1
|
Brock K, Homer V, Soul G, Potter C, Chiuzan C, Lee S. Is more better? An analysis of toxicity and response outcomes from dose-finding clinical trials in cancer. BMC Cancer 2021; 21:777. [PMID: 34225682 PMCID: PMC8256624 DOI: 10.1186/s12885-021-08440-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The overwhelming majority of dose-escalation clinical trials use methods that seek a maximum tolerable dose, including rule-based methods like the 3+3, and model-based methods like CRM and EWOC. These methods assume that the incidences of efficacy and toxicity always increase as dose is increased. This assumption is widely accepted with cytotoxic therapies. In recent decades, however, the search for novel cancer treatments has broadened, increasingly focusing on inhibitors and antibodies. The rationale that higher doses are always associated with superior efficacy is less clear for these types of therapies. METHODS We extracted dose-level efficacy and toxicity outcomes from 115 manuscripts reporting dose-finding clinical trials in cancer between 2008 and 2014. We analysed the outcomes from each manuscript using flexible non-linear regression models to investigate the evidence supporting the monotonic efficacy and toxicity assumptions. RESULTS We found that the monotonic toxicity assumption was well-supported across most treatment classes and disease areas. In contrast, we found very little evidence supporting the monotonic efficacy assumption. CONCLUSIONS Our conclusion is that dose-escalation trials routinely use methods whose assumptions are violated by the outcomes observed. As a consequence, dose-finding trials risk recommending unjustifiably high doses that may be harmful to patients. We recommend that trialists consider experimental designs that allow toxicity and efficacy outcomes to jointly determine the doses given to patients and recommended for further study.
Collapse
Affiliation(s)
- Kristian Brock
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK.
| | - Victoria Homer
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Gurjinder Soul
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Claire Potter
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Cody Chiuzan
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Shing Lee
- Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Drug repurposing of pyrimidine analogs as potent antiviral compounds against human enterovirus A71 infection with potential clinical applications. Sci Rep 2020; 10:8159. [PMID: 32424333 PMCID: PMC7235037 DOI: 10.1038/s41598-020-65152-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/28/2020] [Indexed: 01/15/2023] Open
Abstract
Enterovirus A71 (EV-A71) is one of the aetiological agents for the hand, foot and mouth disease (HFMD) in young children and a potential cause of neurological complications in afflicted patients. Since its discovery in 1969, there remains no approved antiviral for EV-A71 and other HFMD-causing enteroviruses. We set out to address the lack of therapeutics against EV-A71 by screening an FDA-approved drug library and found an enrichment of hits including pyrimidine antimetabolite, gemcitabine which showed 90.2% of inhibition on EV-A71 infection. Gemcitabine and other nucleoside analogs, LY2334737 and sofosbuvir inhibition of EV-A71 infection were disclosed using molecular and proteomic quantification, and in vitro and in vivo efficacy evaluation. Gemcitabine displayed a significant reduction of infectious EV-A71 titres by 2.5 logs PFU/mL and was shown to target the early stage of EV-A71 viral RNA and viral protein synthesis process especially via inhibition of the RNA dependent RNA polymerase. In addition, the drug combination study of gemcitabine's synergistic effects with interferon-β at 1:1 and 1:2 ratio enhanced inhibition against EV-A71 replication. Since gemcitabine is known to metabolize rapidly in vivo, other nucleoside analogs, LY2334737 and sofosbuvir conferred protection in mice against lethal EV-A71 challenge by potentially reducing the death rate, viral titers as well on virus-induced pathology in the limb muscle tissue of mice. Additionally, we found that gemcitabine is competent to inhibit other positive-sense RNA viruses of the Flaviviridae and Togaviridae family. Overall, these drugs provide new insights into targeting viral factors as a broad-spectrum antiviral strategy with potential therapeutic value for future development and are worthy of potential clinical application.
Collapse
|
3
|
Zhou X, Wang S, Zhu Y, Pan Y, Zhang L, Yang Z. Overcoming the delivery barrier of oligonucleotide drugs and enhancing nucleoside drug efficiency: The use of nucleolipids. Med Res Rev 2019; 40:1178-1199. [PMID: 31820472 DOI: 10.1002/med.21652] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
With the rapid development of synthetic technology and biological technology, many nucleic acid-based drugs have entered the clinical trials. However, their inherent disabilities in actively and efficiently penetrating cell membranes still severely restrict their further application. The main drawback of cationic lipids, which have been widely used as nonviral vectors of nucleic acids, is their high cytotoxicity. A series of nucleoside-based or nucleotide-based nucleolipids have been reported in recent years, due to their oligonucleotide delivery capacity and low toxicity in comparison with cationic lipids. Lipophilic prodrugs of nucleoside analogs have extremely similar structures with nucleolipid vectors and are thus helpful for improving the transmembrane ability. This review introduces the progress of nucleolipids and provides new strategies for improving the delivery efficiency of nucleic acid-based drugs, as well as lipophilic prodrugs of nucleosides or nucleotides for antiviral or anticancer therapies.
Collapse
Affiliation(s)
- Xinyang Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Haidian, China
| | - Shuhe Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Haidian, China
| | - Yuejie Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Haidian, China
| | - Yufei Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Haidian, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Haidian, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Haidian, China
| |
Collapse
|
4
|
Jiang Z, Pflug K, Usama SM, Kuai D, Yan X, Sitcheran R, Burgess K. Cyanine-Gemcitabine Conjugates as Targeted Theranostic Agents for Glioblastoma Tumor Cells. J Med Chem 2019; 62:9236-9245. [PMID: 31469566 PMCID: PMC7050787 DOI: 10.1021/acs.jmedchem.9b01147] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A small subset of heptamethine dyes (cyanine-7 or Cy7) share an intriguing characteristic: preferential tumor accumulation and retention. These dyes absorb in the near-infrared (NIR) region (above 750 nm) and perform active targeting to deliver therapeutic and toxic cargoes to various tumor models in vivo. In this work, four heptamethines 1 were synthesized, which have a gemcitabine fragment attached to the meso-position of the Cy7 core. Theranostic agent 1a was discovered that localized in glioblastoma tumor cells, has absorption maxima in NIR region, and showed similar therapeutic effect to gemcitabine but at one-third the molar dose.
