1
|
Zahednezhad F, Allahyari S, Sarfraz M, Zakeri-Milani P, Feyzizadeh M, Valizadeh H. Liposomal drug delivery systems for organ-specific cancer targeting: early promises, subsequent problems, and recent breakthroughs. Expert Opin Drug Deliv 2024; 21:1363-1384. [PMID: 39282895 DOI: 10.1080/17425247.2024.2394611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/16/2024] [Indexed: 10/02/2024]
Abstract
INTRODUCTION Targeted liposomal systems for cancer intention have been recognized as a specific and robust approach compared to conventional liposomal delivery systems. Cancer cells have a unique microenvironment with special over-expressed receptors on their surface, providing opportunities for discovering novel and effective drug delivery systems using active targeting. AREAS COVERED Smartly targeted liposomes, responsive to internal or external stimulations, enhance the delivery efficiency by increasing accumulation of the encapsulated anti-cancer agent in the tumor site. The application of antibodies and aptamers against the prevalent cell surface receptors is a potent and ever-growing field. Moreover, immuno-liposomes and cancer vaccines as adjuvant chemotherapy are also amenable to favorable immune modulation. Combinational and multi-functional systems are also attractive in this regard. However, potentially active targeted liposomal drug delivery systems have a long path to clinical acceptance, chiefly due to cross-interference and biocompatibility affairs of the functionalized moieties. EXPERT OPINION Engineered liposomal formulations have to be designed based on tissue properties, including surface chemistry, charge, and microvasculature. In this paper, we aimed to investigate the updated targeted liposomal systems for common cancer therapy worldwide.
Collapse
Affiliation(s)
- Fahimeh Zahednezhad
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Saeideh Allahyari
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Feyzizadeh
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
2
|
Shazleen Ibrahim I, Starlin Chellathurai M, Mahmood S, Hakim Azmi A, Harun N, Ulul Ilmie Ahmad Nazri M, Muzamir Mahat M, Mohamed Sofian Z. Engineered liposomes mediated approach for targeted colorectal cancer drug Delivery: A review. Int J Pharm 2024; 651:123735. [PMID: 38142874 DOI: 10.1016/j.ijpharm.2023.123735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Colorectal cancer (CRC) continues to be one of the most prevalent and deadliest forms of cancer worldwide, despite notable advancements in its management. The prognosis for metastatic CRC remains discouraging, with a relative 5-year survival rate for stage IV CRC patients. Conventional treatments for advanced malignancies such as chemotherapy, often face limitations in effectively targeting cancer cells resulting in off-target distribution and significant side effects. In the quest for better strategies, researchers have explored numerous alternatives. Among these, nanoparticles (NPs) specifically liposomes have emerged as one of the most promising candidates in developing targeted delivery systems for cancer therapeutics. This review discusses the current approaches employing functionalised liposomes to overcome major biological barriers in therapeutics delivery for CRC treatment. We have also shared our perspectives on the technological development of liposomes for future clinical use and highlighted a few useful insights on the material choices for future research work in CRC.
Collapse
Affiliation(s)
- Intan Shazleen Ibrahim
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Melbha Starlin Chellathurai
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Amirul Hakim Azmi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Norsyifa Harun
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | | | - Mohd Muzamir Mahat
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Onishchenko NR, Moskovtsev AA, Kobanenko MK, Tretiakova DS, Alekseeva AS, Kolesov DV, Mikryukova AA, Boldyrev IA, Kapkaeva MR, Shcheglovitova ON, Bovin NV, Kubatiev AA, Tikhonova OV, Vodovozova EL. Protein Corona Attenuates the Targeting of Antitumor Sialyl Lewis X-Decorated Liposomes to Vascular Endothelial Cells under Flow Conditions. Pharmaceutics 2023; 15:1754. [PMID: 37376203 DOI: 10.3390/pharmaceutics15061754] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Previously, we showed in the human umbilical vein endothelial cells (HUVECs) model that a liposome formulation of melphalan lipophilic prodrug (MlphDG) decorated with selectin ligand tetrasaccharide Sialyl Lewis X (SiaLeX) undergoes specific uptake by activated cells and in an in vivo tumor model causes a severe antivascular effect. Here, we cultured HUVECs in a microfluidic chip and then applied the liposome formulations to study their interactions with the cells in situ under hydrodynamic conditions close to capillary blood flow using confocal fluorescent microscopy. The incorporation of 5 to 10% SiaLeX conjugate in the bilayer of MlphDG liposomes increased their consumption exclusively by activated endotheliocytes. The increase of serum concentration from 20 to 100% in the flow resulted in lower liposome uptake by the cells. To elucidate the possible roles of plasma proteins in the liposome-cell interactions, liposome protein coronas were isolated and analyzed by shotgun proteomics and immunoblotting of selected proteins. Proteomic analysis showed that a gradual increase in SiaLeX content correlated with the overall enrichment of the liposome-associated proteins with several apolipoproteins, including the most positively charged one, ApoC1, and serum amyloid A4, associated with inflammation, on the one hand, and a decrease in the content of bound immunoglobulins, on the other. The article discusses the potential interference of the proteins in the binding of liposomes to selectins of endothelial cells.
