saskatoon, Saskatoon, SK S7N 0W8, Canada
| |
Collapse
|
23
|
Nedeljković M, Damjanović A. Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer-How We Can Rise to the Challenge. Cells 2019; 8:E957. [PMID: 31443516 PMCID: PMC6770896 DOI: 10.3390/cells8090957] [Citation(s) in RCA: 483] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Triple-negative (TNBC) is the most lethal subtype of breast cancer owing to high heterogeneity, aggressive nature, and lack of treatment options. Chemotherapy remains the standard of care for TNBC treatment, but unfortunately, patients frequently develop resistance. Accordingly, in recent years, tremendous effort has been made into elucidating the mechanisms of TNBC chemoresistance with the goal of identifying new molecular targets. It has become evident that the development of TNBC chemoresistance is multifaceted and based on the elaborate interplay of the tumor microenvironment, drug efflux, cancer stem cells, and bulk tumor cells. Alterations of multiple signaling pathways govern these interactions. Moreover, TNBC's high heterogeneity, highlighted in the existence of several molecular signatures, presents a significant obstacle to successful treatment. In the present, in-depth review, we explore the contribution of key mechanisms to TNBC chemoresistance as well as emerging strategies to overcome them. We discuss novel anti-tumor agents that target the components of these mechanisms and pay special attention to their current clinical development while emphasizing the challenges still ahead of successful TNBC management. The evidence presented in this review outlines the role of crucial pathways in TNBC survival following chemotherapy treatment and highlights the importance of using combinatorial drug strategies and incorporating biomarkers in clinical studies.
Collapse
Affiliation(s)
- Milica Nedeljković
- Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia.
| | - Ana Damjanović
- Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| |
Collapse
|
24
|
Chen H, Cook LS, Tang MTC, Hill DA, Wiggins CL, Li CI. Relationship between Diabetes and Diabetes Medications and Risk of Different Molecular Subtypes of Breast Cancer. Cancer Epidemiol Biomarkers Prev 2019; 28:1802-1808. [PMID: 31395589 DOI: 10.1158/1055-9965.epi-19-0291] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/13/2019] [Accepted: 08/01/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Type II diabetes and certain diabetes treatments have been observed to impact breast cancer risk. However, their associations with different breast cancer molecular subtype defined by estrogen receptor (ER)/progesterone receptor (PR)/HER2 status are unclear. METHODS We conducted a retrospective multi-center population-based case-case study consisting of 4,557 breast cancer cases to evaluate the impact of type II diabetes and diabetes medications on the risk of different breast cancer molecular subtypes [ER+/HER2-, ER+/HER2+, triple negative (ER-/PR-/HER2-), and HER2 overexpressing (H2E, ER-/PR-/HER2+)]. Using ER+/HER2- cases as the reference group, we estimated ORs and corresponding 95% confidence intervals (CI) for each subtype using polytomous logistic regression. RESULTS Compared with those without a diabetes history, women with type II diabetes had a 38% (95% CI, 1.01-1.89) increased odds of triple-negative breast cancer (TNBC). Current and longer term recent metformin use (13-24 months of treatment within the 24-month period prior to breast cancer diagnosis) was associated with elevated odds of TNBC (OR = 1.54; 95% CI, 1.07-2.22 and OR = 1.80; 95% CI, 1.13-2.85, respectively). CONCLUSIONS The odds of having a triple-negative rather than ER+/HER2- breast cancer is greater for women with type II diabetes, and particularly for those who were users of metformin. This finding is supported by some preclinical data suggesting that diabetes may be more strongly associated with risk of triple-negative disease. IMPACT Our study provides novel evidence regarding potential differential effects of type II diabetes and metformin use on risk of different molecular subtypes of breast cancer.
Collapse
Affiliation(s)
- Hongjie Chen
- Department of Epidemiology, University of Washington, Seattle, Washington.
| | - Linda S Cook
- Department of Internal Medicine and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Mei-Tzu C Tang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Deirdre A Hill
- Department of Internal Medicine and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Charles L Wiggins
- Department of Internal Medicine and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Christopher I Li
- Department of Epidemiology, University of Washington, Seattle, Washington.,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
25
|
WITHDRAWN: Association of Type 2 Diabetes Mellitus with the Histopathological Features of Early-Stage Breast Cancer Patients: A Retrospective Cross-Sectional Study in Chinese Women. Clin Breast Cancer 2019. [DOI: 10.1016/j.clbc.2019.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Nagle AM, Levine KM, Tasdemir N, Scott JA, Burlbaugh K, Kehm J, Katz TA, Boone DN, Jacobsen BM, Atkinson JM, Oesterreich S, Lee AV. Loss of E-cadherin Enhances IGF1-IGF1R Pathway Activation and Sensitizes Breast Cancers to Anti-IGF1R/InsR Inhibitors. Clin Cancer Res 2018; 24:5165-5177. [PMID: 29941485 PMCID: PMC6821389 DOI: 10.1158/1078-0432.ccr-18-0279] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/29/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022]
Abstract
Purpose: Insulin-like growth factor 1 (IGF1) signaling regulates breast cancer initiation and progression and associated cancer phenotypes. We previously identified E-cadherin (CDH1) as a repressor of IGF1 signaling and in this study examined how loss of E-cadherin affects IGF1R signaling and response to anti-IGF1R/insulin receptor (InsR) therapies in breast cancer.Experimental Design: Breast cancer cell lines were used to assess how altered E-cadherin levels regulate IGF1R signaling and response to two anti-IGF1R/InsR therapies. In situ proximity ligation assay (PLA) was used to define interaction between IGF1R and E-cadherin. TCGA RNA-seq and RPPA data were used to compare IGF1R/InsR activation in estrogen receptor-positive (ER+) invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) tumors. ER+ ILC cell lines and xenograft tumor explant cultures were used to evaluate efficacy to IGF1R pathway inhibition in combination with endocrine therapy.Results: Diminished functional E-cadherin increased both activation of IGF1R signaling and efficacy to anti-IGF1R/InsR therapies. PLA demonstrated a direct endogenous interaction between IGF1R and E-cadherin at points of cell-cell contact. Increased expression of IGF1 ligand and levels of IGF1R/InsR phosphorylation were observed in E-cadherin-deficient ER+ ILC compared with IDC tumors. IGF1R pathway inhibitors were effective in inhibiting growth in ER+ ILC cell lines and synergized with endocrine therapy and similarly IGF1R/InsR inhibition reduced proliferation in ILC tumor explant culture.Conclusions: We provide evidence that loss of E-cadherin hyperactivates the IGF1R pathway and increases sensitivity to IGF1R/InsR targeted therapy, thus identifying the IGF1R pathway as a potential novel target in E-cadherin-deficient breast cancers. Clin Cancer Res; 24(20); 5165-77. ©2018 AACR.