Collapse
Affiliation(s)
- Zhengyang Jiang
- Department of Chemistry, Texas A&M University, Box 30012, College Station, Texas 77842, United States
| | - Kathryn Pflug
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843, United States
| | - Syed Muhammad Usama
- Department of Chemistry, Texas A&M University, Box 30012, College Station, Texas 77842, United States
| | - Dacheng Kuai
- Department of Chemistry, Texas A&M University, Box 30012, College Station, Texas 77842, United States
| | - Xin Yan
- Department of Chemistry, Texas A&M University, Box 30012, College Station, Texas 77842, United States
| | - Raquel Sitcheran
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843, United States
| | - Kevin Burgess
- Department of Chemistry, Texas A&M University, Box 30012, College Station, Texas 77842, United States
| |
Collapse
|
5
|
Morrison J, Thoma C, Goodall RJ, Lyons TJ, Gaitskell K, Wiggans AJ, Bryant A. Epidermal growth factor receptor blockers for the treatment of ovarian cancer. Cochrane Database Syst Rev 2018; 10:CD007927. [PMID: 30321910 PMCID: PMC6430330 DOI: 10.1002/14651858.cd007927.pub4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND This is an update of a previously published version of the review (Issue 10, 2011).Epithelial ovarian cancer (EOC) is the seventh most common cause of cancer death among women worldwide. Treatment consists of a combination of surgical debulking and platinum-based chemotherapy. Between 55% and 75% of women who respond to first-line therapy experience relapse within two years. Second-line chemotherapy is palliative and aims to reduce symptoms and prolong survival. Improved understanding about the molecular basis of EOC has led to the development of novel agents, such as epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors and anti-EGFR antibodies. OBJECTIVES To compare the effectiveness and harmful effects of interventions that target the epidermal growth factor receptor in the treatment of epithelial ovarian cancer (EOC). SEARCH METHODS We searched the Cochrane Gynaecological Cancer Group Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL; 2010, Issue 4), MEDLINE, and Embase up to October 2010. We also searched registers of clinical trials, abstracts of scientific meetings, and reference lists of included studies, and we contacted experts in the field. This update includes further searches up to September 2017. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing anti-EGFR agents with or without conventional chemotherapy versus conventional chemotherapy alone or no treatment in women with histologically proven EOC. DATA COLLECTION AND ANALYSIS Two review authors independently abstracted data, assessed risk of bias, and performed GRADE assessment. MAIN RESULTS From 6105 references obtained through the literature search and an additional 15 references derived from grey literature searches, we identified seven RCTs that met our inclusion criteria and included 1725 participants. Trial results show that after first-line chemotherapy is provided, maintenance treatment with erlotinib (EGFR tyrosine kinase inhibitor (TKI)) probably makes little or no difference in overall survival (hazard ratio (HR) 0.99, 95% confidence interval (CI) 0.81 to 1.20; one study; 835 participants; low-certainty evidence) and may make little or no difference in progression-free survival (HR 1.05, 95% CI 0.90 to 1.23; one study; 835 participants; very low-certainty evidence). Less than 50% of participants provided quality of life data, and study authors reported these results incompletely. The certainty of evidence is very low, but treatment may reduce quality of life compared to observation.Treatment with an EGFR TKI (vandetanib) for women with relapsed EOC may make little or no difference in overall survival (HR 1.25, 95% CI 0.80 to 1.95; one study; 129 participants; low-certainty evidence) and may make little or no difference in progression-free survival (HR 0.99, 95% CI 0.69 to 1.42; one study; 129 participants; very low-certainty evidence). In treating patients with relapse, giving EGFR TKI may slightly increase some toxicities, such as severe rash (risk ratio (RR) 13.63, 95% CI 0.78 to 236.87; one study; 125 participants; very low-certainty evidence). Quality of life data were not available for meta-analysis.Anti-EGFR antibody treatment in relapsed EOC may or may not make a difference to overall survival (HR 0.93, 95% CI 0.74 to 1.18; four studies; 658 participants; moderate-certainty evidence) and may or may not have any effect on progression-free survival (HR 0.90, 95% CI 0.70 to 1.16; four studies; 658 participants; low-certainty evidence). Anti-EGFR antibody treatment may or may not increase side effects, including severe nausea and/or vomiting (RR 1.27, 95% CI 0.56 to 2.89; three studies; 503 participants; low-certainty evidence), severe fatigue (RR 1.06, 95% CI 0.66 to 1.73; I² = 0%; four studies; 652 participants; low-certainty evidence), and hypokalaemia (RR 2.01, 95% CI 0.80 to 5.06; I² = 0%; three studies; 522 participants; low-certainty evidence). Severe diarrhoea rates were heterogeneous across studies (RR 2.87, 95% CI 0.59 to 13.89; four studies; 652 participants; low-certainty evidence), and subgroup analysis revealed that severe diarrhoea was more likely with pertuzumab (RR 6.37, 95% CI 1.89 to 21.45; I² = 0%; three studies; 432 participants; low-certainty evidence) than with seribantumab treatment (RR 0.38, 95% CI 0.07 to 2.23; I² = 0%; one study; 220 participants; very low-certainty evidence). Quality of life data were incompletely reported, and we were unable to combine them in a meta-analysis. AUTHORS' CONCLUSIONS Current evidence suggests that an anti-EGFR single-agent biological treatment (EGFR TKI or anti-EGFR antibody) makes little or no difference to survival, either as maintenance treatment after first-line chemotherapy or in association with chemotherapy in recurrent cancer. Anti-EGFR therapy may increase some side effects and may or may not reduce quality of life.
Collapse
Affiliation(s)
- Jo Morrison
- Musgrove Park HospitalDepartment of Gynaecological OncologyTaunton and Somerset NHS Foundation TrustTauntonSomersetUKTA1 5DA
| | | | | | - Thomas J Lyons
- University of BristolSchool of Medical Sciences38 Kings Parade AvenueBristolUKBS8 2RB
| | - Kezia Gaitskell
- University of OxfordCancer Epidemiology Unit, Nuffield Department of Population HealthRichard Doll BuildingRoosevelt DriveOxfordUKOX3 7LF
| | - Alison J Wiggans
- Musgrove Park HospitalDepartment of Obstetrics and GynaecologyTaunton and Somerset NHS Foundation TrustTauntonSomersetUKTA1 5DA
| | - Andrew Bryant
- Newcastle UniversityInstitute of Health & SocietyMedical School New BuildRichardson RoadNewcastle upon TyneUKNE2 4AX
| | | |
Collapse
|
6
|
Tsesmetzis N, Paulin CBJ, Rudd SG, Herold N. Nucleobase and Nucleoside Analogues: Resistance and Re-Sensitisation at the Level of Pharmacokinetics, Pharmacodynamics and Metabolism. Cancers (Basel) 2018; 10:cancers10070240. [PMID: 30041457 PMCID: PMC6071274 DOI: 10.3390/cancers10070240] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023] Open
Abstract
Antimetabolites, in particular nucleobase and nucleoside analogues, are cytotoxic drugs that, starting from the small field of paediatric oncology, in combination with other chemotherapeutics, have revolutionised clinical oncology and transformed cancer into a curable disease. However, even though combination chemotherapy, together with radiation, surgery and immunotherapy, can nowadays cure almost all types of cancer, we still fail to achieve this for a substantial proportion of patients. The understanding of differences in metabolism, pharmacokinetics, pharmacodynamics, and tumour biology between patients that can be cured and patients that cannot, builds the scientific basis for rational therapy improvements. Here, we summarise current knowledge of how tumour-specific and patient-specific factors can dictate resistance to nucleobase/nucleoside analogues, and which strategies of re-sensitisation exist. We revisit well-established hurdles to treatment efficacy, like the blood-brain barrier and reduced deoxycytidine kinase activity, but will also discuss the role of novel resistance factors, such as SAMHD1. A comprehensive appreciation of the complex mechanisms that underpin the failure of chemotherapy will hopefully inform future strategies of personalised medicine.
Collapse
Affiliation(s)
- Nikolaos Tsesmetzis
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Cynthia B J Paulin
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden.
| | - Sean G Rudd
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden.
| | - Nikolas Herold
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.