Collapse
Affiliation(s)
- Natalia R Onishchenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Alexey A Moskovtsev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, ul. Baltiyskaya 8, 125315 Moscow, Russia
| | - Maria K Kobanenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Daria S Tretiakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anna S Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Dmitry V Kolesov
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, ul. Baltiyskaya 8, 125315 Moscow, Russia
| | - Anna A Mikryukova
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, ul. Baltiyskaya 8, 125315 Moscow, Russia
| | - Ivan A Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Marina R Kapkaeva
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, ul. Gamaleya 18, 123098 Moscow, Russia
| | - Olga N Shcheglovitova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, ul. Gamaleya 18, 123098 Moscow, Russia
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Aslan A Kubatiev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, ul. Baltiyskaya 8, 125315 Moscow, Russia
| | - Olga V Tikhonova
- Institute of Biomedical Chemistry, ul. Pogodinskaya 10, 119121 Moscow, Russia
| | - Elena L Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
4
|
Aalhate M, Mahajan S, Singh H, Guru SK, Singh PK. Nanomedicine in therapeutic warfront against estrogen receptor-positive breast cancer. Drug Deliv Transl Res 2023; 13:1621-1653. [PMID: 36795198 DOI: 10.1007/s13346-023-01299-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/17/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy in women worldwide. Almost 70-80% of cases of BC are curable at the early non-metastatic stage. BC is a heterogeneous disease with different molecular subtypes. Around 70% of breast tumors exhibit estrogen-receptor (ER) expression and endocrine therapy is used for the treatment of these patients. However, there are high chances of recurrence in the endocrine therapy regimen. Though chemotherapy and radiation therapy have substantially improved survival rates and treatment outcomes in BC patients, there is an increased possibility of the development of resistance and dose-limiting toxicities. Conventional treatment approaches often suffer from low bioavailability, adverse effects due to the non-specific action of chemotherapeutics, and low antitumor efficacy. Nanomedicine has emerged as a conspicuous strategy for delivering anticancer therapeutics in BC management. It has revolutionized the area of cancer therapy by increasing the bioavailability of the therapeutics and improving their anticancer efficacy with reduced toxicities on healthy tissues. In this article, we have highlighted various mechanisms and pathways involved in the progression of ER-positive BC. Further, different nanocarriers delivering drugs, genes, and natural therapeutic agents for surmounting BC are the spotlights of this article.
Collapse
Affiliation(s)
- Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Hoshiyar Singh
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
5
|
Swetha KL, Maravajjala KS, Li SD, Singh MS, Roy A. Breaking the niche: multidimensional nanotherapeutics for tumor microenvironment modulation. Drug Deliv Transl Res 2023; 13:105-134. [PMID: 35697894 DOI: 10.1007/s13346-022-01194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 12/13/2022]
Abstract
Most of the current antitumor therapeutics were developed targeting the cancer cells only. Unfortunately, in the majority of tumors, this single-dimensional therapy is found to be ineffective. Advanced research has shown that cancer is a multicellular disorder. The tumor microenvironment (TME), which is made by a complex network of the bulk tumor cells and other supporting cells, plays a crucial role in tumor progression. Understanding the importance of the TME in tumor growth, different treatment modalities have been developed targeting these supporting cells. Recent clinical results suggest that simultaneously targeting multiple components of the tumor ecosystem with drug combinations can be highly effective. This type of "multidimensional" therapy has a high potential for cancer treatment. However, tumor-specific delivery of such multi-drug combinations remains a challenge. Nanomedicine could be utilized for the tumor-targeted delivery of such multidimensional therapeutics. In this review, we first give a brief overview of the major components of TME. We then highlight the latest developments in nanoparticle-based combination therapies, where one drug targets cancer cells and other drug targets tumor-supporting components in the TME for a synergistic effect. We include the latest preclinical and clinical studies and discuss innovative nanoparticle-mediated targeting strategies.
Collapse
Affiliation(s)
- K Laxmi Swetha
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Kavya Sree Maravajjala
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Westbrook Mall, Vancouver, BC, Canada
| | - Manu Smriti Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, 201310, India. .,Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, 201310, India.
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
6
|
Gaspar TB, Lopes JM, Soares P, Vinagre J. An update on genetically engineered mouse models of pancreatic neuroendocrine neoplasms. Endocr Relat Cancer 2022; 29:R191-R208. [PMID: 36197786 DOI: 10.1530/erc-22-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) are rare and clinically challenging entities. At the molecular level, PanNENs' genetic profile is well characterized, but there is limited knowledge regarding the contribution of the newly identified genes to tumor initiation and progression. Genetically engineered mouse models (GEMMs) are the most versatile tool for studying the plethora of genetic variations influencing PanNENs' etiopathogenesis and behavior over time. In this review, we present the state of the art of the most relevant PanNEN GEMMs available and correlate their findings with the human neoplasms' counterparts. We discuss the historic GEMMs as the most used and with higher translational utility models. GEMMs with Men1 and glucagon receptor gene germline alterations stand out as the most faithful models in recapitulating human disease; RIP-Tag models are unique models of early-onset, highly vascularized, invasive carcinomas. We also include a section of the most recent GEMMs that evaluate pathways related to cell cycle and apoptosis, Pi3k/Akt/mTOR, and Atrx/Daxx. For the latter, their tumorigenic effect is heterogeneous. In particular, for Atrx/Daxx, we will require more in-depth studies to evaluate their contribution; even though they are prevalent genetic events in PanNENs, they have low/inexistent tumorigenic capacity per se in GEMMs. Researchers planning to use GEMMs can find a road map of the main clinical features in this review, presented as a guide that summarizes the chief milestones achieved. We identify pitfalls to overcome, concerning the novel designs and standardization of results, so that future models can replicate human disease more closely.
