1
|
Feng L, Zhang J, Ma C, Li K, Zhai J, Cai S, Yin J. Application prospect of polysaccharide in the development of vaccine adjuvants. Int J Biol Macromol 2025; 297:139845. [PMID: 39824409 DOI: 10.1016/j.ijbiomac.2025.139845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Vaccination is an effective strategy for preventing infectious diseases. Subunit vaccines offer more precise targeting and safer protection compared with traditional inactivated virus vaccines. However, due to their poor immunogenicity, subunit vaccines necessitate the use of adjuvants to stimulate the immune system. Adjuvants have long been incorporated into vaccines to enhance the body's immune response, allowing for reduced dosage and lower production costs. Despite the development of numerous vaccine adjuvants, few exhibit the necessary potency and low toxicity for clinical use, often due to limited efficacy or adverse side effects. This underscores the urgent need for novel human vaccine adjuvants that are safe, effective, and cost-efficient. Recent studies have identified certain natural polysaccharides as promising human vaccine adjuvants due to their immunostimulatory properties, low toxicity, and high safety profiles, which enhance both humoral and cellular immunity. These natural polysaccharides are primarily derived from traditional Chinese medicine (TCM) plants, bacteria, and yeast. This review comprehensively analyzes several promising polysaccharide adjuvants, discussing their clinical applications, market potential, and immunoregulatory activities. In summary, the future prospects of polysaccharides provide valuable insights for the application and development of vaccine adjuvants.
Collapse
Affiliation(s)
- Lei Feng
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang 110001, China; School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Jiarui Zhang
- Department of Intensive Care Medicine, the First Hospital of China Medical University, Shenyang 110001, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, Shenyang 110001, China
| | - Kai Li
- Department of Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Jianxiu Zhai
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shuang Cai
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang 110001, China; School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Jun Yin
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
2
|
Burn OK, Dasyam N, Hermans IF. Recruiting Natural Killer T Cells to Improve Vaccination: Lessons from Preclinical and Clinical Studies. Crit Rev Oncog 2024; 29:31-43. [PMID: 38421712 DOI: 10.1615/critrevoncog.2023049407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The capacity of type I natural killer T (NKT) cells to provide stimulatory signals to antigen-presenting cells has prompted preclinical research into the use of agonists as immune adjuvants, with much of this work focussed on stimulating T cell responses to cancer. In attempting to evaluate this approach in the clinic, our recent dendritic-cell based study failed to show an advantage to adding an agonist to the vaccine. Here we present potential limitations of the study, and suggest why other simpler strategies may be more effective. These include strategies to target antigen-presenting cells in the host, either through promoting efficient transfer from injected cell lines, facilitating uptake of antigen and agonist as injected conjugates, or encapsulating the components into injected nanovectors. While the vaccine landscape has changed with the rapid uptake of mRNA vaccines, we suggest that there is still a role for recruiting NKT cells in altering T cell differentiation programmes, notably the induction of resident memory T cells.
Collapse
Affiliation(s)
- Olivia K Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
3
|
Dasyam N, Sharples KJ, Barrow C, Huang Y, Bauer E, Mester B, Wood CE, Authier-Hall A, Dzhelali M, Ostapowicz T, Kumar R, Lowe J, Maxwell A, Burn OK, Williams GM, Carley SE, Caygill G, Jones J, Chan STS, Hinder VA, Macapagal J, McCusker M, Weinkove R, Brimble MA, Painter GF, Findlay MP, Dunbar PR, Gasser O, Hermans IF. A randomised controlled trial of long NY-ESO-1 peptide-pulsed autologous dendritic cells with or without alpha-galactosylceramide in high-risk melanoma. Cancer Immunol Immunother 2023; 72:2267-2282. [PMID: 36881133 PMCID: PMC10264280 DOI: 10.1007/s00262-023-03400-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023]
Abstract
AIM We have previously reported that polyfunctional T cell responses can be induced to the cancer testis antigen NY-ESO-1 in melanoma patients injected with mature autologous monocyte-derived dendritic cells (DCs) loaded with long NY-ESO-1-derived peptides together with α-galactosylceramide (α-GalCer), an agonist for type 1 Natural Killer T (NKT) cells. OBJECTIVE To assess whether inclusion of α-GalCer in autologous NY-ESO-1 long peptide-pulsed DC vaccines (DCV + α-GalCer) improves T cell responses when compared to peptide-pulsed DC vaccines without α-GalCer (DCV). DESIGN, SETTING AND PARTICIPANTS Single-centre blinded randomised controlled trial in patients ≥ 18 years old with histologically confirmed, fully resected stage II-IV malignant cutaneous melanoma, conducted between July 2015 and June 2018 at the Wellington Blood and Cancer Centre of the Capital and Coast District Health Board. INTERVENTIONS Stage I. Patients were randomised to two cycles of DCV or DCV + α-GalCer (intravenous dose of 10 × 106 cells, interval of 28 days). Stage II. Patients assigned to DCV + α-GalCer were randomised to two further cycles of DCV + α-GalCer or observation, while patients initially assigned to DCV crossed over to two cycles of DCV + α-GalCer. OUTCOME MEASURES Primary: Area under the curve (AUC) of mean NY-ESO-1-specific T cell count detected by ex vivo IFN-γ ELISpot in pre- and post-treatment blood samples, compared between treatment arms at Stage I. Secondary: Proportion of responders in each arm at Stage I; NKT cell count in each arm at Stage I; serum cytokine levels at Stage I; adverse events Stage I; T cell count for DCV + α-GalCer versus observation at Stage II, T cell count before versus after cross-over. RESULTS Thirty-eight patients gave written informed consent; 5 were excluded before randomisation due to progressive disease or incomplete leukapheresis, 17 were assigned to DCV, and 16 to DCV + α-GalCer. The vaccines were well tolerated and associated with increases in mean total T cell count, predominantly CD4+ T cells, but the difference between the treatment arms was not statistically significant (difference - 6.85, 95% confidence interval, - 21.65 to 7.92; P = 0.36). No significant improvements in T cell response were associated with DCV + α-GalCer with increased dosing, or in the cross-over. However, the NKT cell response to α-GalCer-loaded vaccines was limited compared to previous studies, with mean circulating NKT cell levels not significantly increased in the DCV + α-GalCer arm and no significant differences in cytokine response between the treatment arms. CONCLUSIONS A high population coverage of NY-ESO-1-specific T cell responses was achieved with a good safety profile, but we failed to demonstrate that loading with α-GalCer provided an additional advantage to the T cell response with this cellular vaccine design. CLINICAL TRIAL REGISTRATION ACTRN12612001101875. Funded by the Health Research Council of New Zealand.
Collapse
Affiliation(s)
- Nathaniel Dasyam
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Katrina J Sharples
- Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Catherine Barrow
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Ying Huang
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Evelyn Bauer
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Brigitta Mester
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Catherine E Wood
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Astrid Authier-Hall
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Marina Dzhelali
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Tess Ostapowicz
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Rajiv Kumar
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Jessica Lowe
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Alice Maxwell
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Olivia K Burn
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Geoffrey M Williams
- School of Chemical Sciences, University of Auckland, PO Box 92019, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
| | - Sarah E Carley
- School of Chemical Sciences, University of Auckland, PO Box 92019, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
| | | | - Jeremy Jones
- GlycoSyn, PO Box 31 310, Lower Hutt, 5040, New Zealand
| | - Susanna T S Chan
- The Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Lower Hutt, 5046, New Zealand
| | - Victoria A Hinder
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jerome Macapagal
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Monica McCusker
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Robert Weinkove
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, PO Box 92019, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
| | - Gavin F Painter
- The Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Lower Hutt, 5046, New Zealand
| | - Michael P Findlay
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - P Rod Dunbar
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
- School of Biological Sciences, University of Auckland, PO Box 92019, Auckland, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.
| | - Ian F Hermans
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
4
|
Ligthart NAM, de Geus MAR, van de Plassche MAT, Torres García D, Isendoorn MME, Reinalda L, Ofman D, van Leeuwen T, van Kasteren SI. A Lysosome-Targeted Tetrazine for Organelle-Specific Click-to-Release Chemistry in Antigen Presenting Cells. J Am Chem Soc 2023. [PMID: 37269296 DOI: 10.1021/jacs.3c02139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bioorthogonal deprotections are readily used to control biological function in a cell-specific manner. To further improve the spatial resolution of these reactions, we here present a lysosome-targeted tetrazine for an organelle-specific deprotection reaction. We show that trans-cyclooctene deprotection with this reagent can be used to control the biological activity of ligands for invariant natural killer T cells in the lysosome to shed light on the processing pathway in antigen presenting cells. We then use the lysosome-targeted tetrazine to show that long peptide antigens used for CD8+ T cell activation do not pass through this organelle, suggesting a role for the earlier endosomal compartments for their processing.
Collapse
Affiliation(s)
- Nina A M Ligthart
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mark A R de Geus
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Merel A T van de Plassche
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Diana Torres García
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marjolein M E Isendoorn
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Luuk Reinalda
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Daniëlle Ofman
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Tyrza van Leeuwen
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sander I van Kasteren
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
5
|
Hadiloo K, Tahmasebi S, Esmaeilzadeh A. CAR-NKT cell therapy: a new promising paradigm of cancer immunotherapy. Cancer Cell Int 2023; 23:86. [PMID: 37158883 PMCID: PMC10165596 DOI: 10.1186/s12935-023-02923-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Today, cancer treatment is one of the fundamental problems facing clinicians and researchers worldwide. Efforts to find an excellent way to treat this illness continue, and new therapeutic strategies are developed quickly. Adoptive cell therapy (ACT) is a practical approach that has been emerged to improve clinical outcomes in cancer patients. In the ACT, one of the best ways to arm the immune cells against tumors is by employing chimeric antigen receptors (CARs) via genetic engineering. CAR equips cells to target specific antigens on tumor cells and selectively eradicate them. Researchers have achieved promising preclinical and clinical outcomes with different cells by using CARs. One of the potent immune cells that seems to be a good candidate for CAR-immune cell therapy is the Natural Killer-T (NKT) cell. NKT cells have multiple features that make them potent cells against tumors and would be a powerful replacement for T cells and natural killer (NK) cells. NKT cells are cytotoxic immune cells with various capabilities and no notable side effects on normal cells. The current study aimed to comprehensively provide the latest advances in CAR-NKT cell therapy for cancers.
Collapse
Affiliation(s)
- Kaveh Hadiloo
- Student Research Committee, Department of immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of immunology, School of Medicine, Shahid beheshti University of Medical Sciences, Tehran, Iran.