- Paediatric Oncology, Theme of Children's and Women's Health, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden.
| |
Collapse
|
7
|
Zhou Y, Chang Q, Wang W, Zhang X, Zhou F, Sun J, Wang G, Peng Y. Sensitive analysis and pharmacokinetic study of a novel gemcitabine carbamate prodrug and its active metabolite gemcitabine in rats using LC-ESI-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1083:249-257. [PMID: 29554521 DOI: 10.1016/j.jchromb.2018.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/11/2018] [Accepted: 03/09/2018] [Indexed: 11/18/2022]
Abstract
FY363 is a new chemical entity of gemcitabine analog, which has been shown to have a significant inhibitory effect on cell proliferation in a variety of tumor cell lines in vitro. As a carbamate derivative, FY363 would be converted to the active metabolite gemcitabine through enzyme action in vivo. In order to clarify the exposure of FY363 prototype and its metabolite gemcitabine in vivo after administration of FY363, a sensitive and specific liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed and validated to simultaneously determine FY363 and gemcitabine in rat plasma after liquid-liquid extraction with ethyl acetate. Chromatographic separation was achieved on a highly stable polar column of Synergi 4u Polar-RP 80A (4 μm, 4.6 × 250 mm) which has a unique ether - phenyl bonded phase. Gradient elution was accomplished with mobile phase system consisting of 5 mM ammonium formate buffer containing 0.1% formic acid and mixed organic solvents containing methanol-acetonitrile (3:2, v/v). Multiple reaction monitoring transitions were performed on triple quadrupole mass spectrometric detection in positive-ion mode with an electrospray ionization source. The calibration curves showed good linearity (r > 0.99) over the established concentration range of 1.0-1000 ng/mL both for FY363 and gemcitabine. The assay was validated to be selective, robust and reproducible. This well validated method was successfully applied to demonstrate the pharmacokinetic behavior and the metabolic transformation of FY363 in rats. Results revealed that about 20% of FY363 were converted into its active metabolite gemcitabine in rats by comparing the exposure of gemcitabine after the FY363 administration with that after direct gemcitabine administration at equimolar dose.
Collapse
Affiliation(s)
- Yi Zhou
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qingqing Chang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenjie Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaofang Zhang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fang Zhou
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jianguo Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Ying Peng
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Wang C, Zheng Y, Sand oval MA, Valdes SA, Chen Z, Lansakara-P DS, Du M, Shi Y, Cui Z. Oral 4-( N)-stearoyl gemcitabine nanoparticles inhibit tumor growth in mouse models. Oncotarget 2017; 8:89876-89886. [PMID: 29163795 PMCID: PMC5685716 DOI: 10.18632/oncotarget.21264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/08/2017] [Indexed: 01/14/2023] Open
Abstract
In spite of recent advances in targeted tumor therapy, systemic chemotherapy with cytotoxic agents remains a vital cancer treatment modality. Gemcitabine is a nucleoside analog commonly used in the treatment of various solid tumors, but an oral gemcitabine dosage form remain unavailable. Previously, we developed the 4-(N)-stearoyl gemcitabine solid lipid nanoparticles (GemC18-SLNs) by incorporating 4-(N)-stearoyl gemcitabine (GemC18), an amide prodrug of gemcitabine, into solid lipid nanoparticles. GemC18-SLNs, when administered intravenously, showed strong antitumor activity against various human and mouse tumors in mouse models. In the present study, we defined the plasma pharmacokinetics of gemcitabine when GemC18-SLNs were given orally to healthy mice and evaluated the antitumor activity of GemC18-SLNs when given orally in mouse models of lung cancer. In mice orally gavaged with GemC18-SLNs, plasma gemcitabine concentration followed an absorption phase and then clearance phase, with a Tmax of ~2 h. The absolute oral bioavailability of gemcitabine in the GemC18-SLNs was ~70% (based on AUC0-24 h values). In mice with pre-established tumors (i.e. mouse TC-1 or LLC lung cancer cells), oral GemC18-SLNs significantly inhibited the tumor growth and increased mouse survival time, as compared to the molar equivalent dose of gemcitabine hydrochloride or GemC18 in vegetable oil or in Tween 20. Immunohistostaining revealed that oral GemC18-SLNs also have significant antiproliferative, antiangiogenic, and proapoptotic activity in LLC tumors. Formulating a lipophilic amide prodrug of gemcitabine into solid lipid nanoparticles may represent a viable approach toward developing a safe and efficacious gemcitabine oral dosage form.
Collapse
Affiliation(s)
- Caixia Wang
- Inner Mongolia Medical University, School of Basic Sciences, Inner Mongolia Key Laboratory of Molecular Biology, Hohhot, Inner Mongolia, China
| | - Yuanqiang Zheng
- Inner Mongolia University, Research Center for Laboratory Animal Sciences, Hohhot, Inner Mongolia, China
| | - Michael A. Sand oval
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, Texas, USA
| | - Solange A. Valdes
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, Texas, USA
| | - Zhe Chen
- Inner Mongolia Medical University, School of Basic Sciences, Inner Mongolia Key Laboratory of Molecular Biology, Hohhot, Inner Mongolia, China
| | - Dharmika S. Lansakara-P
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, Texas, USA
| | - Maolin Du
- Inner Mongolia Medical University, School of Public Health, Hohhot, Inner Mongolia, China
| | - Yanchun Shi
- Inner Mongolia Medical University, School of Basic Sciences, Inner Mongolia Key Laboratory of Molecular Biology, Hohhot, Inner Mongolia, China
| | - Zhengrong Cui
- Inner Mongolia Medical University, School of Basic Sciences, Inner Mongolia Key Laboratory of Molecular Biology, Hohhot, Inner Mongolia, China
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, Texas, USA
| |
Collapse
|
9
|
Fluorinated nucleosides as an important class of anticancer and antiviral agents. Future Med Chem 2017; 9:1809-1833. [DOI: 10.4155/fmc-2017-0095] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fluorine-containing nucleoside analogs (NAs) represent a significant class of the US FDA-approved chemotherapeutics widely used in the clinic. The incorporation of fluorine into drug-like agents modulates lipophilic, electronic and steric parameters, thus influencing pharmacodynamic and pharmacokinetic properties of drugs. Fluorine can block oxidative metabolism of drugs and the formation of undesired metabolites by changing H-bonding interactions. In this review, we focus our attention on chemical fluorination reagents and methods used in the NAs field, including positron emission tomography radiochemistry. We briefly discuss both the cellular biology and clinical properties of FDA-approved and fluorine-containing nucleoside/nucleotide analogs in development as well as common resistance mechanisms associated with their use. Finally, we emphasize pronucleotide strategies used to improve therapeutic outcome of NAs in the clinic.
Collapse
|
10
|
Chiuzan C, Shtaynberger J, Manji GA, Duong JK, Schwartz GK, Ivanova A, Lee SM. Dose-finding designs for trials of molecularly targeted agents and immunotherapies. J Biopharm Stat 2017; 27:477-494. [PMID: 28166468 DOI: 10.1080/10543406.2017.1289952] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Recently, there has been a surge of early phase trials of molecularly targeted agents (MTAs) and immunotherapies. These new therapies have different toxicity profiles compared to cytotoxic therapies. MTAs can benefit from new trial designs that allow inclusion of low-grade toxicities, late-onset toxicities, addition of an efficacy endpoint, and flexibility in the specification of a target toxicity probability. To study the degree of adoption of these methods, we conducted a Web of Science search of articles published between 2008 and 2014 that describe phase 1 oncology trials. Trials were categorized based on the dose-finding design used and the type of drug studied. Out of 1,712 dose-finding trials that met our criteria, 1,591 (92.9%) utilized a rule-based design, and 92 (5.4%; range 2.3% in 2009 to 9.7% in 2014) utilized a model-based or novel design. Over half of the trials tested an MTA or immunotherapy. Among the MTA and immunotherapy trials, 5.8% used model-based methods, compared to 3.9% and 8.3% of the chemotherapy or radiotherapy trials, respectively. While the percentage of trials using novel dose-finding designs has tripled since 2007, the adoption of these designs continues to remain low.