Collapse
Affiliation(s)
- Tiago Bordeira Gaspar
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - José Manuel Lopes
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar e Universitário de São João, Porto, Portugal
| | - Paula Soares
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - João Vinagre
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Cepero A, Luque C, Cabeza L, Perazzoli G, Quiñonero F, Mesas C, Melguizo C, Prados J. Antibody-Functionalized Nanoformulations for Targeted Therapy of Colorectal Cancer: A Systematic Review. Int J Nanomedicine 2022; 17:5065-5080. [PMID: 36345508 PMCID: PMC9635983 DOI: 10.2147/ijn.s368814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/21/2022] [Indexed: 11/06/2022] Open
Abstract
The failure of chemotherapeutic treatment in colorectal cancer (CRC), the second most mortal cancer worldwide, is associated with several drug limitations, such as non-selective distribution, short half-life, and development of multiple resistances. One of the most promising strategies in CRC therapy is the development of delivery systems based on nanomaterials that can transport antitumor agents to the tumor site more efficiently, increasing accumulation within the tumor and thus the antitumor effect. In addition to taking advantage of the increased permeability and retention effect (EPR) of solid tumors, these nanoformulations can be conjugated with monoclonal antibodies that recognize molecular markers that are specifically over-expressed on CRC cells. Active targeting of nanoformulations reduces the adverse effects associated with the cytotoxic activity of drugs in healthy tissues, which will be of interest for improving the quality of life of cancer patients in the future. This review focuses on in vitro and in vivo studies of drug delivery nanoformulations functionalized with monoclonal antibodies for targeted therapy of CRC.
Collapse
Affiliation(s)
- Ana Cepero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| | - Cristina Luque
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain,Correspondence: Consolación Melguizo, Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain, Tel +34-958-249833, Email
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| |
Collapse
|
8
|
Liu Y, Ge Q, Xu S, Li K, Liu Y. Efficacy and safety of anlotinib plus programmed death-1 blockade versus anlotinib monotherapy as second or further-line treatment in advanced esophageal squamous cell carcinoma: A retrospective study. Front Oncol 2022; 12:942678. [PMID: 36059654 PMCID: PMC9428701 DOI: 10.3389/fonc.2022.942678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Background Both anlotinib and programmed death-1 (PD-1) blockade have been approved for the second-line treatment of metastatic esophageal squamous cell carcinoma (ESCC). However, the combination of these two therapies has not been evaluated. This study investigated the efficacy and safety of anlotinib, a novel multitarget tyrosine kinase inhibitor targeting tumor angiogenesis, combined with PD-1 blockade as second or further-line treatment for advanced ESCC. Methods Between January 2019 and February 2021, 98 advanced ESCC patients receiving anlotinib plus PD-1 blockade or anlotinib monotherapy as second or further-line treatment at Henan Cancer Hospital were retrospectively analyzed. Patients receiving anlotinib plus PD-1 blockade were grouped as cohort A (n=48), while those receiving anlotinib monotherapy were grouped as cohort B (n=50). The primary endpoint was progression-free survival (PFS). Secondary endpoints included the objective response rate (ORR), disease control rate (DCR) and toxicity. Furthermore, independent prognostic factors were identified by Cox regression analysis. A two-sided p-value of <0.05 was considered statistically significant. Results Data was collected until May 1, 2021, with a median follow-up time of 9.30 months (8.23–10.37 months) in cohort A and11.10months (7.82–14.38 months) in cohort B. For patients with advanced ESCC, cohort A resulted in significantly longer PFS (5.40 vs. 3.00 months, P<0.001) and higher DCR (71.7% vs. 47.9%, P=0.019) than cohort B. The ORR indicated no significant difference between cohort A (23.9%) and cohort B (10.4%) (P=0.082). Adverse reactions were mainly grade1/2 in the two groups. Compared with cohort B, a significantly higher rate of grade 1–2 hypothyroidism was observed in patients in cohort A (P= 0.034). Three patients (6.3%) developed grade 1/2 immune-related pneumonia. There was no significant difference in the incidence of grade 3-4 toxicities. Multivariable Cox regression analysis showed that the drug regimen (P<0.001), Eastern Cooperative Oncology Group Performance Status (P=0.002), distant organ metastasis (P=0.008), and metastatic sites (P=0.032) were independent prognostic factors for PFS. Conclusions Anlotinib plus PD-1 blockade showed promising anti-tumor activity and manageable toxicity as second or further-line treatment of advanced ESCC.
