1
|
Choppavarapu L, Fang K, Liu T, Jin VX. Hi-C profiling in tissues reveals 3D chromatin-regulated breast tumor heterogeneity and tumor-specific looping-mediated biological pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584872. [PMID: 38559097 PMCID: PMC10979939 DOI: 10.1101/2024.03.13.584872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Current knowledge in three-dimensional (3D) chromatin regulation in normal and disease states was mostly accumulated through Hi-C profiling in in vitro cell culture system. The limitations include failing to recapitulate disease-specific physiological properties and often lacking clinically relevant disease microenvironment. In this study, we conduct tissue-specific Hi-C profiling in a pilot cohort of 12 breast tissues comprising of two normal tissues (NTs) and ten ER+ breast tumor tissues (TTs) including five primary tumors (PTs), and five tamoxifen-treated recurrent tumors (RTs). We find largely preserved compartments, highly heterogeneous topological associated domains (TADs) and intensively variable chromatin loops among breast tumors, demonstrating 3D chromatin-regulated breast tumor heterogeneity. Further cross-examination identifies RT-specific looping-mediated biological pathways and suggests CA2, an enhancer-promoter looping (EPL)-mediated target gene within the bicarbonate transport metabolism pathway, might play a role in driving the tamoxifen resistance. Remarkably, the inhibition of CA2 not only impedes tumor growth both in vitro and in vivo , but also reverses chromatin looping. Our study thus yields significant mechanistic insights into the role and clinical relevance of 3D chromatin architecture in breast cancer endocrine resistance.
Collapse
|
2
|
Gautam N, Ramamoorthi G, Champion N, Han HS, Czerniecki BJ. Reviewing the significance of dendritic cell vaccines in interrupting breast cancer development. Mol Aspects Med 2024; 95:101239. [PMID: 38150884 DOI: 10.1016/j.mam.2023.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Breast cancer is a heterogeneous disease and is the most prevalent cancer in women. According to the U.S breast cancer statistics, about 1 in every 8 women develop an invasive form of breast cancer during their lifetime. Immunotherapy has been a significant advancement in the treatment of cancer with multiple studies reporting favourable patient outcomes by modulating the immune response to cancer cells. Here, we review the significance of dendritic cell vaccines in treating breast cancer patients. We discuss the involvement of dendritic cells and oncodrivers in breast tumorigenesis, highlighting the rationale for targeting oncodrivers and neoantigens using dendritic cell vaccine therapy. We review different dendritic cell subsets and maturation states previously used to develop vaccines and suggest the use of DC vaccines for breast cancer prevention. Further, we highlight that the intratumoral delivery of type 1 dendritic cell vaccines in breast cancer patients activates tumor antigen-specific CD4+ T helper cell type 1 (Th1) cells, promoting an anti-tumorigenic immune response while concurrently blocking pro-tumorigenic responses. In summary, this review provides an overview of the current state of dendritic cell vaccines in breast cancer highlighting the challenges and considerations necessary for an efficient dendritic cell vaccine design in interrupting breast cancer development.
Collapse
Affiliation(s)
- Namrata Gautam
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ganesan Ramamoorthi
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Nicholas Champion
- Department of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Hyo S Han
- Department of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Brian J Czerniecki
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA; Department of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
3
|
Ferrando L, Vingiani A, Garuti A, Vernieri C, Belfiore A, Agnelli L, Dagrada G, Ivanoiu D, Bonizzi G, Munzone E, Lippolis L, Dameri M, Ravera F, Colleoni M, Viale G, Magnani L, Ballestrero A, Zoppoli G, Pruneri G. ESR1 gene amplification and MAP3K mutations are selected during adjuvant endocrine therapies in relapsing Hormone Receptor-positive, HER2-negative breast cancer (HR+ HER2- BC). PLoS Genet 2023; 19:e1010563. [PMID: 36595552 PMCID: PMC9839248 DOI: 10.1371/journal.pgen.1010563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/13/2023] [Accepted: 12/08/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Previous studies have provided a comprehensive picture of genomic alterations in primary and metastatic Hormone Receptor (HR)-positive, Human Epidermal growth factor Receptor 2 (HER2)-negative breast cancer (HR+ HER2- BC). However, the evolution of the genomic landscape of HR+ HER2- BC during adjuvant endocrine therapies (ETs) remains poorly investigated. METHODS AND FINDINGS We performed a genomic characterization of surgically resected HR+ HER2- BC patients relapsing during or at the completion of adjuvant ET. Using a customized panel, we comprehensively evaluated gene mutations and copy number variation (CNV) in paired primary and metastatic specimens. After retrieval and quality/quantity check of tumor specimens from an original cohort of 204 cases, 74 matched tumor samples were successfully evaluated for DNA mutations and CNV analysis. Along with previously reported genomic alterations, including PIK3CA, TP53, CDH1, GATA3 and ESR1 mutations/deletions, we found that ESR1 gene amplification (confirmed by FISH) and MAP3K mutations were enriched in metastatic lesions as compared to matched primary tumors. These alterations were exclusively found in patients treated with adjuvant aromatase inhibitors or LHRH analogs plus tamoxifen, but not in patients treated with tamoxifen alone. Patients with tumors bearing MAP3K mutations in metastatic lesions had significantly worse distant relapse-free survival (hazard ratio [HR] 3.4, 95% CI 1.52-7.70, p value 0.003) and worse overall survival (HR 5.2, 95% CI 2.10-12.8, p-value < 0.001) independently of other clinically relevant patient- and tumor-related variables. CONCLUSIONS ESR1 amplification and activating MAP3K mutations are potential drivers of acquired resistance to adjuvant ETs employing estrogen deprivation in HR+ HER2- BC. MAP3K mutations are associated with worse prognosis in patients with metastatic disease.