Collapse
Affiliation(s)
- Cody Chiuzan
- a Department of Biostatistics, Mailman School of Public Health , Columbia University , New York , New York , USA
| | - Jonathan Shtaynberger
- a Department of Biostatistics, Mailman School of Public Health , Columbia University , New York , New York , USA
| | - Gulam A Manji
- b Division of Hematology and Oncology, Department of Medicine , Columbia University , New York , New York , USA
| | - Jimmy K Duong
- a Department of Biostatistics, Mailman School of Public Health , Columbia University , New York , New York , USA
| | - Gary K Schwartz
- b Division of Hematology and Oncology, Department of Medicine , Columbia University , New York , New York , USA
| | - Anastasia Ivanova
- c Department of Biostatistics , UNC at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Shing M Lee
- a Department of Biostatistics, Mailman School of Public Health , Columbia University , New York , New York , USA
| |
Collapse
|
11
|
Shelton J, Lu X, Hollenbaugh JA, Cho JH, Amblard F, Schinazi RF. Metabolism, Biochemical Actions, and Chemical Synthesis of Anticancer Nucleosides, Nucleotides, and Base Analogs. Chem Rev 2016; 116:14379-14455. [PMID: 27960273 DOI: 10.1021/acs.chemrev.6b00209] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleoside, nucleotide, and base analogs have been in the clinic for decades to treat both viral pathogens and neoplasms. More than 20% of patients on anticancer chemotherapy have been treated with one or more of these analogs. This review focuses on the chemical synthesis and biology of anticancer nucleoside, nucleotide, and base analogs that are FDA-approved and in clinical development since 2000. We highlight the cellular biology and clinical biology of analogs, drug resistance mechanisms, and compound specificity towards different cancer types. Furthermore, we explore analog syntheses as well as improved and scale-up syntheses. We conclude with a discussion on what might lie ahead for medicinal chemists, biologists, and physicians as they try to improve analog efficacy through prodrug strategies and drug combinations.
Collapse
Affiliation(s)
- Jadd Shelton
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Xiao Lu
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Joseph A Hollenbaugh
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Jong Hyun Cho
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
12
|
Qi H, Lu J, Li J, Wang M, Xu Y, Wang Y, Zhang H. Enhanced Antitumor Activity of Monophosphate Ester Prodrugs of Gemcitabine: In Vitro and In Vivo Evaluation. J Pharm Sci 2016; 105:2966-2973. [DOI: 10.1016/j.xphs.2016.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 12/11/2022]
|
13
|
Abstract
INTRODUCTION Most anticancer drugs have poor aqueous solubility and low permeability across the gastrointestinal tract. Furthermore, extensive efflux by P-glycoproteins (P-gp) in the small intestine also limits the efficient delivery of anticancer drugs via oral route. Area covered: This review explores the prodrug strategy for oral delivery of anticancer drugs. Different categories of oral anticancer prodrugs along with recent clinical studies have been comprehensively reviewed here. Furthermore, novel anticancer prodrugs such as polymer-prodrugs and lipid-prodrugs have been discussed in detail. Finally, various nanocarrier-based approaches employed for oral delivery of anticancer prodrugs have also been discussed. Expert opinion: Premature degradation of anticancer prodrugs in the gastrointestinal tract could lead to variable pharmacokinetics and undesired toxicity. Despite their increased aqueous solubility, the oral bioavailability of several anticancer prodrugs are limited by their poor permeability across the gastrointestinal tract. These limitations can be overcome by the use of functional excipients (polymers, lipids, amino acids/dipeptides), which are specifically absorbed via transporters and receptor-mediated endocytosis. Oral delivery of anticancer prodrugs using nanocarrier-based drug delivery system is a recent development; however it should be justified based on the comparative advantages of encapsulating prodrug in a nanocarrier versus the use of anticancer prodrug molecule itself.
Collapse
Affiliation(s)
- Amit K Jain
- a Department of Chemical Engineering , Texas Tech University , Lubbock , TX , USA
| | - Sanyog Jain
- b Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research (NIPER) , Mohali , Punjab , India
| |
Collapse
|
14
|
Ciccolini J, Serdjebi C, Peters GJ, Giovannetti E. Pharmacokinetics and pharmacogenetics of Gemcitabine as a mainstay in adult and pediatric oncology: an EORTC-PAMM perspective. Cancer Chemother Pharmacol 2016; 78:1-12. [PMID: 27007129 PMCID: PMC4921117 DOI: 10.1007/s00280-016-3003-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/08/2016] [Indexed: 01/04/2023]
Abstract
Gemcitabine is an antimetabolite ranking among the most prescribed anticancer drugs worldwide. This nucleoside analog exerts its antiproliferative action after tumoral conversion into active triphosphorylated nucleotides interfering with DNA synthesis and targeting ribonucleotide reductase. Gemcitabine is a mainstay for treating pancreatic and lung cancers, alone or in combination with several cytotoxic drugs (nab-paclitaxel, cisplatin and oxaliplatin), and is an option in a variety of other solid or hematological cancers. Several determinants of response have been identified with gemcitabine, i.e., membrane transporters, activating and inactivating enzymes at the tumor level, or Hedgehog signaling pathway. More recent studies have investigated how germinal genetic polymorphisms affecting cytidine deaminase, the enzyme responsible for the liver disposition of gemcitabine, could act as well as a marker for clinical outcome (i.e., toxicity, efficacy) at the bedside. Besides, constant efforts have been made to develop alternative chemical derivatives or encapsulated forms of gemcitabine, as an attempt to improve its metabolism and pharmacokinetics profile. Overall, gemcitabine is a drug paradigmatic for constant searches of the scientific community to improve its administration through the development of personalized medicine in oncology.
Collapse
Affiliation(s)
- Joseph Ciccolini
- Pharmacokinetics Unit, SMARTc, Inserm S_911 CRO2, Aix Marseille University, Marseille, France
| | - Cindy Serdjebi
- Pharmacokinetics Unit, SMARTc, Inserm S_911 CRO2, Aix Marseille University, Marseille, France
| | | | - Elisa Giovannetti
- Department of Medical Oncology, VUmc, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, AIRC/Start-Up Unit, University of Pisa, Pisa, Italy.
| |
Collapse
|
15
|
Faivre SJ, Olszanski AJ, Weigang-Köhler K, Riess H, Cohen RB, Wang X, Myrand SP, Wickremsinhe ER, Horn CL, Ouyang H, Callies S, Benhadji KA, Raymond E. Phase I dose escalation and pharmacokinetic evaluation of two different schedules of LY2334737, an oral gemcitabine prodrug, in patients with advanced solid tumors. Invest New Drugs 2015; 33:1206-16. [PMID: 26377590 DOI: 10.1007/s10637-015-0286-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/03/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND This Phase-I-study aimed to determine the recommended Phase-II-dosing-schedule of LY2334737, an oral gemcitabine prodrug, in patients with advanced/metastatic solid tumors. Pharmacokinetics, cytokeratin-18 (CK18) levels, genetic polymorphisms, and antitumor activity were additionally evaluated. METHODS Patients received escalating doses of LY2334737 either every other day for 21 days (d) followed by 7 days-drug-free period (QoD-arm) or once daily for 7 days every other week (QD-arm). The 28 days-cycles were repeated until disease progression or unacceptable toxicity. Standard 3 + 3 dose-escalation was succeeded by a dose-confirmation phase (12 additional patients to be enrolled on the maximum tolerated dose [MTD]). RESULTS Forty-one patients received QoD- (40-100 mg) and 32 QD-dosing (40-90 mg). On QoD, 3/9 patients experienced dose-limiting toxicities (DLTs) on the 100 mg dose (2 × G3 diarrhea, 1 × G3 transaminase increase); 1 additional DLT (G3 diarrhea) occurred during dose confirmation at 90 mg (12 patients). On QD, 1 patient each experienced DLTs on 60 mg (G3 transaminase increase) and 80 mg (G3 prolonged QTcF-interval); 2/7 patients had 3 DLTs on the 90 mg dose (diarrhea, edema, liver-failure; all G3). The MTD was established at 90 mg for the QoD-arm. Seven patients on QoD and 4 on QD achieved SD (no CR + PR). Pharmacokinetics showed a dose-proportional increase in exposure of LY2334737 and dFdC without accumulation after repeated dosing. Significant increases in CK18 levels were observed. Genetic polymorphism of the cytidine deaminase gene (rs818202) could be associated with ≥ G3 hepatotoxicity. CONCLUSIONS Both schedules displayed linear pharmacokinetics and acceptable safety profiles. The recommended dose and schedule of LY2334737 for subsequent Phase-II-studies is 90 mg given QoD for 21 day.
