1
|
Du T, Zou J, Yang Y, Xie H, Pang H, Zhuang W, Wang S, Wei G. CA19-9-related macrophage polarization drives poor prognosis in HCC after immune checkpoint inhibitor treatment. Front Oncol 2025; 14:1528138. [PMID: 39868376 PMCID: PMC11757246 DOI: 10.3389/fonc.2024.1528138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025] Open
Abstract
Background Elevated levels of carbohydrate antigen 19-9 (CA19-9) levels are known to worsen outcomes in various tumors by influencing immune responses. However, the role of CA19-9 in immunotherapy for hepatocellular carcinoma (HCC) remains poorly understood. Methods This study included 621 patients treated with anti-PD-1/PD-L1 treatment at the First Affiliated Hospital of Sun Yat-sen University from January 2017 to March 2023. During immunotherapy, CA19-9 levels were measured and classified as either elevated (≥35 U/mL) or normal (<35 U/mL) for clinical analysis. Results Patients with elevated CA19-9 levels had significantly worse progression-free survival (PFS) and overall survival (OS). The 1-year and 2-year PFS rates were 53.3% and 29.1% in the normal CA19-9 group compared to 16.9% and 11.3% in the elevated group (p < 0.001). Similarly, the 1-year and 2-year OS rates were 90.5% and 75.5% in the normal group versus 64.0% and 36.5% in the elevated group (p < 0.001). Multivariate analysis confirmed CA19-9 was an independent prognostic factor for both PFS and OS. Bioinformatic analysis indicated that FUT3, a key gene in CA19-9 synthesis, correlated with increased macrophage infiltration. And increased M2 macrophage levels and reduced M1 macrophage levels were noted in HCC samples with elevated CA19-9 levels. Further in vivo experiments indicated blocking CA19-9 improved the efficacy of PD-1 treatment through inducing the M1-like polarization of macrophages. Conclusions Our findings demonstrate that elevated CA19-9 levels during immunotherapy are associated with poor survival outcomes in HCC patients. These findings highlight the crucial role of CA19-9 in shaping the tumor immune environment, particularly through its effect on macrophage polarization, and suggest that targeting CA19-9 may improve immunotherapy outcomes.
Collapse
Affiliation(s)
- Tingting Du
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jialin Zou
- Department of Anorectal Surgery, Shenzhen Longgang Central Hospital, Shenzhen, China
| | - Yunying Yang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Honghui Xie
- Department of Gynecology, Lingshan County People’s Hospital, Qinzhou, China
| | - Hui Pang
- Management Evaluation Section, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenquan Zhuang
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shutong Wang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangyan Wei
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Nakisa A, Sempere LF, Chen X, Qu LT, Woldring D, Crawford HC, Huang X. Tumor-Associated Carbohydrate Antigen 19-9 (CA 19-9), a Promising Target for Antibody-Based Detection, Diagnosis, and Immunotherapy of Cancer. ChemMedChem 2024; 19:e202400491. [PMID: 39230966 PMCID: PMC11648843 DOI: 10.1002/cmdc.202400491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024]
Abstract
Carbohydrate antigen 19-9 (CA 19-9) also known as sialyl Lewis A is a tetrasaccharide overexpressed on a wide range of cancerous cells. CA 19-9 has been detected at elevated levels in sera of patients with various types of malignancies, most prominently pancreatic ductal adenocarcinoma. After its identification in 1979, multiple studies have highlighted the significant roles of CA 19-9 in cancer progression, including facilitating extravasation and eventually metastases, proliferation of cancer cells, and suppression of the immune system. Therefore, CA 19-9 has been considered an attractive target for cancer diagnosis, prognosis, and therapy. This review discusses the synthesis of CA 19-9 antigen, elicitation of antibodies through vaccination, development of anti-CA 19-9 monoclonal antibodies, and their applications as imaging tracers and therapeutics for a variety of CA 19-9-positive cancer.
Collapse
Affiliation(s)
- Athar Nakisa
- Department of ChemistryMichigan State UniversityEast Lansing, Michigan48824United States
- Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast Lansing, Michigan48824United States
| | - Lorenzo F. Sempere
- Precision Health Program and Department of RadiologyMichigan State UniversityEast Lansing, Michigan48824United States
| | - Xi Chen
- Department of ChemistryUniversity of CaliforniaDavis, California95616USA
| | - Linda T. Qu
- Department of SurgeryMichigan State UniversityEast Lansing, Michigan48824United States
| | - Daniel Woldring
- Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast Lansing, Michigan48824United States
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast Lansing, Michigan48824United States
| | - Howard C. Crawford
- Department of SurgeryHenry Ford Health SystemDetroit, Michigan48202United States
- Department of Pharmacology and ToxicologyMichigan State UniversityEast Lansing, Michigan48824United States
| | - Xuefei Huang
- Department of ChemistryMichigan State UniversityEast Lansing, Michigan48824United States
- Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast Lansing, Michigan48824United States
- Department of Biomedical EngineeringMichigan State UniversityEast Lansing, Michigan48824United States
| |
Collapse
|
3
|
Vitale F, Zileri Dal Verme L, Paratore M, Negri M, Nista EC, Ainora ME, Esposto G, Mignini I, Borriello R, Galasso L, Alfieri S, Gasbarrini A, Zocco MA, Nicoletti A. The Past, Present, and Future of Biomarkers for the Early Diagnosis of Pancreatic Cancer. Biomedicines 2024; 12:2840. [PMID: 39767746 PMCID: PMC11673965 DOI: 10.3390/biomedicines12122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Pancreatic cancer is one of the most aggressive cancers with a very poor 5-year survival rate and reduced therapeutic options when diagnosed in an advanced stage. The dismal prognosis of pancreatic cancer has guided significant efforts to discover novel biomarkers in order to anticipate diagnosis, increasing the population of patients who can benefit from curative surgical treatment. CA 19-9 is the reference biomarker that supports the diagnosis and guides the response to treatments. However, it has significant limitations, a low specificity, and is inefficient as a screening tool. Several potential biomarkers have been discovered in the serum, urine, feces, and pancreatic juice of patients. However, most of this evidence needs further validation in larger cohorts. The advent of advanced omics sciences and liquid biopsy techniques has further enhanced this field of research. The aim of this review is to analyze the historical evolution of the research on novel biomarkers for the early diagnosis of pancreatic cancer, focusing on the current evidence for the most promising biomarkers from different body fluids and the novel trends in research, such as omics sciences and liquid biopsy, in order to favor the application of modern personalized medicine.
Collapse
Affiliation(s)
- Federica Vitale
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Lorenzo Zileri Dal Verme
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Mattia Paratore
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Marcantonio Negri
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Enrico Celestino Nista
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Maria Elena Ainora
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Giorgio Esposto
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Irene Mignini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Raffaele Borriello
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Linda Galasso
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Sergio Alfieri
- Centro Pancreas, Chirurgia Digestiva, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Maria Assunta Zocco
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Alberto Nicoletti
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| |
Collapse
|
4
|
Rodriguez C, Sarrett SM, Sebastiano J, Delaney S, McGlone SA, Hosny MM, Thau S, Bournazos S, Zeglis BM. Exploring the Interplay Between Radioimmunoconjugates and Fcγ Receptors in Genetically Engineered Mouse Models of Cancer. ACS Pharmacol Transl Sci 2024; 7:3452-3461. [PMID: 39539260 PMCID: PMC11555515 DOI: 10.1021/acsptsci.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Fcγ receptors (FcγR) are responsible for many of the interactions between immunoglobulins (IgG) and immune cells. In biomedicine, this interplay is critical to the activity of several types of immunotherapeutics; however, relatively little is known about how FcγRs affect the in vivo performance of radiolabeled antibodies. A handful of recent preclinical studies suggest that binding by FcγR-and particularly FcγRI-can affect the pharmacokinetic profiles of 89Zr-labeled radioimmunoconjugates, but there are no extant studies in immunocompetent or genetically engineered mouse models of cancer. In the investigation at hand, we synthesized and characterized 89Zr-labeled probes based on wild-type and aglycosylated variants of the CA19-9-targeting antibody 5B1 and evaluated their in vivo behavior in several murine models of cancer, including immunocompetent and FcγR-humanized mice. The aglycosylated desferrioxamine (DFO)-bearing immunoconjugate DFO-N297A5B1 displayed identical binding to CA19-9-expressing cells compared to its wild-type analogue (DFO-5B1) but exhibited dramatically attenuated affinity for several FcγR. Positron emission tomography imaging and biodistribution studies with [89Zr]Zr-DFO-5B1 and [89Zr]Zr-DFO-N297A5B1 were subsequently performed in several strains of mice bearing CA19-9-expressing BxPC3 human pancreatic ductal adenocarcinoma and B16F10-FUT3 murine melanoma xenografts. Significant differences in the pharmacokinetics of the two radioimmunoconjugates were observed in tumor-bearing immunocompromised NSG mice, but these differences failed to materialize in immunocompetent C57BL/6 and FcγR-humanized C57BL/6 mice with B16F10-FUT3 xenografts. We hypothesize that these observations are related to the presence or absence of endogenous IgG. NSG mice completely lack endogenous IgG, and thus their mFcγR are free to bind radioimmunoconjugates and alter their pharmacokinetic behavior. In contrast, C57BL/6 and FcγR-humanized C57BL/6 mice both have endogenous IgG that occupy their FcγR (murine for the former and human for the latter), precluding interactions with radioimmunoconjugates. Ultimately, these data suggest that understanding the interplay between radiolabeled antibodies and FcγR is critical during the preclinical evaluation of radioimmunoconjugates.
Collapse
Affiliation(s)
- Cindy Rodriguez
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United States
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York 10021, New York, United States
- Ph.D.
Program in Chemistry, Graduate Center of
City University of New York, New
York 10021, New York, United States
| | - Samantha M. Sarrett
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United States
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York 10021, New York, United States
- Ph.D.
Program in Biochemistry, Graduate Center
of City University of New York, New York 10021, New
York, United States
| | - Joni Sebastiano
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United States
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York 10021, New York, United States
- Ph.D.
Program in Biochemistry, Graduate Center
of City University of New York, New York 10021, New
York, United States
| | - Samantha Delaney
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United States
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York 10021, New York, United States
- Ph.D.
Program in Biochemistry, Graduate Center
of City University of New York, New York 10021, New
York, United States
| | - Shane A. McGlone
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United States
| | - Meena M. Hosny
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United States
| | - Sarah Thau
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United States
| | - Stylianos Bournazos
- Laboratory
of Molecular Genetics and Immunology, The
Rockefeller University, 1230 York Avenue, New York 10065, New York, United States
| | - Brian M. Zeglis
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United States
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York 10021, New York, United States
- Ph.D.
Program in Chemistry, Graduate Center of
City University of New York, New
York 10021, New York, United States
- Ph.D.
Program in Biochemistry, Graduate Center
of City University of New York, New York 10021, New
York, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York, United States
| |
Collapse
|
5
|
Calistri S, Ottaviano G, Ubaldini A. Radiopharmaceuticals for Pancreatic Cancer: A Review of Current Approaches and Future Directions. Pharmaceuticals (Basel) 2024; 17:1314. [PMID: 39458955 PMCID: PMC11510189 DOI: 10.3390/ph17101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
The poor prognosis of pancreatic cancer requires novel treatment options. This review examines the evolution of radiopharmaceuticals in the treatment of pancreatic cancer. Established strategies such as peptide receptor radionuclide therapy (PRRT) offer targeted and effective treatment, compared to conventional treatments. However, there are currently no radiopharmaceuticals approved for the treatment of pancreatic cancer in Europe, which requires further research and novel approaches. New radiopharmaceuticals including radiolabeled antibodies, peptides, and nanotechnological approaches are promising in addressing the challenges of pancreatic cancer therapy. These new agents may offer more specific targeting and potentially improve efficacy compared to traditional therapies. Further research is needed to optimize efficacy, address limitations, and explore the overall potential of these new strategies in the treatment of this aggressive and harmful pathology.