Collapse
Affiliation(s)
| | - Andrea Vingiani
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Anna Garuti
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Claudio Vernieri
- Department of Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Antonino Belfiore
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Agnelli
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gianpaolo Dagrada
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Diana Ivanoiu
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Giuseppina Bonizzi
- Department of Pathology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Elisabetta Munzone
- Division of Medical Senology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Luana Lippolis
- Division of Pathology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Dameri
- Department of Internal Medicine (DiMI), University of Genoa, Genova, Italy
| | - Francesco Ravera
- Department of Internal Medicine (DiMI), University of Genoa, Genova, Italy
| | - Marco Colleoni
- Division of Medical Senology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Viale
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Pathology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Alberto Ballestrero
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine (DiMI), University of Genoa, Genova, Italy
| | - Gabriele Zoppoli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine (DiMI), University of Genoa, Genova, Italy
| | - Giancarlo Pruneri
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Kumar U, Ardasheva A, Mahmud Z, Coombes RC, Yagüe E. FOXA1 is a determinant of drug resistance in breast cancer cells. Breast Cancer Res Treat 2021; 186:317-326. [PMID: 33417085 PMCID: PMC7990828 DOI: 10.1007/s10549-020-06068-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Breast cancer is one of the most commonly diagnosed cancers in women. Five subtypes of breast cancer differ in their genetic expression profiles and carry different prognostic values, with no treatments available for some types, such as triple-negative, due to the absence of genetic signatures that could otherwise be targeted by molecular therapies. Although endocrine treatments are largely successful for estrogen receptor (ER)-positive cancers, a significant proportion of patients with metastatic tumors fail to respond and acquire resistance to therapy. FOXA1 overexpression mediates endocrine therapy resistance in ER-positive breast cancer, although the regulation of chemotherapy response by FOXA1 has not been addressed previously. FOXA1, together with EP300 and RUNX1, regulates the expression of E-cadherin, and is expressed in luminal, but absent in triple-negative and basal-like breast cancers. We have previously determined that EP300 regulates drug resistance and tumor initiation capabilities in breast cancer cells. METHODS Here we describe the generation of breast cancer cell models in which FOXA1 expression has been modulated either by expression of hairpins targeting FOXA1 mRNA or overexpression plasmids. RESULTS Upon FOXA1 knockdown in luminal MCF-7 and T47D cells, we found an increase in doxorubicin and paclitaxel sensitivity as well as a decrease in anchorage independence. Conversely, upregulation of FOXA1 in basal-like MDA-MB-231 cells led to an increase in drug resistance and anchorage independence. CONCLUSION Together, these data suggest that FOXA1 plays a role in making tumors more aggressive.
Collapse
Affiliation(s)
- Uttom Kumar
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Anastasia Ardasheva
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Zimam Mahmud
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - R Charles Coombes
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Ernesto Yagüe
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
5
|
La Camera G, Gelsomino L, Caruso A, Panza S, Barone I, Bonofiglio D, Andò S, Giordano C, Catalano S. The Emerging Role of Extracellular Vesicles in Endocrine Resistant Breast Cancer. Cancers (Basel) 2021; 13:cancers13051160. [PMID: 33800302 PMCID: PMC7962645 DOI: 10.3390/cancers13051160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Two-thirds of breast cancer patients present an estrogen receptor–positive tumor at diagnosis, and the main treatment options for these patients are endocrine therapies such as aromatase inhibitors, selective modulators of estrogen receptor activity or selective estrogen receptor down-regulators. Although endocrine therapies have high efficacy in early-stage breast cancers, the failure of the therapeutic response to these hormonal treatments remains the major clinical challenge. Recently, extracellular vesicles (EVs) have emerged as a novel mechanism of drug resistance. Indeed, EVs isolated from tumor and stromal cells act as key messengers in intercellular communications able to propagate traits of resistance and/or educate the microenvironment to sustain a breast cancer resistant phenotype. Understanding the EV-mediated molecular mechanisms involved in hormonal resistance can provide the rationale for novel and effective treatment modalities and allow for the identification of potential biomarkers to monitor therapy response in ER-positive breast cancer patients. Abstract Breast cancer is the most common solid malignancy diagnosed in females worldwide, and approximately 70% of these tumors express estrogen receptor α (ERα), the main biomarker of endocrine therapy. Unfortunately, despite the use of long-term anti-hormone adjuvant treatment, which has significantly reduced patient mortality, resistance to the endocrine treatments often develops, leading to disease recurrence and limiting clinical benefits. Emerging evidence indicates that extracellular vesicles (EVs), nanosized particles that are released by all cell types and responsible for local and systemic intercellular communications, might represent a newly identified mechanism underlying endocrine resistance. Unraveling the role of EVs, released by transformed cells during the tumor evolution under endocrine therapy, is still an open question in the cancer research area and the molecular mechanisms involved should be better defined to discover alternative therapeutic approaches to overcome resistance. In this review, we will provide an overview of recent findings on the involvement of EVs in sustaining hormonal resistance in breast cancer and discuss opportunities for their potential use as biomarkers to monitor the therapeutic response and disease progression.