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
6
|
Look A, Burns D, Tews I, Roghanian A, Mansour S. Towards a better understanding of human iNKT cell subpopulations for improved clinical outcomes. Front Immunol 2023; 14:1176724. [PMID: 37153585 PMCID: PMC10154573 DOI: 10.3389/fimmu.2023.1176724] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique T lymphocyte population expressing semi-invariant T cell receptors (TCRs) that recognise lipid antigens presented by CD1d. iNKT cells exhibit potent anti-tumour activity through direct killing mechanisms and indirectly through triggering the activation of other anti-tumour immune cells. Because of their ability to induce potent anti-tumour responses, particularly when activated by the strong iNKT agonist αGalCer, they have been the subject of intense research to harness iNKT cell-targeted immunotherapies for cancer treatment. However, despite potent anti-tumour efficacy in pre-clinical models, the translation of iNKT cell immunotherapy into human cancer patients has been less successful. This review provides an overview of iNKT cell biology and why they are of interest within the context of cancer immunology. We focus on the iNKT anti-tumour response, the seminal studies that first reported iNKT cytotoxicity, their anti-tumour mechanisms, and the various described subsets within the iNKT cell repertoire. Finally, we discuss several barriers to the successful utilisation of iNKT cells in human cancer immunotherapy, what is required for a better understanding of human iNKT cells, and the future perspectives facilitating their exploitation for improved clinical outcomes.
Collapse
Affiliation(s)
- Alex Look
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Daniel Burns
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ivo Tews
- Biological Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Salah Mansour
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
7
|
Role of NKT cells in cancer immunotherapy-from bench to bed. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:29. [PMID: 36460881 DOI: 10.1007/s12032-022-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Natural killer T (NKT) cells are a specific T cell subset known to express the αβ-T cell receptor (TCR) for antigens identification and express typical NK cell specifications, such as surface expression of CD56 and CD16 markers as well as production of granzyme. Human NKT cells are divided into two subgroups based on their cytokine receptor and TCR repertoire. Both of them are CD1-restricted and recognize lipid antigens presented by CD1d molecules. Studies have demonstrated that these cells are essential in defense against malignancies. These cells secret proinflammatory and regulatory cytokines that stimulate or suppress immune system responses. In several murine tumor models, activation of type I NKT cells induces tumor rejection and inhibits metastasis's spread. However, type II NKT cells are associated with an inhibitory and regulatory function during tumor immune responses. Variant NKT cells may suppress tumor immunity via different mechanisms that require cross-talk with other immune-regulatory cells. NKT-like cells display high tumor-killing abilities against many tumor cells. In the recent decade, different studies have been performed based on the application of NKT-based immunotherapy for cancer therapy. Moreover, manipulation of NKT cells through administering autologous dendritic cell (DC) loaded with α-galactosylceramide (α-GalCer) and direct α-GalCer injection has also been tested. In this review, we described different subtypes of NKT cells, their function in the anti-tumor immune responses, and the application of NKT cells in cancer immunotherapy from bench to bed.
Collapse
|
8
|
Delfanti G, Cortesi F, Perini A, Antonini G, Azzimonti L, de Lalla C, Garavaglia C, Squadrito ML, Fedeli M, Consonni M, Sesana S, Re F, Shen H, Dellabona P, Casorati G. TCR-engineered iNKT cells induce robust antitumor response by dual targeting cancer and suppressive myeloid cells. Sci Immunol 2022; 7:eabn6563. [PMID: 35984893 DOI: 10.1126/sciimmunol.abn6563] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Adoptive immunotherapy with T cells engineered with tumor-specific T cell receptors (TCRs) holds promise for cancer treatment. However, suppressive cues generated in the tumor microenvironment (TME) can hinder the efficacy of these therapies, prompting the search for strategies to overcome these detrimental conditions and improve cellular therapeutic approaches. CD1d-restricted invariant natural killer T (iNKT) cells actively participate in tumor immunosurveillance by restricting suppressive myeloid populations in the TME. Here, we showed that harnessing iNKT cells with a second TCR specific for a tumor-associated peptide generated bispecific effectors for CD1d- and major histocompatibility complex (MHC)-restricted antigens in vitro. Upon in vivo transfer, TCR-engineered iNKT (TCR-iNKT) cells showed the highest efficacy in restraining the progression of multiple tumors that expressed the cognate antigen compared with nontransduced iNKT cells or CD8+ T cells engineered with the same TCR. TCR-iNKT cells achieved robust cancer control by simultaneously modulating intratumoral suppressive myeloid populations and killing malignant cells. This dual antitumor function was further enhanced when the iNKT cell agonist α-galactosyl ceramide (α-GalCer) was administered as a therapeutic booster through a platform that ensured controlled delivery at the tumor site, named multistage vector (MSV). These preclinical results support the combination of tumor-redirected TCR-iNKT cells and local α-GalCer boosting as a potential therapy for patients with cancer.
Collapse
Affiliation(s)
- Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Filippo Cortesi
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Alessandra Perini
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Gaia Antonini
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20132, Italy
| | | | - Claudia de Lalla
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Claudio Garavaglia
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Mario L Squadrito
- Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy
| | - Maya Fedeli
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Michela Consonni
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Silvia Sesana
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Francesca Re
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
9
|
Li YR, Zhou Y, Wilson M, Kramer A, Hon R, Zhu Y, Fang Y, Yang L. Tumor-Localized Administration of α-GalCer to Recruit Invariant Natural Killer T Cells and Enhance Their Antitumor Activity against Solid Tumors. Int J Mol Sci 2022; 23:7547. [PMID: 35886891 PMCID: PMC9317565 DOI: 10.3390/ijms23147547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022] Open
Abstract
Invariant natural killer T (iNKT) cells have the capacity to mount potent anti-tumor reactivity and have therefore become a focus in the development of cell-based immunotherapy. iNKT cells attack tumor cells using multiple mechanisms with a high efficacy; however, their clinical application has been limited because of their low numbers in cancer patients and difficulties in infiltrating solid tumors. In this study, we aimed to overcome these critical limitations by using α-GalCer, a synthetic glycolipid ligand specifically activating iNKT cells, to recruit iNKT to solid tumors. By adoptively transferring human iNKT cells into tumor-bearing humanized NSG mice and administering a single dose of tumor-localized α-GalCer, we demonstrated the rapid recruitment of human iNKT cells into solid tumors in as little as one day and a significantly enhanced tumor killing ability. Using firefly luciferase-labeled iNKT cells, we monitored the tissue biodistribution and pharmacokinetics/pharmacodynamics (PK/PD) of human iNKT cells in tumor-bearing NSG mice. Collectively, these preclinical studies demonstrate the promise of an αGC-driven iNKT cell-based immunotherapy to target solid tumors with higher efficacy and precision.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (M.W.); (A.K.); (R.H.); (Y.Z.); (Y.F.)
| | - Yang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (M.W.); (A.K.); (R.H.); (Y.Z.); (Y.F.)
| | - Matthew Wilson
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (M.W.); (A.K.); (R.H.); (Y.Z.); (Y.F.)
| | - Adam Kramer
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (M.W.); (A.K.); (R.H.); (Y.Z.); (Y.F.)
| | - Ryan Hon
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (M.W.); (A.K.); (R.H.); (Y.Z.); (Y.F.)
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (M.W.); (A.K.); (R.H.); (Y.Z.); (Y.F.)
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (M.W.); (A.K.); (R.H.); (Y.Z.); (Y.F.)
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (M.W.); (A.K.); (R.H.); (Y.Z.); (Y.F.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Delfanti G, Dellabona P, Casorati G, Fedeli M. Adoptive Immunotherapy With Engineered iNKT Cells to Target Cancer Cells and the Suppressive Microenvironment. Front Med (Lausanne) 2022; 9:897750. [PMID: 35615083 PMCID: PMC9125179 DOI: 10.3389/fmed.2022.897750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Invariant Natural Killer T (iNKT) cells are T lymphocytes expressing a conserved semi-invariant TCR specific for lipid antigens (Ags) restricted for the monomorphic MHC class I-related molecule CD1d. iNKT cells infiltrate mouse and human tumors and play an important role in the immune surveillance against solid and hematological malignancies. Because of unique functional features, they are attractive platforms for adoptive cells immunotherapy of cancer compared to conventional T cells. iNKT cells can directly kill CD1d-expressing cancer cells, but also restrict immunosuppressive myelomonocytic populations in the tumor microenvironment (TME) via CD1d-cognate recognition, promoting anti-tumor responses irrespective of the CD1d expression by cancer cells. Moreover, iNKT cells can be adoptively transferred across MHC barriers without risk of alloreaction because CD1d molecules are identical in all individuals, in addition to their ability to suppress graft vs. host disease (GvHD) without impairing the anti-tumor responses. Within this functional framework, iNKT cells are successfully engineered to acquire a second antigen-specificity by expressing recombinant TCRs or Chimeric Antigen Receptor (CAR) specific for tumor-associated antigens, enabling the direct targeting of antigen-expressing cancer cells, while maintaining their CD1d-dependent functions. These new evidences support the exploitation of iNKT cells for donor unrestricted, and possibly off the shelf, adoptive cell therapies enabling the concurrent targeting of cancer cells and suppressive microenvironment.
Collapse
Affiliation(s)
- Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- *Correspondence: Gloria Delfanti
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Giulia Casorati
| | - Maya Fedeli
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Maya Fedeli
| |
Collapse
|
11
|
Juat DJ, Hachey SJ, Billimek J, Del Rosario MP, Nelson EL, Hughes CCW, Zell JA. Adoptive T-Cell Therapy in Advanced Colorectal Cancer: A Systematic Review. Oncologist 2022; 27:210-219. [PMID: 35274719 PMCID: PMC8914488 DOI: 10.1093/oncolo/oyab038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/15/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the US. For the vast majority of patients with advanced CRC (ie, for those in whom metastatic tumors are unresectable), treatment is palliative and typically involves chemotherapy, biologic therapy, and/or immune checkpoint inhibition. In recent years, the use of adoptive T-cell therapy (ACT), leveraging the body’s own immune system to recognize and target cancer, has become increasingly popular. Unfortunately, while ACT has been successful in the treatment of hematological malignancies, it is less efficacious in advanced CRC due in part to a lack of productive immune infiltrate. This systematic review was conducted to summarize the current data for the efficacy and safety of ACT in advanced CRC. We report that ACT is well tolerated in patients with advanced CRC. Favorable survival estimates among patients with advanced CRC receiving ACT demonstrate promise for this novel treatment paradigm. However, additional stage I/II clinical trials are needed to establish the efficacy and safety of ACT in patients with CRC.
Collapse
Affiliation(s)
- Damie J Juat
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Stephanie J Hachey
- Department of Family Medicine, University of California Irvine, Irvine, CA, USA
| | - John Billimek
- Department of Family Medicine, University of California Irvine, Irvine, CA, USA
| | - Michael P Del Rosario
- Division of Hematology/Oncology, Department of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Edward L Nelson
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Division of Hematology/Oncology, Department of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Christopher C W Hughes
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Jason A Zell
- Division of Hematology/Oncology, Department of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
12
|
Akache B, Stark FC, Agbayani G, Renner TM, McCluskie MJ. Adjuvants: Engineering Protective Immune Responses in Human and Veterinary Vaccines. Methods Mol Biol 2022; 2412:179-231. [PMID: 34918246 DOI: 10.1007/978-1-0716-1892-9_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adjuvants are key components of many vaccines, used to enhance the level and breadth of the immune response to a target antigen, thereby enhancing protection from the associated disease. In recent years, advances in our understanding of the innate and adaptive immune systems have allowed for the development of a number of novel adjuvants with differing mechanisms of action. Herein, we review adjuvants currently approved for human and veterinary use, describing their use and proposed mechanisms of action. In addition, we will discuss additional promising adjuvants currently undergoing preclinical and/or clinical testing.