Collapse
|
9
|
Elebiyo TC, Rotimi D, Evbuomwan IO, Maimako RF, Iyobhebhe M, Ojo OA, Oluba OM, Adeyemi OS. Reassessing vascular endothelial growth factor (VEGF) in anti-angiogenic cancer therapy. Cancer Treat Res Commun 2022; 32:100620. [PMID: 35964475 DOI: 10.1016/j.ctarc.2022.100620] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/02/2022] [Accepted: 08/05/2022] [Indexed: 05/23/2023]
Abstract
Vascularization is fundamental to the growth and spread of tumor cells to distant sites. As a consequence, angiogenesis, the sprouting of new blood vessels from existing ones, is a characteristic trait of cancer. In 1971, Judah Folkman postulated that tumour growth is angiogenesis dependent and that by cutting off blood supply, a neoplastic lesion could be potentially starved into remission. Decades of research have been devoted to understanding the role that vascular endothelial growth factor (VEGF) plays in tumor angiogenesis, and it has been identified as a significant pro-angiogenic factor that is frequently overexpressed within a tumor mass. Today, anti-VEGF drugs such as Sunitinib, Sorafenib, Axitinib, Tanibirumab, and Ramucirumab have been approved for the treatment of advanced and metastatic cancers. However, anti-angiogenic therapy has turned out to be more complex than originally thought. The failure of this therapeutic option calls for a reevaluation of VEGF as the major target in anti-angiogenic cancer therapy. The call for reassessment is based on two rationales: first, tumour blood vessels are abnormal, disorganized, and leaky; this not only prevents optimal drug delivery but it also promotes hypoxia and metastasis; secondly, tumour growth or regrowth might be blood vessel dependent and not angiogenesis dependent as tumour cells can acquire blood vessels via non-angiogenic mechanisms. Therefore, a critical assessment of VEGF, VEGFRs, and their inhibitors could glean newer options such as repurposing anti-VEGF drugs as vascular normalizing agents to enhance drug delivery of immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Damilare Rotimi
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | | | | | | | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, 232101, Nigeria..
| | | | | |
Collapse
|
10
|
Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022; 180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers that is threatening women's life. Current clinical treatment regimens for breast cancer often involve neoadjuvant and adjuvant systemic therapies, which somewhat are associated with unfavorable features. Also, the heterogeneous nature of breast cancers requires precision medicine that cannot be fulfilled by a single type of systemically administered drug. Taking advantage of the nanocarriers, nanomedicines emerge as promising therapeutic agents for breast cancer that could resolve the defects of drugs and achieve precise drug delivery to almost all sites of primary and metastatic breast tumors (e.g. tumor vasculature, tumor stroma components, breast cancer cells, and some immune cells). Seven nanomedicines as represented by Doxil® have been approved for breast cancer clinical treatment so far. More nanomedicines including both non-targeting and active targeting nanomedicines are being evaluated in the clinical trials. However, we have to realize that the translation of nanomedicines, particularly the active targeting nanomedicines is not as successful as people have expected. This review provides a comprehensive landscape of the nanomedicines for breast cancer treatment, from laboratory investigations to clinical applications. We also highlight the key advances in the understanding of the biological fate and the targeting strategies of breast cancer nanomedicine and the implications to clinical translation.
Collapse
|
11
|
Cell Death in Hepatocellular Carcinoma: Pathogenesis and Therapeutic Opportunities. Cancers (Basel) 2021; 14:cancers14010048. [PMID: 35008212 PMCID: PMC8750350 DOI: 10.3390/cancers14010048] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The progression of liver tumors is highly influenced by the interactions between cancer cells and the surrounding environment, and, consequently, can determine whether the primary tumor regresses, metastasizes, or establishes micrometastases. In the context of liver cancer, cell death is a double-edged sword. On one hand, cell death promotes inflammation, fibrosis, and angiogenesis, which are tightly orchestrated by a variety of resident and infiltrating host cells. On the other hand, targeting cell death in advanced hepatocellular carcinoma could represent an attractive therapeutic approach for limiting tumor growth. Further studies are needed to investigate therapeutic strategies combining current chemotherapies with novel drugs targeting either cell death or the tumor microenvironment. Abstract Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the third leading cause of cancer death worldwide. Closely associated with liver inflammation and fibrosis, hepatocyte cell death is a common trigger for acute and chronic liver disease arising from different etiologies, including viral hepatitis, alcohol abuse, and fatty liver. In this review, we discuss the contribution of different types of cell death, including apoptosis, necroptosis, pyroptosis, or autophagy, to the progression of liver disease and the development of HCC. Interestingly, inflammasomes have recently emerged as pivotal innate sensors with a highly pathogenic role in various liver diseases. In this regard, an increased inflammatory response would act as a key element promoting a pro-oncogenic microenvironment that may result not only in tumor growth, but also in the formation of a premetastatic niche. Importantly, nonparenchymal hepatic cells, such as liver sinusoidal endothelial cells, hepatic stellate cells, and hepatic macrophages, play an important role in establishing the tumor microenvironment, stimulating tumorigenesis by paracrine communication through cytokines and/or angiocrine factors. Finally, we update the potential therapeutic options to inhibit tumorigenesis, and we propose different mechanisms to consider in the tumor microenvironment field for HCC resolution.