Collapse
Affiliation(s)
- Giusi La Camera
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
- Correspondence: (C.G.); (S.C.); Tel.: +39-0984-496216 (C.G.); +39-0984-496207 (S.C.)
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
- Correspondence: (C.G.); (S.C.); Tel.: +39-0984-496216 (C.G.); +39-0984-496207 (S.C.)
| |
Collapse
|
6
|
The 3D genomic landscape of differential response to EGFR/HER2 inhibition in endocrine-resistant breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194631. [PMID: 32956836 DOI: 10.1016/j.bbagrm.2020.194631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/10/2020] [Accepted: 09/14/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Recent studies suggested that crosstalk between ERα and EGFR/HER2 pathways plays a critical role in mediating endocrine therapy resistance. Several inhibitors targeting EGFR/HER2 signaling, including FDA-approved lapatinib and gefitinib as well as a novel dual tyrosine kinase inhibitor (TKI) sapitinib, showed greater therapeutic efficacies. However, how 3D chromatin landscape responds to the inhibition of EGFR/HER2 pathway remains to be elucidated. METHODS In this study, we conducted in situ Hi-C and RNA-seq in two ERα+ breast cancer cell systems, 1) parental MCF7 cells and its associated tamoxifen-resistant MCF7TR cells; and 2) parental T47D cells and its associated tamoxifen-resistant T47DTR cells, before and after the treatment of sapitinib. RESULTS We identified differential responses in topologically associated domains (TADs), looping genes and expressed genes. Interestingly, we found that many differential TADs and looping genes are reversible after sapitinib treatment, indicating that EGFR/HER2 signaling may play a role in reshaping and rewiring the high order genome organization. We further examined and recapitulated the reversible looping genes in 3D spheroids of breast cancer cells, demonstrating that 3D cell culture spheroid of breast cancer cells could be a potential preclinical breast cancer model for studying 3D chromatin regulation. CONCLUSIONS Our study has provided significant insights into our understanding of 3D genomic landscape changes in response to EGFR/HER2 Inhibition in endocrine-resistant breast cancer cells. Our data provides a rich resource for further evaluating chromatin structural responses to EGFR/HER2 targeted therapies in endocrine-resistant breast cancer cells. Our analyses suggest that these alterations of chromatin structures and transcriptional programs may provide new avenues for intervention or designing of patient selection for targeted endocrine treatment.
Collapse
|
7
|
Rey-Vargas L, Mejía-Henao JC, Sanabria-Salas MC, Serrano-Gomez SJ. Effect of neoadjuvant therapy on breast cancer biomarker profile. BMC Cancer 2020; 20:675. [PMID: 32682413 PMCID: PMC7368678 DOI: 10.1186/s12885-020-07179-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Breast cancer clinical management requires the assessment of hormone receptors (estrogen (ER) and progesterone receptor (PR)), human epidermal growth factor receptor 2 (HER2) and cellular proliferation index Ki67, by immunohistochemistry (IHC), in order to choose and guide therapy according to tumor biology. Many studies have reported contradictory results regarding changes in the biomarker profile after neoadjuvant therapy (NAT). Given its clinical implications for the disease management, we aimed to analyze changes in ER, PR, HER2, and Ki67 expression in paired core-needle biopsies and surgical samples in breast cancer patients that had either been treated or not with NAT. METHODS We included 139 patients with confirmed diagnosis of invasive ductal breast carcinoma from the Colombian National Cancer Institute. Variation in biomarker profile were assessed according to NAT administration (NAT and no-NAT treated cases) and NAT scheme (hormonal, cytotoxic, cytotoxic + trastuzumab, combined). Chi-squared and Wilcoxon signed-rank test were used to identify changes in biomarker status and percentage expression, respectively, in the corresponding groups. RESULTS We did not find any significant variations in biomarker status or expression values in the no-NAT group. In cases previously treated with NAT, we did find a statistically significant decrease in Ki67 (p < 0.001) and PR (p = 0.02605) expression. When changes were evaluated according to NAT scheme, we found a significant decrease in both Ki67 status (p = 0.02977) and its expression values (p < 0.001) in cases that received the cytotoxic treatment. CONCLUSIONS Our results suggest that PR and Ki67 expression can be altered by NAT administration, whereas cases not previously treated with NAT do not present IHC biomarker profile variations. The re-evaluation of these two biomarkers after NAT could provide valuable information regarding treatment response and prognosis for breast cancer patients.