Collapse
Affiliation(s)
- Bassel Akache
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Felicity C Stark
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Tyler M Renner
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Michael J McCluskie
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada.
| |
Collapse
|
13
|
Abstract
Gastrointestinal (GI) cancers represent a complex array of cancers that affect the digestive system. This includes liver, pancreatic, colon, rectal, anal, gastric, esophageal, intestinal and gallbladder cancer. Patients diagnosed with certain GI cancers typically have low survival rates, so new therapeutic approaches are needed. A potential approach is to harness the potent immunoregulatory properties of natural killer T (NKT) cells which are true T cells, not natural killer (NK) cells, that recognize lipid instead of peptide antigens presented by the non-classical major histocompatibility (MHC) molecule CD1d. The NKT cell subpopulation is known to play a vital role in tumor immunity by bridging innate and adaptive immune responses. In GI cancers, NKT cells can contribute to either antitumor or protumor immunity depending on the cytokine profile expressed and type of cancer. This review discusses the complexities of the role of NKT cells in liver, colon, pancreatic and gastric cancers with an emphasis on type I NKT cells.
Collapse
Affiliation(s)
- Julian Burks
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA,CONTACT Julian Burks National Cancer Institute, National Institute of Health, Building 41/Room D702, 41 Medlars Drive, Bethesda, Maryland20892, USA
| | - Purevdorj B. Olkhanud
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Babes L, Shim R, Kubes P. Imaging α-GalCer-activated iNKT cells in a hepatic metastatic environment. Cancer Immunol Res 2021; 10:12-25. [PMID: 34785505 DOI: 10.1158/2326-6066.cir-21-0445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/12/2021] [Accepted: 11/15/2021] [Indexed: 01/10/2023]
Abstract
Colorectal cancer patients frequently develop liver metastases after, and perhaps as a consequence of, lifesaving surgical resection of the primary tumor. This creates a potential opportunity for prophylactic metastatic treatment with novel immunostimulatory molecules. Here, we used state-of-the-art intravital imaging of an experimental liver metastasis model to visualize the early behavior and function of invariant (i)NKT cells stimulated with α-galactosylceramide (α-GalCer). Intravenous α-GalCer prior to tumor cell seeding in the liver significantly inhibited tumor growth. However, some seeding tumor cells survived. A multiple dosing regimen reduced tumor burden and prolonged the life of mice, whereas tumors returned within 5 days after a single dose of α-GalCer. With multiple doses of α-GalCer, iNKT cells increased in number and granularity (as did NK cells). As a result, the total number of contacts and time in contact with tumors increased substantially. In the absence of iNKT cells, the beneficial effect of α-GalCer was lost. Robust cytokine production dissipated over time. Repeated therapy, even after cytokine dissipation, led to reduced tumor burden and prolonged survival. Serial transplantation of tumors exposed to α-GalCer-activated iNKT cells did not induce greater resistance, suggesting no obvious epigenetic or genetic immunoediting in tumors exposed to activated iNKT cells. Very few tumor cells expressed CD1d in this model, and as such, adding monomers of CD1d-α-GalCer further reduced tumor growth. The data suggest early and repeated stimulation of iNKT cells with α-GalCer could have direct therapeutic benefit for colorectal cancer patients that develop metastatic liver disease.
Collapse
Affiliation(s)
- Liane Babes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute and Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Raymond Shim
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Companioni O, Mir C, Garcia-Mayea Y, LLeonart ME. Targeting Sphingolipids for Cancer Therapy. Front Oncol 2021; 11:745092. [PMID: 34737957 PMCID: PMC8560795 DOI: 10.3389/fonc.2021.745092] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are an extensive class of lipids with different functions in the cell, ranging from proliferation to cell death. Sphingolipids are modified in multiple cancers and are responsible for tumor proliferation, progression, and metastasis. Several inhibitors or activators of sphingolipid signaling, such as fenretinide, safingol, ABC294640, ceramide nanoliposomes (CNLs), SKI-II, α-galactosylceramide, fingolimod, and sonepcizumab, have been described. The objective of this review was to analyze the results from preclinical and clinical trials of these drugs for the treatment of cancer. Sphingolipid-targeting drugs have been tested alone or in combination with chemotherapy, exhibiting antitumor activity alone and in synergism with chemotherapy in vitro and in vivo. As a consequence of treatments, the most frequent mechanism of cell death is apoptosis, followed by autophagy. Aslthough all these drugs have produced good results in preclinical studies of multiple cancers, the outcomes of clinical trials have not been similar. The most effective drugs are fenretinide and α-galactosylceramide (α-GalCer). In contrast, minor adverse effects restricted to a few subjects and hepatic toxicity have been observed in clinical trials of ABC294640 and safingol, respectively. In the case of CNLs, SKI-II, fingolimod and sonepcizumab there are some limitations and absence of enough clinical studies to demonstrate a benefit. The effectiveness or lack of a major therapeutic effect of sphingolipid modulation by some drugs as a cancer therapy and other aspects related to their mechanism of action are discussed in this review.
Collapse
Affiliation(s)
- Osmel Companioni
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Matilde E LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Spanish Biomedical Research Network Center in Oncology, CIBERONC, Madrid, Spain
| |
Collapse
|
16
|
Nelson A, Lukacs JD, Johnston B. The Current Landscape of NKT Cell Immunotherapy and the Hills Ahead. Cancers (Basel) 2021; 13:cancers13205174. [PMID: 34680322 PMCID: PMC8533824 DOI: 10.3390/cancers13205174] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Natural killer T (NKT) cells are a subset of lipid-reactive T cells that enhance anti-tumor immunity. While preclinical studies have shown NKT cell immunotherapy to be safe and effective, clinical studies lack predictable therapeutic efficacy and no approved treatments exist. In this review, we outline the current strategies, challenges, and outlook for NKT cell immunotherapy. Abstract NKT cells are a specialized subset of lipid-reactive T lymphocytes that play direct and indirect roles in immunosurveillance and anti-tumor immunity. Preclinical studies have shown that NKT cell activation via delivery of exogenous glycolipids elicits a significant anti-tumor immune response. Furthermore, infiltration of NKT cells is associated with a good prognosis in several cancers. In this review, we aim to summarize the role of NKT cells in cancer as well as the current strategies and status of NKT cell immunotherapy. This review also examines challenges and future directions for improving the therapy.
Collapse
Affiliation(s)
- Adam Nelson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Jordan D. Lukacs
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
17
|
Isolation and Characterization Methods of Human Invariant NKT Cells. Methods Mol Biol 2021. [PMID: 34524663 DOI: 10.1007/978-1-0716-1775-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Natural killer T cells (NKT) are abundant in the hepatic sinuses and account for about 20-50% of rat liver lymphocytes. Type I or invariant NKT cells (iNKT) exert a powerful pro-inflammatory effect when activated, while type II NKT cells are more heterogeneous and mainly play an immunomodulatory role. Here we mainly introduced the isolation and characterization methods of human invariant NKT cells. Through immunomagnetic beads and flow cytometry, iNKT cells can be isolated specifically, and that explains functional analysis can be further established.
Collapse
|
18
|
Gao Y, Guo J, Bao X, Xiong F, Ma Y, Tan B, Yu L, Zhao Y, Lu J. Adoptive Transfer of Autologous Invariant Natural Killer T Cells as Immunotherapy for Advanced Hepatocellular Carcinoma: A Phase I Clinical Trial. Oncologist 2021; 26:e1919-e1930. [PMID: 34255901 PMCID: PMC8571770 DOI: 10.1002/onco.13899] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/08/2021] [Indexed: 12/17/2022] Open
Abstract
Lessons Learned Administration of autologous invariant natural killer T (iNKT) cells was safe and well‐tolerated in patients with hepatocellular carcinoma (Barcelona Clinic Liver Cancer stage B/C). Expanded iNKT cells produced T‐helper 1–like responses with possible antitumor activity. No severe adverse events were observed in any of the enrolled patients, including one patient who received 1010 in vitro–expanded autologous iNKT cells as a single infusion.
Background Invariant natural killer T cells co‐express T‐cell antigen receptor and natural killer (NK) cell receptors. Invariant natural killer T (iNKT) cells exhibit antitumor activity, but their numbers and functions are impaired in patients with hepatocellular carcinoma (HCC). The adoptive transfer of iNKT cells might treat advanced HCC. Methods This phase I study (NCT03175679) enrolled 10 patients with HCC (Barcelona Clinic Liver Cancer [BCLC] stage B/C) at Beijing YouAn Hospital (April 2017 to May 2018). iNKT cells isolated from peripheral blood mononuclear cells (PBMCs) were expanded and alpha‐galactosylceramide (α‐GalCer)–pulsed. Dosage escalated from 3 × 107 to 6 × 107 to 9 × 107 cells/m2 (3+3 design). An exploratory dose trial (1 × 1010 cells/m2) was conducted in one patient. Results Expanded iNKT cells produced greater quantities of T‐helper 1 (Th1) cytokines (e.g., interferon‐gamma, perforin, and granzyme B) but less interleukin‐4 than nonexpanded iNKT cells. Circulating numbers of iNKT cells and activated NK cells were increased after iNKT cell infusion. Most treatment‐related adverse events were grade 1–2, and three grade 3 adverse events were reported; all resolved without treatment. Four patients were progression‐free at 5.5, 6, 7, and 11 months after therapy, and one patient was alive and without tumor recurrence at the last follow‐up. Five patients died at 1.5 to 11 months after treatment. Conclusion Autologous iNKT cell treatment is safe and well‐tolerated. Expanded iNKT cells produce Th1‐like responses with possible antitumor activity. The antitumor effects of iNKT cell infusion in patients with advanced HCC merit further investigation.
Collapse
Affiliation(s)
- Yao Gao
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jia Guo
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xuli Bao
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Fang Xiong
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yanpin Ma
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Bingqin Tan
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lele Yu
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yong Zhao
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jun Lu
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
19
|
Abstract
Cancer is a major burden on the healthcare system, and new therapies are needed. Recently, the development of immunotherapies, which aim to boost or use the immune system, or its constituents, as a tool to fight malignant cells, has provided a major new tool in the arsenal of clinicians and has revolutionized the treatment of many cancers.Cellular immunotherapies are based on the administration of living cells to patients and have developed hugely, especially since 2010 when Sipuleucel-T (Provenge), a DC vaccine, was the first cellular immunotherapy to be approved by the FDA. The ensuing years have seen two further cellular immunotherapies gain FDA approval: tisagenlecleucel (Kymriah) and axicabtagene ciloleucel (Yescarta).This review will give an overview of the principles of immunotherapies before focusing on the major forms of cellular immunotherapies individually, T cell-based, natural killer (NK) cell-based and dendritic cell (DC)-based, as well as detailing some of the clinical trials relevant to each therapy.