Collapse
Affiliation(s)
- Alison M Nagle
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, Pennsylvania
| | - Kevin M Levine
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, Pennsylvania
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nilgun Tasdemir
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, Pennsylvania
| | - Julie A Scott
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, Pennsylvania
| | - Kara Burlbaugh
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, Pennsylvania
| | - Justin Kehm
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, Pennsylvania
| | - Tiffany A Katz
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, Pennsylvania
- The Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - David N Boone
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, Pennsylvania
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Britta M Jacobsen
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer M Atkinson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, Pennsylvania
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, Pennsylvania
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adrian V Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, Pennsylvania
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Pennington KL, Chan TY, Torres MP, Andersen JL. The dynamic and stress-adaptive signaling hub of 14-3-3: emerging mechanisms of regulation and context-dependent protein-protein interactions. Oncogene 2018; 37:5587-5604. [PMID: 29915393 PMCID: PMC6193947 DOI: 10.1038/s41388-018-0348-3] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
14-3-3 proteins are a family of structurally similar phospho-binding proteins that regulate essentially every major cellular function. Decades of research on 14-3-3s have revealed a remarkable network of interacting proteins that demonstrate how 14-3-3s integrate and control multiple signaling pathways. In particular, these interactions place 14-3-3 at the center of the signaling hub that governs critical processes in cancer, including apoptosis, cell cycle progression, autophagy, glucose metabolism, and cell motility. Historically, the majority of 14-3-3 interactions have been identified and studied under nutrient-replete cell culture conditions, which has revealed important nutrient driven interactions. However, this underestimates the reach of 14-3-3s. Indeed, the loss of nutrients, growth factors, or changes in other environmental conditions (e.g., genotoxic stress) will not only lead to the loss of homeostatic 14-3-3 interactions, but also trigger new interactions, many of which are likely stress adaptive. This dynamic nature of the 14-3-3 interactome is beginning to come into focus as advancements in mass spectrometry are helping to probe deeper and identify context-dependent 14-3-3 interactions-providing a window into adaptive phosphorylation-driven cellular mechanisms that orchestrate the tumor cell's response to a variety of environmental conditions including hypoxia and chemotherapy. In this review, we discuss emerging 14-3-3 regulatory mechanisms with a focus on post-translational regulation of 14-3-3 and dynamic protein-protein interactions that illustrate 14-3-3's role as a stress-adaptive signaling hub in cancer.
Collapse
Affiliation(s)
- K L Pennington
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - T Y Chan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - M P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - J L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
28
|
Wu N, Zhang J, Zhao J, Mu K, Zhang J, Jin Z, Yu J, Liu J. Precision medicine based on tumorigenic signaling pathways for triple-negative breast cancer. Oncol Lett 2018; 16:4984-4996. [PMID: 30250564 PMCID: PMC6144355 DOI: 10.3892/ol.2018.9290] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022] Open
Abstract
As a clinically heterogeneous subtype of breast cancer, triple-negative breast cancer (TNBC) is associated with a poor clinical outcome and a high relapse rate. Conventional chemotherapy and radiotherapy are effective treatments for patients with TNBC. However, the prognosis of TNBC remains unsatisfactory. Therefore, a large volume of research has explored the molecular markers and oncogenic signaling pathways associated with TNBC, including the cell cycle, DNA damage response and androgen receptor (AR) signaling pathways, to identify more efficient targeted therapies. However, whether these predicted pathways are effective targets has yet to be confirmed. In the present review, potentially carcinogenic signaling pathways in TNBCs from previous reports were considered, and ultimately five tumorigenic signaling pathways were selected, specifically receptor tyrosine kinases and downstream signaling pathways, the epithelial-to-mesenchymal transition and associated pathways, the immunoregulatory tumor microenvironment, DNA damage repair pathways, and AR and coordinating pathways. The conclusions of the preclinical and clinical trials of each pathway were then consolidated. Although a number of signaling pathways in TNBC have been considered in preclinical and clinical trials, the aforementioned pathways account for the majority of the malignant behaviors of TNBC. Identifying the alterations to different carcinogenic signaling pathways and their association with the heterogeneity of TNBC may facilitate the development of optimal precision medical approaches for patients with TNBC, potentially improving the efficiency of anticancer therapy.
Collapse
Affiliation(s)
- Nan Wu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jinghua Zhang
- Department of Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China
| | - Jing Zhao
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Kun Mu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jun Zhang
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Zhao Jin
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jinpu Yu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Biotherapy Center, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Juntian Liu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
29
|
Abstract
Early preclinical and population data suggested a role for the type I insulin-like growth factor receptor (IGF1R) in the regulation of breast cancer growth and survival. To target this pathway, multiple monoclonal antibodies and tyrosine kinase inhibitors were developed and tested in clinical trials. While some of the early clinical trials suggested a benefit for these drugs, none of the attempts showed improved outcomes when compared to conventional therapy. This failure of the IGF1R inhibitors was pronounced in breast cancer; multiple trials testing IGF1R inhibition in estrogen receptor-positive breast cancer were conducted, none showed benefit. This review will evaluate the rationale for IGF1R inhibition, discuss results of the clinical trials and suggest a path forward.
Collapse
Affiliation(s)
- Douglas Yee
- Masonic Cancer CenterUniversity of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
30
|
Zhu S, Ward BM, Yu J, Matthew-Onabanjo AN, Janusis J, Hsieh CC, Tomaszewicz K, Hutchinson L, Zhu LJ, Kandil D, Shaw LM. IRS2 mutations linked to invasion in pleomorphic invasive lobular carcinoma. JCI Insight 2018; 3:97398. [PMID: 29669935 DOI: 10.1172/jci.insight.97398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/14/2018] [Indexed: 12/30/2022] Open
Abstract
Pleomorphic invasive lobular carcinoma (PILC) is an aggressive variant of invasive lobular breast cancer that is associated with poor clinical outcomes. Limited molecular data are available to explain the mechanistic basis for PILC behavior. To address this issue, targeted sequencing was performed to identify molecular alterations that define PILC. This sequencing analysis identified genes that distinguish PILC from classic ILC and invasive ductal carcinoma by the incidence of their genomic changes. In particular, insulin receptor substrate 2 (IRS2) is recurrently mutated in PILC, and pathway analysis reveals a role for the insulin receptor (IR)/insulin-like growth factor-1 receptor (IGF1R)/IRS2 signaling pathway in PILC. IRS2 mutations identified in PILC enhance invasion, revealing a role for this signaling adaptor in the aggressive nature of PILC.