Collapse
|
12
|
Hotinger JA, Morris ST, May AE. The Case against Antibiotics and for Anti-Virulence Therapeutics. Microorganisms 2021; 9:2049. [PMID: 34683370 PMCID: PMC8537500 DOI: 10.3390/microorganisms9102049] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
Although antibiotics have been indispensable in the advancement of modern medicine, there are downsides to their use. Growing resistance to broad-spectrum antibiotics is leading to an epidemic of infections untreatable by first-line therapies. Resistance is exacerbated by antibiotics used as growth factors in livestock, over-prescribing by doctors, and poor treatment adherence by patients. This generates populations of resistant bacteria that can then spread resistance genes horizontally to other bacterial species, including commensals. Furthermore, even when antibiotics are used appropriately, they harm commensal bacteria leading to increased secondary infection risk. Effective antibiotic treatment can induce bacterial survival tactics, such as toxin release and increasing resistance gene transfer. These problems highlight the need for new approaches to treating bacterial infection. Current solutions include combination therapies, narrow-spectrum therapeutics, and antibiotic stewardship programs. These mediate the issues but do not address their root cause. One emerging solution to these problems is anti-virulence treatment: preventing bacterial pathogenesis instead of using bactericidal agents. In this review, we discuss select examples of potential anti-virulence targets and strategies that could be developed into bacterial infection treatments: the bacterial type III secretion system, quorum sensing, and liposomes.
Collapse
Affiliation(s)
| | | | - Aaron E. May
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23219, USA; (J.A.H.); (S.T.M.)
| |
Collapse
|
13
|
Allahou LW, Madani SY, Seifalian A. Investigating the Application of Liposomes as Drug Delivery Systems for the Diagnosis and Treatment of Cancer. Int J Biomater 2021; 2021:3041969. [PMID: 34512761 PMCID: PMC8426107 DOI: 10.1155/2021/3041969] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy is the routine treatment for cancer despite the poor efficacy and associated off-target toxicity. Furthermore, therapeutic doses of chemotherapeutic agents are limited due to their lack of tissue specificity. Various developments in nanotechnology have been applied to medicine with the aim of enhancing the drug delivery of chemotherapeutic agents. One of the successful developments includes nanoparticles which are particles that range between 1 and 100 nm that may be utilized as drug delivery systems for the treatment and diagnosis of cancer as they overcome the issues associated with chemotherapy; they are highly efficacious and cause fewer side effects on healthy tissues. Other nanotechnological developments include organic nanocarriers such as liposomes which are a type of nanoparticle, although they can deviate from the standard size range of nanoparticles as they may be several hundred nanometres in size. Liposomes are small artificial spherical vesicles ranging between 30 nm and several micrometres and contain one or more concentric lipid bilayers encapsulating an aqueous core that can entrap both hydrophilic and hydrophobic drugs. Liposomes are biocompatible and low in toxicity and can be utilized to encapsulate and facilitate the intracellular delivery of chemotherapeutic agents as they are biodegradable and have reduced systemic toxicity compared with free drugs. Liposomes may be modified with PEG chains to prolong blood circulation and enable passive targeting. Grafting of targeting ligands on liposomes enables active targeting of anticancer drugs to tumour sites. In this review, we shall explore the properties of liposomes as drug delivery systems for the treatment and diagnosis of cancer. Moreover, we shall discuss the various synthesis and functionalization techniques associated with liposomes including their drug delivery, current clinical applications, and toxicology.
Collapse
Affiliation(s)
- Latifa W. Allahou
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Seyed Yazdan Madani
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd.) London BioScience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK
| |
Collapse
|
14
|
Moulahoum H, Ghorbanizamani F, Zihnioglu F, Timur S. Surface Biomodification of Liposomes and Polymersomes for Efficient Targeted Drug Delivery. Bioconjug Chem 2021; 32:1491-1502. [PMID: 34283580 DOI: 10.1021/acs.bioconjchem.1c00285] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemotherapy has seen great progress in the development of performant treatment strategies. Nanovesicles such as liposomes and polymersomes demonstrated great potential in cancer therapy. However, these nanocarriers deliver their content passively, which faces a lot of constraints during blood circulation. The main challenge resides in degradation and random delivery to normal tissues. Hence, targeting drug delivery using specific molecules (such as antibodies) grafted over the surface of these nanocarriers came as the answer to overcome many problems faced before. The advantage of using antibodies is their antigen/antibody recognition, which provides a high level of specificity to reach treatment targets. This review discusses the many techniques of nanocarrier functionalization with antibodies. The aim is to recognize the various approaches by describing their advantages and deficiencies to create the most suitable drug delivery platform. Some methods are more suitable for other applications rather than drug delivery, which can explain the low success of some proposed targeted nanocarriers. In here, a critical analysis of how every method could impact the recognition and targeting capacity of some nanocarriers (liposomes and polymersomes) is discussed to make future research more impactful and advance the field of biomedicine further.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Figen Zihnioglu
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey.,Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
15
|
Mirzavi F, Barati M, Soleimani A, Vakili-Ghartavol R, Jaafari MR, Soukhtanloo M. A review on liposome-based therapeutic approaches against malignant melanoma. Int J Pharm 2021; 599:120413. [PMID: 33667562 DOI: 10.1016/j.ijpharm.2021.120413] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 01/14/2023]
Abstract
Melanoma is a highly aggressive form of skin cancer with a very poor prognosis and excessive resistance to current conventional treatments. Recently, the application of the liposomal delivery system in the management of skin melanoma has been widely investigated. Liposomal nanocarriers are biocompatible and less toxic to host cells, enabling the efficient and safe delivery of different therapeutic agents into the tumor site and further promoting their antitumor activities. Therefore, the liposomal delivery system effectively increases the success of current melanoma therapies and overcomes resistance. In this review, we present an overview of liposome-based targeted drug delivery methods and highlight recent advances towards the development of liposome-based carriers for therapeutic genes. We also discuss the new insights regarding the efficacy and clinical significance of combinatorial treatment of liposomal formulations with immunotherapy and conventional therapies in melanoma patients for a better understanding and successfully managing cancer.