Collapse
Affiliation(s)
- Sara Calistri
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Bologna, Via Martiri di Monte Sole 4, 40129 Bologna, Italy; (G.O.); (A.U.)
| | - Giuseppe Ottaviano
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Bologna, Via Martiri di Monte Sole 4, 40129 Bologna, Italy; (G.O.); (A.U.)
| | - Alberto Ubaldini
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Bologna, Via Martiri di Monte Sole 4, 40129 Bologna, Italy; (G.O.); (A.U.)
| |
Collapse
|
6
|
Yin T, Han J, Cui Y, Shang D, Xiang H. Prospect of Gold Nanoparticles in Pancreatic Cancer. Pharmaceutics 2024; 16:806. [PMID: 38931925 PMCID: PMC11207630 DOI: 10.3390/pharmaceutics16060806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 06/28/2024] Open
Abstract
Pancreatic cancer (PC) is characterized by its notably poor prognosis and high mortality rate, underscoring the critical need for advancements in its diagnosis and therapy. Gold nanoparticles (AuNPs), with their distinctive physicochemical characteristics, demonstrate significant application potential in cancer therapy. For example, upon exposure to lasers of certain wavelengths, they facilitate localized heating, rendering them extremely effective in photothermal therapy. Additionally, their extensive surface area enables the conjugation of therapeutic agents or targeting molecules, increasing the accuracy of drug delivery systems. Moreover, AuNPs can serve as radiosensitizers, enhancing the efficacy of radiotherapy by boosting the radiation absorption in tumor cells. Here, we systematically reviewed the application and future directions of AuNPs in the diagnosis and treatment of PC. Although AuNPs have advantages in improving diagnostic and therapeutic efficacy, as well as minimizing damage to normal tissues, concerns about their potential toxicity and safety need to be comprehensively evaluated.
Collapse
Affiliation(s)
- Tianyi Yin
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (T.Y.); (J.H.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Jingrun Han
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (T.Y.); (J.H.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Yuying Cui
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (T.Y.); (J.H.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Hong Xiang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| |
Collapse
|
7
|
Li P, Liu Z. Glycan-specific molecularly imprinted polymers towards cancer diagnostics: merits, applications, and future perspectives. Chem Soc Rev 2024; 53:1870-1891. [PMID: 38223993 DOI: 10.1039/d3cs00842h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Aberrant glycans are a hallmark of cancer states. Notably, emerging evidence has demonstrated that the diagnosis of cancers with tumour-specific glycan patterns holds great potential to address unmet medical needs, especially in improving diagnostic sensitivity and selectivity. However, despite vast glycans having been identified as potent markers, glycan-based diagnostic methods remain largely limited in clinical practice. There are several reasons that prevent them from reaching the market, and the lack of anti-glycan antibodies is one of the most challenging hurdles. With the increasing need for accelerating the translational process, numerous efforts have been made to find antibody alternatives, such as lectins, boronic acids and aptamers. However, issues concerning affinity, selectivity, stability and versatility are yet to be fully addressed. Molecularly imprinted polymers (MIPs), synthetic antibody mimics with tailored cavities for target molecules, hold the potential to revolutionize this dismal progress. MIPs can bind a wide range of glycan markers, even those without specific antibodies. This capacity effectively broadens the clinical applicability of glycan-based diagnostics. Additionally, glycoform-resolved diagnosis can also be achieved through customization of MIPs, allowing for more precise diagnostic applications. In this review, we intent to introduce the current status of glycans as potential biomarkers and critically evaluate the challenges that hinder the development of in vitro diagnostic assays, with a particular focus on glycan-specific recognition entities. Moreover, we highlight the key role of MIPs in this area and provide examples of their successful use. Finally, we conclude the review with the remaining challenges, future outlook, and emerging opportunities.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
8
|
Rashidijahanabad Z, Ramadan S, O'Brien NA, Nakisa A, Lang S, Crawford H, Gildersleeve JC, Huang X. Stereoselective Synthesis of Sialyl Lewis a Antigen and the Effective Anticancer Activity of Its Bacteriophage Qβ Conjugate as an Anticancer Vaccine. Angew Chem Int Ed Engl 2023; 62:e202309744. [PMID: 37781858 PMCID: PMC10842512 DOI: 10.1002/anie.202309744,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Indexed: 06/15/2024]
Abstract
Sialyl Lewisa (sLea ), also known as cancer antigen 19-9 (CA19-9), is a tumor-associated carbohydrate antigen. The overexpression of sLea on the surface of a variety of cancer cells makes it an attractive target for anticancer immunotherapy. However, sLea -based anticancer vaccines have been under-explored. To develop a new vaccine, efficient stereoselective synthesis of sLea with an amine-bearing linker was achieved, which was subsequently conjugated with a powerful carrier bacteriophage, Qβ. Mouse immunization with the Qβ-sLea conjugate generated strong and long-lasting anti-sLea IgG antibody responses, which were superior to those induced by the corresponding conjugate of sLea with the benchmark carrier keyhole limpet hemocyanin. Antibodies elicited by Qβ-sLea were highly selective toward the sLea structure, could bind strongly with sLea -expressing cancer cells and human pancreatic cancer tissues, and kill tumor cells through complement-mediated cytotoxicity. Furthermore, vaccination with Qβ-sLea significantly reduced tumor development in a metastatic cancer model in mice, demonstrating tumor protection for the first time by a sLea -based vaccine, thus highlighting the significant potential of sLea as a promising cancer antigen.
Collapse
Affiliation(s)
- Zahra Rashidijahanabad
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
- Chemistry Department, Faculty of Science, Benha University, 13518, Benha, Qaliobiya, Egypt
| | - Nicholas A O'Brien
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, 21702, USA
| | - Athar Nakisa
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| | - Howard Crawford
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, 48202, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, 21702, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
- Department of Biomedical Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| |
Collapse
|
9
|
Rashidijahanabad Z, Ramadan S, O'Brien NA, Nakisa A, Lang S, Crawford H, Gildersleeve JC, Huang X. Stereoselective Synthesis of Sialyl Lewis a Antigen and the Effective Anticancer Activity of Its Bacteriophage Qβ Conjugate as an Anticancer Vaccine. Angew Chem Int Ed Engl 2023; 62:e202309744. [PMID: 37781858 PMCID: PMC10842512 DOI: 10.1002/anie.202309744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
Sialyl Lewisa (sLea ), also known as cancer antigen 19-9 (CA19-9), is a tumor-associated carbohydrate antigen. The overexpression of sLea on the surface of a variety of cancer cells makes it an attractive target for anticancer immunotherapy. However, sLea -based anticancer vaccines have been under-explored. To develop a new vaccine, efficient stereoselective synthesis of sLea with an amine-bearing linker was achieved, which was subsequently conjugated with a powerful carrier bacteriophage, Qβ. Mouse immunization with the Qβ-sLea conjugate generated strong and long-lasting anti-sLea IgG antibody responses, which were superior to those induced by the corresponding conjugate of sLea with the benchmark carrier keyhole limpet hemocyanin. Antibodies elicited by Qβ-sLea were highly selective toward the sLea structure, could bind strongly with sLea -expressing cancer cells and human pancreatic cancer tissues, and kill tumor cells through complement-mediated cytotoxicity. Furthermore, vaccination with Qβ-sLea significantly reduced tumor development in a metastatic cancer model in mice, demonstrating tumor protection for the first time by a sLea -based vaccine, thus highlighting the significant potential of sLea as a promising cancer antigen.
Collapse
Affiliation(s)
- Zahra Rashidijahanabad
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
- Chemistry Department, Faculty of Science, Benha University, 13518, Benha, Qaliobiya, Egypt
| | - Nicholas A O'Brien
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, 21702, USA
| | - Athar Nakisa
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| | - Howard Crawford
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, 48202, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, 21702, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
- Department of Biomedical Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Gillmann KM, Temme JS, Marglous S, Brown CE, Gildersleeve JC. Anti-glycan monoclonal antibodies: Basic research and clinical applications. Curr Opin Chem Biol 2023; 74:102281. [PMID: 36905763 PMCID: PMC10732169 DOI: 10.1016/j.cbpa.2023.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 03/12/2023]
Abstract
Anti-glycan monoclonal antibodies have important applications in human health and basic research. Therapeutic antibodies that recognize cancer- or pathogen-associated glycans have been investigated in numerous clinical trials, resulting in two FDA-approved biopharmaceuticals. Anti-glycan antibodies are also utilized to diagnose, prognosticate, and monitor disease progression, as well as to study the biological roles and expression of glycans. High-quality anti-glycan mAbs are still in limited supply, highlighting the need for new technologies for anti-glycan antibody discovery. This review discusses anti-glycan monoclonal antibodies with applications to basic research, diagnostics, and therapeutics, focusing on recent advances in mAbs targeting cancer- and infectious disease-associated glycans.
Collapse
Affiliation(s)
- Kara M Gillmann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - J Sebastian Temme
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Samantha Marglous
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Claire E Brown
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
11
|
Marciel MP, Haldar B, Hwang J, Bhalerao N, Bellis SL. Role of tumor cell sialylation in pancreatic cancer progression. Adv Cancer Res 2022; 157:123-155. [PMID: 36725107 PMCID: PMC11342334 DOI: 10.1016/bs.acr.2022.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies and is currently the third leading cause of cancer death. The aggressiveness of PDAC stems from late diagnosis, early metastasis, and poor efficacy of current chemotherapies. Thus, there is an urgent need for effective biomarkers for early detection of PDAC and development of new therapeutic strategies. It has long been known that cellular glycosylation is dysregulated in pancreatic cancer cells, however, tumor-associated glycans and their cognate glycosylating enzymes have received insufficient attention as potential clinical targets. Aberrant glycosylation affects a broad range of pathways that underpin tumor initiation, metastatic progression, and resistance to cancer treatment. One of the prevalent alterations in the cancer glycome is an enrichment in a select group of sialylated glycans including sialylated, branched N-glycans, sialyl Lewis antigens, and sialylated forms of truncated O-glycans such as the sialyl Tn antigen. These modifications affect the activity of numerous cell surface receptors, which collectively impart malignant characteristics typified by enhanced cell proliferation, migration, invasion and apoptosis-resistance. Additionally, sialic acids on tumor cells engage inhibitory Siglec receptors on immune cells to dampen anti-tumor immunity, further promoting cancer progression. The goal of this review is to summarize the predominant changes in sialylation occurring in pancreatic cancer, the biological functions of sialylated glycoproteins in cancer pathogenesis, and the emerging strategies for targeting sialoglycans and Siglec receptors in cancer therapeutics.
Collapse
Affiliation(s)
- Michael P Marciel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Barnita Haldar
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nikita Bhalerao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
12
|
Xu H, Dun B, Liu B, Mysona D, She J, Ma R. A novel monoclonal antibody associated with glucoside kills gastric adenocarcinoma AGS cells based on glycosylation target. J Cell Mol Med 2022; 26:4781-4791. [PMID: 35946053 PMCID: PMC9465190 DOI: 10.1111/jcmm.17504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
Glycosylation results in the production of glycans which are required for certain proteins to function. These glycans are also present on cell surfaces where they help maintain cell membrane integrity and are a key component of immune recognition. As such, cancer has been shown to alter glycosylation to promote tumour proliferation, invasion, angiogenesis, and immune envasion. Currently, there are few therapeutic monoclonal antibodies (mAb) which target glycosylation alterations in cancer. Here, we report a novel mAb associated with a glucoside, mAb 201E4, which is able induce cancer cell death and apoptosis based on a specific glycosylation target. This mAb evokes cancer cell death in vitro via caspase, fas, and mitochondrial associated apoptotic pathways. The efficacy of this mAb was further confirmed in vivo as treatment of mice with mAb 201E4 resulted in potent tumour shrinkage. Finally, the antibody was proven to be specific to glycosylation alterations in cancer and have no binding to normal tissues. This data indicates that mAb 201E4 successfully targets glycosylation alterations in neoplasms to induce cancer cell death, which may provide a new strategy for therapy in cancer.