Collapse
Affiliation(s)
- Sha Zhu
- Department of Molecular, Cell and Cancer Biology
| | | | - Jun Yu
- Department of Molecular, Cell and Cancer Biology
| | | | | | | | | | | | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology.,Department of Molecular Medicine, and.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | |
Collapse
|
31
|
Zhang Y, Cai K, Li C, Guo Q, Chen Q, He X, Liu L, Zhang Y, Lu Y, Chen X, Sun T, Huang Y, Cheng J, Jiang C. Macrophage-Membrane-Coated Nanoparticles for Tumor-Targeted Chemotherapy. NANO LETTERS 2018; 18:1908-1915. [PMID: 29473753 PMCID: PMC7470025 DOI: 10.1021/acs.nanolett.7b05263] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Various delivery vectors have been integrated within biologically derived membrane systems to extend their residential time and reduce their reticuloendothelial system (RES) clearance during systemic circulation. However, rational design is still needed to further improve the in situ penetration efficiency of chemo-drug-loaded membrane delivery-system formulations and their release profiles at the tumor site. Here, a macrophage-membrane-coated nanoparticle is developed for tumor-targeted chemotherapy delivery with a controlled release profile in response to tumor microenvironment stimuli. Upon fulfilling its mission of tumor homing and RES evasion, the macrophage-membrane coating can be shed via morphological changes driven by extracellular microenvironment stimuli. The nanoparticles discharged from the outer membrane coating show penetration efficiency enhanced by their size advantage and surface modifications. After internalization by the tumor cells, the loaded drug is quickly released from the nanoparticles in response to the endosome pH. The designed macrophage-membrane-coated nanoparticle (cskc-PPiP/PTX@Ma) exhibits an enhanced therapeutic effect inherited from both membrane-derived tumor homing and step-by-step controlled drug release. Thus, the combination of a biomimetic cell membrane and a cascade-responsive polymeric nanoparticle embodies an effective drug delivery system tailored to the tumor microenvironment.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Kaimin Cai
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Chao Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xi He
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lisha Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yujie Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yifei Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xinli Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Corresponding Author: ,
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Corresponding Author: ,
| |
Collapse
|
32
|
Elbaz M, Ahirwar D, Ravi J, Nasser MW, Ganju RK. Novel role of cannabinoid receptor 2 in inhibiting EGF/EGFR and IGF-I/IGF-IR pathways in breast cancer. Oncotarget 2018; 8:29668-29678. [PMID: 27213582 PMCID: PMC5444694 DOI: 10.18632/oncotarget.9408] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 04/10/2016] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is the second leading cause of cancer deaths among women. Cannabinoid receptor 2 (CNR2 or CB2) is an integral part of the endocannabinoid system. Although CNR2 is highly expressed in the breast cancer tissues as well as breast cancer cell lines, its functional role in breast tumorigenesis is not well understood. We observed that estrogen receptor-α negative (ERα-) breast cancer cells highly express epidermal growth factor receptor (EGFR) as well as insulin-like growth factor-I receptor (IGF-IR). We also observed IGF-IR upregulation in ERα+ breast cancer cells. In addition, we found that higher CNR2 expression correlates with better recurrence free survival in ERα- and ERα+ breast cancer patients. Therefore, we analyzed the role of CNR2 specific agonist (JWH-015) on EGF and/or IGF-I-induced tumorigenic events in ERα- and ERα+ breast cancers. Our studies showed that CNR2 activation inhibited EGF and IGF-I-induced migration and invasion of ERα+ and ERα- breast cancer cells. At the molecular level, JWH-015 inhibited EGFR and IGF-IR activation and their downstream targets STAT3, AKT, ERK, NF-kB and matrix metalloproteinases (MMPs). In vivo studies showed that JWH-015 significantly reduced breast cancer growth in ERα+ and ERα- breast cancer mouse models. Furthermore, we found that the tumors derived from JWH-015-treated mice showed reduced activation of EGFR and IGF-IR and their downstream targets. In conclusion, we show that CNR2 activation suppresses breast cancer through novel mechanisms by inhibiting EGF/EGFR and IGF-I/IGF-IR signaling axes.
Collapse
Affiliation(s)
- Mohamad Elbaz
- Department of Pathology and The Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, Columbus, OH, USA.,Department of Pharmacology, Pharmacy School, Helwan University, Helwan, Egypt
| | - Dinesh Ahirwar
- Department of Pathology and The Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Janani Ravi
- Department of Pathology and The Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Mohd W Nasser
- Department of Pathology and The Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Ramesh K Ganju
- Department of Pathology and The Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
33
|
Chalakur-Ramireddy NKR, Pakala SB. Combined drug therapeutic strategies for the effective treatment of Triple Negative Breast Cancer. Biosci Rep 2018; 38:BSR20171357. [PMID: 29298879 PMCID: PMC5789156 DOI: 10.1042/bsr20171357] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/12/2017] [Accepted: 01/01/2018] [Indexed: 12/19/2022] Open
Abstract
TNBC (Triple Negative Breast Cancer) is a subtype of breast cancer with an aggressive phenotype which shows high metastatic capability and poor prognosis. Owing to its intrinsic properties like heterogeneity, lack of hormonal receptors and aggressive phenotype leave chemotherapy as a mainstay for the treatment of TNBC. Various studies have demonstrated that chemotherapy alone or therapeutic drugs targeting TNBC pathways, epigenetic mechanisms and immunotherapy alone have not shown significant improvement in TNBC patients. On the other hand, a combination of therapeutic drugs or addition of chemotherapy with therapeutic drugs has shown substantial improvement in results and proven to be an effective strategy for TNBC treatment. This review sheds light on effective combinational drug strategies and current clinical trial status of various combinatorial drugs for the treatment of TNBC.