Collapse
Affiliation(s)
- Laura Rey-Vargas
- Grupo de investigación en biología del cáncer, Instituto Nacional de Cancerología, Calle 1a #9-85, Bogotá D. C, Colombia.,Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | | | - Silvia J Serrano-Gomez
- Grupo de investigación en biología del cáncer, Instituto Nacional de Cancerología, Calle 1a #9-85, Bogotá D. C, Colombia.
| |
Collapse
|
8
|
Cancer stem-like properties of hormonal therapy-resistant breast cancer cells. Breast Cancer 2019; 26:459-470. [DOI: 10.1007/s12282-018-00944-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/20/2018] [Indexed: 01/03/2023]
|
9
|
AlFakeeh A, Brezden-Masley C. Overcoming endocrine resistance in hormone receptor-positive breast cancer. ACTA ACUST UNITED AC 2018; 25:S18-S27. [PMID: 29910644 DOI: 10.3747/co.25.3752] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Endocrine therapy, a major modality in the treatment of hormone receptor (hr)-positive breast cancer (bca), has improved outcomes in metastatic and nonmetastatic disease. However, a limiting factor to the use of endocrine therapy in bca is resistance resulting from the development of escape pathways that promote the survival of cancer cells despite estrogen receptor (er)-targeted therapy. The resistance pathways involve extensive cross-talk between er and receptor tyrosine kinase growth factors [epidermal growth factor receptor, human epidermal growth factor receptor 2 (her2), and insulin-like growth factor 1 receptor] and their downstream signalling pathways-most notably pi3k/akt/mtor and mapk. In some cases, resistance develops as a result of genetic or epigenetic alterations in various components of the signalling pathways, such as overexpression of her2 and erα co-activators, aberrant expression of cell-cycle regulators, and PIK3CA mutations. By combining endocrine therapy with various molecularly targeted agents and signal transduction inhibitors, some success has been achieved in overcoming and modulating endocrine resistance in hr-positive bca. Established strategies include selective er downregulators, anti-her2 agents, mtor (mechanistic target of rapamycin) inhibitors, and inhibitors of cyclin-dependent kinases 4 and 6. Inhibitors of pi3ka are not currently a treatment option for women with hr-positive bca outside the context of clinical trial. Ongoing clinical trials are exploring more agents that could be combined with endocrine therapy, and biomarkers that would help to guide decision-making and maximize clinical efficacy. In this review article, we address current treatment strategies for endocrine resistance, and we highlight future therapeutic targets in the endocrine pathway of bca.
Collapse
Affiliation(s)
- A AlFakeeh
- Division of Hematology/Oncology, St. Michael's Hospital, University of Toronto, Toronto, ON.,King Fahad Medical City, Comprehensive Cancer Centre, Riyadh, Saudi Arabia
| | - C Brezden-Masley
- Division of Hematology/Oncology, St. Michael's Hospital, University of Toronto, Toronto, ON.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON
| |
Collapse
|
10
|
Raphael J, Desautels D, Pritchard KI, Petkova E, Shah PS. Phosphoinositide 3-kinase inhibitors in advanced breast cancer: A systematic review and meta-analysis. Eur J Cancer 2018; 91:38-46. [DOI: 10.1016/j.ejca.2017.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 11/15/2022]
|
11
|
Lin WZ, Xu QN, Wang HB, Li XY. Fulvestrant plus targeted agents versus fulvestrant alone for treatment of hormone-receptor positive advanced breast cancer progressed on previous endocrine therapy: a meta-analysis of randomized controlled trials. Breast Cancer 2017; 24:345-352. [PMID: 28324247 DOI: 10.1007/s12282-017-0770-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/14/2017] [Indexed: 02/05/2023]
Abstract
To compare the addition of targeted agents to fulvestrant with fulvestrant alone in hormone-receptor positive advanced breast cancer progressed on previous endocrine therapy; a meta-analysis of all relevant randomized controlled trials was performed. The PubMed, Embase databases and the Cochrane Central Register of Controlled Trials were searched for relevant publications reporting randomized controlled trials between January 2000 and June 2016. Progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR), and toxicity were assessed. Eight trials with a total of 2,470 patients were included in this meta-analysis. Compared with fulvestrant alone, combination therapy improved PFS (HR = 0.79; 95% CI 0.72-0.87; P = 0.00), increased ORR (RR = 1.70; 95% CI 1.30-2.21; P = 0.00), and showed a trend of increase in DCR (RR = 1.27; 95% CI 0.96-1.69, P = 0.09). In network analysis, only CD4/6 and PI3K/m-TOR inhibitors showed significant treatment effects with a P-score of 0.9999 and 0.7615, respectively. Patients treated with combination therapy developed more grade 3 or greater toxic effects (RR = 1.24; 95% CI 1.13-1.36; P = 0.00). Combining targeted agents with fulvestrant showed benefit but with increased toxicity in patients with advanced breast cancer compared with fulvestrant alone. Biomarkers for treatment optimization are lacking. The CD4/6 and PI3K/m-TOR pathways merit further investigation.
Collapse
Affiliation(s)
- Wen-Zhao Lin
- Department of Medical Oncology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Qi-Ni Xu
- Department of Respiratory Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hong-Biao Wang
- Department of Respiratory Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xu-Yuan Li
- Department of Medical Oncology, Shantou Central Hospital, Shantou, Guangdong, China.