Collapse
Affiliation(s)
- Heng Xu
- Jiangsu Provincial Institute of Materia MedicaNanjing Tech UniversityNanjingChina
- Jinfiniti Precision MedicineAugustaGeorgiaUSA
| | - Boying Dun
- Jinfiniti Precision MedicineAugustaGeorgiaUSA
| | - Beiyi Liu
- Institute of Animal ScienceJiangsu Academy of Agricultural ScienceNanjingJiangsuChina
| | | | | | - Rong Ma
- Research Center For Clinical OncologyJiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer HospitalNanjingChina
| |
Collapse
|
13
|
Sorieul C, Papi F, Carboni F, Pecetta S, Phogat S, Adamo R. Recent advances and future perspectives on carbohydrate-based cancer vaccines and therapeutics. Pharmacol Ther 2022; 235:108158. [PMID: 35183590 DOI: 10.1016/j.pharmthera.2022.108158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Carbohydrates are abundantly expressed on the surface of both eukaryotic and prokaryotic cells, often as post translational modifications of proteins. Glycoproteins are recognized by the immune system and can trigger both innate and humoral responses. This feature has been harnessed to generate vaccines against polysaccharide-encapsulated bacteria such as Streptococcus pneumoniae, Hemophilus influenzae type b and Neisseria meningitidis. In cancer, glycosylation plays a pivotal role in malignancy development and progression. Since glycans are specifically expressed on the surface of tumor cells, they have been targeted for the discovery of anticancer preventive and therapeutic treatments, such as vaccines and monoclonal antibodies. Despite the various efforts made over the last years, resulting in a series of clinical studies, attempts of vaccination with carbohydrate-based candidates have proven unsuccessful, primarily due to the immune tolerance often associated with these glycans. New strategies are thus deployed to enhance carbohydrate-based cancer vaccines. Moreover, lessons learned from glycan immunobiology paved the way to the development of new monoclonal antibodies specifically designed to recognize cancer-bound carbohydrates and induce tumor cell killing. Herein we provide an overview of the immunological principles behind the immune response towards glycans and glycoconjugates and the approaches exploited at both preclinical and clinical level to target cancer-associated glycans for the development of vaccines and therapeutic monoclonal antibodies. We also discuss gaps and opportunities to successfully advance glycan-directed cancer therapies, which could provide patients with innovative and effective treatments.
Collapse
|
14
|
Manafi-Farid R, Ataeinia B, Ranjbar S, Jamshidi Araghi Z, Moradi MM, Pirich C, Beheshti M. ImmunoPET: Antibody-Based PET Imaging in Solid Tumors. Front Med (Lausanne) 2022; 9:916693. [PMID: 35836956 PMCID: PMC9273828 DOI: 10.3389/fmed.2022.916693] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a molecular imaging modality combining the high sensitivity of PET with the specific targeting ability of monoclonal antibodies. Various radioimmunotracers have been successfully developed to target a broad spectrum of molecules expressed by malignant cells or tumor microenvironments. Only a few are translated into clinical studies and barely into clinical practices. Some drawbacks include slow radioimmunotracer kinetics, high physiologic uptake in lymphoid organs, and heterogeneous activity in tumoral lesions. Measures are taken to overcome the disadvantages, and new tracers are being developed. In this review, we aim to mention the fundamental components of immunoPET imaging, explore the groundbreaking success achieved using this new technique, and review different radioimmunotracers employed in various solid tumors to elaborate on this relatively new imaging modality.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahar Ataeinia
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shaghayegh Ranjbar
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Zahra Jamshidi Araghi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mobin Moradi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
15
|
Pu C, Biyuan, Xu K, Zhao Y. Glycosylation and its research progress in endometrial cancer. Clin Transl Oncol 2022; 24:1865-1880. [PMID: 35752750 PMCID: PMC9418304 DOI: 10.1007/s12094-022-02858-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Endometrial cancer (EC) is one of the most common tumors in the female reproductive system, which seriously threatens women's health, particularly in developed countries. 13% of the patients with EC have a poor prognosis due to recurrence and metastasis. Therefore, identifying good predictive biomarkers and therapeutic targets is critical to enable the early detection of metastasis and improve the prognosis. For decades, extensive studies had focused on glycans and glycoproteins in the progression of cancer. The types of glycans that are covalently attached to the polypeptide backbone, usually via nitrogen or oxygen linkages, are known as N‑glycans or O‑glycans, respectively. The degree of protein glycosylation and the aberrant changes in the carbohydrate structures have been implicated in the extent of tumorigenesis and reported to play a critical role in regulating tumor invasion, metabolism, and immunity. This review summarizes the essential biological role of glycosylation in EC, with a focus on the recent advances in glycomics and glycosylation markers, highlighting their implications in the diagnosis and treatment of EC.
Collapse
Affiliation(s)
- Congli Pu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Biyuan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kai Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yingchao Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
16
|
Berois N, Pittini A, Osinaga E. Targeting Tumor Glycans for Cancer Therapy: Successes, Limitations, and Perspectives. Cancers (Basel) 2022; 14:cancers14030645. [PMID: 35158915 PMCID: PMC8833780 DOI: 10.3390/cancers14030645] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Aberrant glycosylation is a common feature of many cancers, and it plays crucial roles in tumor development and biology. Cancer progression can be regulated by several physiopathological processes controlled by glycosylation, such as cell–cell adhesion, cell–matrix interaction, epithelial-to-mesenchymal transition, tumor proliferation, invasion, and metastasis. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs), which are suitable for selective cancer targeting, as well as novel antitumor immunotherapy approaches. This review summarizes the strategies developed in cancer immunotherapy targeting TACAs, analyzing molecular and cellular mechanisms and state-of-the-art methods in clinical oncology. Abstract Aberrant glycosylation is a hallmark of cancer and can lead to changes that influence tumor behavior. Glycans can serve as a source of novel clinical biomarker developments, providing a set of specific targets for therapeutic intervention. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs) suitable for selective cancer-targeting therapy. The best characterized TACAs are truncated O-glycans (Tn, TF, and sialyl-Tn antigens), gangliosides (GD2, GD3, GM2, GM3, fucosyl-GM1), globo-serie glycans (Globo-H, SSEA-3, SSEA-4), Lewis antigens, and polysialic acid. In this review, we analyze strategies for cancer immunotherapy targeting TACAs, including different antibody developments, the production of vaccines, and the generation of CAR-T cells. Some approaches have been approved for clinical use, such as anti-GD2 antibodies. Moreover, in terms of the antitumor mechanisms against different TACAs, we show results of selected clinical trials, considering the horizons that have opened up as a result of recent developments in technologies used for cancer control.
Collapse
Affiliation(s)
- Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Correspondence: (N.B.); (E.O.)
| | - Alvaro Pittini
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Eduardo Osinaga
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Correspondence: (N.B.); (E.O.)
| |
Collapse
|
17
|
Borenstein-Katz A, Warszawski S, Amon R, Eilon M, Cohen-Dvashi H, Leviatan Ben-Arye S, Tasnima N, Yu H, Chen X, Padler-Karavani V, Fleishman SJ, Diskin R. Biomolecular Recognition of the Glycan Neoantigen CA19-9 by Distinct Antibodies. J Mol Biol 2021; 433:167099. [PMID: 34119488 PMCID: PMC7611348 DOI: 10.1016/j.jmb.2021.167099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/11/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
Glycans decorate the cell surface, secreted glycoproteins and glycolipids, and altered glycans are often found in cancers. Despite their high diagnostic and therapeutic potential, however, glycans are polar and flexible molecules that are quite challenging for the development and design of high-affinity binding antibodies. To understand the mechanisms by which glycan neoantigens are specifically recognized by antibodies, we analyze the biomolecular recognition of the tumor-associated carbohydrate antigen CA19-9 by two distinct antibodies using X-ray crystallography. Despite the potential plasticity of glycans and the very different antigen-binding surfaces presented by the antibodies, both structures reveal an essentially identical extended CA19-9 conformer, suggesting that this conformer's stability selects the antibodies. Starting from the bound structure of one of the antibodies, we use the AbLIFT computational algorithm to design a variant with seven core mutations in the variable domain's light-heavy chain interface that exhibits tenfold improved affinity for CA19-9. The results reveal strategies used by antibodies to specifically recognize glycan antigens and show how automated antibody-optimization methods may be used to enhance the clinical potential of existing antibodies.
Collapse
Affiliation(s)
- Aliza Borenstein-Katz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Shira Warszawski
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ron Amon
- Department of Cell Research and Immunology, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Maayan Eilon
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Hadas Cohen-Dvashi
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Shani Leviatan Ben-Arye
- Department of Cell Research and Immunology, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nova Tasnima
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Sarel Jacob Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ron Diskin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
18
|
Thurin M. Tumor-Associated Glycans as Targets for Immunotherapy: The Wistar Institute Experience/Legacy. Monoclon Antib Immunodiagn Immunother 2021; 40:89-100. [PMID: 34161162 DOI: 10.1089/mab.2021.0024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumor cells are characterized by the expression of tumor-specific carbohydrate structures that differ from their normal counterparts. Carbohydrates on tumor cells have phenotypical as well as functional implications, impacting the tumor progression process, from malignant transformation to metastasis formation. Importantly, carbohydrates are structures that play a role in receptor-ligand interaction and elicit the activity of growth factor receptors, integrins, lectins, and other type 1 transmembrane proteins. They have been recognized as biomarkers for cancer diagnosis, and evidence demonstrating their relevance as targets for anticancer therapeutic strategies, including immunotherapy, continues to accumulate. Different approaches targeting carbohydrates include monoclonal antibodies (mAbs), antibody (Ab)-drug conjugates, vaccines, and adhesion antagonists. Development of bispecific antibodies and chimeric antigen receptor (CAR)-modified T cells against tumor-associated carbohydrate antigens (TACAs) as promising cancer immunotherapeutic agents is rapidly evolving. As reviewed here, there are several cancer-associated glycan features that can be leveraged to design rational drug or immune system targets, applying multiple TACA structural and functional features to be targeted as the standard treatment paradigm. Many of the underlying targets were defined by researchers at the Wistar Institute in Philadelphia, Pennsylvania, which provide basis for different immunotherapy approaches.
Collapse
Affiliation(s)
- Magdalena Thurin
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Smithy JW, O'Reilly EM. Pancreas cancer: Therapeutic trials in metastatic disease. J Surg Oncol 2021; 123:1475-1488. [PMID: 33831245 PMCID: PMC8606164 DOI: 10.1002/jso.26359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/13/2020] [Indexed: 12/15/2022]
Abstract
Metastatic pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer-related mortality in 2021. Cytotoxic therapies are the therapeutic mainstay for PDAC. The recent approval of olaparib as maintenance therapy for germline BRCA1/2-mutated PDAC and pembrolizumab for mismatch repair deficient PDAC represent molecularly targeted approaches for this disease. Investigational therapeutic strategies include targeting the stroma, metabolism, tumor microenvironment, and the immune system, and selected approaches are reviewed herein.