Collapse
Affiliation(s)
| | - Suresh B Pakala
- Biology Division, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh, India
| |
Collapse
|
34
|
O'Flanagan CH, O'Shea S, Lyons A, Fogarty FM, McCabe N, Kennedy RD, O'Connor R. IGF-1R inhibition sensitizes breast cancer cells to ATM-related kinase (ATR) inhibitor and cisplatin. Oncotarget 2018; 7:56826-56841. [PMID: 27472395 PMCID: PMC5302955 DOI: 10.18632/oncotarget.10862] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/10/2016] [Indexed: 01/18/2023] Open
Abstract
The complexity of the IGF-1 signalling axis is clearly a roadblock in targeting this receptor in cancer therapy. Here, we sought to identify mediators of resistance, and potential co-targets for IGF-1R inhibition. By using an siRNA functional screen with the IGF-1R tyrosine kinase inhibitor (TKI) BMS-754807 in MCF-7 cells we identified several genes encoding components of the DNA damage response (DDR) pathways as mediators of resistance to IGF-1R kinase inhibition. These included ATM and Ataxia Telangiectasia and RAD3-related kinase (ATR). We also observed a clear induction of DDR in cells that were exposed to IGF-1R TKIs (BMS-754807 and OSI-906) as indicated by accumulation of γ-H2AX, and phosphorylated Chk1. Combination of the IGF-1R/IR TKIs with an ATR kinase inhibitor VE-821 resulted in additive to synergistic cytotoxicity compared to either drug alone. In MCF-7 cells with stably acquired resistance to the IGF-1R TKI (MCF-7-R), DNA damage was also observed, and again, dual inhibition of the ATR kinase and IGF-1R/IR kinase resulted in synergistic cytotoxicity. Interestingly, dual inhibition of ATR and IGF-1R was more effective in MCF-7-R cells than parental cells. IGF-1R TKIs also potentiated the effects of cisplatin in a panel of breast cancer cell lines. Overall, our findings identify induction of DDR by IGF-1R kinase inhibition as a rationale for co-targeting the IGF-1R with ATR kinase inhibitors or cisplatin, particularly in cells with acquired resistance to TKIs.
Collapse
Affiliation(s)
- Ciara H O'Flanagan
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Sandra O'Shea
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Amy Lyons
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Fionola M Fogarty
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Nuala McCabe
- Almac Diagnostics, Craigavon, Northern Ireland, UK
| | - Richard D Kennedy
- Almac Diagnostics, Craigavon, Northern Ireland, UK.,Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Rosemary O'Connor
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
35
|
Christopoulos PF, Corthay A, Koutsilieris M. Aiming for the Insulin-like Growth Factor-1 system in breast cancer therapeutics. Cancer Treat Rev 2017; 63:79-95. [PMID: 29253837 DOI: 10.1016/j.ctrv.2017.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022]
Abstract
Despite the major discoveries occurred in oncology the recent years, breast malignancies remain one of the most common causes of cancer-related deaths for women in developed countries. Development of HER2-targeting drugs has been considered a breakthrough in anti-cancer approaches and alluded to the potential of targeting growth factors in breast cancer (BrCa) therapeutics. More than twenty-five years have passed since the Insulin-like Growth Factor-1 (IGF-1) system was initially recognized as a potential target candidate in BrCa therapy. To date, a growing body of studies have implicated the IGF-1 signaling with the BrCa biology. Despite the promising experimental evidence, the impression from clinical trials is rather disappointing. Several reasons may account for this and the last word regarding the efficacy of this system as a target candidate in BrCa therapeutics is probably not written yet. Herein, we provide the theoretical basis, as well as, a comprehensive overview of the current literature, regarding the different strategies targeting the various components of the IGF-1/IGF-1R axis in several pathophysiological aspects of BrCa, including the tumor micro-environment and cancer stemness. In addition, we review the rationale for targeting the IGF-1 system in the different BrCa molecular subtypes and in treatment resistant breast tumors with a focus on both the molecular mechanisms and on the clinical perspectives of such approaches in specific population subgroups. We also discuss the future challenges, as well as, the development of novel molecules and strategies targeting the system and suggest potential improvements in the field.
Collapse
Affiliation(s)
- Panagiotis F Christopoulos
- Department of Experimental Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece; Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway; Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway.
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
36
|
Hamilton N, Austin D, Márquez-Garbán D, Sanchez R, Chau B, Foos K, Wu Y, Vadgama J, Pietras R. Receptors for Insulin-Like Growth Factor-2 and Androgens as Therapeutic Targets in Triple-Negative Breast Cancer. Int J Mol Sci 2017; 18:E2305. [PMID: 29099049 PMCID: PMC5713274 DOI: 10.3390/ijms18112305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022] Open
Abstract
Triple-negative breast cancer (TNBC) occurs in 10-15% of all breast cancer patients, yet it accounts for about half of all breast cancer deaths. There is an urgent need to identify new antitumor targets to provide additional treatment options for patients afflicted with this aggressive disease. Preclinical evidence suggests a critical role for insulin-like growth factor-2 (IGF2) and androgen receptor (AR) in regulating TNBC progression. To advance this work, a panel of TNBC cell lines was investigated with all cell lines showing significant expression of IGF2. Treatment with IGF2 stimulated cell proliferation in vitro (p < 0.05). Importantly, combination treatments with IGF1R inhibitors BMS-754807 and NVP-AEW541 elicited significant inhibition of TNBC cell proliferation (p < 0.001). Based on Annexin-V binding assays, BMS-754807, NVP-AEW541 and enzalutamide induced TNBC cell death (p < 0.005). Additionally, combination of enzalutamide with BMS-754807 or NVP-AEW541 exerted significant reductions in TNBC proliferation even in cells with low AR expression (p < 0.001). Notably, NVP-AEW541 and BMS-754807 reduced AR levels in BT549 TNBC cells. These results provide evidence that IGF2 promotes TNBC cell viability and proliferation, while inhibition of IGF1R/IR and AR pathways contribute to blockade of TNBC proliferation and promotion of apoptosis in vitro.
Collapse
Affiliation(s)
- Nalo Hamilton
- UCLA School of Nursing, University of California at Los Angeles, Los Angeles, CA 90095, USA.
- UCLA Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - David Austin
- Department of Medicine, Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA 90059, USA.
| | - Diana Márquez-Garbán
- UCLA Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA.