| |
Collapse
|
12
|
Overcoming aromatase inhibitor resistance in breast cancer: possible mechanisms and clinical applications. Breast Cancer 2017; 25:379-391. [PMID: 28389808 DOI: 10.1007/s12282-017-0772-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
Abstract
Estrogen plays crucial roles in the progression of hormone-dependent breast cancers through activation of nuclear estrogen receptor α (ER). Estrogen is produced locally from circulating inactive steroids and adrenal androgens in postmenopausal women. However, conversion by aromatase is a rate-limiting step in intratumoral estrogen production in breast cancer. Aromatase inhibitors (AIs) inhibit the growth of hormone-dependent breast cancers by blocking the conversion of adrenal androgens to estrogen and by unmasking the inhibitory effect of androgens, acting via the androgen receptor (AR). AIs are thus a standard treatment option for postmenopausal hormone-dependent breast cancer. However, although initial use of AIs provides substantial clinical benefit, some breast cancer patients relapse because of the acquisition of AI resistance. A better understanding of the mechanisms of AI resistance may contribute to the development of new therapeutic strategies and aid in the search for new therapeutic targets and agents. We have investigated AI-resistance mechanisms and established six AI-resistant cell lines. Some of them exhibit estrogen depletion-resistance properties via constitutive ER-activation or ER-independent growth signaling. We examined how breast cancer cells can adapt to estrogen depletion and androgen superabundance. Estrogen and estrogenic androgen produced independently from aromatase contributed to cell proliferation in some of these cell lines, while another showed AR-dependent cell proliferation. Based on these findings, currently proposed AI-resistance mechanisms include an aromatase-independent estrogen-producing pathway, estrogen-independent ER function, and ER-independent growth signaling. This review summarizes several hypotheses of AI-resistance mechanisms and discusses how existing or novel therapeutic agents may be applied to treat AI-resistant breast cancers.
Collapse
|
13
|
FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. Proc Natl Acad Sci U S A 2016; 113:E6600-E6609. [PMID: 27791031 DOI: 10.1073/pnas.1612835113] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Forkhead box protein A1 (FOXA1) is a pioneer factor of estrogen receptor α (ER)-chromatin binding and function, yet its aberration in endocrine-resistant (Endo-R) breast cancer is unknown. Here, we report preclinical evidence for a role of FOXA1 in Endo-R breast cancer as well as evidence for its clinical significance. FOXA1 is gene-amplified and/or overexpressed in Endo-R derivatives of several breast cancer cell line models. Induced FOXA1 triggers oncogenic gene signatures and proteomic profiles highly associated with endocrine resistance. Integrated omics data reveal IL8 as one of the most perturbed genes regulated by FOXA1 and ER transcriptional reprogramming in Endo-R cells. IL-8 knockdown inhibits tamoxifen-resistant cell growth and invasion and partially attenuates the effect of overexpressed FOXA1. Our study highlights a role of FOXA1 via IL-8 signaling as a potential therapeutic target in FOXA1-overexpressing ER-positive tumors.
Collapse
|
14
|
Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im SA, Masuda N, Colleoni M, DeMichele A, Loi S, Verma S, Iwata H, Harbeck N, Zhang K, Theall KP, Jiang Y, Bartlett CH, Koehler M, Slamon D. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol 2016; 17:425-439. [PMID: 26947331 DOI: 10.1016/s1470-2045(15)00613-0] [Citation(s) in RCA: 1193] [Impact Index Per Article: 149.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND In the PALOMA-3 study, the combination of the CDK4 and CDK6 inhibitor palbociclib and fulvestrant was associated with significant improvements in progression-free survival compared with fulvestrant plus placebo in patients with metastatic breast cancer. Identification of patients most suitable for the addition of palbociclib to endocrine therapy after tumour recurrence is crucial for treatment optimisation in metastatic breast cancer. We aimed to confirm our earlier findings with this extended follow-up and show our results for subgroup and biomarker analyses. METHODS In this multicentre, double-blind, randomised phase 3 study, women aged 18 years or older with hormone-receptor-positive, HER2-negative metastatic breast cancer that had progressed on previous endocrine therapy were stratified by sensitivity to previous hormonal therapy, menopausal status, and presence of visceral metastasis at 144 centres in 17 countries. Eligible patients-ie, any menopausal status, Eastern Cooperative Oncology Group performance status 0-1, measurable disease or bone disease only, and disease relapse or progression after previous endocrine therapy for advanced disease during treatment or within 12 months of completion of adjuvant therapy-were randomly assigned (2:1) via a centralised interactive web-based and voice-based randomisation system to receive oral palbociclib (125 mg daily for 3 weeks followed by a week off over 28-day cycles) plus 500 mg fulvestrant (intramuscular injection on days 1 and 15 of cycle 1; then on day 1 of subsequent 28-day cycles) or placebo plus fulvestrant. The primary endpoint was investigator-assessed progression-free survival. Analysis was by intention to treat. We also assessed endocrine therapy resistance by clinical parameters, quantitative hormone-receptor expression, and tumour PIK3CA mutational status in circulating DNA at baseline. This study is registered with ClinicalTrials.gov, NCT01942135. FINDINGS Between Oct 7, 2013, and Aug 26, 2014, 521 patients were randomly assigned, 347 to fulvestrant plus palbociclib and 174 to fulvestrant plus placebo. Study enrolment is closed and overall survival follow-up is in progress. By March 16, 2015, 259 progression-free-survival events had occurred (145 in the fulvestrant plus palbociclib group and 114 in the fulvestrant plus placebo group); median follow-up was 8·9 months (IQR 8·7-9·2). Median progression-free survival was 9·5 months (95% CI 9·2-11·0) in the fulvestrant plus palbociclib group and 4·6 months (3·5-5·6) in the fulvestrant plus placebo group (hazard ratio 0·46, 95% CI 0·36-0·59, p<0·0001). Grade 3 or 4 adverse events occurred in 251 (73%) of 345 patients in the fulvestrant plus palbociclib group and 38 (22%) of 172 patients in the fulvestrant plus placebo group. The most common grade 3 or 4 adverse events were neutropenia (223 [65%] in the fulvestrant plus palbociclib group and one [1%] in the fulvestrant plus placebo group), anaemia (ten [3%] and three [2%]), and leucopenia (95 [28%] and two [1%]). Serious adverse events (all causalities) occurred in 44 patients (13%) of 345 in the fulvestrant plus palbociclib group and 30 (17%) of 172 patients in the fulvestrant plus placebo group. PIK3CA mutation was detected in the plasma DNA of 129 (33%) of 395 patients for whom these data were available. Neither PIK3CA status nor hormone-receptor expression level significantly affected treatment response. INTERPRETATION Fulvestrant plus palbociclib was associated with significant and consistent improvement in progression-free survival compared with fulvestrant plus placebo, irrespective of the degree of endocrine resistance, hormone-receptor expression level, and PIK3CA mutational status. The combination could be considered as a therapeutic option for patients with recurrent hormone-receptor-positive, HER2-negative metastatic breast cancer that has progressed on previous endocrine therapy. FUNDING Pfizer.