Collapse
Affiliation(s)
- James W Smithy
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| |
Collapse
|
20
|
Luo G, Jin K, Deng S, Cheng H, Fan Z, Gong Y, Qian Y, Huang Q, Ni Q, Liu C, Yu X. Roles of CA19-9 in pancreatic cancer: Biomarker, predictor and promoter. Biochim Biophys Acta Rev Cancer 2021; 1875:188409. [PMID: 32827580 DOI: 10.1016/j.bbcan.2020.188409] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Carbohydrate antigen 19-9 (CA19-9) is the best validated biomarker and an indicator of aberrant glycosylation in pancreatic cancer. CA19-9 functions as a biomarker, predictor, and promoter in pancreatic cancer. As a biomarker, the sensitivity is approximately 80%, and the major challenges involve false positives in conditions of inflammation and nonpancreatic cancers and false negatives in Lewis-negative Individuals. Lewis antigen status should be determined when using CA19-9 as a biomarker. CA19-9 has screening potential when combined with symptoms and/or risk factors. As a predictor, CA19-9 could be used to assess stage, prognosis, resectability, recurrence, and therapeutic efficacy. Normal baseline levels of CA19-9 are associated with long-term survival. As a promoter, CA19-9 could be used to evaluate the biology of pancreatic cancer. CA19-9 can accelerate pancreatic cancer progression by glycosylating proteins, binding to E-selectin, strengthening angiogenesis, and mediating the immunological response. CA19-9 is an attractive therapeutic target for cancer, and strategies include therapeutic antibodies and vaccines, CA19-9-guided nanoparticles, and inhibition of CA19-9 biosynthesis.
Collapse
Affiliation(s)
- Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Shengming Deng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Zhiyao Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Yitao Gong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Yunzhen Qian
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Qiuyi Huang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China.
| |
Collapse
|
21
|
Smith BAH, Bertozzi CR. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat Rev Drug Discov 2021; 20:217-243. [PMID: 33462432 PMCID: PMC7812346 DOI: 10.1038/s41573-020-00093-1] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/31/2023]
Abstract
Carbohydrates - namely glycans - decorate every cell in the human body and most secreted proteins. Advances in genomics, glycoproteomics and tools from chemical biology have made glycobiology more tractable and understandable. Dysregulated glycosylation plays a major role in disease processes from immune evasion to cognition, sparking research that aims to target glycans for therapeutic benefit. The field is now poised for a boom in drug development. As a harbinger of this activity, glycobiology has already produced several drugs that have improved human health or are currently being translated to the clinic. Focusing on three areas - selectins, Siglecs and glycan-targeted antibodies - this Review aims to tell the stories behind therapies inspired by glycans and to outline how the lessons learned from these approaches are paving the way for future glycobiology-focused therapeutics.
Collapse
Affiliation(s)
- Benjamin A H Smith
- Department of Chemical & Systems Biology and ChEM-H, Stanford School of Medicine, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Department of Chemical & Systems Biology and ChEM-H, Stanford School of Medicine, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
Garcia-Sampedro A, Gaggia G, Ney A, Mahamed I, Acedo P. The State-of-the-Art of Phase II/III Clinical Trials for Targeted Pancreatic Cancer Therapies. J Clin Med 2021; 10:566. [PMID: 33546207 PMCID: PMC7913382 DOI: 10.3390/jcm10040566] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a devastating disease with very poor prognosis. Currently, surgery followed by adjuvant chemotherapy represents the only curative option which, unfortunately, is only available for a small group of patients. The majority of pancreatic cancer cases are diagnosed at advanced or metastatic stage when surgical resection is not possible and treatment options are limited. Thus, novel and more effective therapeutic strategies are urgently needed. Molecular profiling together with targeted therapies against key hallmarks of pancreatic cancer appear as a promising approach that could overcome the limitations of conventional chemo- and radio-therapy. In this review, we focus on the latest personalised and multimodal targeted therapies currently undergoing phase II or III clinical trials. We discuss the most promising findings of agents targeting surface receptors, angiogenesis, DNA damage and cell cycle arrest, key signalling pathways, immunotherapies, and the tumour microenvironment.
Collapse
Affiliation(s)
| | | | | | | | - Pilar Acedo
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London NW3 2QG, UK; (A.G.-S.); (G.G.); (A.N.); (I.M.)
| |
Collapse
|
23
|
Sobol NB, Korsen JA, Younes A, Edwards KJ, Lewis JS. ImmunoPET Imaging of Pancreatic Tumors with 89Zr-Labeled Gold Nanoparticle-Antibody Conjugates. Mol Imaging Biol 2021; 23:84-94. [PMID: 32909244 PMCID: PMC7785666 DOI: 10.1007/s11307-020-01535-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Targeted delivery in vivo remains an immense roadblock for the translation of nanomaterials into the clinic. The greatest obstacle is the mononuclear phagocyte system (MPS), which sequesters foreign substances from general circulation and causes accumulation in organs such as the liver and spleen. The purpose of this study was to determine whether attaching an active targeting antibody, 5B1, to the surface of gold nanoparticles and using clodronate liposomes to deplete liver and splenic macrophages could help to minimize uptake by MPS organs, increase targeted delivery to CA19.9-positive pancreatic tumors, and enhance pancreatic tumor delineation. PROCEDURES To produce the antibody-gold nanoparticle conjugate (Ab-AuNP), the Ab was conjugated to p-isothiocyanatobenzyl-desferrioxamine (p-SCN-DFO) and subsequently conjugated to NHS-activated gold nanoparticles. The Ab-AuNP was characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Modified Lindmo assay was performed to assess binding affinity and internalization potential in vitro. The Ab-AuNP was radiolabeled with 89Zr and injected into CA19.9-positive BxPc-3 pancreatic orthotopic tumor-bearing mice pretreated with or without clodronate liposomes for PET imaging and biodistribution studies. Inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis was used to confirm delivery of gold nanoparticles to BxPc-3 pancreatic subcutaneous xenografts. RESULTS Mice pretreated with clodronate liposomes in an orthotopic setting demonstrated decreased liver uptake at early time points (12.2 ± 2.3 % ID/g vs. 22.8 ± 3.8 % ID/g at 24 h) and increased tumor uptake at 120 h (13.8 ± 8.0 % ID/g vs. 6.0 ± 1.2 % ID/g). This allowed for delineation of orthotopic pancreatic xenografts in significantly more mice treated with clodronate (6/6) than in mice not treated with clodronate (2/6) or mice injected with gold nanoparticles labeled with a nonspecific antibody (0/5). CONCLUSIONS The combination of clodronate liposomes and an active targeting antibody on the surface of gold nanoparticles allowed for PET/CT imaging of subcutaneous and orthotopic pancreatic xenografts in mice.
Collapse
Affiliation(s)
- Nicholas B Sobol
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua A Korsen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Ali Younes
- Department of Chemistry, Hunter College, New York, NY, USA
| | - Kimberly J Edwards
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA.
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
24
|
Kumar K, Ghosh A. Radiochemistry, Production Processes, Labeling Methods, and ImmunoPET Imaging Pharmaceuticals of Iodine-124. Molecules 2021; 26:E414. [PMID: 33466827 PMCID: PMC7830191 DOI: 10.3390/molecules26020414] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 01/01/2023] Open
Abstract
Target-specific biomolecules, monoclonal antibodies (mAb), proteins, and protein fragments are known to have high specificity and affinity for receptors associated with tumors and other pathological conditions. However, the large biomolecules have relatively intermediate to long circulation half-lives (>day) and tumor localization times. Combining superior target specificity of mAbs and high sensitivity and resolution of the PET (Positron Emission Tomography) imaging technique has created a paradigm-shifting imaging modality, ImmunoPET. In addition to metallic PET radionuclides, 124I is an attractive radionuclide for radiolabeling of mAbs as potential immunoPET imaging pharmaceuticals due to its physical properties (decay characteristics and half-life), easy and routine production by cyclotrons, and well-established methodologies for radioiodination. The objective of this report is to provide a comprehensive review of the physical properties of iodine and iodine radionuclides, production processes of 124I, various 124I-labeling methodologies for large biomolecules, mAbs, and the development of 124I-labeled immunoPET imaging pharmaceuticals for various cancer targets in preclinical and clinical environments. A summary of several production processes, including 123Te(d,n)124I, 124Te(d,2n)124I, 121Sb(α,n)124I, 123Sb(α,3n)124I, 123Sb(3He,2n)124I, natSb(α, xn)124I, natSb(3He,n)124I reactions, a detailed overview of the 124Te(p,n)124I reaction (including target selection, preparation, processing, and recovery of 124I), and a fully automated process that can be scaled up for GMP (Good Manufacturing Practices) production of large quantities of 124I is provided. Direct, using inorganic and organic oxidizing agents and enzyme catalysis, and indirect, using prosthetic groups, 124I-labeling techniques have been discussed. Significant research has been conducted, in more than the last two decades, in the development of 124I-labeled immunoPET imaging pharmaceuticals for target-specific cancer detection. Details of preclinical and clinical evaluations of the potential 124I-labeled immunoPET imaging pharmaceuticals are described here.
Collapse
Affiliation(s)
- Krishan Kumar
- Laboratory for Translational Research in Imaging Pharmaceuticals, The Wright Center of Innovation in Biomedical Imaging, Department of Radiology, The Ohio State University, Columbus, OH 43212, USA;
| | | |
Collapse
|
25
|
Houvast RD, Vankemmelbeke M, Durrant LG, Wuhrer M, Baart VM, Kuppen PJK, de Geus-Oei LF, Vahrmeijer AL, Sier CFM. Targeting Glycans and Heavily Glycosylated Proteins for Tumor Imaging. Cancers (Basel) 2020; 12:cancers12123870. [PMID: 33371487 PMCID: PMC7767531 DOI: 10.3390/cancers12123870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Distinguishing malignancy from healthy tissue is essential for oncologic surgery. Targeted imaging during an operation aids the surgeon to operate better. The present tracers for detecting cancer are directed against proteins that are overexpressed on the membrane of tumor cells. This review evaluates the use of tumor-associated sugar molecules as an alternative for proteins to image cancer tissue. These sugar molecules are present as glycans on glycosylated membrane proteins and glycolipids. Due to their location and large numbers per cell, these sugar molecules might be better targets for tumor imaging than proteins. Abstract Real-time tumor imaging techniques are increasingly used in oncological surgery, but still need to be supplemented with novel targeted tracers, providing specific tumor tissue detection based on intra-tumoral processes or protein expression. To maximize tumor/non-tumor contrast, targets should be highly and homogenously expressed on tumor tissue only, preferably from the earliest developmental stage onward. Unfortunately, most evaluated tumor-associated proteins appear not to meet all of these criteria. Thus, the quest for ideal targets continues. Aberrant glycosylation of proteins and lipids is a fundamental hallmark of almost all cancer types and contributes to tumor progression. Additionally, overexpression of glycoproteins that carry aberrant glycans, such as mucins and proteoglycans, is observed. Selected tumor-associated glyco-antigens are abundantly expressed and could, thus, be ideal candidates for targeted tumor imaging. Nevertheless, glycan-based tumor imaging is still in its infancy. In this review, we highlight the potential of glycans, and heavily glycosylated proteoglycans and mucins as targets for multimodal tumor imaging by discussing the preclinical and clinical accomplishments within this field. Additionally, we describe the major advantages and limitations of targeting glycans compared to cancer-associated proteins. Lastly, by providing a brief overview of the most attractive tumor-associated glycans and glycosylated proteins in association with their respective tumor types, we set out the way for implementing glycan-based imaging in a clinical practice.
Collapse
Affiliation(s)
- Ruben D. Houvast
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Mireille Vankemmelbeke
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.V.); (L.G.D.)
| | - Lindy G. Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.V.); (L.G.D.)