Collapse
Affiliation(s)
- Farshad Mirzavi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Barati
- Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anvar Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Martinelli C. Smart Nanocarriers for Targeted Cancer Therapy. Anticancer Agents Med Chem 2021; 21:546-557. [PMID: 32560615 DOI: 10.2174/1871520620666200619181425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/27/2020] [Accepted: 04/24/2020] [Indexed: 11/22/2022]
Abstract
Cancer is considered one of the most threatening diseases worldwide. Although many therapeutic approaches have been developed and optimized for ameliorating patient's conditions and life expectancy, however, it frequently remains an incurable pathology. Notably, conventional treatments may reveal inefficient in the presence of metastasis development, multidrug resistance and inability to achieve targeted drug delivery. In the last decades, nanomedicine has gained a prominent role, due to many properties ascribable to nanomaterials. It is worth mentioning their small size, their ability to be loaded with small drugs and bioactive molecules and the possibility to be functionalized for tumor targeting. Natural vehicles have been exploited, such as exosomes, and designed, such as liposomes. Biomimetic nanomaterials have been engineered, by modification with biological membrane coating. Several nanoparticles have already entered clinical trials and some liposomal formulations have been approved for therapeutic applications. In this review, natural and synthetic nanocarriers functionalized for actively targeting cancer cells will be described, focusing on their advantages with respect to conventional treatments. Recent innovations related to biomimetic nanoparticles camouflaged with membranes isolated from different types of cells will be reported, together with their promising applications. Finally, a short overview on the latest advances in carrier-free nanomaterials will be provided.
Collapse
Affiliation(s)
- Chiara Martinelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
17
|
|
18
|
Guyon L, Groo AC, Malzert-Fréon A. Relevant Physicochemical Methods to Functionalize, Purify, and Characterize Surface-Decorated Lipid-Based Nanocarriers. Mol Pharm 2020; 18:44-64. [PMID: 33244972 DOI: 10.1021/acs.molpharmaceut.0c00857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Surface functionalization of lipid-based nanocarriers (LBNCs) with targeting ligands has attracted huge interest in the field of nanomedicines for their ability to overcome some physiological barriers and their potential to deliver an active molecule to a specific target without causing damage to healthy tissues. The principal objective of this review is to summarize the present knowledge on LBNC decoration used for biomedical applications, with an emphasis on the ligands used, the functionalization approaches, and the purification methods after ligand corona formation. The most potent experimental techniques for the LBNC surface characterization are described. The potential of promising methods such as nuclear magnetic resonance spectroscopy and isothermal titration calorimetry to characterize ligand surface corona is also outlined.
Collapse
Affiliation(s)
- Léna Guyon
- CERMN, UNICAEN Université de Caen Normandie, F-14000 Caen, France
| | - Anne-Claire Groo
- CERMN, UNICAEN Université de Caen Normandie, F-14000 Caen, France
| | | |
Collapse
|
19
|
De Silva P, Saad MA, Thomsen HC, Bano S, Ashraf S, Hasan T. Photodynamic therapy, priming and optical imaging: Potential co-conspirators in treatment design and optimization - a Thomas Dougherty Award for Excellence in PDT paper. J PORPHYR PHTHALOCYA 2020; 24:1320-1360. [PMID: 37425217 PMCID: PMC10327884 DOI: 10.1142/s1088424620300098] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Photodynamic therapy is a photochemistry-based approach, approved for the treatment of several malignant and non-malignant pathologies. It relies on the use of a non-toxic, light activatable chemical, photosensitizer, which preferentially accumulates in tissues/cells and, upon irradiation with the appropriate wavelength of light, confers cytotoxicity by generation of reactive molecular species. The preferential accumulation however is not universal and, depending on the anatomical site, the ratio of tumor to normal tissue may be reversed in favor of normal tissue. Under such circumstances, control of the volume of light illumination provides a second handle of selectivity. Singlet oxygen is the putative favorite reactive molecular species although other entities such as nitric oxide have been credibly implicated. Typically, most photosensitizers in current clinical use have a finite quantum yield of fluorescence which is exploited for surgery guidance and can also be incorporated for monitoring and treatment design. In addition, the photodynamic process alters the cellular, stromal, and/or vascular microenvironment transiently in a process termed photodynamic priming, making it more receptive to subsequent additional therapies including chemo- and immunotherapy. Thus, photodynamic priming may be considered as an enabling technology for the more commonly used frontline treatments. Recently, there has been an increase in the exploitation of the theranostic potential of photodynamic therapy in different preclinical and clinical settings with the use of new photosensitizer formulations and combinatorial therapeutic options. The emergence of nanomedicine has further added to the repertoire of photodynamic therapy's potential and the convergence and co-evolution of these two exciting tools is expected to push the barriers of smart therapies, where such optical approaches might have a special niche. This review provides a perspective on current status of photodynamic therapy in anti-cancer and anti-microbial therapies and it suggests how evolving technologies combined with photochemically-initiated molecular processes may be exploited to become co-conspirators in optimization of treatment outcomes. We also project, at least for the short term, the direction that this modality may be taking in the near future.