Collapse
Affiliation(s)
- Conall Hayes
- School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
20
|
Painter GF, Burn OK, Hermans IF. Using agonists for iNKT cells in cancer therapy. Mol Immunol 2020; 130:1-6. [PMID: 33340930 DOI: 10.1016/j.molimm.2020.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/02/2020] [Indexed: 01/03/2023]
Abstract
The capacity of α-galactosylceramide (α-GalCer) to act as an anti-cancer agent in mice through the specific stimulation of type I NKT (iNKT) cells has prompted extensive investigation to translate this finding to the clinic. However, low frequencies of iNKT cells in cancer patients and their hypo-responsiveness to repeated stimulation have been seen as barriers to its efficacy. Currently the most promising clinical application of α-GalCer, or its derivatives, is as stimuli for ex vivo expansion of iNKT cells for adoptive therapy, although some encouraging clinical results have recently been reported using α-GalCer pulsed onto large numbers of antigen presenting cells (APCs). In on-going preclinical studies, attempts to improve efficacy of injected iNKT cell agonists have focussed on optimising presentation in vivo, through encapsulation in particulate vectors, making structural changes that help binding to the presenting molecule CD1d, or injecting agonists covalently attached to recombinant CD1d. Variations on these same approaches are being used to enhance the APC-licencing function of iNKT cells in vivo to induce adaptive immune responses to associated tumour antigens. Looking ahead, a unique capacity of in vivo-activated iNKT cells to facilitate formation of resident memory CD8+ T cells is a new observation that could find a role in cancer therapy.
Collapse
Affiliation(s)
- Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| | - Olivia K Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Ian F Hermans
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand; Malaghan Institute of Medical Research, Wellington, New Zealand.
| |
Collapse
|
21
|
Inuki S, Hirata N, Kashiwabara E, Kishi J, Aiba T, Teratani T, Nakamura W, Kojima Y, Maruyama T, Kanai T, Fujimoto Y. Polar functional group-containing glycolipid CD1d ligands modulate cytokine-biasing responses and prevent experimental colitis. Sci Rep 2020; 10:15766. [PMID: 32978421 PMCID: PMC7519074 DOI: 10.1038/s41598-020-72280-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022] Open
Abstract
The MHC class I-like molecule CD1d is a nonpolymorphic antigen-presenting glycoprotein, and its ligands include glycolipids, such as α-GalCer. The complexes between CD1d and ligands activate natural killer T cells by T cell receptor recognition, leading to the secretion of various cytokines (IFN-γ, IL-4, IL-17A, etc.). Herein, we report structure-activity relationship studies of α-GalCer derivatives containing various functional groups in their lipid acyl chains. Several derivatives have been identified as potent CD1d ligands displaying higher cytokine induction levels and/or unique cytokine polarization. The studies also indicated that flexibility of the lipid moiety can affect the binding affinity, the total cytokine production level and/or cytokine biasing. Based on our immunological evaluation and investigation of physicochemical properties, we chose bisamide- and Bz amide-containing derivatives 2 and 3, and evaluated their in vivo efficacy in a DSS-induced model of ulcerative colitis. The derivative 3 that exhibits Th2- and Th17-biasing responses, demonstrated significant protective effects against intestinal inflammation in the DSS-induced model, after a single intraperitoneal injection.
Collapse
Affiliation(s)
- Shinsuke Inuki
- Graduate School of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.,Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Natsumi Hirata
- Graduate School of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Emi Kashiwabara
- Graduate School of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Junichiro Kishi
- Graduate School of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Toshihiko Aiba
- Graduate School of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.,Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Toshiaki Teratani
- School of Medicine, Keio University, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Wataru Nakamura
- Discovery and Research, ONO Pharmaceutical Co., Ltd., Sakurai, Shimamoto, Mishima, Osaka, 618-8585, Japan
| | - Yoshimi Kojima
- Discovery and Research, ONO Pharmaceutical Co., Ltd., Sakurai, Shimamoto, Mishima, Osaka, 618-8585, Japan
| | - Toru Maruyama
- Discovery and Research, ONO Pharmaceutical Co., Ltd., Sakurai, Shimamoto, Mishima, Osaka, 618-8585, Japan
| | - Takanori Kanai
- School of Medicine, Keio University, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yukari Fujimoto
- Graduate School of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
22
|
Chronic Viral Liver Diseases: Approaching the Liver Using T Cell Receptor-Mediated Gene Technologies. Cells 2020; 9:cells9061471. [PMID: 32560123 PMCID: PMC7349849 DOI: 10.3390/cells9061471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic infection with viral hepatitis is a major risk factor for liver injury and hepatocellular carcinoma (HCC). One major contributing factor to the chronicity is the dysfunction of virus-specific T cell immunity. T cells engineered to express virus-specific T cell receptors (TCRs) may be a therapeutic option to improve host antiviral responses and have demonstrated clinical success against virus-associated tumours. This review aims to give an overview of TCRs identified from viral hepatitis research and discuss how translational lessons learned from cancer immunotherapy can be applied to the field. TCR isolation pipelines, liver homing signals, cell type options, as well as safety considerations will be discussed herein.
Collapse
|
23
|
Dölen Y, Valente M, Tagit O, Jäger E, Van Dinther EAW, van Riessen NK, Hruby M, Gileadi U, Cerundolo V, Figdor CG. Nanovaccine administration route is critical to obtain pertinent iNKt cell help for robust anti-tumor T and B cell responses. Oncoimmunology 2020; 9:1738813. [PMID: 33457086 PMCID: PMC7790498 DOI: 10.1080/2162402x.2020.1738813] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nanovaccines, co-delivering antigen and invariant natural killer T (iNKT) cell agonists, proved to be very effective in inducing anti-tumor T cell responses due to their exceptional helper function. However, it is known that iNKT cells are not equally present in all lymphoid organs and nanoparticles do not get evenly distributed to all immune compartments. In this study, we evaluated the effect of the vaccination route on iNKT cell help to T and B cell responses for the first time in an antigen and agonist co-delivery setting. Intravenous administration of PLGA nanoparticles was mainly targeting liver and spleen where iNKT1 cells are abundant and induced the highest serum IFN-y levels, T cell cytotoxicity, and Th-1 type antibody responses. In comparison, after subcutaneous or intranodal injections, nanoparticles mostly drained or remained in regional lymph nodes where iNKT17 cells were abundant. After subcutaneous and intranodal injections, antigen-specific IgG2 c production was hampered and IFN-y production, as well as cytotoxic T cell responses, depended on sporadic systemic drainage. Therapeutic anti-tumor experiments also demonstrated a clear advantage of intravenous injection over intranodal or subcutaneous vaccinations. Moreover, tumor control could be further improved by PD-1 immune checkpoint blockade after intravenous vaccination, but not by intranodal vaccination. Anti PD-1 antibody combination mainly exerts its effect by prolonging the cytotoxicity of T cells. Nanovaccines also demonstrated synergism with anti-4-1BB agonistic antibody treatment in controlling tumor growth. We conclude that nanovaccines containing iNKT cell agonists shall be preferentially administered intravenously, to optimally reach cellular partners for inducing effective anti-tumor immune responses.
Collapse
Affiliation(s)
- Yusuf Dölen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| | - Michael Valente
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| | - Oya Tagit
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| | - Eliezer Jäger
- Institute of Macromolecular Chemistry V.v.i., Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | - Eric A W Van Dinther
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| | - N Koen van Riessen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| | - Martin Hruby
- Institute of Macromolecular Chemistry V.v.i., Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | - Uzi Gileadi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Fu S, He K, Tian C, Sun H, Zhu C, Bai S, Liu J, Wu Q, Xie D, Yue T, Shen Z, Dai Q, Yu X, Zhu S, Liu G, Zhou R, Duan S, Tian Z, Xu T, Wang H, Bai L. Impaired lipid biosynthesis hinders anti-tumor efficacy of intratumoral iNKT cells. Nat Commun 2020; 11:438. [PMID: 31974378 PMCID: PMC6978340 DOI: 10.1038/s41467-020-14332-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Dysfunction of invariant natural killer T (iNKT) cells in tumor microenvironment hinders their anti-tumor efficacy, and the underlying mechanisms remain unclear. Here we report that iNKT cells increase lipid biosynthesis after activation, and that is promoted by PPARγ and PLZF synergically through enhancing transcription of Srebf1. Among those lipids, cholesterol is required for the optimal IFN-γ production from iNKT cells. Lactic acid in tumor microenvironment reduces expression of PPARγ in intratumoral iNKT cells and consequently diminishes their cholesterol synthesis and IFN-γ production. Importantly, PPARγ agonist pioglitazone, a thiazolidinedione drug for type 2 diabetes, successfully restores IFN-γ production in tumor-infiltrating iNKT cells from both human patients and mouse models. Combination of pioglitazone and alpha-galactosylceramide treatments significantly enhances iNKT cell-mediated anti-tumor immune responses and prolongs survival of tumor-bearing mice. Our studies provide a strategy to augment the anti-tumor efficacy of iNKT cell-based immunotherapies via promoting their lipid biosynthesis. Lipid metabolism has been linked to iNKT function largely as it impacts processing and presentation of lipids they recognize. Here the authors show that iNKT-intrinsic lipid biosynthesis is important for their function but is impaired in tumors, and its restoration with PPARγ agonist drugs promotes anti-tumor iNKT response.
Collapse
Affiliation(s)
- Sicheng Fu
- Department of Oncology of The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Kaixin He
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Chenxi Tian
- Department of Oncology of The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hua Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Chenwen Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Shiyu Bai
- Department of Oncology of The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jiwei Liu
- Department of Oncology of The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Qielan Wu
- Department of Oncology of The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Di Xie
- Department of Oncology of The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ting Yue
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zhuxia Shen
- Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Qingqing Dai
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaojun Yu
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shu Zhu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Gang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230027, China
| | - Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shengzhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Zhigang Tian
- Department of Oncology of The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Tao Xu
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China.
| | - Li Bai
- Department of Oncology of The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China. .,Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
25
|
Melo AM, Maher SG, O'Leary SM, Doherty DG, Lysaght J. Selective effects of radiotherapy on viability and function of invariant natural killer T cells in vitro. Radiother Oncol 2020; 145:128-136. [PMID: 31962255 DOI: 10.1016/j.radonc.2019.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/09/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Immunotherapies involving the adoptive transfer of ex vivo expanded autologous invariant natural killer (iNKT) cells are a potential option for cancer patients and are under investigation in clinical trials. Most cancer patients receive radiotherapy at some point during their treatment. We investigated the effects of therapeutic doses of radiation on the viability and function of human primary cultures of iNKT cells in vitro. MATERIALS AND METHODS iNKT cell lines generated from 6 healthy donors were subjected to therapeutically-relevant doses of radiation. Cell cycle arrest and cell death were assessed by flow cytometry. Double strand DNA breaks were analysed by measuring phosphorylated histone H2AX expression by fluorescence microscopy. Cytolytic degranulation, cytokine production and cytotoxicity by antigen-stimulated iNKT cells were assessed by flow cytometry. RESULTS Radiation inhibited viability of iNKT cells in a dose-dependent manner. Radiation caused double strand DNA breaks, which were rapidly repaired, and affected the cell cycle at high doses. Moderate doses of radiation did not inhibit degranulation or cytotoxicity by iNKT cells, but induced perforin expression and inhibited proliferation and interferon-γ production by surviving iNKT cells. DISCUSSION Exposure of iNKT cell to radiation can negatively affect their viability and function.