- UCLA David Geffen School of Medicine, Department of Medicine, Division of Hematology-Oncology, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Rudy Sanchez
- Department of Biology, California State University Channel Islands, Camarillo, CA 93012, USA.
| | - Brittney Chau
- Department of Integrative Ecology and Evolutionary Biology and Physiology, UCLA College of Life Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Kay Foos
- Department Physiological, UCLA College of Life Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Yanyuan Wu
- Department of Medicine, Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA 90059, USA.
| | - Jaydutt Vadgama
- UCLA Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA.
- Department of Medicine, Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA 90059, USA.
- UCLA David Geffen School of Medicine, Department of Medicine, Division of Hematology-Oncology, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Richard Pietras
- Department of Medicine, Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA 90059, USA.
- UCLA David Geffen School of Medicine, Department of Medicine, Division of Hematology-Oncology, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
37
|
Sun H, Zou J, Chen L, Zu X, Wen G, Zhong J. Triple-negative breast cancer and its association with obesity. Mol Clin Oncol 2017; 7:935-942. [PMID: 29285353 DOI: 10.3892/mco.2017.1429] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/21/2017] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that lacks expression of the estrogen and progesterone receptor and does not overexpress human epidermal growth factor 2 receptor protein. TNBC is associated with special characteristics, including aggressiveness, poor prognosis and poor response to treatment, and has been attracting increasing attention worldwide. Obesity is a well-documented factor exerting a significant effect on the development of breast cancer, including TNBC. The purpose of the present review was to focus on the association between obesity and TNBC and provide a summary of novel research findings. The aim was to highlight the association between TNBC and obesity and provide an overview of novel outlooks on clinical issues, biological rationale, novel targeted therapies and prognosis, in order to draw attention to the significance of weight management, primary prevention, early diagnosis and treatment of this intractable disease.
Collapse
Affiliation(s)
- Heng Sun
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China.,Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jing Zou
- Department of Neurological Medicine, Hunan Institute of Gerontology, Hunan Geriatric Hospital, Changsha, Hunan 410016, P.R. China
| | - Ling Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xuyu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Gebo Wen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China.,Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
38
|
Oberthür R, Seemann H, Gehrig J, Rave-Fränk M, Bremmer F, Halpape R, Conradi LC, Scharf JG, Burfeind P, Kaulfuß S. Simultaneous inhibition of IGF1R and EGFR enhances the efficacy of standard treatment for colorectal cancer by the impairment of DNA repair and the induction of cell death. Cancer Lett 2017; 407:93-105. [PMID: 28823963 DOI: 10.1016/j.canlet.2017.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/01/2017] [Accepted: 08/06/2017] [Indexed: 12/17/2022]
Abstract
Overexpression and activation of receptor tyrosine kinases (RTKs), such as the insulin-like growth factor 1 receptor (IGF1R) and the epidermal growth factor receptor (EGFR), are frequent phenomena in colorectal cancer (CRC). Here, we evaluated the effect and the cellular mechanisms of the simultaneous inhibition of these two RTKs both in vitro and in vivo in addition to a 5-fluoruracil (5-FU)-based radiochemotherapy (RCT), which is a standard treatment scheme for CRC. Using the small molecule inhibitors AEW541 and erlotinib, specific against IGF1R and EGFR, respectively, different CRC cell lines exhibited a reduced survival fraction after RCT, with the highest effect after the simultaneous inhibition of IGF1R/EGFR. In vivo, xenograft mice simultaneously treated with low dose AEW541/erlotinib plus RCT revealed a significant reduction in tumour volume and weight compared with the tumours of mice treated with either AEW541 or erlotinib alone. In vitro, the combined inhibition of IGF1R/EGFR resulted in a stronger reduction of downstream signalling, an increase in DNA double strand breaks (DSBs), apoptosis and mitotic catastrophe after RCT depending on the cell line. Moreover, the existence of IGF1R/EGFR heterodimers in CRC cells and human rectal cancer samples was proven. The heterodimerisation of these RTKs was dependent on the presence of both ligands, IGF-1 and EGF, and functional receptors. In conclusion, these results demonstrate that the strategy of targeting both IGF1R and EGFR, in addition to basic RCT, could be of intriguing importance in CRC therapy.
Collapse
Affiliation(s)
- Rabea Oberthür
- Institute of Human Genetics, University Medical Centre Göttingen, Germany
| | - Henning Seemann
- Institute of Human Genetics, University Medical Centre Göttingen, Germany
| | - Julia Gehrig
- Institute of Human Genetics, University Medical Centre Göttingen, Germany
| | - Margret Rave-Fränk
- Department of Radiotherapy and Radio Oncology, University Medical Centre Göttingen, Germany
| | - Felix Bremmer
- Institute of Pathology, University Medical Centre Göttingen, Germany
| | - Rovena Halpape
- Institute of Human Genetics, University Medical Centre Göttingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral and Paediatric Surgery, University Medical Centre Göttingen, Germany
| | - Jens-Gerd Scharf
- 2nd Department of Internal Medicine, HELIOS Hospital Erfurt, Germany
| | - Peter Burfeind
- Institute of Human Genetics, University Medical Centre Göttingen, Germany
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Centre Göttingen, Germany.
| |
Collapse
|
39
|
Ren JG, Seth P, Ye H, Guo K, Hanai JI, Husain Z, Sukhatme VP. Citrate Suppresses Tumor Growth in Multiple Models through Inhibition of Glycolysis, the Tricarboxylic Acid Cycle and the IGF-1R Pathway. Sci Rep 2017; 7:4537. [PMID: 28674429 PMCID: PMC5495754 DOI: 10.1038/s41598-017-04626-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
In this study we have tested the efficacy of citrate therapy in various cancer models. We found that citrate administration inhibited A549 lung cancer growth and additional benefit accrued in combination with cisplatin. Interestingly, citrate regressed Ras-driven lung tumors. Further studies indicated that citrate induced tumor cell differentiation. Additionally, citrate treated tumor samples showed significantly higher infiltrating T-cells and increased blood levels of numerous cytokines. Moreover, we found that citrate inhibited IGF-1R phosphorylation. In vitro studies suggested that citrate treatment inhibited AKT phosphorylation, activated PTEN and increased expression of p-eIF2a. We also found that p-eIF2a was decreased when PTEN was depleted. These data suggest that citrate acts on the IGF-1R-AKT-PTEN-eIF2a pathway. Additionally, metabolic profiling suggested that both glycolysis and the tricarboxylic acid cycle were suppressed in a similar manner in vitro in tumor cells and in vivo but only in tumor tissue. We reproduced many of these observations in an inducible Her2/Neu-driven breast cancer model and in syngeneic pancreatic tumor (Pan02) xenografts. Our data suggests that citrate can inhibit tumor growth in diverse tumor types and via multiple mechanisms. Dietary supplementation with citrate may be beneficial as a cancer therapy.