Collapse
Affiliation(s)
- Pushpamali De Silva
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mohammad A. Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hanna C. Thomsen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
20
|
Di J, Xie F, Xu Y. When liposomes met antibodies: Drug delivery and beyond. Adv Drug Deliv Rev 2020; 154-155:151-162. [PMID: 32926944 DOI: 10.1016/j.addr.2020.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Drug encapsulated liposomes and monoclonal antibodies (Mabs) are two distinctively different classes of therapeutics, but both aim to become the ultimate "magic bullet". While PEGylated liposomes rely on the enhanced permeability and retention (EPR) effect for accumulation in solid tumor tissues, Mabs are designed to bind tightly to specific surface antigens on target cells to exert effector functions. Immunoliposome (IL) refers to the structural combination of liposomes and antibodies, whereas the antibodies are usually decorated on the liposome surface. ILs can therefore take advantage of interactions between antibodies and cancer cells for more efficient endocytosis and intracellular drug delivery. The antibody structure, affinity, density, as well as the liposome surface properties and drug to lipid ratios all contribute to the IL pharmacokinetic(PK) and pharmacodynamic(PD) behaviors. The optimal formulation parameters may vary for different target cells and tissues. Furthermore, besides the delivery of cytotoxic drugs to cancer cells, new ILs are being developed to interact with multiple target receptors, multiple target cells and trigger multiple therapeutic effects. We envision that the IL format can be a great platform for the molecular engineering of multi-valent, multi-specific interactions to achieve complex biological functions for therapeutic benefits, especially in the area of cancer immunotherapy.
Collapse
Affiliation(s)
- Jiaxing Di
- School of Pharmacy, Shanghai Jiao Tong University, China
| | - Fang Xie
- Department of Biomedical Engineering, Johns Hopkins University, United States of America
| | - Yuhong Xu
- College of Pharmacy and Chemistry, Dali University, China.
| |
Collapse
|
21
|
Njah K, Chakraborty S, Qiu B, Arumugam S, Raju A, Pobbati AV, Lakshmanan M, Tergaonkar V, Thibault G, Wang X, Hong W. A Role of Agrin in Maintaining the Stability of Vascular Endothelial Growth Factor Receptor-2 during Tumor Angiogenesis. Cell Rep 2020; 28:949-965.e7. [PMID: 31340156 DOI: 10.1016/j.celrep.2019.06.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 04/16/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Endothelial cell (EC) recruitment is central to the vascularization of tumors. Although several proteoglycans have been implicated in cancer and angiogenesis, their roles in EC recruitment and vascularization during tumorigenesis remain poorly understood. Here, we reveal that Agrin, which is secreted in liver cancer, promotes angiogenesis by recruiting ECs within tumors and metastatic lesions and facilitates adhesion of cancer cells to ECs. In ECs, Agrin-induced angiogenesis and adherence to cancer cells are mediated by Integrin-β1, Lrp4-MuSK pathways involving focal adhesion kinase. Mechanistically, we uncover that Agrin regulates VEGFR2 levels that sustain the angiogenic property of ECs and adherence to cancer cells. Agrin attributes an ECM stiffness-based stabilization of VEGFR2 by enhancing interactions with Integrin-β1-Lrp4 and additionally stimulates endothelial nitric-oxide synthase (e-NOS) signaling. Therefore, we propose that cross-talk between Agrin-expressing cancer and ECs favor angiogenesis by sustaining the VEGFR2 pathway.