Collapse
Affiliation(s)
- Ashanty M Melo
- Department of Immunology, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland; Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Stephen G Maher
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Seónadh M O'Leary
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Derek G Doherty
- Department of Immunology, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland.
| | - Joanne Lysaght
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| |
Collapse
|
26
|
Fujii SI, Shimizu K. Immune Networks and Therapeutic Targeting of iNKT Cells in Cancer. Trends Immunol 2019; 40:984-997. [PMID: 31676264 DOI: 10.1016/j.it.2019.09.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/08/2023]
Abstract
One of the primary goals in tumor immunotherapy is to reset the immune system from tolerogenic to immunogenic - a process in which invariant natural killer T (iNKT) cells are implicated. iNKT cells develop in the thymus and perform immunosurveillance against tumor cells peripherally. When optimally stimulated, iNKT cells differentiate and display more efficient immune functions. Some cells survive and act as effector memory cells. We discuss the putative roles of iNKT cells in antitumor immunity, and posit that it may be possible to develop novel therapeutic strategies to treat cancers using iNKT cells. In particular, we highlight the challenge of uniquely energizing iNKT cell-licensed dendritic cells to serve as effective immunoadjuvants for both arms of the immune system, thus coupling immunological networks.
Collapse
Affiliation(s)
- Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan.
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| |
Collapse
|
27
|
Feng H, Nakajima N, Wu L, Yamashita M, Lopes TJS, Tsuji M, Hasegawa H, Watanabe T, Kawaoka Y. A Glycolipid Adjuvant, 7DW8-5, Enhances the Protective Immune Response to the Current Split Influenza Vaccine in Mice. Front Microbiol 2019; 10:2157. [PMID: 31620111 PMCID: PMC6759631 DOI: 10.3389/fmicb.2019.02157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022] Open
Abstract
Vaccination is an effective strategy to control influenza disease. Adjuvants enhance the efficacy of vaccines, but few adjuvants are approved for human use, so novel, safe, and effective adjuvants are urgently needed. The glycolipid adjuvant 7DW8-5 has shown adjuvanticity to malaria vaccine; however, its adjuvant effect for seasonal influenza vaccine remains unknown. Here, we evaluated the adjuvanticity of 7DW8-5 to a quadrivalent split influenza vaccine in a mouse model. 7DW8-5 significantly enhanced virus-specific antibody production when administrated with influenza vaccine compared with that of vaccine alone; 10 μg of 7DW8-5 induced similar antibody levels to those induced by alum. Mouse body weight loss was reduced and, notably, the survival rate was increased in the vaccine plus 7DW8-5 group compared with that in the vaccine plus alum group. Our results indicate that the glycolipid 7DW8-5 is a promising adjuvant for influenza vaccine.
Collapse
Affiliation(s)
- Huapeng Feng
- Division of Virology, Department of Microbiology and Immunology, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Noriko Nakajima
- Department of Pathology, The National Institute of Infectious Diseases, Tokyo, Japan
| | - Li Wu
- Division of Virology, Department of Microbiology and Immunology, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Makoto Yamashita
- Division of Virology, Department of Microbiology and Immunology, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tiago J S Lopes
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, NY, United States
| | - Hideki Hasegawa
- Department of Pathology, The National Institute of Infectious Diseases, Tokyo, Japan
| | - Tokiko Watanabe
- Division of Virology, Department of Microbiology and Immunology, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, The Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Patel S, Burga RA, Powell AB, Chorvinsky EA, Hoq N, McCormack SE, Van Pelt SN, Hanley PJ, Cruz CRY. Beyond CAR T Cells: Other Cell-Based Immunotherapeutic Strategies Against Cancer. Front Oncol 2019; 9:196. [PMID: 31024832 PMCID: PMC6467966 DOI: 10.3389/fonc.2019.00196] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Chimeric antigen receptor (CAR)-modified T cells have successfully harnessed T cell immunity against malignancies, but they are by no means the only cell therapies in development for cancer. Main Text Summary: Systemic immunity is thought to play a key role in combatting neoplastic disease; in this vein, genetic modifications meant to explore other components of T cell immunity are being evaluated. In addition, other immune cells—from both the innate and adaptive compartments—are in various stages of clinical application. In this review, we focus on these non-CAR T cell immunotherapeutic approaches for malignancy. The first section describes engineering T cells to express non-CAR constructs, and the second section describes other gene-modified cells used to target malignancy. Conclusions: CAR T cell therapies have demonstrated the clinical benefits of harnessing our body's own defenses to combat tumor cells. Similar research is being conducted on lesser known modifications and gene-modified immune cells, which we highlight in this review.
Collapse
Affiliation(s)
- Shabnum Patel
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Rachel A Burga
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Allison B Powell
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Elizabeth A Chorvinsky
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, United States
| | - Nia Hoq
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Sarah E McCormack
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Stacey N Van Pelt
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, United States
| | - Conrad Russell Y Cruz
- GW Cancer Center, The George Washington University, Washington, DC, United States.,Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, United States
| |
Collapse
|
29
|
Davitt CJH, Longet S, Albutti A, Aversa V, Nordqvist S, Hackett B, McEntee CP, Rosa M, Coulter IS, Lebens M, Tobias J, Holmgren J, Lavelle EC. Alpha-galactosylceramide enhances mucosal immunity to oral whole-cell cholera vaccines. Mucosal Immunol 2019; 12:1055-1064. [PMID: 30953000 PMCID: PMC7746523 DOI: 10.1038/s41385-019-0159-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/26/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
Cholera is a severe diarrheal disease caused by the bacterium Vibrio cholerae (V. cholerae) that results in 3-4 million cases globally with 100,000-150,000 deaths reported annually. Mostly confined to developing nations, current strategies to control the spread of cholera include the provision of safe drinking water and improved sanitation and hygiene, ideally in conjunction with oral vaccination. However, difficulties associated with the costs and logistics of these strategies have hampered their widespread implementation. Specific challenges pertaining to oral cholera vaccines (OCVs) include a lack of safe and effective adjuvants to further enhance gut immune responses, the complex and costly multicomponent vaccine manufacturing, limitations of conventional liquid formulation and the lack of an integrated delivery platform. Herein we describe the use of the orally active adjuvant α-Galactosylceramide (α-GalCer) to strongly enhance intestinal bacterium- and toxin-specific IgA responses to the OCV, Dukoral® in C57BL/6 and BALB/c mice. We further demonstrate the mucosal immunogenicity of a novel multi-antigen, single-component whole-cell killed V. cholerae strain and the enhancement of its immunogenicity by adding α-GalCer. Finally, we report that combining these components and recombinant cholera toxin B subunit in the SmPill® minisphere delivery system induced strong intestinal and systemic antigen-specific antibody responses.
Collapse
Affiliation(s)
- Christopher J. H. Davitt
- 0000 0004 1936 9705grid.8217.cAdjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590 Ireland
| | - Stephanie Longet
- 0000 0004 1936 9705grid.8217.cAdjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590 Ireland
| | - Aqel Albutti
- 0000 0004 1936 9705grid.8217.cAdjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590 Ireland ,0000 0000 9421 8094grid.412602.3College of Applied Medical Sciences, Qassim University, Buraydah, 52571 Saudi Arabia
| | - Vincenzo Aversa
- 0000000102380260grid.15596.3eSublimity Therapeutics (Holdco) Ltd, DCU Alpha Innovation Campus, Old Finglas Road, Dublin, D11 KXN4 Ireland
| | - Stefan Nordqvist
- 0000 0000 9919 9582grid.8761.8Department of Microbiology and Immunology, University of Gothenburg Vaccine Research Institute (GUVAX), University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden
| | - Becky Hackett
- 0000 0004 1936 9705grid.8217.cAdjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590 Ireland
| | - Craig P. McEntee
- 0000 0004 1936 9705grid.8217.cAdjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590 Ireland
| | - Monica Rosa
- 0000000102380260grid.15596.3eSublimity Therapeutics (Holdco) Ltd, DCU Alpha Innovation Campus, Old Finglas Road, Dublin, D11 KXN4 Ireland
| | - Ivan S. Coulter
- 0000000102380260grid.15596.3eSublimity Therapeutics (Holdco) Ltd, DCU Alpha Innovation Campus, Old Finglas Road, Dublin, D11 KXN4 Ireland
| | - Michael Lebens
- 0000 0000 9919 9582grid.8761.8Department of Microbiology and Immunology, University of Gothenburg Vaccine Research Institute (GUVAX), University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden
| | - Joshua Tobias
- 0000 0000 9919 9582grid.8761.8Department of Microbiology and Immunology, University of Gothenburg Vaccine Research Institute (GUVAX), University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden
| | - Jan Holmgren
- 0000 0000 9919 9582grid.8761.8Department of Microbiology and Immunology, University of Gothenburg Vaccine Research Institute (GUVAX), University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden
| | - Ed C. Lavelle
- 0000 0004 1936 9705grid.8217.cAdjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590 Ireland ,0000 0004 1936 9705grid.8217.cCentre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 PN40 Ireland
| |
Collapse
|
30
|
Godfrey DI, Le Nours J, Andrews DM, Uldrich AP, Rossjohn J. Unconventional T Cell Targets for Cancer Immunotherapy. Immunity 2018; 48:453-473. [PMID: 29562195 DOI: 10.1016/j.immuni.2018.03.009] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023]
Abstract
Most studies on the immunotherapeutic potential of T cells have focused on CD8 and CD4 T cells that recognize peptide antigens (Ag) presented by polymorphic major histocompatibility complex (MHC) class I and MHC class II molecules, respectively. However, unconventional T cells, which interact with MHC class Ib and MHC-I like molecules, are also implicated in tumor immunity, although their role therein is unclear. These include unconventional T cells targeting MHC class Ib molecules such as HLA-E and its murine ortholog Qa-1b, natural killer T (NKT) cells, mucosal associated invariant T (MAIT) cells, and γδ T cells. Here, we review the current understanding of the roles of these unconventional T cells in tumor immunity and discuss why further studies into the immunotherapeutic potential of these cells is warranted.
Collapse
Affiliation(s)
- Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Jérôme Le Nours
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel M Andrews
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
31
|
Kriegsmann K, Kriegsmann M, von Bergwelt-Baildon M, Cremer M, Witzens-Harig M. NKT cells - New players in CAR cell immunotherapy? Eur J Haematol 2018; 101:750-757. [PMID: 30187578 DOI: 10.1111/ejh.13170] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/30/2022]
Abstract
Low levels of peripheral blood natural killer T (NKT) cells in cancer patients and a favorable outcome associated with a high number of tumor-infiltrating NKT cells demonstrated in several studies indicated the important role of these immune cells in the antitumor response. With effective antitumor immunity via direct tumor lysis, cytokine modulation of effector cells and regulation of immunosuppressive cells, type I NKT cells display interesting features/properties for the rapidly developing chimeric antigen receptor (CAR) technology. Due to their restriction to the monomorphic HLA-like molecule CD1d, but not to the polymorphic human leukocyte antigen (HLA), NKT CAR cells show potential for enabling autologous and allogeneic/off-the-shelf cancer immunotherapy. Promising results were obtained in preclinical NKT CAR cell studies, but clinical trials have not yet been conducted. In this review, we summarize the biological features of NKT cells, their role in antitumor immunity and recent advances in the development of NKT CAR cells.