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Victor M. Baart
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7500 AE Enschede, The Netherlands
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
- Percuros BV, 2333 ZA Leiden, The Netherlands
- Correspondence: ; Tel.: +31-752662610
| |
Collapse
|
26
|
Higashi K, Maeda K, Miyata K, Yoshimura S, Yamada K, Konno D, Tachibana T, Saito K. Carbohydrate 3′-sialyllactose as a novel target for theranostics in pancreatic ductal adenocarcinoma. Tumour Biol 2020. [DOI: 10.1177/1010428320965279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We previously demonstrated that the carbohydrate 3′-sialyllactose is overexpressed in cancer stem-like cells such as metastatic pancreatic and poorly differentiated gastric cancer cells, and undifferentiated human embryonic stem cells. In this study, we investigated the possibility of 3′-sialyllactose as a target for theranostics in cancers using a recombinant mouse monoclonal antibody r3B1E2 that binds to 3′-sialyllactose. Immunohistochemistry analysis confirmed an elevated expression of 3′-sialyllactose in tumors of pancreas, stomach, and testis, while no expression of 3′-sialyllactose was observed in corresponding normal controls. In addition, a stage-independent expression of 3′-sialyllactose was observed, especially in pancreatic ductal adenocarcinoma (PDAC). The level of serum 3′-sialyllactose in PDAC subjects was significantly higher than that in healthy controls, providing excellent AUC of 0.88. We next explored the therapeutic potential of r3B1E2 for PDAC in vitro. Treatment of r3B1E2 with 3′-sialyllactose-bearing human PDAC cells exhibited a complement-dependent cytotoxicity, whereas no significant activity of r3B1E2 against 3′-sialyllactose-negative cells was observed. Collectively, these findings raise the possibility of 3′-sialyllactose as a novel target for theranostics in PDAC.
Collapse
Affiliation(s)
- Kiyoshi Higashi
- Advanced Materials Development Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan
| | - Keiko Maeda
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan
| | - Kaori Miyata
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan
| | | | - Keita Yamada
- Laboratory of Toxicology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Daijiro Konno
- Cell Engineering Corporation, Osaka, Japan
- Division of Pathophysiology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Taro Tachibana
- Cell Engineering Corporation, Osaka, Japan
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Koichi Saito
- Advanced Materials Development Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan
| |
Collapse
|
27
|
Houvast RD, Baart VM, Bhairosingh SS, Cordfunke RA, Chua JX, Vankemmelbeke M, Parsons T, Kuppen PJK, Durrant LG, Vahrmeijer AL, Sier CFM. Glycan-Based Near-infrared Fluorescent (NIRF) Imaging of Gastrointestinal Tumors: a Preclinical Proof-of-Concept In Vivo Study. Mol Imaging Biol 2020; 22:1511-1522. [PMID: 32780212 PMCID: PMC7666282 DOI: 10.1007/s11307-020-01522-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 11/28/2022]
Abstract
Purpose Aberrantly expressed glycans in cancer are of particular interest for tumor targeting. This proof-of-concept in vivo study aims to validate the use of aberrant Lewis glycans as target for antibody-based, real-time imaging of gastrointestinal cancers. Procedures Immunohistochemical (IHC) staining with monoclonal antibody FG88.2, targeting Lewisa/c/x, was performed on gastrointestinal tumors and their healthy counterparts. Then, FG88.2 and its chimeric human/mouse variant CH88.2 were conjugated with near-infrared fluorescent (NIRF) IRDye 800CW for real-time imaging. Specific binding was evaluated in vitro on human gastrointestinal cancer cell lines with cell-based plate assays, flow cytometry, and immune-fluorescence microscopy. Subsequently, mice bearing human colon and pancreatic subcutaneous tumors were imaged in vivo after intravenous administration of 1 nmol (150 μg) CH88.2-800CW with the clinical Artemis NIRF imaging system using the Pearl Trilogy small animal imager as reference. One week post-injection of the tracer, tumors and organs were resected and tracer uptake was analyzed ex vivo. Results IHC analysis showed strong FG88.2 staining on colonic, gastric, and pancreatic tumors, while staining on their normal tissue counterparts was limited. Next, human cancer cell lines HT-29 (colon) and BxPC-3 and PANC-1 (both pancreatic) were identified as respectively high, moderate, and low Lewisa/c/x-expressing. Using the clinical NIRF camera system for tumor-bearing mice, a mean tumor-to-background ratio (TBR) of 2.2 ± 0.3 (Pearl: 3.1 ± 0.8) was observed in the HT-29 tumors and a TBR of 1.8 ± 0.3 (Pearl: 1.9 ± 0.5) was achieved in the moderate expression BxPC-3 model. In both models, tumors could be adequately localized and delineated by NIRF for up to 1 week. Ex vivo analysis confirmed full tumor penetration of the tracer and low fluorescence signals in other organs. Conclusions Using a novel chimeric Lewisa/c/x-targeting tracer in combination with a clinical NIRF imager, we demonstrate the potential of targeting Lewis glycans for fluorescence-guided surgery of gastrointestinal tumors. Electronic supplementary material The online version of this article (10.1007/s11307-020-01522-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruben D Houvast
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Victor M Baart
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Shadhvi S Bhairosingh
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Robert A Cordfunke
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jia Xin Chua
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Mireille Vankemmelbeke
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Tina Parsons
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Lindy G Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
- Percuros BV, Leiden, the Netherlands.
| |
Collapse
|
28
|
Langbein T, Weber WA, Eiber M. Future of Theranostics: An Outlook on Precision Oncology in Nuclear Medicine. J Nucl Med 2020; 60:13S-19S. [PMID: 31481583 DOI: 10.2967/jnumed.118.220566] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/24/2019] [Indexed: 01/13/2023] Open
Abstract
Molecular alterations in malignant disease result in the expression or upregulations of various targets that can be used for imaging and treatment with radiopharmaceuticals. This theranostic principle has acquired greater importance in personalized medicine in recent years, particularly in oncology, where advanced tumors can be treated effectively with low side effects. Since the pioneering use of 131I in differentiated thyroid cancer in the 1940s, remarkable achievements in nuclear medicine endoradiotherapy have been demonstrated, mainly in the treatment of neuroendocrine neoplasms by using 177Lu-labeled somatostatin analogs or in the treatment of advanced prostate cancer using prostate-specific membrane antigen-directed radionuclide therapy. Besides that, this review focuses on promising novel radiopharmaceuticals and describes their preclinical and clinical status. Radiolabeled antibodies, such as 131I-omburtamab directed against the B7-H3 protein on the surface of neuroblastoma cells; HuMab-5B1, a 89Zr/177Lu-labeled antibody for the treatment of CA19-9-expressing malignancies; and 177Lu-lilotomab, a CD37 antibody for the treatment of B-cell lymphomas, are being highlighted. The neurotensin receptor ligand 111In/177Lu-3B-227 has demonstrated high potential in imaging and therapy for several malignancies (e.g., pancreatic adenocarcinomas). Targeting of the fibroblast activation protein is currently being explored for different tumor entities using PET imaging with the fibroblast activation protein inhibitor (FAPI) 68Ga-FAPI-04, and the first therapeutic applications of 90Y-FAPI-04 have been applied. After 2 decades of rapid development in theranostics, a variety of new targets are available for further clinical investigation.
Collapse
Affiliation(s)
- Thomas Langbein
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wolfgang A Weber
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
29
|
Complementary Use of Carbohydrate Antigens Lewis a, Lewis b, and Sialyl-Lewis a (CA19.9 Epitope) in Gastrointestinal Cancers: Biological Rationale Towards A Personalized Clinical Application. Cancers (Basel) 2020; 12:cancers12061509. [PMID: 32527016 PMCID: PMC7352550 DOI: 10.3390/cancers12061509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
Carbohydrate antigen 19.9 (CA19.9) is used as a tumor marker for clinical and research purposes assuming that it is abundantly produced by gastrointestinal cancer cells due to a cancer-associated aberrant glycosylation favoring its synthesis. Recent data has instead suggested a different picture, where immunodetection on tissue sections matches biochemical and molecular data. In addition to CA19.9, structurally related carbohydrate antigens Lewis a and Lewis b are, in fact, undetectable in colon cancer, due to the down-regulation of a galactosyltransferase necessary for their synthesis. In the pancreas, no differential expression of CA19.9 or cognate glycosyltransferases occurs in cancer. Ductal cells only express such Lewis antigens in a pattern affected by the relative levels of each glycosyltransferase, which are genetically and epigenetically determined. The elevation of circulating antigens seems to depend on the obstruction of neoplastic ducts and loss of polarity occurring in malignant ductal cells. Circulating Lewis a and Lewis b are indeed promising candidates for monitoring pancreatic cancer patients that are negative for CA19.9, but not for improving the low diagnostic performance of such an antigen. Insufficient biological data are available for gastric and bile duct cancer. Studying each patient in a personalized manner determining all Lewis antigens in the surgical specimens and in the blood, together with the status of the tissue-specific glycosylation machinery, promises fruitful advances in translational research and clinical practice.
Collapse
|
30
|
Weitzenfeld P, Bournazos S, Ravetch JV. Antibodies targeting sialyl Lewis A mediate tumor clearance through distinct effector pathways. J Clin Invest 2020; 129:3952-3962. [PMID: 31424423 DOI: 10.1172/jci128437] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/24/2019] [Indexed: 12/28/2022] Open
Abstract
Sialyl Lewis A (sLeA, also known as CA19-9), a tetrasaccharide selectively and highly expressed on advanced adenocarcinomas including colon, stomach, and pancreatic cancers, has long been considered as an attractive target for active and passive vaccination. While progress in antibodies targeting tumor-associated protein antigens resulted in an impressive array of therapeutics for cancer treatment, similar progress in exploiting tumor-associated carbohydrate antigens, such as sLeA, has been hampered by the lack of a detailed understanding of the singular characteristics of these antigens. We have addressed this issue by analyzing antibodies derived from patients immunized with an sLeA/KLH vaccine. These antibodies were engineered to mediate tumor clearance in vivo in preclinical models through Fc-FcγR interactions. However, in contrast to protein antigens in which hFcγRIIIA engagement was both necessary and sufficient to mediate tumor clearance in both preclinical and clinical settings, a similar selective dependence was not seen for anti-sLeA antibodies. Thus, re-engineering the Fc portion of sLeA-targeting antibodies to broadly enhance their affinity for activating FcγRs led to an enhanced therapeutic effect. These findings will facilitate the development of more efficient anticancer therapies and further advance this promising class of therapeutic antibodies into clinical use.
Collapse
|
31
|
Poty S, Mandleywala K, O'Neill E, Knight JC, Cornelissen B, Lewis JS. 89Zr-PET imaging of DNA double-strand breaks for the early monitoring of response following α- and β-particle radioimmunotherapy in a mouse model of pancreatic ductal adenocarcinoma. Theranostics 2020; 10:5802-5814. [PMID: 32483420 PMCID: PMC7255009 DOI: 10.7150/thno.44772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022] Open
Abstract
Rationale: The evaluation of early treatment response is critical for patient prognosis and treatment planning. When the current methods rely on invasive protocols that evaluate the expression of DNA damage markers on patient biopsy samples, we aim to evaluate a non-invasive PET imaging approach to monitor the early expression of the phosphorylated histone γH2AX in the context of pancreatic cancer targeted radionuclide therapy. Pancreatic ductal adenocarcinoma has a poor patient prognosis due to the absence of curative treatment for patients with advanced disease. There is therefore a critical need for the fast clinical translation of new therapeutic options. In line with these observations, our group has been focusing on the development of radiotheranostic agents based on a fully human monoclonal antibody (5B1) with exceptional affinity for CA19.9, an antigen overexpressed in PDAC. Two on-going clinical trials resulted from these efforts, one with 89Zr (diagnosis) and one with 177Lu (β-particle therapy). More recently, we successfully developed and evaluated in PDAC mouse models a targeted α-therapy strategy with high clinical translation potential. We aim to expedite the clinical translation of the developed radioimmunotherapy approaches by investigating the early therapeutic response and effect of radiation therapy in a PDAC mouse model via PET imaging. Methods: Mice bearing BxPC3 tumor xenografts were treated with α- and β-particle pretargeted radioimmunotherapy (PRIT), external beam radiotherapy (EBRT), or sham-treated (vehicle). The phosphorylated histone γH2AX produced as a response to DNA double strand breaks was quantified with the PET radiotracer, [89Zr]Zr-DFO-anti-γH2AX-TAT. Results: PET imaging studies in BxPC3 PDAC mouse models demonstrated increased uptake of [89Zr]Zr-DFO-anti-γH2AX-TAT (6.29 ± 0.15 %IA/g) following β-PRIT in BxPC3 PDAC xenografts as compared to the saline control group (4.58 ± 0.76 %IA/g) and EBRT control group (5.93 ± 0.76 %IA/g). Similarly, significantly higher uptake of [89Zr]Zr-DFO-anti-γH2AX-TAT was observed in tumors of the 225Ac-PRIT and EBRT (10 Gy) cohorts (7.37 ± 1.23 and 6.80 ± 1.24 %IA/g, respectively) compared to the negative control cohort (5.08 ± 0.95 %IA/g). Ex vivo γH2AX immunohistochemistry and immunofluorescence analysis correlated with in vivo89Zr-anti-γH2AX PET/CT imaging with increased γH2AX positive cell and γH2AX foci per cell in the treated cohorts. When α-PRIT resulted in prolonged overall survival of treated animals (107.5 days) as compared to β-PRIT (73.0 days), no evidence of difference in [89Zr]Zr-DFO-anti-γH2AX-TAT uptake at the tumor site was observed, highlighting that DNA damage is not the sole radiobiology paradigm and that off-targeted (bystander) effects should be considered. Conclusions: PET imaging studies with [89Zr]Zr-DFO-anti-γH2AX-TAT following α- and β-particle PRIT in a BxPC3 PDAC subcutaneous xenograft mouse model allowed the monitoring of tumor radiobiological response to treatment.