Collapse
Affiliation(s)
- Massimo Cristofanilli
- Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, IL, USA.
| | | | - Igor Bondarenko
- Dnipropetrovsk Medical Academy, City Multiple-Discipline Clinical Hospital #4, Dnipropetrovsk, Ukraine
| | - Jungsil Ro
- National Cancer Center, Goyang-si, South Korea
| | - Seock-Ah Im
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | | | | | - Angela DeMichele
- Center for Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sherene Loi
- Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| | - Sunil Verma
- Sunnybrook Odette Cancer Centre, Toronto, ON, Canada; Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| | | | - Nadia Harbeck
- Brustzentrum der Universität München (LMU), Munich, Germany
| | | | | | | | | | | | - Dennis Slamon
- University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
15
|
Liu X, Pan L, Liang J, Li J, Wu S. Cryptotanshinone inhibits proliferation and induces apoptosis via mitochondria-derived reactive oxygen species involving FOXO1 in estrogen receptor-negative breast cancer Bcap37 cells. RSC Adv 2016. [DOI: 10.1039/c5ra22523j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cryptotanshinone inhibits proliferation and induces apoptosis of the estrogen receptor-negative breast cancer Bcap37 cells via FOXO1 inhibition and ROS-mediated PI3K/AKT/mTOR signaling pathways.
Collapse
Affiliation(s)
- Xiaoman Liu
- Research Center of Siyuan Natural Pharmacy and Biotoxicology
- College of Life Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Lili Pan
- Research Center of Siyuan Natural Pharmacy and Biotoxicology
- College of Life Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Junling Liang
- Research Center of Siyuan Natural Pharmacy and Biotoxicology
- College of Life Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Jinhui Li
- Institute of Agrobiology and Environmental Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Shihua Wu
- Research Center of Siyuan Natural Pharmacy and Biotoxicology
- College of Life Sciences
- Zhejiang University
- Hangzhou 310058
- China
| |
Collapse
|
16
|
Ochieng J, Nangami GN, Ogunkua O, Miousse IR, Koturbash I, Odero-Marah V, McCawley LJ, Nangia-Makker P, Ahmed N, Luqmani Y, Chen Z, Papagerakis S, Wolf GT, Dong C, Zhou BP, Brown DG, Colacci AM, Hamid RA, Mondello C, Raju J, Ryan EP, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Amedei A, Al-Temaimi R, Al-Mulla F, Bisson WH, Eltom SE. The impact of low-dose carcinogens and environmental disruptors on tissue invasion and metastasis. Carcinogenesis 2015; 36 Suppl 1:S128-59. [PMID: 26106135 DOI: 10.1093/carcin/bgv034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The purpose of this review is to stimulate new ideas regarding low-dose environmental mixtures and carcinogens and their potential to promote invasion and metastasis. Whereas a number of chapters in this review are devoted to the role of low-dose environmental mixtures and carcinogens in the promotion of invasion and metastasis in specific tumors such as breast and prostate, the overarching theme is the role of low-dose carcinogens in the progression of cancer stem cells. It is becoming clearer that cancer stem cells in a tumor are the ones that assume invasive properties and colonize distant organs. Therefore, low-dose contaminants that trigger epithelial-mesenchymal transition, for example, in these cells are of particular interest in this review. This we hope will lead to the collaboration between scientists who have dedicated their professional life to the study of carcinogens and those whose interests are exclusively in the arena of tissue invasion and metastasis.