Collapse
Affiliation(s)
- Sandrine J Faivre
- Department of Medical Oncology, Beaujon University Hospital, Clichy, France
| | | | | | - Hanno Riess
- Medical Department, Division of Hematology, Oncology and Tumor Immunology, Charite Campus Virchow Hospital, Berlin, Germany
| | - Roger B Cohen
- Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xuejing Wang
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Scott P Myrand
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | | | - Candice L Horn
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Haojun Ouyang
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Sophie Callies
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | | | - Eric Raymond
- Department of Medical Oncology, Beaujon University Hospital, Clichy, France. .,Hospital Beaujon, 100 Bd du General Leclerc, 92118, Clichy, France.
| |
Collapse
|
16
|
Peters GJ. Novel developments in the use of antimetabolites. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 33:358-74. [PMID: 24940694 DOI: 10.1080/15257770.2014.894197] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antimetabolites are the most widely used and most efficacious group of anticancer drugs. Antimetabolites are also the oldest rationally designed anticancer drugs, targeted against RNA and DNA, and can, therefore, be considered as the first generation of targeted drugs. Unfortunately, resistance often develops, leading to the design of new antimetabolites, which either have a novel mechanism of action, bypass resistance or in combination enhance the effect of other drugs, such as another antimetabolite, other DNA, or protein kinase targeted anticancer drugs. Several novel antimetabolites are in clinical development. The cytidine-analog fluorocyclopentenylcytosine (RX-3117) is active in gemcitabine-resistant tumors and is activated by uridine-cytidine-kinase, can be incorporated into RNA and DNA and can downregulate DNA-methyltransferase-1. TAS-114 is a new generation dUTPase inhibitor. dUTPase normally prevents incorporation of dUTP and of the 5FU-nucleotide FdUTP into DNA. However, inhibition of dUTPase will enhance their incorporation, thereby increasing thymine-less cell-death. The formulation TAS-102 (trifluorothymidine and thymidine-phosphorylase-inhibitor) acts by incorporation into DNA and has shown efficacy in tumors progressing on 5FU therapy. Gemcitabine and cytarabine prodrugs were tested in model systems and have entered clinical evaluation. The elaidic-acid prodrugs of gemcitabine (CP-4126, CO101) and cytarabine (elacytarabine) failed in randomized Phase III studies. Two other gemcitabine prodrugs LY2334737 (gemcitabine with a valproic acid at the 5'-position) and NUC1031 (a 5'-arylphosphoamidate prodrug, with a side-chain at the 5'-phosphate) are in early clinical development. In summary, several novel antimetabolites show promise in clinical development, either because of a novel mechanism of action, or clever combination or by innovative prodrug design.
Collapse
Affiliation(s)
- Godefridus J Peters
- a Department of Medical Oncology , VU University Medical Center , 1081 HV , Amsterdam , The Netherlands
| |
Collapse
|
17
|
Phase 1b study of the oral gemcitabine 'Pro-drug' LY2334737 in combination with capecitabine in patients with advanced solid tumors. Invest New Drugs 2015; 33:432-9. [PMID: 25640850 DOI: 10.1007/s10637-015-0207-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
Abstract
Background This Phase 1b study aimed to determine the recommended Phase 2 dose of LY2334737, an oral pro-drug of gemcitabine, in combination with capecitabine, an oral pro-drug of 5-fluorouracil, in patients with advanced solid tumors. In addition, pharmacokinetics (PK) and tumor response were evaluated. Patients and methods Patients with advanced/metastatic solid tumors received 650 mg/m(2) capecitabine twice daily (BID) and escalating doses of LY2334737 once daily (QD; initial dose 10 mg/day), both for 14 days followed by 7-day drug holiday. Cycles were repeated until progressive disease (PD) or unacceptable toxicity. Results Fifteen patients received a median of 2 (range 1-7) treatment cycles; 14 patients discontinued due to PD, 1 due to toxicity (pyrexia). LY2334737 doses up to 40 mg/day were explored. Three dose-limiting toxicities were reported by 2 patients (fatigue, diarrhea, hyponatremia; all Grade 3). Seven patients achieved stable disease. Enrollment was stopped after unexpected hepatic toxicities were observed with LY2334737 QD in a study of Japanese patients. PK parameters for LY2334737 were consistent with the first-in-human study of LY2334737; PK data after 14 day combination treatment revealed no drug-drug interactions between LY2334737 and capecitabine. Conclusions No drug interactions or unexpected toxicities were observed in US patients when LY2334737 at doses up to 40 mg/day was administered QD in combination with capecitabine BID; the maximum tolerated dose was not reached.
Collapse
|
18
|
Clouser CL, Bonnac L, Mansky LM, Patterson SE. Characterization of permeability, stability and anti-HIV-1 activity of decitabine and gemcitabine divalerate prodrugs. Antivir Chem Chemother 2014; 23:223-30. [PMID: 23994876 DOI: 10.3851/imp2682] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Over 25 drugs have been approved for the treatment of HIV-1 replication. All but one of these drugs is delivered as an oral medication. Previous studies have demonstrated that two drugs, decitabine and gemcitabine, have potent anti-HIV-1 activities and can work together in synergy to reduce HIV-1 infectivity via lethal mutagenesis. For their current indications, decitabine and gemcitabine are delivered intravenously. METHODS As an initial step towards the clinical translation of these drugs for the treatment of HIV-1 infection, we synthesized decitabine and gemcitabine prodrugs in order to increase drug permeability, which has generally been shown to correlate with increased bioavailability in vivo. In the present study we investigated the permeability, stability and anti-HIV-1 activity of decitabine and gemcitabine prodrugs and selected the divalerate esters of each as candidates for further investigation. RESULTS Our results provide the first demonstration of divalerate prodrugs of decitabine and gemcitabine that are readily permeable, stable and possess anti-HIV-1 activity. CONCLUSIONS These observations predict improved oral availability of decitabine and gemcitabine, and warrant further study of their ability to reduce HIV-1 infectivity in vivo.
Collapse
Affiliation(s)
- Christine L Clouser
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
| | | | | | | |
Collapse
|
19
|
Phase 1 dose escalation and pharmacokinetic evaluation of oral gemcitabine prodrug (LY2334737) in combination with docetaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol 2014; 73:1205-15. [DOI: 10.1007/s00280-014-2457-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/18/2014] [Indexed: 02/04/2023]
|
20
|
Slusarczyk M, Lopez MH, Balzarini J, Mason M, Jiang WG, Blagden S, Thompson E, Ghazaly E, McGuigan C. Application of ProTide technology to gemcitabine: a successful approach to overcome the key cancer resistance mechanisms leads to a new agent (NUC-1031) in clinical development. J Med Chem 2014; 57:1531-42. [PMID: 24471998 DOI: 10.1021/jm401853a] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gemcitabine is a nucleoside analogue commonly used in cancer therapy but with limited efficacy due to a high susceptibility to cancer cell resistance. The addition of a phosphoramidate motif to the gemcitabine can protect it against many of the key cancer resistance mechanisms. We have synthesized a series of gemcitabine phosphoramidate prodrugs and screened for cytostatic activity in a range of different tumor cell lines. Among the synthesized compounds, one in particular (NUC-1031, 6f) was shown to be potent in vitro. Importantly, compared with gemcitabine, 6f activation was significantly less dependent on deoxycytidine kinase and on nucleoside transporters, and it was resistant to cytidine deaminase-mediated degradation. Moreover, 6f showed a significant reduction in tumor volumes in vivo in pancreatic cancer xenografts. The ProTide 6f is now in clinical development with encouraging efficacy signals in a Phase I/II study, which strongly supports the ProTide approach to generate promising new anticancer agents.