Collapse
MESH Headings
- Alpha Particles/therapeutic use
- Animals
- Antigens, Tumor-Associated, Carbohydrate/analysis
- Beta Particles/therapeutic use
- Biomarkers, Pharmacological/analysis
- Carcinoma, Pancreatic Ductal/diagnostic imaging
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/radiotherapy
- Cell Line, Tumor
- DNA/genetics
- DNA Breaks, Double-Stranded
- DNA Damage/genetics
- Disease Models, Animal
- Female
- Mice
- Mice, Nude
- Pancreatic Neoplasms/pathology
- Positron Emission Tomography Computed Tomography/methods
- Positron-Emission Tomography/methods
- Radioimmunotherapy/methods
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Sophie Poty
- Department of Radiology, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Komal Mandleywala
- Department of Radiology, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Edward O'Neill
- CRUK/MRC Oxford Institute of Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - James C. Knight
- CRUK/MRC Oxford Institute of Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Bart Cornelissen
- CRUK/MRC Oxford Institute of Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Jason S. Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, NY, USA
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
32
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
33
|
Engle DD, Tiriac H, Rivera KD, Pommier A, Whalen S, Oni TE, Alagesan B, Lee EJ, Yao MA, Lucito MS, Spielman B, Da Silva B, Schoepfer C, Wright K, Creighton B, Afinowicz L, Yu KH, Grützmann R, Aust D, Gimotty PA, Pollard KS, Hruban RH, Goggins MG, Pilarsky C, Park Y, Pappin DJ, Hollingsworth MA, Tuveson DA. The glycan CA19-9 promotes pancreatitis and pancreatic cancer in mice. Science 2020; 364:1156-1162. [PMID: 31221853 DOI: 10.1126/science.aaw3145] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/25/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Glycosylation alterations are indicative of tissue inflammation and neoplasia, but whether these alterations contribute to disease pathogenesis is largely unknown. To study the role of glycan changes in pancreatic disease, we inducibly expressed human fucosyltransferase 3 and β1,3-galactosyltransferase 5 in mice, reconstituting the glycan sialyl-Lewisa, also known as carbohydrate antigen 19-9 (CA19-9). Notably, CA19-9 expression in mice resulted in rapid and severe pancreatitis with hyperactivation of epidermal growth factor receptor (EGFR) signaling. Mechanistically, CA19-9 modification of the matricellular protein fibulin-3 increased its interaction with EGFR, and blockade of fibulin-3, EGFR ligands, or CA19-9 prevented EGFR hyperactivation in organoids. CA19-9-mediated pancreatitis was reversible and could be suppressed with CA19-9 antibodies. CA19-9 also cooperated with the KrasG12D oncogene to produce aggressive pancreatic cancer. These findings implicate CA19-9 in the etiology of pancreatitis and pancreatic cancer and nominate CA19-9 as a therapeutic target.
Collapse
Affiliation(s)
- Dannielle D Engle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Hervé Tiriac
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Keith D Rivera
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Arnaud Pommier
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sean Whalen
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Tobiloba E Oni
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brinda Alagesan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Eun Jung Lee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Melissa A Yao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Matthew S Lucito
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Benjamin Spielman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brandon Da Silva
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Christina Schoepfer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kevin Wright
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brianna Creighton
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lauren Afinowicz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kenneth H Yu
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Joan and Sanford I. Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Daniela Aust
- Institute for Pathology, Universitätsklinikum Dresden, 01307 Dresden, Germany
| | - Phyllis A Gimotty
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA 94158, USA.,Department of Epidemiology and Biostatistics, Institute for Human Genetics, Quantitative Biology Institute, Institute for Computational Health Sciences, and Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ralph H Hruban
- Sidney Kimmel Cancer Center, The Sol Goldman Pancreatic Cancer Research Center, and Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Michael G Goggins
- Sidney Kimmel Cancer Center, The Sol Goldman Pancreatic Cancer Research Center, and Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA.,Departments of Medicine and Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. .,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
34
|
Gupta S, McDonald JD, Ayabe RI, Khan TM, Gamble LA, Sinha S, Hannah C, Blakely AM, Davis JL, Hernandez JM. Targeting CA 19-9 with a humanized monoclonal antibody at the time of surgery may decrease recurrence rates for patients undergoing resections for pancreatic cancer, cholangiocarcinoma and metastatic colorectal cancer. J Gastrointest Oncol 2020; 11:231-235. [PMID: 32399263 DOI: 10.21037/jgo.2020.02.01] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Operable gastrointestinal cancers continue to pose significant challenges. Radical resections are rarely curative, and chemotherapy is able to reduce tumor recurrence for only a small percentage of patients. Despite the obvious advantages of extirpation of the identifiable tumor(s), the inflammatory milieu that accompanies surgery and the obligate time off cytotoxic agents allows for activation of remote quiescent disseminated tumor cells, leading to metastatic recurrence. We are conducting a study to determine the safety and efficacy of immediate peri-operative MVT-5873, a cytotoxic monoclonal antibody targeting carbohydrate antigen 19-9 (CA 19-9), in patients undergoing resections pancreatic cancer, cholangiocarcinoma or metastatic colorectal cancer to the liver. Eligible patients will receive a single dose of MVT-5873 three days before resection and four post-operative infusions, before beginning standard adjuvant regimens. MVT-5873 is a human IgG1 antibody isolated from a patient following immunization with a sLea-KLH vaccine. MVT-5873 demonstrated cell surface binding in sLea positive human tumor lines and has been shown to be potent in complement-dependent cytotoxicity assays and antibody-dependent cell mediated cytotoxicity assays. In patients with metastatic CA 19-9 producing pancreatic adenocarcinoma, MVT-5873 treatment has been shown to decrease serum CA 19-9 levels and prevent tumor progression. The use of perioperative MVT-5873 has the potential to reduce recurrence rates and prolong survival after resection. This trial may open the door for investigation of additional and/or synergistic agents in the immediate peri-operative period and usher in a new paradigm in the management of surgically treated cancers. Trial registration https://clinicaltrials.gov/ct2/show/NCT03801915?term=MVT&rank=3.
Collapse
Affiliation(s)
- Shreya Gupta
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - James D McDonald
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Reed I Ayabe
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Tahsin M Khan
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lauren A Gamble
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Surajit Sinha
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Cathleen Hannah
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Andrew M Blakely
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jeremy L Davis
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jonathan M Hernandez
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
35
|
Fernandes E, Sores J, Cotton S, Peixoto A, Ferreira D, Freitas R, Reis CA, Santos LL, Ferreira JA. Esophageal, gastric and colorectal cancers: Looking beyond classical serological biomarkers towards glycoproteomics-assisted precision oncology. Am J Cancer Res 2020; 10:4903-4928. [PMID: 32308758 PMCID: PMC7163443 DOI: 10.7150/thno.42480] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/16/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal (OC), gastric (GC) and colorectal (CRC) cancers are amongst the digestive track tumors with higher incidence and mortality due to significant molecular heterogeneity. This constitutes a major challenge for patients' management at different levels, including non-invasive detection of the disease, prognostication, therapy selection, patient's follow-up and the introduction of improved and safer therapeutics. Nevertheless, important milestones have been accomplished pursuing the goal of molecular-based precision oncology. Over the past five years, high-throughput technologies have been used to interrogate tumors of distinct clinicopathological natures, generating large-scale biological datasets (e.g. genomics, transcriptomics, and proteomics). As a result, GC and CRC molecular subtypes have been established to assist patient stratification in the clinical settings. However, such molecular panels still require refinement and are yet to provide targetable biomarkers. In parallel, outstanding advances have been made regarding targeted therapeutics and immunotherapy, paving the way for improved patient care; nevertheless, important milestones towards treatment personalization and reduced off-target effects are also to be accomplished. Exploiting the cancer glycoproteome for unique molecular fingerprints generated by dramatic alterations in protein glycosylation may provide the necessary molecular rationale towards this end. Therefore, this review presents functional and clinical evidences supporting a reinvestigation of classical serological glycan biomarkers such as sialyl-Tn (STn) and sialyl-Lewis A (SLeA) antigens from a tumor glycoproteomics perspective. We anticipate that these glycobiomarkers that have so far been employed in non-invasive cancer prognostication may hold unexplored value for patients' management in precision oncology settings.
Collapse
|
36
|
Association between serum carbohydrate antigen 19-9 levels and leukoaraiosis in middle-aged and older adults: A cross-sectional study. Atherosclerosis 2020; 292:188-192. [DOI: 10.1016/j.atherosclerosis.2019.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 01/13/2023]
|
37
|
Negoi I, Beuran M, Hostiuc S, Sartelli M, El-Hussuna A, de-Madaria E. Glycosylation alterations in acute pancreatitis and pancreatic cancer: CA19-9 expression is involved in pathogenesis and maybe targeted by therapy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S306. [PMID: 32016025 DOI: 10.21037/atm.2019.10.72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ionut Negoi
- Carol Davila University of Medicine and Pharmacy Bucharest, Bucharest, Romania.,Department of General Surgery, Emergency Hospital of Bucharest, Bucharest, Romania
| | - Mircea Beuran
- Carol Davila University of Medicine and Pharmacy Bucharest, Bucharest, Romania.,Department of General Surgery, Emergency Hospital of Bucharest, Bucharest, Romania
| | - Sorin Hostiuc
- Carol Davila University of Medicine and Pharmacy Bucharest, Bucharest, Romania.,Department of Legal Medicine and Bioethics, National Institute of Legal Medicine Mina Minovici, Bucharest, Romania
| | | | - Alaa El-Hussuna
- Department of Surgery, Aalborg University Hospital, Aalborg, Denmark
| | - Enrique de-Madaria
- Gastroenterology Department, Alicante University General Hospital, ISABIAL, Alicante, Spain
| |
Collapse
|
38
|
Tommasone S, Allabush F, Tagger YK, Norman J, Köpf M, Tucker JHR, Mendes PM. The challenges of glycan recognition with natural and artificial receptors. Chem Soc Rev 2019; 48:5488-5505. [PMID: 31552920 DOI: 10.1039/c8cs00768c] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycans - simple or complex carbohydrates - play key roles as recognition determinants and modulators of numerous physiological and pathological processes. Thus, many biotechnological, diagnostic and therapeutic opportunities abound for molecular recognition entities that can bind glycans with high selectivity and affinity. This review begins with an overview of the current biologically and synthetically derived glycan-binding scaffolds that include antibodies, lectins, aptamers and boronic acid-based entities. It is followed by a more detailed discussion on various aspects of their generation, structure and recognition properties. It serves as the basis for highlighting recent key developments and technical challenges that must be overcome in order to fully deal with the specific recognition of a highly diverse and complex range of glycan structures.