Collapse
Affiliation(s)
- Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Mark Kriegsmann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Martin Cremer
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Mathias Witzens-Harig
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
32
|
Consonni M, Dellabona P, Casorati G. Potential advantages of CD1-restricted T cell immunotherapy in cancer. Mol Immunol 2018; 103:200-208. [PMID: 30308433 DOI: 10.1016/j.molimm.2018.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/01/2018] [Accepted: 09/29/2018] [Indexed: 12/11/2022]
Abstract
Adoptive cell therapy (ACT) using tumor-specific "conventional" MHC-restricted T cells obtained from tumor-infiltrating lymphocytes, or derived ex vivo by either antigen-specific expansion or genetic engineering of polyclonal T cell populations, shows great promise for cancer treatment. However, the wide applicability of this therapy finds limits in the high polymorphism of MHC molecules that restricts the use in the autologous context. CD1 antigen presenting molecules are nonpolymorphic and specialized for lipid antigen presentation to T cells. They are often expressed on malignant cells and, therefore, may represent an attractive target for ACT. We provide a brief overview of the CD1-resticted T cell response in tumor immunity and we discuss the pros and cons of ACT approaches based on unconventional CD1-restricted T cells.
Collapse
Affiliation(s)
- Michela Consonni
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
33
|
King LA, Lameris R, de Gruijl TD, van der Vliet HJ. CD1d-Invariant Natural Killer T Cell-Based Cancer Immunotherapy: α-Galactosylceramide and Beyond. Front Immunol 2018; 9:1519. [PMID: 30013569 PMCID: PMC6036112 DOI: 10.3389/fimmu.2018.01519] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/19/2018] [Indexed: 12/27/2022] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells are considered an attractive target for cancer immunotherapy. Upon their activation by glycolipid antigen and/or cytokines, iNKT cells can induce direct lysis of tumor cells but can also induce an antitumor immune response via their rapid production of proinflammatory cytokines that trigger the cytotoxic machinery of other components of the innate and adaptive immune system. Here, we provide an overview of various therapeutic approaches that have been evaluated or that are currently being developed and/or explored. These include administration of α-GalCer or alternative (glyco) lipid antigens, glycolipid-loaded antigen-presenting cells and liposomes, strategies that enhance CD1d expression levels or are based on ligation of CD1d, adoptive transfer of iNKT cells or chimeric antigen receptor iNKT cells, and tumor targeting of iNKT cells.
Collapse
Affiliation(s)
- Lisa A King
- Department of Medical Oncology, VU University Medical Center and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Roeland Lameris
- Department of Medical Oncology, VU University Medical Center and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center and Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
34
|
Dou R, Hong Z, Tan X, Hu F, Ding Y, Wang W, Liang Z, Zhong R, Wu X, Weng X. Fas/FasL interaction mediates imbalanced cytokine/cytotoxicity responses of iNKT cells against Jurkat cells. Mol Immunol 2018; 99:145-153. [DOI: 10.1016/j.molimm.2018.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 11/30/2022]
|
35
|
Weist MR, Starr R, Aguilar B, Chea J, Miles JK, Poku E, Gerdts E, Yang X, Priceman SJ, Forman SJ, Colcher D, Brown CE, Shively JE. PET of Adoptively Transferred Chimeric Antigen Receptor T Cells with 89Zr-Oxine. J Nucl Med 2018; 59:1531-1537. [PMID: 29728514 DOI: 10.2967/jnumed.117.206714] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/17/2018] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a promising clinical approach for reducing tumor progression and prolonging patient survival. However, improvements in both the safety and the potency of CAR T cell therapy demand quantitative imaging techniques to determine the distribution of cells after adoptive transfer. The purpose of this study was to optimize 89Zr-oxine labeling of CAR T cells and evaluate PET as a platform for imaging adoptively transferred CAR T cells. Methods: CAR T cells were labeled with 0-1.4 MBq of 89Zr-oxine per 106 cells and assessed for radioactivity retention, viability, and functionality. In vivo trafficking of 89Zr-oxine-labeled CAR T cells was evaluated in 2 murine xenograft tumor models: glioblastoma brain tumors with intracranially delivered IL13Rα2-targeted CAR T cells, and subcutaneous prostate tumors with intravenously delivered prostate stem cell antigen (PSCA)-targeted CAR T cells. Results: CAR T cells were efficiently labeled (75%) and retained more than 60% of the 89Zr over 6 d. In vitro cytokine production, migration, and tumor cytotoxicity, as well as in vivo antitumor activity, were not significantly reduced when labeled with 70 kBq/106 cells. IL13Rα2-CAR T cells delivered intraventricularly were detectable by PET for at least 6 d throughout the central nervous system and within intracranial tumors. When intravenously administered, PSCA-CAR T cells also showed tumor tropism, with a 9-fold greater tumor-to-muscle ratio than for CAR-negative T cells. Conclusion: 89Zr-oxine can be used for labeling and imaging CAR T cells while maintaining cell viability and function. On the basis of these studies, we conclude that 89Zr-oxine is a clinically translatable platform for real-time assessment of cell therapies.
Collapse
Affiliation(s)
- Michael R Weist
- Department of Molecular Immunology, Beckman Research Institute, City of Hope Medical Center, Duarte, California.,Irell and Manella Graduate School of Biological Sciences, City of Hope Medical Center, Duarte, California; and
| | - Renate Starr
- Department of Hematology, City of Hope Medical Center, Duarte, California
| | - Brenda Aguilar
- Department of Hematology, City of Hope Medical Center, Duarte, California
| | - Junie Chea
- Department of Molecular Immunology, Beckman Research Institute, City of Hope Medical Center, Duarte, California
| | - Joshua K Miles
- Department of Molecular Immunology, Beckman Research Institute, City of Hope Medical Center, Duarte, California
| | - Erasmus Poku
- Department of Molecular Immunology, Beckman Research Institute, City of Hope Medical Center, Duarte, California
| | - Ethan Gerdts
- Department of Hematology, City of Hope Medical Center, Duarte, California
| | - Xin Yang
- Department of Hematology, City of Hope Medical Center, Duarte, California
| | - Saul J Priceman
- Department of Hematology, City of Hope Medical Center, Duarte, California
| | - Stephen J Forman
- Department of Hematology, City of Hope Medical Center, Duarte, California
| | - David Colcher
- Department of Molecular Immunology, Beckman Research Institute, City of Hope Medical Center, Duarte, California
| | - Christine E Brown
- Department of Hematology, City of Hope Medical Center, Duarte, California
| | - John E Shively
- Department of Molecular Immunology, Beckman Research Institute, City of Hope Medical Center, Duarte, California
| |
Collapse
|
36
|
Krijgsman D, Hokland M, Kuppen PJK. The Role of Natural Killer T Cells in Cancer-A Phenotypical and Functional Approach. Front Immunol 2018. [PMID: 29535734 PMCID: PMC5835336 DOI: 10.3389/fimmu.2018.00367] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Natural killer T (NKT) cells are a subset of CD1d-restricted T cells at the interface between the innate and adaptive immune system. NKT cells can be subdivided into functional subsets that respond rapidly to a wide variety of glycolipids and stress-related proteins using T- or natural killer (NK) cell-like effector mechanisms. Because of their major modulating effects on immune responses via secretion of cytokines, NKT cells are also considered important players in tumor immunosurveillance. During early tumor development, T helper (TH)1-like NKT cell subsets have the potential to rapidly stimulate tumor-specific T cells and effector NK cells that can eliminate tumor cells. In case of tumor progression, NKT cells may become overstimulated and anergic leading to deletion of a part of the NKT cell population in patients via activation-induced cell death. In addition, the remaining NKT cells become hyporesponsive, or switch to immunosuppressive TH2-/T regulatory-like NKT cell subsets, thereby facilitating tumor progression and immune escape. In this review, we discuss this important role of NKT cells in tumor development and we conclude that there should be three important focuses of future research in cancer patients in relation with NKT cells: (1) expansion of the NKT cell population, (2) prevention and breaking of NKT cell anergy, and (3) skewing of NKT cells toward TH1-like subsets with antitumor activity.
Collapse
Affiliation(s)
- Daniëlle Krijgsman
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
37
|
Gasser O, Sharples KJ, Barrow C, Williams GM, Bauer E, Wood CE, Mester B, Dzhelali M, Caygill G, Jones J, Hayman CM, Hinder VA, Macapagal J, McCusker M, Weinkove R, Painter GF, Brimble MA, Findlay MP, Dunbar PR, Hermans IF. A phase I vaccination study with dendritic cells loaded with NY-ESO-1 and α-galactosylceramide: induction of polyfunctional T cells in high-risk melanoma patients. Cancer Immunol Immunother 2018; 67:285-298. [PMID: 29094183 PMCID: PMC11028320 DOI: 10.1007/s00262-017-2085-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022]
Abstract
Vaccines that elicit targeted tumor antigen-specific T-cell responses have the potential to be used as adjuvant therapy in patients with high risk of relapse. However, the responses induced by vaccines in cancer patients have generally been disappointing. To improve vaccine function, we investigated the possibility of exploiting the immunostimulatory capacity of type 1 Natural killer T (NKT) cells, a cell type enriched in lymphoid tissues that can trigger improved antigen-presenting function in dendritic cells (DCs). In this phase I dose escalation study, we treated eight patients with high-risk surgically resected stage II-IV melanoma with intravenous autologous monocyte-derived DCs loaded with the NKT cell agonist α-GalCer and peptides derived from the cancer testis antigen NY-ESO-1. Two synthetic long peptides spanning defined immunogenic regions of the NY-ESO-1 sequence were used. This therapy proved to be safe and immunologically effective, inducing increases in circulating NY-ESO-1-specific T cells that could be detected directly ex vivo in seven out of eight patients. These responses were achieved using as few as 5 × 105 peptide-loaded cells per dose. Analysis after in vitro restimulation showed increases in polyfunctional CD4+ and CD8+ T cells that were capable of manufacturing two or more cytokines simultaneously. Evidence of NKT cell proliferation and/or NKT cell-associated cytokine secretion was seen in most patients. In light of these strong responses, the concept of including NKT cell agonists in vaccine design requires further investigation.
Collapse
Affiliation(s)
- Olivier Gasser
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Katrina J Sharples
- Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Catherine Barrow
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Geoffrey M Williams
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
| | - Evelyn Bauer
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Catherine E Wood
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Brigitta Mester
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Marina Dzhelali
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | | | - Jeremy Jones
- GlycoSyn, PO Box 31 310, Lower Hutt, 5040, New Zealand
| | - Colin M Hayman
- The Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Lower Hutt, 5046, New Zealand
| | - Victoria A Hinder
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jerome Macapagal
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Monica McCusker
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Robert Weinkove
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
- Capital and Coast District Health Board, Private Bag 7902, Wellington, 6242, New Zealand
| | - Gavin F Painter
- The Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Lower Hutt, 5046, New Zealand
| | - Margaret A Brimble
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
| | - Michael P Findlay
- Cancer Trials New Zealand, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - P Rod Dunbar
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
- School of Biological Sciences, University of Auckland, PO Box 92019, Auckland, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand.