Collapse
Affiliation(s)
- Jian-Guo Ren
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Pankaj Seth
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Huihui Ye
- Department of Pathology, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Kun Guo
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.,Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun-Ichi Hanai
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Zaheed Husain
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Vikas P Sukhatme
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
40
|
Soljic M, Mrklic I, Tomic S, Omrcen T, Sutalo N, Bevanda M, Vrdoljak E. Prognostic value of vitamin D receptor and insulin-like growth factor receptor 1 expression in triple-negative breast cancer. J Clin Pathol 2017; 71:34-39. [DOI: 10.1136/jclinpath-2016-204222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/24/2017] [Accepted: 05/07/2017] [Indexed: 12/20/2022]
Abstract
AimTriple-negative breast cancer (TNBC) is characterised by shorter overall survival and an early peak of distant recurrences with still no specific targeted treatment available. Vitamin D receptor (VDR) and insulin-like growth factor receptor 1 (IGFR) have recently been described as potential new targets for anticancer therapy, yet their roles in TNBCs are still to be explored. In this study we investigated VDR and IGFR expression in patients with TNBC and compared them with clinical and pathological parameters and survival to possibly demonstrate their prognostic and therapeutic relevance.MethodsThe study included 96 patients with TNBC. Clinical and pathological parameters were compared with the immunohistochemical expression of VDR and IGFR.ResultsPositive VDR immunostaining was present in 27% of tumours and inversely correlated with higher mitotic score, histological grade and higher proliferation index measured by Ki-67 and related to the increased overall survival (OS). Out of 96 patients with TNBC, 35.5% of tumours were IGFR positive and correlated with higher mitotic score and Ki-67, and strongly correlated with shorter disease-free survival (DFS). Patients with VDR-negative and IGF-positive tumours had significantly lower DFS and OS.ConclusionApproximately one third of TNBCs express VDR and/or IGFR. Their expression is linked with the recurrence of the disease and survival, which make them possible targets for treatment and a prognostic tool for dividing TNBCs into more homogeneous subgroups.
Collapse
|
41
|
Bhattacharya R, Banerjee K, Mukherjee N, Sen M, Mukhopadhyay A. From molecular insight to therapeutic strategy: The holistic approach for treating triple negative breast cancer. Pathol Res Pract 2017; 213:177-182. [DOI: 10.1016/j.prp.2017.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/02/2017] [Accepted: 01/02/2017] [Indexed: 02/07/2023]
|
42
|
Ochnik AM, Baxter RC. Combination therapy approaches to target insulin-like growth factor receptor signaling in breast cancer. Endocr Relat Cancer 2016; 23:R513-R536. [PMID: 27733416 DOI: 10.1530/erc-16-0218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/09/2016] [Indexed: 12/19/2022]
Abstract
Insulin-like growth factor receptor (IGF1R) signaling as a therapeutic target has been widely studied and clinically tested. Despite the vast amount of literature supporting the biological role of IGF1R in breast cancer, effective clinical translation in targeting its activity as a cancer therapy has not been successful. The intrinsic complexity of cancer cell signaling mediated by many tyrosine kinase growth factor receptors that work together to modulate each other and intracellular downstream mediators in the cell highlights that studying IGF1R expression and activity as a prognostic factor and therapeutic target in isolation is certainly associated with problems. This review discusses the current literature and clinical trials associated with IGF-1 signaling and attempts to look at new ways of designing novel IGF1R-directed breast cancer therapy approaches to target its activity
and/or intracellular downstream signaling pathways in IGF1R-expressing breast cancers.
Collapse
Affiliation(s)
- Aleksandra M Ochnik
- Kolling Institute of Medical ResearchUniversity of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Robert C Baxter
- Kolling Institute of Medical ResearchUniversity of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
43
|
Iqbal J, Thike AA, Cheok PY, Tse GMK, Tan PH. Insulin growth factor receptor-1 expression and loss of PTEN protein predict early recurrence in triple-negative breast cancer. Histopathology 2016; 61:652-9. [PMID: 22759273 DOI: 10.1111/j.1365-2559.2012.04255.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Insulin-like growth factor receptor-1 (IGFR-1) and its signalling axis promote tumorigenesis, metastasis, and resistance to existing forms of cancer therapy, and have become a major focus for the development of anticancer drugs. As oncological management options for triple-negative breast cancers (TNBCs) are limited, there is potential for the rapid development of novel selective anticancer agents specifically targeting components of the PTEN-phosphoinositide 3-kinase-AKT pathway, including the phosphorylated form of AKT (pAKT) and the tumour suppressor molecule PTEN. The aim of this study was to conduct immunohistochemical analyses to examine the levels of PTEN, IGFR-1 and pAKT expression in TNBCs, and determine whether these levels correlated with poor prognosis in this subset of aggressive breast cancers. METHODS AND RESULTS Immunohistochemistry was performed on paraffin-embedded tumour tissues from a consecutive cohort of 144 female patients diagnosed with TNBC. Associations of IGFR-1, PTEN and pAKT expression with clinicopathological parameters, disease-free survival (DFS) and overall survival (OS) were evaluated. There were significant increases in IGFR-1 expression (99%) and pAKT expression (92%) with concomitant loss of PTEN expression in the majority of cases (63%). Increased IGFR-1 expression and loss of PTEN expression were associated with reduced OS and DFS, respectively. pAKT expression showed a strong correlation with basal-like expression. Combinatorial immunophenotypic analyses showed that loss of PTEN expression with concomitant IGFR-1 expression correlated with poor DFS. CONCLUSION A high percentage of PTEN loss with overexpression of IGFR-1 and pAKT in TNBC indicates the potential of these molecules for predicting early recurrence and/or as targets in the formulation of effective alternative therapy regimens.