Collapse
Affiliation(s)
- Stefano Tommasone
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | | | | | | | | | | | | |
Collapse
|
39
|
Lohrmann C, O'Reilly EM, O'Donoghue JA, Pandit-Taskar N, Carrasquillo JA, Lyashchenko SK, Ruan S, Teng R, Scholz W, Maffuid PW, Lewis JS, Weber WA. Retooling a Blood-Based Biomarker: Phase I Assessment of the High-Affinity CA19-9 Antibody HuMab-5B1 for Immuno-PET Imaging of Pancreatic Cancer. Clin Cancer Res 2019; 25:7014-7023. [PMID: 31540979 DOI: 10.1158/1078-0432.ccr-18-3667] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/14/2019] [Accepted: 09/06/2019] [Indexed: 01/16/2023]
Abstract
PURPOSE In patients with cancer who have an abnormal biomarker finding, the source of the biomarker in the bloodstream must be located for confirmation of diagnosis, staging, and therapy planning. We evaluated if immuno-PET with the radiolabeled high-affinity antibody HuMab-5B1 (MVT-2163), binding to the cancer antigen CA19-9, can identify the source of elevated biomarkers in patients with pancreatic cancer. PATIENTS AND METHODS In this phase I dose-escalating study, 12 patients with CA19-9-positive metastatic malignancies were injected with MVT-2163. Within 7 days, all patients underwent a total of four whole-body PET/CT scans. A diagnostic CT scan was performed prior to injection of MVT-2163 to correlate findings on MVT-2163 PET/CT. RESULTS Immuno-PET with MVT-2163 was safe and visualized known primary tumors and metastases with high contrast. In addition, radiotracer uptake was not only observed in metastases known from conventional CT, but also seen in subcentimeter lymph nodes located in typical metastatic sites of pancreatic cancer, which were not abnormal on routine clinical imaging studies. A significant fraction of the patients demonstrated very high and, over time, increased uptake of MVT-2163 in tumor tissue, suggesting that HuMab-5B1 labeled with beta-emitting radioisotopes may have the potential to deliver therapeutic doses of radiation to cancer cells. CONCLUSIONS Our study shows that the tumor antigen CA19-9 secreted to the circulation can be used for sensitive detection of primary tumors and metastatic disease by immuno-PET. This significantly broadens the number of molecular targets that can be used for PET imaging and offers new opportunities for noninvasive characterization of tumors in patients.
Collapse
Affiliation(s)
- Christian Lohrmann
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Weill Cornell Medical College, New York, New York
| | - Eileen M O'Reilly
- Weill Cornell Medical College, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph A O'Donoghue
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neeta Pandit-Taskar
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Jorge A Carrasquillo
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Serge K Lyashchenko
- Weill Cornell Medical College, New York, New York.,Radiochemistry and Imaging Sciences Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shutian Ruan
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rebecca Teng
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Paul W Maffuid
- MabVax Therapeutics Holdings, Inc. San Diego, California
| | - Jason S Lewis
- Weill Cornell Medical College, New York, New York.,Radiochemistry and Imaging Sciences Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wolfgang A Weber
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
40
|
A rapid bead-based radioligand binding assay for the determination of target-binding fraction and quality control of radiopharmaceuticals. Nucl Med Biol 2019; 71:32-38. [PMID: 31128476 DOI: 10.1016/j.nucmedbio.2019.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Determination of the target-binding fraction (TBF) of radiopharmaceuticals using cell-based assays is prone to inconsistencies arising from several intrinsic and extrinsic factors. Here, we report a cell-free quantitative method of analysis to determine the TBF of radioligands. METHODS Magnetic beads functionalized with Ni-NTA or streptavidin were incubated with 1 μg of histidine-tagged or biotinylated antigen of choice for 15 min, followed by incubating 1 ng of the radioligand for 30 min. The beads, supernatant and wash fractions were measured for radioactivity on a gamma counter. The TBF was determined by quantifying the percentage of activity associated with the magnetic beads. RESULTS The described method works robustly with a variety of radioisotopes and class of molecules used as radioligands. The entire assay can be completed within 2 h. CONCLUSION The described method yields results in a rapid and reliable manner whilst improving and extending the scope of previously described bead-based radioimmunoassays. ADVANCES IN KNOWLEDGE Using a bead-based radioligand binding assay overcomes the limitations of traditional cell-based assays. The described method is applicable to antibody as well as non-antibody based radioligands and is independent of the effect of target antigen density on cells, the choice of radioisotope used for synthesis of the radioligand and the temperature at which the assay is performed. IMPLICATIONS FOR PATIENT CARE The bead-based radioligand binding assay is significantly easier to perform and is ideally suited for adoption by the radiopharmacy as a quality control method of analysis to fulfill the criteria for release of radiopharmaceuticals in the clinic. The use of this assay is likely to ensure a more reliable validation of radiopharmaceutical quality and result in fewer failed doses, which could ultimately translate to an efficient release of radiopharmaceuticals for administration to patients in the clinic.
Collapse
|
41
|
Poty S, Carter LM, Mandleywala K, Membreno R, Abdel-Atti D, Ragupathi A, Scholz WW, Zeglis BM, Lewis JS. Leveraging Bioorthogonal Click Chemistry to Improve 225Ac-Radioimmunotherapy of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2019; 25:868-880. [PMID: 30352909 PMCID: PMC6343144 DOI: 10.1158/1078-0432.ccr-18-1650] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/28/2018] [Accepted: 10/18/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Interest in targeted alpha-therapy has surged due to α-particles' high cytotoxicity. However, the widespread clinical use of this approach could be limited by on-/off-target toxicities. Here, we investigated the inverse electron-demand Diels-Alder ligation between an 225Ac-labeled tetrazine radioligand and a trans-cyclooctene-bearing anti-CA19.9 antibody (5B1) for pretargeted α-radioimmunotherapy (PRIT) of pancreatic ductal adenocarcinoma (PDAC). This alternative strategy is expected to reduce nonspecific toxicities as compared with conventional radioimmunotherapy (RIT).Experimental Design: A side-by-side comparison of 225Ac-PRIT and conventional RIT using a directly 225Ac-radiolabeled immunoconjugate evaluates the therapeutic efficacy and toxicity of both methodologies in PDAC murine models. RESULTS A comparative biodistribution study of the PRIT versus RIT methodology underscored the improved pharmacokinetic properties (e.g., prolonged tumor uptake and increased tumor-to-tissue ratios) of the PRIT approach. Cerenkov imaging coupled to PRIT confirmed the in vivo biodistribution of 225Ac-radioimmunoconjugate but-importantly-further allowed for the ex vivo monitoring of 225Ac's radioactive daughters' redistribution. Human dosimetry was extrapolated from the mouse biodistribution and confirms the clinical translatability of 225Ac-PRIT. Furthermore, longitudinal therapy studies performed in subcutaneous and orthotopic PDAC models confirm the therapeutic efficacy of 225Ac-PRIT with the observation of prolonged median survival compared with control cohorts. Finally, a comparison with conventional RIT highlighted the potential of 225Ac-PRIT to reduce hematotoxicity while maintaining therapeutic effectiveness. CONCLUSIONS The ability of 225Ac-PRIT to deliver a radiotherapeutic payload while simultaneously reducing the off-target toxicity normally associated with RIT suggests that the clinical translation of this approach will have a profound impact on PDAC therapy.
Collapse
Affiliation(s)
- Sophie Poty
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Komal Mandleywala
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rosemery Membreno
- Department of Chemistry, Hunter College of the City University of New York, New York, New York
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York
| | - Dalya Abdel-Atti
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ashwin Ragupathi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Brian M Zeglis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Chemistry, Hunter College of the City University of New York, New York, New York
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York
- Departments of Radiology and Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
- Departments of Radiology and Department of Pharmacology, Weill Cornell Medical College, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
42
|
Xiao Q, Chen T, Chen S. Fluorescent contrast agents for tumor surgery. Exp Ther Med 2018; 16:1577-1585. [PMID: 30186374 PMCID: PMC6122374 DOI: 10.3892/etm.2018.6401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of cases of mortality worldwide. The most effective method to cure solid tumors is surgery. Every year, >50% of cancer patients receive surgery to remove solid tumors. Surgery may increase the cure rate of most solid tumors by 4–11 fold. Surgery has many challenges, including identifying small lesions, locating metastases and confirming complete tumor removal. Fluorescence guidance describes a new approach to improve surgical accuracy. Near-infrared fluorescence imaging allows for real-time early diagnosis and intraoperative imaging of lesion tissue. The results of previous preclinical studies in the field of near-infrared fluorescence imaging are promising. This review provides examples introducing the three kinds of fluorescent dyes: The passive fluorescent dye indocyanine green, which has been approved by the Food and Drug Administration for clinical use in the USA, the fluorescent prodrug 5-aminolevulinic acid, a porphyrin precursor in the heme synthesis, and biomarker-targeted fluorescent dyes, which allow conjugation to different target sites.
Collapse
Affiliation(s)
- Qi Xiao
- School of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210046, P.R. China
| | - Tianming Chen
- Department of Surgery, Nanjing Medical University Third Affiliated Hospital, Nanjing, Jiangsu 211166, P.R. China
| | - Shilin Chen
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
43
|
Keinänen O, Fung K, Pourat J, Jallinoja V, Vivier D, Pillarsetty NK, Airaksinen AJ, Lewis JS, Zeglis BM, Sarparanta M. Pretargeting of internalizing trastuzumab and cetuximab with a 18F-tetrazine tracer in xenograft models. EJNMMI Res 2017; 7:95. [PMID: 29198065 PMCID: PMC5712296 DOI: 10.1186/s13550-017-0344-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/19/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pretargeting-based approaches are being investigated for radioimmunoimaging and therapy applications to reduce the effective radiation burden to the patient. To date, only a few studies have used short-lived radioisotopes for pretargeting of antibodies, and such examples with internalizing antibodies are even rarer. Herein, we have investigated pretargeting methodology using inverse electron-demand Diels-Alder (IEDDA) for tracing two clinically relevant, internalizing monoclonal antibodies, cetuximab and trastuzumab. RESULTS Bioorthogonal reaction between tetrazine and trans-cyclooctene (TCO) was used for tracing cetuximab and trastuzumab in vivo with a fluorine-18 (t ½ = 109.8 min) labelled tracer. TCO-cetuximab or TCO-trastuzumab was administered 24, 48, or 72 h prior to the injection of tracer to A431 or BT-474 tumour-bearing mice, respectively. With cetuximab, the highest tumour-to-blood ratios were achieved when the lag time between antibody and tracer injections was 72 h. With trastuzumab, no difference was observed between different lag times. For both antibodies, the tumour could be clearly visualized in the PET images with the highest tumour uptake of 3.7 ± 0.1%ID/g for cetuximab and 1.5 ± 0.1%ID/g for trastuzumab as quantified by ex vivo biodistribution. In vivo IEDDA reaction was observed in the blood for both antibodies, but with trastuzumab, this was to a much lower degree than with cetuximab. CONCLUSIONS We could successfully visualize the tumours by using cetuximab and trastuzumab in pretargeted PET imaging despite the challenging circumstances where the antibody is internalized and there is still some unbound antibody circulating in the blood flow. This clearly demonstrates the potential of a pretargeted approach for targeting internalizing antigens and warrants development of pharmacokinetic optimization of the biorthogonal reactants to this end.