Collapse
Affiliation(s)
- Magdalena Slusarczyk
- Cardiff School of Pharmacy & Pharmaceutical Sciences, Cardiff University , King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The dipeptide monoester prodrugs of floxuridine and gemcitabine-feasibility of orally administrable nucleoside analogs. Pharmaceuticals (Basel) 2014; 7:169-91. [PMID: 24473270 PMCID: PMC3942691 DOI: 10.3390/ph7020169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/15/2014] [Accepted: 01/22/2014] [Indexed: 12/19/2022] Open
Abstract
Dipeptide monoester prodrugs of floxuridine and gemcitabine were synthesized. Their chemical stability in buffers, enzymatic stability in cell homogenates, permeability in mouse intestinal membrane along with drug concentration in mouse plasma, and anti-proliferative activity in cancer cells were determined and compared to their parent drugs. Floxuridine prodrug was more enzymatically stable than floxuridine and the degradation from prodrug to parent drug works as the rate-limiting step. On the other hand, gemcitabine prodrug was less enzymatically stable than gemcitabine. Those dipeptide monoester prodrugs exhibited 2.4- to 48.7-fold higher uptake than their parent drugs in Caco-2, Panc-1, and AsPC-1 cells. Floxuridine and gemcitabine prodrugs showed superior permeability in mouse jejunum to their parent drugs and exhibited the higher drug concentration in plasma after in situ mouse perfusion. Cell proliferation assays in ductal pancreatic cancer cells, AsPC-1 and Panc-1, indicated that dipeptide prodrugs of floxuridine and gemcitabine were more potent than their parent drugs. The enhanced potency of nucleoside analogs was attributed to their improved membrane permeability. The prodrug forms of 5′-l-phenylalanyl-l-tyrosyl-floxuridine and 5′-l-phenylalanyl-l-tyrosyl-gemcitabine appeared in mouse plasma after the permeation of intestinal membrane and the first-pass effect, suggesting their potential for the development of oral dosage form for anti-cancer agents.
Collapse
|
22
|
Stuurman FE, Nuijen B, Beijnen JH, Schellens JHM. Oral anticancer drugs: mechanisms of low bioavailability and strategies for improvement. Clin Pharmacokinet 2013; 52:399-414. [PMID: 23420518 DOI: 10.1007/s40262-013-0040-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The use of oral anticancer drugs has increased during the last decade, because of patient preference, lower costs, proven efficacy, lack of infusion-related inconveniences, and the opportunity to develop chronic treatment regimens. Oral administration of anticancer drugs is, however, often hampered by limited bioavailability of the drug, which is associated with a wide variability. Since most anticancer drugs have a narrow therapeutic window and are dosed at or close to the maximum tolerated dose, a wide variability in the bioavailability can have a negative impact on treatment outcome. This review discusses mechanisms of low bioavailability of oral anticancer drugs and strategies for improvement. The extent of oral bioavailability depends on many factors, including release of the drug from the pharmaceutical dosage form, a drug's stability in the gastrointestinal tract, factors affecting dissolution, the rate of passage through the gut wall, and the pre-systemic metabolism in the gut wall and liver. These factors are divided into pharmaceutical limitations, physiological endogenous limitations, and patient-specific limitations. There are several strategies to reduce or overcome these limitations. First, pharmaceutical adjustment of the formulation or the physicochemical characteristics of the drug can improve the dissolution rate and absorption. Second, pharmacological interventions by combining the drug with inhibitors of transporter proteins and/or pre-systemic metabolizing enzymes can overcome the physiological endogenous limitations. Third, chemical modification of a drug by synthesis of a derivative, salt form, or prodrug could enhance the bioavailability by improving the absorption and bypassing physiological endogenous limitations. Although the bioavailability can be enhanced by various strategies, the development of novel oral products with low solubility or cell membrane permeability remains cumbersome and is often unsuccessful. The main reasons are unacceptable variation in the bioavailability and high investment costs. Furthermore, novel oral anticancer drugs are frequently associated with toxic effects including unacceptable gastrointestinal adverse effects. Therefore, compliance is often suboptimal, which may negatively influence treatment outcome.
Collapse
Affiliation(s)
- Frederik E Stuurman
- Division of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
23
|
Pulido J, Sobczak AJ, Balzarini J, Wnuk SF. Synthesis and cytostatic evaluation of 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues. J Med Chem 2013; 57:191-203. [PMID: 24341356 DOI: 10.1021/jm401586a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The coupling of gemcitabine with functionalized carboxylic acids (C9-C13) or reactions of 4-N-tosylgemcitabine with the corresponding alkyl amines afforded 4-N-alkanoyl and 4-N-alkyl gemcitabine derivatives. The analogues with a terminal hydroxyl group on the alkyl chain were efficiently fluorinated under conditions that are compatible with protocols for (18)F labeling. The 4-N-alkanoylgemcitabines showed potent cytostatic activities in the low nanomolar range against a panel of tumor cell lines, whereas cytotoxicity of the 4-N-alkylgemcitabines were in the low micromolar range. The cytotoxicity for the 4-N-alkanoylgemcitabine analogues was reduced approximately by 2 orders of magnitude in the 2'-deoxycytidine kinase (dCK)-deficient CEM/dCK(-) cell line, whereas cytotoxicity of the 4-N-alkylgemcitabines was only 2-5 times lower. None of the compounds acted as efficient substrates for cytosolic dCK; therefore, the 4-N-alkanoyl analogues need to be converted first to gemcitabine to display a significant cytostatic potential, whereas 4-N-alkyl derivatives attain modest activity without measurable conversion to gemcitabine.
Collapse
Affiliation(s)
- Jesse Pulido
- Department of Chemistry and Biochemistry, ‡Department of Environmental and Occupational Health, Florida International University , Miami, Florida 33199, United States
| | | | | | | |
Collapse
|
24
|
Nanoparticles as Drug Delivery Systems in Cancer Medicine: Emphasis on RNAi-Containing Nanoliposomes. Pharmaceuticals (Basel) 2013; 6:1361-80. [PMID: 24287462 PMCID: PMC3854016 DOI: 10.3390/ph6111361] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 01/11/2023] Open
Abstract
Nanomedicine is a growing research field dealing with the creation and manipulation of materials at a nanometer scale for the better treatment, diagnosis and imaging of diseases. In cancer medicine, the use of nanoparticles as drug delivery systems has advanced the bioavailability, in vivo stability, intestinal absorption, solubility, sustained and targeted delivery, and therapeutic effectiveness of several anticancer agents. The expansion of novel nanoparticles for drug delivery is an exciting and challenging research filed, in particular for the delivery of emerging cancer therapies, including small interference RNA (siRNA) and microRNA (miRNAs)-based molecules. In this review, we focus on the currently available drug delivery systems for anticancer agents. In addition, we will discuss the promising use of nanoparticles for novel cancer treatment strategies.