Collapse
Affiliation(s)
- Jabed Iqbal
- Department of Pathology, Singapore General Hospital, SingaporeDepartment of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
44
|
The insulin-like growth factor-I receptor (IGF-IR) in breast cancer: biology and treatment strategies. Tumour Biol 2016; 37:11711-11721. [PMID: 27444280 DOI: 10.1007/s13277-016-5176-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/12/2016] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most common cancer and the second leading cause of cancer-related deaths among women worldwide. Although patients are often diagnosed in the early and curable stages, the treatment of metastatic breast cancer remains a major clinical challenge. The combination of chemotherapy with new targeting agents, such as bevacizumab, is helpful in improving patient survival; however, novel treatment strategies are required to improve clinical outcomes. The insulin-like growth factor-I receptor (IGF-IR) is a tyrosine kinase cell surface receptor which is involved in the regulation of cell growth and metabolism. Previous studies have shown that activation of the IGF-IR signaling pathway promotes proliferation, survival, and metastasis of breast cancer cells. Additionally, overexpression of IGF-IR is associated with breast cancer cell resistance to anticancer therapies. Recently, IGF-IR has been introduced as a marker of stemness in breast cancer cells and there is also accumulating evidence that IGF-IR contributes to the establishment and maintenance of breast cancer epithelial-mesenchymal transition (EMT). Therefore, pharmacological or molecular targeting of IGF-IR could be a promising strategy, in the treatment of patients with breast cancer, particularly in order to circumvent the therapeutic resistance and targeting breast cancer stem/progenitors. Currently, many strategies have been developed for targeting IGF-IR, some have entered clinical trials and some are in preclinical stages for breast cancer therapy. In this review, we will first discuss on the biology of IGF-IR in an attempt to find the role of this receptor in breast cancer and then discuss about therapeutic strategies to target this receptor.
Collapse
|
45
|
Iams WT, Lovly CM. Molecular Pathways: Clinical Applications and Future Direction of Insulin-like Growth Factor-1 Receptor Pathway Blockade. Clin Cancer Res 2016; 21:4270-7. [PMID: 26429980 DOI: 10.1158/1078-0432.ccr-14-2518] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The IGF1R signaling pathway is a complex and tightly regulated network that is critical for cell proliferation, growth, and survival. IGF1R is a potential therapeutic target for patients with many different malignancies. This brief review summarizes the results of clinical trials targeting the IGF1R pathway in patients with breast cancer, sarcoma, and non-small cell lung cancer (NSCLC). Therapeutic agents discussed include both monoclonal antibodies to IGF1R (dalotuzumab, figitumumab, cixutumumab, ganitumab, R1507, AVE1642) and newer IGF1R pathway targeting strategies, including monoclonal antibodies to IGF1 and IGF2 (MEDI-573 and BI 836845) and a small-molecule tyrosine kinase inhibitor of IGF1R (linsitinib). The pullback of trials in patients with breast cancer and NSCLC based on several large negative trials is noted and contrasted with the sustained success of IGF1R inhibitor monotherapy in a subset of patients with sarcoma. Several different biomarkers have been examined in these trials with varying levels of success, including tumor expression of IGF1R and its pathway components, serum IGF ligand levels, alternate pathway activation, and specific molecular signatures of IGF1R pathway dependence. However, there remains a critical need to define predictive biomarkers in order to identify patients who may benefit from IGF1R-directed therapies. Ongoing research focuses on uncovering such biomarkers and elucidating mechanisms of resistance, as this therapeutic target is currently being analyzed from the bedside to bench.
Collapse
Affiliation(s)
- Wade T Iams
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine M Lovly
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee. Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee. Vanderbilt-Ingram Cancer Center, Nashville, Tennessee.
| |
Collapse
|
46
|
Kalimutho M, Parsons K, Mittal D, López JA, Srihari S, Khanna KK. Targeted Therapies for Triple-Negative Breast Cancer: Combating a Stubborn Disease. Trends Pharmacol Sci 2015; 36:822-846. [PMID: 26538316 DOI: 10.1016/j.tips.2015.08.009] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 11/17/2022]
Abstract
Triple-negative breast cancers (TNBCs) constitute a heterogeneous subtype of breast cancers that have a poor clinical outcome. Although no approved targeted therapy is available for TNBCs, molecular-profiling efforts have revealed promising molecular targets, with several candidate compounds having now entered clinical trials for TNBC patients. However, initial results remain modest, thereby highlighting challenges potentially involving intra- and intertumoral heterogeneity and acquisition of therapy resistance. We present a comprehensive review on emerging targeted therapies for treating TNBCs, including the promising approach of immunotherapy and the prognostic value of tumor-infiltrating lymphocytes. We discuss the impact of pathway rewiring in the acquisition of drug resistance, and the prospect of employing combination therapy strategies to overcome challenges towards identifying clinically-viable targeted treatment options for TNBC.
Collapse
Affiliation(s)
- Murugan Kalimutho
- Signal Transduction Laboratory, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia.
| | - Kate Parsons
- Signal Transduction Laboratory, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; School of Natural Sciences, Griffith University, Nathan, QLD 411, Australia
| | - Deepak Mittal
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - J Alejandro López
- School of Natural Sciences, Griffith University, Nathan, QLD 411, Australia; Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Sriganesh Srihari
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kum Kum Khanna
- Signal Transduction Laboratory, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; School of Natural Sciences, Griffith University, Nathan, QLD 411, Australia.
| |
Collapse
|
47
|
Advances in small-molecule drug discovery for triple-negative breast cancer. Future Med Chem 2015; 7:2019-39. [PMID: 26495746 DOI: 10.4155/fmc.15.129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of poor prognosis, highly invasive and difficult-to-treat breast cancers accounting for approximately 15% of clinical cases. Given the poor outlook and lack of sustained response to conventional therapies, TNBC has been the subject of intense studies on new therapeutic approaches in recent years. The development of targeted cancer therapies, often in combination with established chemotherapy, has been applied to a number of new clinical studies in this setting in recent years. This review will highlight recent therapeutic advances in TNBC, focusing on small-molecule drugs and their associated biological mechanisms of action, and offering the possibility of improved prospects for this patient group in the near future.