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand.
| |
Collapse
|
38
|
Nair S, Dhodapkar MV. Natural Killer T Cells in Cancer Immunotherapy. Front Immunol 2017; 8:1178. [PMID: 29018445 PMCID: PMC5614937 DOI: 10.3389/fimmu.2017.01178] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/06/2017] [Indexed: 12/27/2022] Open
Abstract
Natural killer T (NKT) cells are specialized CD1d-restricted T cells that recognize lipid antigens. Following stimulation, NKT cells lead to downstream activation of both innate and adaptive immune cells in the tumor microenvironment. This has impelled the development of NKT cell-targeted immunotherapies for treating cancer. In this review, we provide a brief overview of the stimulatory and regulatory functions of NKT cells in tumor immunity as well as highlight preclinical and clinical studies based on NKT cells. Finally, we discuss future perspectives to better harness the potential of NKT cells for cancer therapy.
Collapse
Affiliation(s)
- Shiny Nair
- Yale University, New Haven, CT, United States
| | | |
Collapse
|
39
|
A brief review of clinical trials involving manipulation of invariant NKT cells as a promising approach in future cancer therapies. Cent Eur J Immunol 2017; 42:181-195. [PMID: 28860937 PMCID: PMC5573892 DOI: 10.5114/ceji.2017.69361] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022] Open
Abstract
In the recent years researchers have put a lot of emphasis on the possible immunotherapeutic strategies able to target tumors. Many studies have proven that the key role in recognition and eradication of cancer cells, both for mice and humans, is being conducted by the invariant natural killer T-cells (NKT). This small subpopulation of lymphocytes can kill other cells, either directly or indirectly, through the natural killer cells’ (NK) activation. They can also swiftly release cytokines, causing the involvement of elements of the innate and acquired immune system. With the discovery of α-galactosylceramide (α-GalCer) – the first known agonist for iNKT cells – and its later subsequent analogs, it became possible to effectively stimulate iNKT cells, hence to keep control over the tumor progression. This article refers to the current knowledge concerning iNKT cells and the most important aspects of their antitumor activity. It also highlights the clinical trials that aim at increasing the amount of iNKT cells in general and in the microenvironment of the tumor. For sure, the iNKT-based immunotherapeutic approach holds a great potential and is highly probable to become a part of the cancer immunotherapy in the future.
Collapse
|
40
|
Ghinnagow R, Cruz LJ, Macho-Fernandez E, Faveeuw C, Trottein F. Enhancement of Adjuvant Functions of Natural Killer T Cells Using Nanovector Delivery Systems: Application in Anticancer Immune Therapy. Front Immunol 2017; 8:879. [PMID: 28798749 PMCID: PMC5529346 DOI: 10.3389/fimmu.2017.00879] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/10/2017] [Indexed: 11/13/2022] Open
Abstract
Type I natural killer T (NKT) cells have gained considerable interest in anticancer immune therapy over the last decade. This “innate-like” T lymphocyte subset has the unique ability to recognize foreign and self-derived glycolipid antigens in association with the CD1d molecule expressed by antigen-presenting cells. An important property of these cells is to bridge innate and acquired immune responses. The adjuvant function of NKT cells might be exploited in the clinics. In this review, we discuss the approaches currently being used to target NKT cells for cancer therapy. In particular, we highlight ongoing strategies utilizing NKT cell-based nanovaccines to optimize immune therapy.
Collapse
Affiliation(s)
- Reem Ghinnagow
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, Lille, France.,Hospitalier Universitaire de Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - Luis Javier Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Elodie Macho-Fernandez
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, Lille, France.,Hospitalier Universitaire de Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - Christelle Faveeuw
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, Lille, France.,Hospitalier Universitaire de Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - François Trottein
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, Lille, France.,Hospitalier Universitaire de Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| |
Collapse
|
41
|
Speir M, Hermans IF, Weinkove R. Engaging Natural Killer T Cells as 'Universal Helpers' for Vaccination. Drugs 2017; 77:1-15. [PMID: 28005229 DOI: 10.1007/s40265-016-0675-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional vaccine adjuvants enhance peptide-specific T-cell and B-cell responses by modifying peptide stability or uptake or by binding to pattern-recognition receptors on antigen-presenting cells (APCs). This article discusses the application of a distinct mechanism of adjuvant activity: the activation of type I, or invariant, natural killer T (iNKT) cells to drive cellular and humoral immune responses. Using a semi-invariant T-cell receptor (TCR), iNKT cells recognize glycolipid antigens presented on cluster of differentiation (CD)-1d molecules. When their ligands are presented in concert with peptides, iNKT cells can provide T-cell help, 'licensing' APCs to augment peptide-specific T-cell and antibody responses. We discuss the potential benefits and limitations of exploiting iNKT cells as 'universal helpers' to enhance vaccine responses for the treatment and prevention of cancer and infectious diseases.
Collapse
Affiliation(s)
- Mary Speir
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand. .,School of Biological Sciences, Victoria University Wellington, PO Box 600, Wellington, 6140, New Zealand. .,Maurice Wilkins Centre, Private Bag 92019, Auckland, New Zealand.
| | - Robert Weinkove
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand. .,Wellington Blood and Cancer Centre, Wellington Hospital, Private Bag 7902, Wellington, 6242, New Zealand. .,Department of Pathology and Molecular Medicine, University of Otago Wellington, Wellington, 6021, New Zealand.
| |
Collapse
|
42
|
Hung JT, Huang JR, Yu AL. Tailored design of NKT-stimulatory glycolipids for polarization of immune responses. J Biomed Sci 2017; 24:22. [PMID: 28335781 PMCID: PMC5364570 DOI: 10.1186/s12929-017-0325-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Natural killer T (NKT) cell is a distinct population of T lymphocytes that can rapidly release massive amount of Th1 and Th2 cytokines upon the engagement of their T cell receptor with glycolipids presented by CD1d. The secreted cytokines can promote cell-mediated immunity to kill tumor cells and intracellular pathogens, or suppress autoreactive immune cells in autoimmune diseases. Thus, NKT cell is an attractive target for developing new therapeutics to manipulate immune system. The best-known glycolipid to activate NKT cells is α-galactosylceramide (α-GalCer), which has been used as a prototype for designing new NKT stimulatory glycolipids. Many analogues have been generated by modification of the galactosyl moiety, the acyl chain or the phytosphingosine chain of α-GalCer. Some of the analogues showed greater abilities than α-GalCer in polarizing immune responses toward Th1 or Th2 dominance. Among them, several analogues containing phenyl groups in the lipid tails were more potent in inducing Th1-skewed cytokines and exhibited greater anticancer efficacy than α-GalCer. Analyses of the correlation between structure and activity of various α-GalCer analogues on the activation of iNKT cell revealed that CD1d–glycolipid complexes interacted with the same population of iNKT cell expressing similar T-cell receptor Vβ as α-GalCer. On the other hand, those phenyl glycolipids with propensity for Th1 dominant responses showed greater binding avidity and stability than α-GalCer for iNKT T-cell receptor when complexed with CD1d. Thus, it is the avidity and stability of the ternary complexes of CD1d-glycolipid-iNKT TCR that dictate the polarity and potency of immune responses. These findings provide a key to the rationale design of immune modulating glycolipids with desirable Th1/Th2 polarity for clinical application. In addition, elucidation of α-GalCer-induced anergy, liver damage and accumulation of myeloid derived suppressor cells has offered explanation for its lacklustre anti-cancer activities in clinical trials. On other hand, the lack of such drawbacks in glycolipid analogues containing phenyl groups in the lipid tails of α-GalCer coupled with the greater binding avidity and stability of CD1d-glycolipid complex for iNKT T-cell receptor, account for their superior anti-cancer efficacy in tumor bearing mice. Further clinical development of these phenyl glycolipids is warranted.
Collapse
Affiliation(s)
- Jung-Tung Hung
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, No. 5, Fu-Shin St., Kuei Shang, Taoyuan, 333, Taiwan
| | - Jing-Rong Huang
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, No. 5, Fu-Shin St., Kuei Shang, Taoyuan, 333, Taiwan
| | - Alice L Yu
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, No. 5, Fu-Shin St., Kuei Shang, Taoyuan, 333, Taiwan. .,Department of Pediatrics, University of California in San Diego, San Diego, CA, USA.
| |
Collapse
|
43
|
Exley MA, Friedlander P, Alatrakchi N, Vriend L, Yue S, Sasada T, Zeng W, Mizukami Y, Clark J, Nemer D, LeClair K, Canning C, Daley H, Dranoff G, Giobbie-Hurder A, Hodi FS, Ritz J, Balk SP. Adoptive Transfer of Invariant NKT Cells as Immunotherapy for Advanced Melanoma: A Phase I Clinical Trial. Clin Cancer Res 2017; 23:3510-3519. [PMID: 28193627 DOI: 10.1158/1078-0432.ccr-16-0600] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/12/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023]
Abstract
Purpose: Invariant NKT cells (iNKT) are innate-like CD1d-restricted T cells with immunoregulatory activity in diseases including cancer. iNKT from advanced cancer patients can have reversible defects including IFNγ production, and iNKT IFNγ production may stratify for survival. Previous clinical trials using iNKT cell activating ligand α-galactosylceramide have shown clinical responses. Therefore, a phase I clinical trial was performed of autologous in vitro expanded iNKT cells in stage IIIB-IV melanoma.Experimental Design: Residual iNKT cells [<0.05% of patient peripheral blood mononuclear cell (PBMC)] were purified from autologous leukapheresis product using an antibody against the iNKT cell receptor linked to magnetic microbeads. iNKT cells were then expanded with CD3 mAb and IL2 in vitro to obtain up to approximately 109 cells.Results: Expanded iNKT cells produced IFNγ, but limited or undetectable IL4 or IL10. Three iNKT infusions each were completed on 9 patients, and produced only grade 1-2 toxicities. The 4th patient onward received systemic GM-CSF with their second and third infusions. Increased numbers of iNKT cells were seen in PBMCs after some infusions, particularly when GM-CSF was also given. IFNγ responses to α-galactosylceramide were increased in PBMCs from some patients after infusions, and delayed-type hypersensitivity responses to Candida increased in 5 of 8 evaluated patients. Three patients have died, three were progression-free at 53, 60, and 65 months, three received further treatment and were alive at 61, 81, and 85 months. There was no clear correlation between outcome and immune parameters.Conclusions: Autologous in vitro expanded iNKT cells are a feasible and safe therapy, producing Th1-like responses with antitumor potential. Clin Cancer Res; 23(14); 3510-9. ©2017 AACR.