Collapse
Affiliation(s)
- Josiah Ochieng
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA, Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA, Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA, Department of Pathology, Wayne State University, Detroit, MI 48201, USA, Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia, Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA, Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia, Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy, Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA, Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India, Mediterranean Institute of Oncology, Viagrande 95029, Italy, Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt, Department of Experimental and
| | - Gladys N Nangami
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA, Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA, Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA, Department of Pathology, Wayne State University, Detroit, MI 48201, USA, Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia, Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA, Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia, Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy, Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA, Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India, Mediterranean Institute of Oncology, Viagrande 95029, Italy, Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt, Department of Experimental and
| | - Olugbemiga Ogunkua
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA, Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA, Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA, Department of Pathology, Wayne State University, Detroit, MI 48201, USA, Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia, Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA, Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia, Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy, Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA, Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India, Mediterranean Institute of Oncology, Viagrande 95029, Italy, Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt, Department of Experimental and
| | - Isabelle R Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Valerie Odero-Marah
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Lisa J McCawley
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Nuzhat Ahmed
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Yunus Luqmani
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA, Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA, Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA, Department of Pathology, Wayne State University, Detroit, MI 48201, USA, Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia, Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA, Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia, Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy, Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA, Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India, Mediterranean Institute of Oncology, Viagrande 95029, Italy, Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt, Department of Experimental and
| | - Silvana Papagerakis
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
| | - Gregory T Wolf
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
| | - Chenfang Dong
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Binhua P Zhou
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Anna Maria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Roslida A Hamid
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
| | - Chiara Mondello
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - A Ivana Scovassi
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Hosni K Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy and
| | - Rabeah Al-Temaimi
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - Fahd Al-Mulla
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Sakina E Eltom
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA, Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA, Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA, Department of Pathology, Wayne State University, Detroit, MI 48201, USA, Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia, Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA, Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia, Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy, Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA, Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India, Mediterranean Institute of Oncology, Viagrande 95029, Italy, Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt, Department of Experimental and
| |
Collapse
|
17
|
Massarweh S, Moss J, Wang C, Romond E, Slone S, Weiss H, Karabakhtsian RG, Napier D, Black EP. Impact of adding the multikinase inhibitor sorafenib to endocrine therapy in metastatic estrogen receptor-positive breast cancer. Future Oncol 2014; 10:2435-48. [PMID: 24826798 PMCID: PMC5527710 DOI: 10.2217/fon.14.99] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Targeting growth factor and survival pathways may delay endocrine-resistance in estrogen receptor-positive breast cancer. MATERIALS & METHODS A pilot Phase II study adding sorafenib to endocrine therapy in 11 patients with metastatic estrogen receptor-positive breast cancer was conducted. Primary end point was response by RECIST after 3 months of sorafenib. Secondary end points included safety, time to progression and biomarker modulation. The study closed early owing to slow accrual. RESULTS Eight out of 11 patients had progressive disease on study entry and three had stable disease. Of the ten evaluable patients, seven experienced stable disease (70%) and three experienced progressive diseas (30%), with a median time to progression of 6.1 months (8.4 months in the seven patients on tamoxifen). The serum samples demonstrated a significant reduction in VEGF receptor 2 and PDGF receptor-α. Microarray analysis identified 32 suppressed genes, no induced genes and 29 enriched Kyoto Encyclopedia of Genes and Genomes pathways. CONCLUSION The strategy of adding a targeted agent to endocrine therapy upon resistance may be worthwhile testing in larger studies.
Collapse
Affiliation(s)
- Suleiman Massarweh
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jessica Moss
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Edward Romond
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Stacey Slone
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Heidi Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | | | - Dana Napier
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Esther P Black
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
18
|
Giuliano M, Trivedi MV, Schiff R. Bidirectional Crosstalk between the Estrogen Receptor and Human Epidermal Growth Factor Receptor 2 Signaling Pathways in Breast Cancer: Molecular Basis and Clinical Implications. ACTA ACUST UNITED AC 2014; 8:256-62. [PMID: 24415978 DOI: 10.1159/000354253] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The estrogen receptor (ER) and/or the human epidermal growth factor receptor 2 (HER2) signaling pathways are the dominant drivers of cell proliferation and survival in the majority of human breast cancers. As a result, targeting these pathways provides the most effective therapies in appropriately selected patients. Nevertheless, resistance to both endocrine and anti-HER2 therapies occurs frequently and represents a major clinical challenge. Compelling preclinical and clinical evidence relates this treatment resistance to the presence of a complex bidirectional molecular crosstalk between the ER and HER2 pathways. As a consequence, treatment strategies targeting either pathway are associated with up-regulation of the other one, ultimately resulting in resistance to therapy. Therefore, a more promising strategy to prevent or overcome either endocrine or anti-HER2 resistance at least in some tumors is to combine targeted treatments that simultaneously block both signaling pathways. Many clinical trials exploring this strategy have shown positive results, and many more are currently ongoing. Future clinical trials with appropriate patient selection, based on biomarker evaluation of primary tumors and possibly of recurrent lesions, are warranted for the optimization of individualized therapeutic strategies.