Collapse
|
48
|
Jaillardon L, Abadie J, Godard T, Campone M, Loussouarn D, Siliart B, Nguyen F. The dog as a naturally-occurring model for insulin-like growth factor type 1 receptor-overexpressing breast cancer: an observational cohort study. BMC Cancer 2015; 15:664. [PMID: 26449867 PMCID: PMC4598970 DOI: 10.1186/s12885-015-1670-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 10/01/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Dogs spontaneously develop invasive mammary carcinoma with a high prevalence of the triple-negative (TN) subtype (lack of ER-Estrogen Receptor and PR-Progesterone Receptor expression, lack of HER2-Human Epidermal Growth Factor Receptor 2 overexpression), making this animal model relevant for investigating new therapeutic pathways. Insulin-like growth factor Type-1 receptor (IGF1R) is frequently overexpressed in primary human breast cancers, with a growing role in the TN phenotype. The purpose of this study was to investigate the Dog as a candidate model for IGF1R-overexpressing mammary carcinoma. METHODS 150 bitches with canine mammary carcinoma (CMC) and a known 2-year follow-up were retrospectively included. IGF1R expression was assessed by immunohistochemistry (IHC) using a similar scoring system as for HER2 in breast cancer. The prognostic value of the IGF1R expression was assessed in terms of overall and specific survival as well as disease-free interval (DFI). RESULTS 47 CMC (31 %) were classified as luminal and 103 (69 %) as triple-negative (TN-CMC). 41 % of CMC overexpressed IGF1R (IHC score 3+) of which 76 % were TN-CMC and 62 % grade III. IGF1R overexpression was associated with aggressive features including lymphovascular invasion, histological grade III, low ER expression and the TN phenotype. Univariate and multivariate analyses revealed that IGF1R overexpression was associated with shorter overall and specific survivals and shorter DFI in TN-CMC. CONCLUSIONS IGF1R overexpression is common and related to a poor outcome in canine invasive mammary carcinoma, particularly in the triple negative subtype, as in human breast cancer. Preclinical studies using the Dog as a spontaneous animal model could be considered to investigate new therapies targeting IGF1R in triple-negative breast cancer.
Collapse
Affiliation(s)
- Laetitia Jaillardon
- Oniris, Université Nantes-Angers-Le Mans, Department of Human Health, Biomedical Research and Animal Models, AMaROC Unit and LDHvet laboratory, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Site de la Chantrerie, Route de Gachet, Nantes, F-44307, France.
| | - Jérome Abadie
- Oniris, Université Nantes-Angers-Le Mans, Department of Human Health, Biomedical Research and Animal Models, AMaROC Unit and LDHvet laboratory, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Site de la Chantrerie, Route de Gachet, Nantes, F-44307, France.
| | - Tiffanie Godard
- Oniris, Université Nantes-Angers-Le Mans, Department of Human Health, Biomedical Research and Animal Models, AMaROC Unit and LDHvet laboratory, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Site de la Chantrerie, Route de Gachet, Nantes, F-44307, France.
| | - Mario Campone
- Institut de Cancérologie de l'Ouest, Boulevard Jacques Monod Saint Herblain-Nantes cedex, Centre de Recherche du Cancer Nantes-Angers, UMR-INSERM U892/CNRS 6299, Nantes, F-44805, France.
| | - Delphine Loussouarn
- Hopital G&R Laënnec, Boulevard Jacques Monod, Saint Herblain-Nantes cedex, Nantes, F-44093, France.
| | - Brigitte Siliart
- Oniris, Université Nantes-Angers-Le Mans, Department of Human Health, Biomedical Research and Animal Models, AMaROC Unit and LDHvet laboratory, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Site de la Chantrerie, Route de Gachet, Nantes, F-44307, France.
| | - Frédérique Nguyen
- Oniris, Université Nantes-Angers-Le Mans, Department of Human Health, Biomedical Research and Animal Models, AMaROC Unit and LDHvet laboratory, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Site de la Chantrerie, Route de Gachet, Nantes, F-44307, France.
| |
Collapse
|
49
|
Kai K, Kondo K, Wang X, Xie X, Pitner MK, Reyes ME, Torres-Adorno AM, Masuda H, Hortobagyi GN, Bartholomeusz C, Saya H, Tripathy D, Sen S, Ueno NT. Antitumor Activity of KW-2450 against Triple-Negative Breast Cancer by Inhibiting Aurora A and B Kinases. Mol Cancer Ther 2015; 14:2687-99. [PMID: 26443806 DOI: 10.1158/1535-7163.mct-15-0096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 09/11/2015] [Indexed: 01/30/2023]
Abstract
Currently, no targeted drug is available for triple-negative breast cancer (TNBC), an aggressive breast cancer that does not express estrogen receptor, progesterone receptor, or HER2. TNBC has high mitotic activity, and, because Aurora A and B mitotic kinases drive cell division and are overexpressed in tumors with a high mitotic index, we hypothesized that inhibiting Aurora A and B produces a significant antitumor effect in TNBC. We tested this hypothesis by determining the antitumor effects of KW-2450, a multikinase inhibitor of both Aurora A and B kinases. We observed significant inhibitory activities of KW-2450 on cell viability, apoptosis, colony formation in agar, and mammosphere formation in TNBC cells. The growth of TNBC xenografts was significantly inhibited with KW-2450. In cell-cycle analysis, KW-2450 induced tetraploid accumulation followed by apoptosis or surviving octaploid (8N) cells, depending on dose. These phenotypes resembled those of Aurora B knockdown and complete pharmaceutical inhibition of Aurora A. We demonstrated that 8N cells resulting from KW-2450 treatment depended on the activation of mitogen-activated protein kinase kinase (MEK) for their survival. When treated with the MEK inhibitor selumetinib combined with KW-2450, compared with KW-2450 alone, the 8N cell population was significantly reduced and apoptosis was increased. Indeed, this combination showed synergistic antitumor effect in SUM149 TNBC xenografts. Collectively, Aurora A and B inhibition had a significant antitumor effect against TNBC, and this antitumor effect was maximized by the combination of selumetinib with Aurora A and B inhibition.
Collapse
Affiliation(s)
- Kazuharu Kai
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Kimie Kondo
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaoping Wang
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xuemei Xie
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mary K Pitner
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Monica E Reyes
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Angie M Torres-Adorno
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hiroko Masuda
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel N Hortobagyi
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chandra Bartholomeusz
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Debu Tripathy
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto T Ueno
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
50
|
Bahnassy A, Mohanad M, Ismail MF, Shaarawy S, El-Bastawisy A, Zekri ARN. Molecular biomarkers for prediction of response to treatment and survival in triple negative breast cancer patients from Egypt. Exp Mol Pathol 2015; 99:303-11. [DOI: 10.1016/j.yexmp.2015.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
|