Collapse
Affiliation(s)
- Mark A Exley
- Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts. .,Gastroenterology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts.,University of Manchester, Manchester, United Kingdom
| | - Phillip Friedlander
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nadia Alatrakchi
- Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Lianne Vriend
- Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Simon Yue
- Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Tetsuro Sasada
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wanyong Zeng
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yo Mizukami
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Justice Clark
- Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - David Nemer
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Christine Canning
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Heather Daley
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Glenn Dranoff
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anita Giobbie-Hurder
- Biostatistics & Computational Biology, Dana Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts
| | - F Stephen Hodi
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jerome Ritz
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Steven P Balk
- Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
44
|
Woods N, Niwasabutra K, Acevedo R, Igoli J, Altwaijry N, Tusiimire J, Gray A, Watson D, Ferro V. Natural Vaccine Adjuvants and Immunopotentiators Derived From Plants, Fungi, Marine Organisms, and Insects. IMMUNOPOTENTIATORS IN MODERN VACCINES 2017. [PMCID: PMC7148613 DOI: 10.1016/b978-0-12-804019-5.00011-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Immunopotentiators derived from different natural sources are under investigation with varying success. This chapter gives an overview of developments from plants, fungi, marine organisms, and insects. Plant-derived immune stimulators consist of a diverse range of small molecules or large polysaccharides. Notable examples that have been assessed in both preclinical and clinical trials include saponins, tomatine, and inulin. Similarly, fungi produce a range of potential candidate molecules, with β-glucans showing the most promise. Other complex molecules that have established adjuvant activity include α-galactosylceramide (originally obtained from a marine sponge), chitosan (commonly produced from chitin from shrimps), and peptides (found in bee venom). Some organisms, for example, endophytic fungi and bees, produce immunostimulants using compounds obtained from plants. The main challenges facing this type of research and tools being developed to overcome them are examined.
Collapse
Affiliation(s)
- N. Woods
- University of Strathclyde, Glasgow, Scotland
| | | | | | - J. Igoli
- University of Strathclyde, Glasgow, Scotland,University of Agriculture, Makurdi, Benue State, Nigeria
| | | | | | - A.I. Gray
- University of Strathclyde, Glasgow, Scotland
| | - D.G. Watson
- University of Strathclyde, Glasgow, Scotland
| | - V.A. Ferro
- University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
45
|
Kitayama S, Zhang R, Liu TY, Ueda N, Iriguchi S, Yasui Y, Kawai Y, Tatsumi M, Hirai N, Mizoro Y, Iwama T, Watanabe A, Nakanishi M, Kuzushima K, Uemura Y, Kaneko S. Cellular Adjuvant Properties, Direct Cytotoxicity of Re-differentiated Vα24 Invariant NKT-like Cells from Human Induced Pluripotent Stem Cells. Stem Cell Reports 2016; 6:213-27. [PMID: 26862702 PMCID: PMC4750166 DOI: 10.1016/j.stemcr.2016.01.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 12/31/2022] Open
Abstract
Vα24 invariant natural killer T (iNKT) cells are a subset of T lymphocytes implicated in the regulation of broad immune responses. They recognize lipid antigens presented by CD1d on antigen-presenting cells and induce both innate and adaptive immune responses, which enhance effective immunity against cancer. Conversely, reduced iNKT cell numbers and function have been observed in many patients with cancer. To recover these numbers, we reprogrammed human iNKT cells to pluripotency and then re-differentiated them into regenerated iNKT cells in vitro through an IL-7/IL-15-based optimized cytokine combination. The re-differentiated iNKT cells showed proliferation and IFN-γ production in response to α-galactosylceramide, induced dendritic cell maturation and downstream activation of both cytotoxic T lymphocytes and NK cells, and exhibited NKG2D- and DNAM-1-mediated NK cell-like cytotoxicity against cancer cell lines. The immunological features of re-differentiated iNKT cells and their unlimited availability from induced pluripotent stem cells offer a potentially effective immunotherapy against cancer.
Collapse
Affiliation(s)
- Shuichi Kitayama
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rong Zhang
- Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center (NCC), 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Tian-Yi Liu
- Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; Key Laboratory of Cancer Center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Norihiro Ueda
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan; Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan
| | - Shoichi Iriguchi
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yutaka Yasui
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Kawai
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minako Tatsumi
- Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan
| | - Norihito Hirai
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasutaka Mizoro
- Sequencing Core Facility, CiRA, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tatsuaki Iwama
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center (NCC), 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Akira Watanabe
- Sequencing Core Facility, CiRA, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mahito Nakanishi
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8561, Japan
| | - Kiyotaka Kuzushima
- Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan
| | - Yasushi Uemura
- Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center (NCC), 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan.
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
46
|
Ito H, Ando T, Seishima M. Inhibition of iNOS activity enhances the anti-tumor effects of alpha-galactosylceramide in established murine cancer model. Oncotarget 2016; 6:41863-74. [PMID: 26496031 PMCID: PMC4747194 DOI: 10.18632/oncotarget.6172] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/06/2015] [Indexed: 12/15/2022] Open
Abstract
Alpha-garactosylceramide (GalCer) has been shown to have anti-tumor effect in the basic research and clinical studies. However, anti-tumor effect of GalCer is limited. The administration of GalCer increases the production of IFN-γ which is involved in the suppression of tumor growth. On the other hand, the enhancement of IFN-γ production increases immunosuppressive factors such as nitric oxide. This suppressive action might impair the anti-tumor effect of GalCer. In the present study, we evaluated the anti-tumor effect of GalCer in the absence of inducible nitric oxide synthase (iNOS). In lung metastatic model, the number of tumor nodules in the lung of iNOS-KO mice treated with GalCer was significantly reduced compared with that of WT mice treated with GalCer. Moreover, L-NAME, which is the inhibitor for iNOS, enhanced the anti-tumor effect of GalCer in lung metastatic model. The frequency of CD8+ cells in bronchoalveolar lavage fluid increased in iNOS-KO mice treated with GalCer. The administration of GalCer increased the frequency of myeloid-derived suppressor cells (MDSCs) in the lung from tumor-bearing WT mice, but the increase of MDSCs in the lung was not induced in iNOS-KO mice. The subcutaneous tumor experiments revealed that the administration of GalCer in the absence of iNOS expression significantly enhanced the induction of tumor antigen-specific response. Finally, our results indicated that the inhibition of iNOS expression could enhance the therapeutic efficacy of GalCer via the increase of tumor antigen-specific immune response and the suppression of MDSCs.
Collapse
Affiliation(s)
- Hiroyasu Ito
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Yanagido, Gifu, Japan
| | - Tatsuya Ando
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Yanagido, Gifu, Japan
| | - Mitsuru Seishima
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Yanagido, Gifu, Japan
| |
Collapse
|
47
|
Immunotherapeutic strategies targeting natural killer T cell responses in cancer. Immunogenetics 2016; 68:623-38. [PMID: 27393665 DOI: 10.1007/s00251-016-0928-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022]
Abstract
Natural killer T (NKT) cells are a unique subset of lymphocytes that bridge the innate and adaptive immune system. NKT cells possess a classic αβ T cell receptor (TCR) that is able to recognize self and foreign glycolipid antigens presented by the nonclassical class I major histocompatibility complex (MHC) molecule, CD1d. Type I NKT cells (referred to as invariant NKT cells) express a semi-invariant Vα14Jα18 TCR in mice and Vα24Jα18 TCR in humans. Type II NKT cells are CD1d-restricted T cells that express a more diverse set of TCR α chains. The two types of NKT cells often exert opposing effects especially in tumor immunity, where type II cells generally suppress tumor immunity while type I NKT cells can enhance anti-tumor immune responses. In this review, we focus on the role of NKT cells in cancer. We discuss their effector and suppressive functions, as well as describe preclinical and clinical studies utilizing therapeutic strategies focused on harnessing their potent anti-tumor effector functions, and conclude with a discussion on potential next steps for the utilization of NKT cell-targeted therapies for the treatment of cancer.
Collapse
|
48
|
Zhang L, Xu Y, Shen J, He F, Zhang D, Chen Z, Duan Y, Sun J. Feasibility study of DCs/CIKs combined with thoracic radiotherapy for patients with locally advanced or metastatic non-small-cell lung cancer. Radiat Oncol 2016; 11:60. [PMID: 27097970 PMCID: PMC4839093 DOI: 10.1186/s13014-016-0635-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/13/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The combination of dendritic cells (DCs) and cytokine-induced killer cells (CIKs) can induce the anti-tumor immune response and radiotherapy may promote the activity. We aimed to explore the feasibility of DCs/CIKs combined with thoracic radiotherapy (TRT) for patients with locally advanced or metastatic non-small-cell lung cancer (NSCLC). METHOD In this study, patients with unresectable stage III/IV NSCLC and an Eastern Cooperative Oncology Group performance status (ECOG PS) of 0-2 and previously receiving two or more cycles of platinum-based doublet chemotherapy without disease progression received TRT plus DCs/CIKs or TRT alone until disease progression or unacceptable toxicity. The primary endpoint was median progression-free survival (mPFS). In treatment group, patients received four-cycle autologous DCs/CIKs infusion starting from the 6(th) fraction of irradiation. RESULTS From Jan 13, 2012 to June 30, 2014, 82 patients were enrolled, with 21 patients in treatment group and 61 in control group. The mPFS in treatment group was longer than that in control group (330 days vs 233 days, hazard ratio 0.51, 95 % CI 0.27-1.0, P < 0.05), and the objective response rate (ORR) of treatment group (47.6 %) was significantly higher that of control group (24.6 %, P < 0.05). There was no significant difference in disease control rate (DCR) and median overall survival (mOS) between two groups (P > 0.05). The side effects in treatment group were mild and there was no treatment-related deaths. CONCLUSION The combination of DCs/CIKs with TRT could be a feasible regimen in treating locally advanced or metastatic NSCLC patients. Further investigation of the regimen is warranted.
Collapse
Affiliation(s)
- Luping Zhang
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yanmei Xu
- Oncology Department, Leshan People's Hospital, Sichuan, 614000, China
| | - Jie Shen
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Feng He
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Dan Zhang
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Zhengtang Chen
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yuzhong Duan
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Jianguo Sun
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
49
|
Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents. Clin Transl Immunology 2016; 5:e69. [PMID: 27195112 PMCID: PMC4855264 DOI: 10.1038/cti.2016.14] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 12/23/2022] Open
Abstract
Certain types of glycolipids have been found to have remarkable immunomodulatory properties as a result of their ability to activate specific T lymphocyte populations with an extremely wide range of immune effector properties. The most extensively studied glycolipid reactive T cells are known as invariant natural killer T (iNKT) cells. The antigen receptors of these cells specifically recognize certain glycolipids, most notably glycosphingolipids with α-anomeric monosaccharides, presented by the major histocompatibility complex class I-like molecule CD1d. Once activated, iNKT cells can secrete a very diverse array of pro- and anti-inflammatory cytokines to modulate innate and adaptive immune responses. Thus, glycolipid-mediated activation of iNKT cells has been explored for immunotherapy in a variety of disease states, including cancer and a range of infections. In this review, we discuss the design of synthetic glycolipid activators for iNKT cells, their impact on adaptive immune responses and their use to modulate iNKT cell responses to improve immunity against infections and cancer. Current challenges in translating results from preclinical animal studies to humans are also discussed.
Collapse
|
50
|
Abdelmegeed H, Nakamura T, Harashima H. In Vivo Inverse Correlation in the Activation of Natural Killer T Cells Through Dual-Signal Stimulation via a Combination of α-Galactosylceramide–Loaded Liposomes and Interleukin-12. J Pharm Sci 2016; 105:250-6. [DOI: 10.1016/j.xphs.2015.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/01/2015] [Accepted: 10/09/2015] [Indexed: 11/30/2022]
|