Collapse
Affiliation(s)
- Mario Giuliano
- Lester and Sue Smith Breast Center, Baylor College of Medicine, University of Houston, College of Pharmacy, Houston, TX, USA
| | - Meghana V Trivedi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, University of Houston, College of Pharmacy, Houston, TX, USA ; Department of Clinical Sciences and Administration, University of Houston, College of Pharmacy, Houston, TX, USA
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, University of Houston, College of Pharmacy, Houston, TX, USA ; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA ; Margaret M. and Albert B. Alkek Department of Medicine, Baylor College of Medicine, Houston, TX, USA ; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
19
|
Strategies to overcome endocrine therapy resistance in hormone receptor-positive advanced breast cancer. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/cli.13.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Mechanisms of resistance to endocrine therapy in breast cancer: focus on signaling pathways, miRNAs and genetically based resistance. Int J Mol Sci 2012; 14:108-45. [PMID: 23344024 PMCID: PMC3565254 DOI: 10.3390/ijms14010108] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequent malignancy diagnosed in women. Approximately 70% of breast tumors express the estrogen receptor (ER). Tamoxifen and aromatase inhibitors (AIs) are the most common and effective therapies for patients with ERα-positive breast cancer. Alone or combined with chemotherapy, tamoxifen significantly reduces disease progression and is associated with more favorable impact on survival in patients. Unfortunately, endocrine resistance occurs, either de novo or acquired during the course of the treatment. The mechanisms that contribute to hormonal resistance include loss or modification in the ERα expression, regulation of signal transduction pathways, altered expression of specific microRNAs, balance of co-regulatory proteins, and genetic polymorphisms involved in tamoxifen metabolic activity. Because of the clinical consequences of endocrine resistance, new treatment strategies are arising to make the cells sensitive to tamoxifen. Here, we will review the current knowledge on mechanisms of endocrine resistance in breast cancer cells. In addition, we will discuss novel therapeutic strategies to overcome such resistance. Undoubtedly, circumventing endocrine resistance should help to improve therapy for the benefit of breast cancer patients.
Collapse
|
21
|
Giuliano M, Schifp R, Osborne CK, Trivedi MV. Biological mechanisms and clinical implications of endocrine resistance in breast cancer. Breast 2012; 20 Suppl 3:S42-9. [PMID: 22015292 DOI: 10.1016/s0960-9776(11)70293-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Endocrine therapy represents the first and most efficacious targeted treatment for women with estrogen receptor-positive (ER+) breast cancer. In the last four decades several hormonal agents have been successfully introduced in clinical practice as both palliative therapy for advanced disease and adjuvant treatment for prevention of tumor relapse. Nevertheless, the intrinsic and acquired resistance occurs in a significant proportion of patients, limiting the efficacy of endocrine treatments. Several molecular mechanisms have been proposed to be responsible for endocrine resistance. Loss of ER expression, altered activity of ER coregulators, deregulation of apoptosis and cell cycle signaling, and hyperactive receptor tyrosine kinase (RTK) and stress/cell kinase pathways can collectively orchestrate the development and sustenance of pharmacologic resistance to endocrine therapy. Preclinical and clinical evidence documents the plasticity in ER expression levels and signaling. As such, ER can either drive gene transcription and tumor progression directly or crosstalk with alternate RTK and cellular kinase signaling pathways, resulting in modulation of its own expression levels and transcriptional program. For this reason a therapeutic approach based on the combination of agents targeting both ER and RTK signaling represents a promising strategy to be tested. Among many RTKs, EGFR, HER2, and PI3K have been found to be viable targets for the combination therapy strategy, at least in the preclinical setting. However, early results from clinical trials testing combination strategies have been discordant, suggesting the need for better approaches to simultaneously inhibit multiple escape pathways and to select the patients who may benefit the most from these strategies.
Collapse
Affiliation(s)
- Mario Giuliano
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
22
|
SHEN YUANYUAN, DU YINGYING, ZHANG YING, PAN YUEYIN. Synergistic effects of combined treatment with simvastatin and exemestane on MCF-7 human breast cancer cells. Mol Med Rep 2012; 12:456-62. [DOI: 10.3892/mmr.2015.3406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 01/27/2015] [Indexed: 11/06/2022] Open
|
23
|
Sweeney EE, McDaniel RE, Maximov PY, Fan P, Jordan VC. Models and Mechanisms of Acquired Antihormone Resistance in Breast Cancer: Significant Clinical Progress Despite Limitations. Horm Mol Biol Clin Investig 2012; 9:143-163. [PMID: 23308083 PMCID: PMC3539798 DOI: 10.1515/hmbci-2011-0004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Translational research for the treatment and prevention of breast cancer depends upon the four Ms: models, molecules, and mechanisms in order to create medicines. The process, to target the estrogen receptor (ER) in estrogen-dependent breast cancer, has yielded significant advances in patient survivorship and the first approved medicines (tamoxifen and raloxifene) to reduce the incidence of any cancer in high- or low-risk women. This review focuses on the critical role of the few ER-positive cell lines (MCF-7, T47D, BT474, ZR-75) that continue to advance our understanding of the estrogen-regulated biology of breast cancer. More importantly, the model cell lines have provided an opportunity to document the development and evolution of acquired antihormone resistance. The description of this evolutionary process that occurs in micrometastatic disease during up to a decade of adjuvant therapy would not be possible in the patient. The use of the MCF-7 breast cancer cell line in particular has been instrumental in discovering a vulnerability of ER-positive breast cancer exhaustively treated with antihormone therapy. Physiologic estradiol acts as an apoptotic trigger to cause tumor regression. These unanticipated findings in the laboratory have translated to clinical advances in our knowledge of the paradoxical role of estrogen in the life and death of breast cancer.
Collapse
Affiliation(s)
- Elizabeth E Sweeney
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | | | | | | | | |
Collapse
|
24
|
Endocrine Therapy in the Preoperative Setting and Strategies to Overcome Resistance. CURRENT BREAST CANCER REPORTS 2011. [DOI: 10.1007/s12609-011-0056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|