Collapse
|
25
|
Li YY, Qin YZ, Wang RQ, Li WB, Qu XJ. SL-01, an oral derivative of gemcitabine, inhibited human breast cancer growth through induction of apoptosis. Biochem Biophys Res Commun 2013; 438:402-9. [PMID: 23899521 DOI: 10.1016/j.bbrc.2013.07.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 07/20/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED SL-01 is an oral derivative of gemcitabine that was synthesized by introducing the moiety of 3-(dodecyloxycarbonyl) pyrazine-2-carbonyl at N4-position on cytidine ring of gemcitabine. We aimed to evaluate the efficacy of SL-01 on human breast cancer growth. SL-01 significantly inhibited MCF-7 proliferation as estimated by colorimetric assay. Flow cytometry assay indicated the apoptotic induction and cell cycle arrest in G1 phase. SL-01 modulated the expressions of p-ATM, p53 and p21 and decrease of cyclin D1 in MCF-7 cells. Further experiments were performed in a MCF-7 xenografts mouse model. SL-01 by oral administration strongly inhibited MCF-7 xenografts growth. This effect of SL-01 might arise from its roles in the induction of apoptosis. Immunohistochemistry assay showed the increase of TUNEL staining cells. Western blotting indicated the modulation of apoptotic proteins in SL-01-treated xenografts. During the course of study, there was no evidence of toxicity to mice. In contrast, the decrease of neutrophil cells in peripheral and increase of AST and ALT levels in serum were observed in the gemcitabine-treated mice. CONCLUSION SL-01 possessed similar activity against human breast cancer growth with gemcitabine, whereas, with lower toxicity to gemcitabine. SL-01 is a potent oral agent that may supplant the use of gemcitabine.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | | | | | | | | |
Collapse
|
26
|
Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 2013; 12:447-64. [PMID: 23722347 DOI: 10.1038/nrd4010] [Citation(s) in RCA: 839] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleoside analogues have been in clinical use for almost 50 years and have become cornerstones of treatment for patients with cancer or viral infections. The approval of several additional drugs over the past decade demonstrates that this family still possesses strong potential. Here, we review new nucleoside analogues and associated compounds that are currently in preclinical or clinical development for the treatment of cancer and viral infections, and that aim to provide increased response rates and reduced side effects. We also highlight the different approaches used in the development of these drugs and the potential of personalized therapy.
Collapse
|
27
|
Wickremsinhe ER, Lee LB, Schmalz CA, Torchia J, Ruterbories KJ. High sensitive assay employing column switching chromatography to enable simultaneous quantification of an amide prodrug of gemcitabine (LY2334737), gemcitabine, and its metabolite dFdU in human plasma by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 932:117-22. [PMID: 23831704 DOI: 10.1016/j.jchromb.2013.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/30/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
In this study we report a high sensitive method for the simultaneous analysis of LY2334737 (2'-deoxy-2',2'-difluoro-N-(1-oxo-2-propylpentyl)-cytidine), an amide prodrug of gemcitabine (2', 2'-difluoro-deoxycytidine), along with its active drug gemcitabine and its major metabolite dFdU (2',2'-difluoro-deoxyuridine) by LC-MS/MS. Quantification of all three analytes within a single analysis was challenging because the physio-chemical properties of LY2334737 were significantly different from gemcitabine and dFdU and was accomplished by incorporating column-switching. The assay was fully validated to quantify LY2334737 from 0.1 to 100ng/mL, gemcitabine from 0.25 to 100ng/mL and dFdU from 1 to 1000ng/mL in order to cover the diverse concentration ranges expected in clinical samples. A 25-fold dilution was also validated to accommodate any samples outside this range. Overall, the assay had good accuracy (ranging from -7.0 to 1.2% relative error) and precision (ranging from 2.1 to 8.4% relative standard deviation). Extraction efficiency was greater than 80% for all three analytes and there were no matrix effects. Plasma samples were stable for 24h at room temperature, 660 days in frozen storage, and at least 4 freeze-thaw cycles, at both -20 and -70°C. Data from clinical trials showed that plasma concentrations for LY2334737, gemcitabine, and dFdU were successfully quantified from a single LC-MS/MS analysis and that the assay ranges selected for the three analytes were appropriate and minimized the need for reanalysis.
Collapse
|
28
|
Vives M, Ginestà MM, Gracova K, Graupera M, Casanovas O, Capellà G, Serrano T, Laquente B, Viñals F. Metronomic chemotherapy following the maximum tolerated dose is an effective anti-tumour therapy affecting angiogenesis, tumour dissemination and cancer stem cells. Int J Cancer 2013; 133:2464-72. [PMID: 23649709 DOI: 10.1002/ijc.28259] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 04/25/2013] [Indexed: 12/30/2022]
Abstract
In this article, the effectiveness of a multi-targeted chemo-switch (C-S) schedule that combines metronomic chemotherapy (MET) after treatment with the maximum tolerated dose (MTD) is reported. This schedule was tested with gemcitabine in two distinct human pancreatic adenocarcinoma orthotopic models and with cyclophosphamide in an orthotopic ovarian cancer model. In both models, the C-S schedule had the most favourable effect, achieving at least 80% tumour growth inhibition without increased toxicity. Moreover, in the pancreatic cancer model, although peritoneal metastases were observed in control and MTD groups, no dissemination was observed in the MET and C-S groups. C-S treatment caused a decrease in angiogenesis, and its effect on tumour growth was similar to that produced by the MTD followed by anti-angiogenic DC101 treatment. C-S treatment combined an increase in thrombospondin-1 expression with a decrease in the number of CD133+ cancer cells and triple-positive CD133+/CD44+/CD24+ cancer stem cells (CSCs). These findings confirm that the C-S schedule is a challenging clinical strategy with demonstrable inhibitory effects on tumour dissemination, angiogenesis and CSCs.
Collapse
Affiliation(s)
- Marta Vives
- Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. NATURE REVIEWS. DRUG DISCOVERY 2013. [PMID: 23722347 DOI: 10.1038/nrd4010]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleoside analogues have been in clinical use for almost 50 years and have become cornerstones of treatment for patients with cancer or viral infections. The approval of several additional drugs over the past decade demonstrates that this family still possesses strong potential. Here, we review new nucleoside analogues and associated compounds that are currently in preclinical or clinical development for the treatment of cancer and viral infections, and that aim to provide increased response rates and reduced side effects. We also highlight the different approaches used in the development of these drugs and the potential of personalized therapy.
Collapse
|
30
|
Yamamoto N, Nokihara H, Yamada Y, Uenaka K, Sekiguchi R, Makiuchi T, Slapak CA, Benhadji KA, Tamura T. Phase I study of oral gemcitabine prodrug (LY2334737) in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol 2013; 71:1645-55. [PMID: 23616084 DOI: 10.1007/s00280-013-2165-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/12/2013] [Indexed: 01/17/2023]
Abstract
PURPOSE LY2334737 is an oral gemcitabine prodrug. This Phase I study assessed the safety and tolerability of LY2334737 in Japanese patients with solid tumors and evaluated pharmacokinetics (PK), pharmacodynamics, and antitumor activity. METHODS Patients with advanced/metastatic solid tumors received escalating doses of LY2334737 once daily for 14 days, followed by a 7-day drug-free period. Cycles were repeated until discontinuation criteria were met. RESULTS Of 13 patients treated, 3 received 20 mg/day, 6 received 30 mg/day, 4 received 40 mg/day. On the 40 mg dose, 3 patients experienced dose-limiting toxicities (DLTs): hepatic toxicities (e.g., Grade [G]3/4 transaminase and G1-3 bilirubin elevation) and G4 thrombocytopenia; all 3 showed features of disseminated intravascular coagulation. One additional DLT occurred on the 30 mg dose (G3 transaminase elevation). Exploratory pharmacogenetic analyses identified a genetic variation in the CES2 gene potentially associated with these DLTs. PK data showed no clear relationship between the AUC of gemcitabine and its incorporation into leukocyte DNA; 2 of the 3 DLT patients had high incorporation. Two patients (30 mg/day) achieved stable disease with progression-free survival lasting 135 and 155 days. CONCLUSIONS LY2334737 was tolerated by Japanese patients up to 30 mg/day. The toxicities observed at the 40 mg dose may require the development of alternative dosing schedules.