Collapse
Affiliation(s)
- Outi Keinänen
- Department of Chemistry, Radiochemistry, University of Helsinki, P.O. Box 55, FI-00014, Helsinki, Finland.,Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Kimberly Fung
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Chemistry, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, New York, NY, 10065, USA.,Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, 10016, NY, USA
| | - Jacob Pourat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Vilma Jallinoja
- Department of Chemistry, Radiochemistry, University of Helsinki, P.O. Box 55, FI-00014, Helsinki, Finland.,Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Delphine Vivier
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Chemistry, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, New York, NY, 10065, USA
| | - NagaVara Kishore Pillarsetty
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Anu J Airaksinen
- Department of Chemistry, Radiochemistry, University of Helsinki, P.O. Box 55, FI-00014, Helsinki, Finland
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.,Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Brian M Zeglis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Chemistry, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, New York, NY, 10065, USA.,Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, 10016, NY, USA
| | - Mirkka Sarparanta
- Department of Chemistry, Radiochemistry, University of Helsinki, P.O. Box 55, FI-00014, Helsinki, Finland. .,Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
44
|
King J, Bouvet M, Singh G, Williams J. Improving theranostics in pancreatic cancer. J Surg Oncol 2017; 116:104-113. [PMID: 28513912 DOI: 10.1002/jso.24625] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/05/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Pancreatic cancer is the fourth most deadly cancer in the United States, and is expected to be the second most deadly by 2030. The major difficulty in treating pancreatic cancer is the late onset of symptoms. Generally, patients show metastatic disease by the time of diagnosis, with a survival rate of 5% beyond 5 years. In patients without metastatic disease, surgical resection increases 5 year survival rate to 25%. The remaining 75% succumb to undetected metastases. Clearly, improvements to both detection, surgical intervention, and therapeutic strategies will be needed to improve patient outcome in pancreatic cancer. METHODS Recent literature has been surveyed and atomic models of new therapeutic approaches were generated. RESULTS AND CONCLUSIONS Here, we focus on the recent progress employing monoclonal antibodies (mAbs) to target pancreatic cancer associated markers, and more specifically on recent chemical and protein engineering efforts to improve the homogeneity, stability, and administration of mAbs to precisely deliver imaging agents and cytotoxins to sites of disease.
Collapse
Affiliation(s)
- Jeremy King
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, California
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, California
| | | | - John Williams
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, California
| |
Collapse
|
45
|
Houghton J, Abdel-Atti D, Scholz WW, Lewis JS. Preloading with Unlabeled CA19.9 Targeted Human Monoclonal Antibody Leads to Improved PET Imaging with 89Zr-5B1. Mol Pharm 2017; 14:908-915. [PMID: 28191976 PMCID: PMC5341702 DOI: 10.1021/acs.molpharmaceut.6b01130] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CA19.9 is one of the most commonly occurring and highest density antigens in >90% of pancreatic cancers, making it an excellent target for monoclonal antibody (mAb)-based imaging and therapy applications. Preloading of unlabeled antibodies to enhance targeting of a radiolabeled mAb has been previously described both for imaging and radioimmunotherapy studies for other targets. We investigated the effect of preloading with the unmodified anti-CA19.9 antibody 5B1 on the uptake and contrast of the PET tracer 89Zr-5B1 in subcutaneous and orthotopic murine models of pancreatic cancer utilizing Capan-2 xenografts, known to both express CA19.9 and shed antigen into circulation. Biodistribution and PET imaging studies with 89Zr-5B1 alone showed high levels in the liver, spleen, and lymph nodes of mice with subcutaneous Capan-2 tumor xenografts when administered without preinjection of 5B1. When unlabeled 5B1 was administered prior to 89Zr-5B1, the tracer significantly enhanced image contrast and tumor to tissue ratios in the same model, and the improvement was related to the time interval between the injections. Moreover, tumors were clearly delineated in an orthotopic pancreatic cancer model using our optimized approach. Taken together, these data suggest that preloading with 5B1 can improve 89Zr-5B1 imaging of disease in a Capan-2 mouse model and that exploration of preloading may have clinical utility for ongoing clinical investigations.
Collapse
Affiliation(s)
- Jacob
L. Houghton
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10065, United States
| | - Dalya Abdel-Atti
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10065, United States
| | | | - Jason S. Lewis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10065, United States
- Molecular
Pharmacology Program, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United States
- E-mail: . Phone: 646-888-3038
| |
Collapse
|
46
|
Sterner E, Flanagan N, Gildersleeve JC. Perspectives on Anti-Glycan Antibodies Gleaned from Development of a Community Resource Database. ACS Chem Biol 2016; 11:1773-83. [PMID: 27220698 PMCID: PMC4949583 DOI: 10.1021/acschembio.6b00244] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Antibodies are used
extensively for a wide range of basic research
and clinical applications. While an abundant and diverse collection
of antibodies to protein antigens have been developed, good monoclonal
antibodies to carbohydrates are much less common. Moreover, it can
be difficult to determine if a particular antibody has the appropriate
specificity, which antibody is best suited for a given application,
and where to obtain that antibody. Herein, we provide an overview
of the current state of the field, discuss challenges for selecting
and using antiglycan antibodies, and summarize deficiencies in the
existing repertoire of antiglycan antibodies. This perspective was
enabled by collecting information from publications, databases, and
commercial entities and assembling it into a single database, referred
to as the Database of Anti-Glycan Reagents (DAGR). DAGR is a publicly
available, comprehensive resource for anticarbohydrate antibodies,
their applications, availability, and quality.
Collapse
Affiliation(s)
- Eric Sterner
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Natalie Flanagan
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jeffrey C. Gildersleeve
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
47
|
Abstract
The development of novel molecular cancer imaging agents has considerably advanced in recent years. Numerous cancer imaging agents have demonstrated remarkable potential for aiding the diagnosis, staging, and treatment planning at the preclinical stage, which in turn has led to a number of agents being approved for human trials. Pancreatic ductal adenocarcinoma is currently the most deadly common carcinoma with an overall 5-year survival rate of about 6%. As detection technologies progress, the need for molecular imaging tools that will allow the diagnosis at an early stage will be crucial to improving patient outcomes. In this review, we will highlight agents that illuminate various cell populations that comprise the tumor: epithelial, endothelial, and stromal tumor cells.
Collapse
|
48
|
Site-specifically labeled CA19.9-targeted immunoconjugates for the PET, NIRF, and multimodal PET/NIRF imaging of pancreatic cancer. Proc Natl Acad Sci U S A 2015; 112:15850-5. [PMID: 26668398 DOI: 10.1073/pnas.1506542112] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Molecular imaging agents for preoperative positron emission tomography (PET) and near-infrared fluorescent (NIRF)-guided delineation of surgical margins could greatly enhance the diagnosis, staging, and resection of pancreatic cancer. PET and NIRF optical imaging offer complementary clinical applications, enabling the noninvasive whole-body imaging to localize disease and identification of tumor margins during surgery, respectively. We report the development of PET, NIRF, and dual-modal (PET/NIRF) imaging agents, using 5B1, a fully human monoclonal antibody that targets CA19.9, a well-established pancreatic cancer biomarker. Desferrioxamine (DFO) and/or a NIRF dye (FL) were conjugated to the heavy-chain glycans of 5B1, using a robust and reproducible site-specific (ss) labeling methodology to generate three constructs ((ss)DFO-5B1, (ss)FL-5B1, and (ss)dual-5B1) in which the immunoreactivity was not affected by the conjugation of either label. Each construct was evaluated in a s.c. xenograft model, using CA19.9-positive (BxPC3) and -negative (MIAPaCa-2) human pancreatic cancer cell lines. Each construct showed exceptional uptake and contrast in antigen-positive tumors with negligible nonspecific uptake in antigen-negative tumors. Additionally, the dual-modal construct was evaluated in an orthotopic murine pancreatic cancer model, using the human pancreatic cancer cell line, Suit-2. The (ss)dual-5B1 demonstrated a remarkable capacity to delineate metastases and to map the sentinel lymph nodes via tandem PET-computed tomography (PET/CT) and NIRF imaging. Fluorescence microscopy, histopathology, and autoradiography were performed on representative sections of excised tumors to visualize the distribution of the constructs within the tumors. These imaging tools have tremendous potential for further preclinical research and for clinical translation.
Collapse
|
49
|
Abstract
![]()
Development
of novel imaging probes for cancer diagnostics remains
critical for early detection of disease, yet most imaging agents are
hindered by suboptimal tumor accumulation. To overcome these limitations,
researchers have adapted antibodies for imaging purposes. As cancerous
malignancies express atypical patterns of cell surface proteins in
comparison to noncancerous tissues, novel antibody-based imaging agents
can be constructed to target individual cancer cells or surrounding
vasculature. Using molecular imaging techniques, these agents may
be utilized for detection of malignancies and monitoring of therapeutic
response. Currently, there are several imaging modalities commonly
employed for molecular imaging. These imaging modalities include positron
emission tomography (PET), single-photon emission computed tomography
(SPECT), magnetic resonance (MR) imaging, optical imaging (fluorescence
and bioluminescence), and photoacoustic (PA) imaging. While antibody-based
imaging agents may be employed for a broad range of diseases, this
review focuses on the molecular imaging of pancreatic cancer, as there
are limited resources for imaging and treatment of pancreatic malignancies.
Additionally, pancreatic cancer remains the most lethal cancer with
an overall 5-year survival rate of approximately 7%, despite significant
advances in the imaging and treatment of many other cancers. In this
review, we discuss recent advances in molecular imaging of pancreatic
cancer using antibody-based imaging agents. This task is accomplished
by summarizing the current progress in each type of molecular imaging
modality described above. Also, several considerations for designing
and synthesizing novel antibody-based imaging agents are discussed.
Lastly, the future directions of antibody-based imaging agents are
discussed, emphasizing the potential applications for personalized
medicine.
Collapse
Affiliation(s)
- Christopher G England
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Savo Bou Zein Eddine
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53792, United States.,University of Wisconsin Carbone Cancer Center , Madison, Wisconsin 53792, United States
| |
Collapse
|
50
|
CA-125, but not galectin-3, complements CA 19-9 for discriminating ductal adenocarcinoma versus non-malignant pancreatic diseases. Pancreatology 2015; 16:115-20. [PMID: 26613889 DOI: 10.1016/j.pan.2015.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES CA 19-9 is the gold standard biomarker of pancreatic adenocarcinoma despite several weaknesses in particular a high rate of false positives or negatives. CA-125 corresponding to MUC16 and galectin-3, a lectin able to interact with mucin-associated carbohydrates, are tumor-associated proteins. We investigated whether combined measurement of CA 19-9, galectin-3 and CA-125 may help to better discriminate pancreatic adenocarcinoma versus non-malignant pancreatic diseases. METHODS We evaluated by immunohistochemistry the expression of MUC4, MUC16 (CA-125) and galectin-3 in 31 pancreatic adenocarcinomas. We measured CA 19-9, CA-125 and Gal-3 in the serum from patients with pancreatic benign diseases (n = 58) or adenocarcinoma (n = 44). Clinical performance of the 3 biomarkers for cancer diagnosis and prognosis was analyzed. RESULTS By immunohistochemistry, MUC16 and Gal-3 were expressed in 74% and 84% of adenocarcinomas versus 0% and 3.2% in peri-tumoral regions, respectively. At the serum level, CA 19-9 and CA125 were significantly higher in patients with pancreatic adenocarcinoma whereas Gal-3 levels did not differ. The performance of CA 19-9 for cancer detection was higher than those of CA-125 or Gal-3 by ROC analysis. However, CA-125 offers the highest specificity for malignancy (81%) because of an absence of false positives among type 2 diabetic patients. Cancer deaths assessed 6 or 12 months after diagnosis varied according to the initial CA-125 level (p < 0.006). CONCLUSION Gal-3 is not an interesting biomarker for pancreatic adenocarcinoma detection. CA 19-9 alone exhibits the best performance but measuring CA-125 provides complementary information in terms of diagnosis and prognosis.
Collapse
|