Collapse
Affiliation(s)
- Noboru Yamamoto
- Division of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pratt SE, Durland–Busbice S, Shepard RL, Donoho GP, Starling JJ, Wickremsinhe ER, Perkins EJ, Dantzig AH. Efficacy of Low-Dose Oral Metronomic Dosing of the Prodrug of Gemcitabine, LY2334737, in Human Tumor Xenografts. Mol Cancer Ther 2013; 12:481-90. [DOI: 10.1158/1535-7163.mct-12-0654] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Stuurman FE, Voest EE, Awada A, Witteveen PO, Bergeland T, Hals PA, Rasch W, Schellens JHM, Hendlisz A. Phase I study of oral CP-4126, a gemcitabine derivative, in patients with advanced solid tumors. Invest New Drugs 2013; 31:959-66. [PMID: 23345000 DOI: 10.1007/s10637-013-9925-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/06/2013] [Indexed: 02/04/2023]
Abstract
CP-4126 is a gemcitabine (2',2'-difluorodeoxycytidine; dFdC) 5' elaidic acid ester. The purpose of this dose-escalating study was to assess safety, pharmacokinetics (PK) and preliminary antitumor activity of the oral formulation and to determine the recommended dose (RD) for phase II studies. The study had a two-step design: a non-randomized dose-escalating step I with oral CP-4126 alone, followed by a randomized, cross-over step II that compared oral CP-4126 with dFdC i.v.. CP-4126 was given on days 1,8,15 in a 4-week schedule with increasing doses until the RD was established. 26 patients with different solid tumours were enrolled in step I at seven dose levels (100-3,000 mg/day). The most frequent drug-related AEs were fatigue and dysgeusia, the majority being grade 1-2. One patient experienced a dose limiting toxicity after one dose of CP-4126 at 1,300 mg/day (ASAT grade 3). PK of CP-4126 could not be determined. The metabolites dFdC and dFdU obeyed dose-dependent pharmacokinetics. Exposures to dFdC were about ten-fold lower compared to exposures after comparable doses of dFdC i.v.. Nine patients reached stable disease as best response, whereby in one patient with vaginal carcinoma a 25 % reduction of tumor volume was reached. This study demonstrates that CP-4126 can be safely administered orally to patients up to 3,000 mg/day in a d1,8,15 q4w schedule with a tolerable safety profile. CP-4126 acts as a prodrug for dFdC when given orally, but because of the poor absorption and the rapid pre-systemic metabolism the study was terminated early and no RD could be determined.
Collapse
Affiliation(s)
- F E Stuurman
- Division of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pratt SE, Durland-Busbice S, Shepard RL, Heinz-Taheny K, Iversen PW, Dantzig AH. Human carboxylesterase-2 hydrolyzes the prodrug of gemcitabine (LY2334737) and confers prodrug sensitivity to cancer cells. Clin Cancer Res 2013; 19:1159-68. [PMID: 23325581 DOI: 10.1158/1078-0432.ccr-12-1184] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The oral prodrug of gemcitabine LY2334737 is cleaved systemically to gemcitabine; the mechanism responsible for hydrolysis is unknown. LY2334737 cytotoxicity was tested in the NCI-60 panel; mining of microarray expression data identified carboxylesterase (CES) as a top hydrolase candidate. Studies examined whether CES is responsible for hydrolysis and whether cellular CES expression confers prodrug sensitivity. EXPERIMENTAL DESIGN Human recombinant CES isozymes were assayed for LY2334737 hydrolysis. Stable CES-overexpressing HCT-116 transfectants and a SK-OV-3 knockdown were prepared. Cell lines were tested for drug sensitivity and CES expression by quantitative real time-PCR (qRT-PCR), Western blotting, and immunohistochemical staining. Bystander cytotoxicity studies were conducted with GFP-tagged PC-3 cells as the reporter cell line. Therapeutic response of the HCT-116 transfectants was evaluated in xenografts. RESULTS Of 3 human CES isozymes tested, only CES2 hydrolyzed LY2334737. Five cell lines that express CES2 responded to LY2334737 treatment. LY2334737 was less cytotoxic to a SK-OV-3 CES2 knockdown than parental cells. The drug response of CES2-transfected HCT-116 cells correlated with CES2 expression level. Bystander studies showed statistically greater PC-3-GFP growth inhibition by LY2334737 when cells were cocultured with CES2 and not mock transfectants. Oral treatment of xenograft models with 3.2 mg/kg LY2334737 once a day for 21 days showed greater tumor growth inhibition of CES2 transfectant than the mock transfectant (P ≤ 0.001). CONCLUSIONS CES2 is responsible for the slow hydrolysis of LY2334737. Because intact prodrug circulates at high plasma levels after oral LY2334737 administration, improved response rates may be observed by tailoring LY2334737 treatment to patients with CES2 tumor expression.
Collapse
Affiliation(s)
- Susan E Pratt
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Moysan E, Bastiat G, Benoit JP. Gemcitabine versus Modified Gemcitabine: a review of several promising chemical modifications. Mol Pharm 2012; 10:430-44. [PMID: 22978251 DOI: 10.1021/mp300370t] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gemcitabine, an anticancer agent which acts against a wide range of solid tumors, is known to be rapidly deaminated in blood to the inactive metabolite 2',2'-difluorodeoxyuridine and to be rapidly excreted by the urine. Moreover, many cancers develop resistance against this drug, such as loss of transporters and kinases responsible for the first phosphorylation step. To increase its therapeutic levels, gemcitabine is administered at high doses (1000 mg/m(2)) causing side effects (neutropenia, nausea, and so forth). To improve its metabolic stability and cytotoxic activity and to limit the phenomena of resistance many alternatives have emerged, such as the synthesis of prodrugs. Modifying an anticancer agent is not new; paclitaxel or ara-C has been subjected to such changes. This review summarizes the various chemical modifications that can be found in the 4-(N)- and 5'-positions of gemcitabine. They can provide (i) a protection against deamination, (ii) a better storage and (iii) a prolonged release in the cell, (iv) a possible use in the case of deoxycytidine kinase deficiency, and (v) transporter deficiency. These new gemcitabine-based sysems have the potential to improve the clinical outcome of a chemotherapy strategy.
Collapse
Affiliation(s)
- Elodie Moysan
- LUNAM Université -Micro et Nanomédecines Biomimétiques, F-49933 Angers, France
| | | | | |
Collapse
|
35
|
Hung SW, Mody HR, Govindarajan R. Overcoming nucleoside analog chemoresistance of pancreatic cancer: a therapeutic challenge. Cancer Lett 2012; 320:138-49. [PMID: 22425961 PMCID: PMC3569094 DOI: 10.1016/j.canlet.2012.03.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/01/2012] [Accepted: 03/06/2012] [Indexed: 12/17/2022]
Abstract
Clinical refractoriness to nucleoside analogs (e.g., gemcitabine, capecitabine) is a major scientific problem and is one of the main reasons underlying the extremely poor prognostic state of pancreatic cancer. The drugs' effects are suboptimal partly due to cellular mechanisms limiting their transport, activation, and overall efficacy. Nonetheless, novel therapeutic approaches are presently under study to circumvent nucleoside analog resistance in pancreatic cancer. With these new approaches come additional challenges to be addressed. This review describes the determinants of chemoresistance in the gemcitabine cytotoxicity pathways, provides an overview of investigational approaches for overcoming chemoresistance, and discusses new challenges presented. Understanding the future directions of the field may assist in the successful development of novel treatment strategies for enhancing chemotherapeutic efficacy in pancreatic cancer.
Collapse
Affiliation(s)
- Sau Wai Hung
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Hardik R. Mody
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Rajgopal Govindarajan
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|