Collapse
Affiliation(s)
- Kizito Njah
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Sayan Chakraborty
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | - Beiying Qiu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Surender Arumugam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Anandhkumar Raju
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Ajaybabu V Pobbati
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Xiaomeng Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore; Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
22
|
Yu Y, Dang J, Liu X, Wang L, Li S, Zhang T, Ding X. Metal-Labeled Aptamers as Novel Nanoprobes for Imaging Mass Cytometry Analysis. Anal Chem 2020; 92:6312-6320. [PMID: 32208602 DOI: 10.1021/acs.analchem.9b05159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Imaging mass cytometry (IMC) is an emerging imaging technology that exploits the multiplexed analysis capabilities of the CyTOF mass cytometer to make spatially resolved measurements for tissue sections. In a comprehensive view of tissue composition and marker distribution, recent developments of IMC require highly sensitive, multiplexed assays. Approaching the sensitivity of the IMC technique, we designed a novel type of biocompatible metal-labeled aptamer nanoprobe (MAP), named 167Er-A10-3.2. The small molecular probe was synthesized by conjugating 167Er-polymeric pentetic acid (167Er-DTPA) with an RNA aptamer A10-3.2. For demonstration, 167Er-A10-3.2 was applied for observing protein spatial distribution on prostatic epithelium cell of paraffin embedded Prostatic adenocarcinoma (PaC) tissue sections by IMC technology. The 167Er-A10-3.2 capitalizes on the ability of the aptamer to specifically bind target cancer cells as well as the small size of 167Er-A10-3.2 can accommodate multiple aptamer binding antigen labeled at high density. The detection signal of 167Er-A10-3.2 probe was 3-fold higher than that of PSMA antibody probe for a targeted cell under lower temperature epitope retrieval (37 °C) of PaC tissue. Furthermore, we successfully demonstrated the simultaneously staining ability of aptamer probes in IMC analysis. The successful imaging acquisition using aptamers probes in IMC technology may offer opportunity for the diagnosis of malignancies in the future.
Collapse
Affiliation(s)
- Youyi Yu
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jingqi Dang
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiao Liu
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liping Wang
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shanhe Li
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ting Zhang
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xianting Ding
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
23
|
Sharma G, Jagtap JM, Parchur AK, Gogineni VR, Ran S, Bergom C, White SB, Flister MJ, Joshi A. Heritable modifiers of the tumor microenvironment influence nanoparticle uptake, distribution and response to photothermal therapy. Theranostics 2020; 10:5368-5383. [PMID: 32373218 PMCID: PMC7196309 DOI: 10.7150/thno.41171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
We report the impact of notch-DLL4-based hereditary vascular heterogeneities on the enhanced permeation and retention (EPR) effect and plasmonic photothermal therapy response in tumors. Methods: We generated two consomic rat strains with differing DLL4 expression on 3rd chromosome. These strains were based on immunocompromised Salt-sensitive or SSIL2Rγ- (DLL4-high) and SS.BN3IL2Rγ- (DLL4-low) rats with 3rd chromosome substituted from Brown Norway rat. We further constructed three novel SS.BN3IL2Rγ- congenic strains by introgressing varying segments of BN chromosome 3 into the parental SSIL2Rγ- strain to localize the role of SSIL2Rγ- DLL4 on tumor EPR effect with precision. We synthesized multimodal theranostic nanoparticles (TNPs) based on Au-nanorods which provide magnetic resonance imaging (MRI), X-ray, and optical contrasts to assess image guided PTT response and quantify host specific therapy response differences in tumors orthotopically xenografted in DLL4-high and -low strains. We tested recovery of therapy sensitivity of PTT resistant strains by employing anti-DLL4 conjugated TNPs in two triple negative breast cancer tumor xenografts. Results: Host strains with high DLL4 allele demonstrated slightly increased tumor nanoparticle uptake but consistently developed photothermal therapy resistance compared to tumors in host strains with low DLL4 allele. Tumor micro-environment with low DLL4 expression altered the geographic distribution of nanoparticles towards closer proximity with vasculature which improved efficacy of PTT in spite of lower overall TNP uptake. Targeting TNPs to tumor endothelium via anti-DLL4 antibody conjugation improved therapy sensitivity in high DLL4 allele hosts for two triple negative human breast cancer xenografts. Conclusions: Inherited DLL4 expression modulates EPR effects in tumors, and molecular targeting of endothelial DLL4 via nanoparticles is an effective personalized nanomedicine strategy.
Collapse
Affiliation(s)
- Gayatri Sharma
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jaidip M. Jagtap
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Abdul K. Parchur
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Sophia Ran
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Carmen Bergom
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sarah B. White
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael J. Flister
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amit Joshi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
24
|
Khan AA, Allemailem KS, Almatroodi SA, Almatroudi A, Rahmani AH. Recent strategies towards the surface modification of liposomes: an innovative approach for different clinical applications. 3 Biotech 2020; 10:163. [PMID: 32206497 PMCID: PMC7062946 DOI: 10.1007/s13205-020-2144-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/16/2020] [Indexed: 01/02/2023] Open
Abstract
Liposomes are very useful biocompatible tools used in diverse scientific disciplines, employed for the vehiculation and delivery of lipophilic, ampiphilic or hydrophilic compounds. Liposomes have gained the importance as drug carriers, as the drugs alone have limited targets, higher toxicity and develop resistance when used in higher doses. Conventional liposomes suffer from several drawbacks like encapsulation inefficiencies and partially controlled particle size. The surface chemistry of liposome technology started from simple conventional vesicles to second generation liposomes by modulating their lipid composition and surface with different ligands. Introduction of polyethylene glycol to lipid anchor was the first innovative strategy which increased circulation time, delayed clearance and opsonin resistance. PEGylated liposomes have been found to possess higher drug loading capacity up to 90% or more and some drugs like CPX-1 encapsuled in such liposomes have increased the disease control up to 73% patients suffering from colorectal cancer. The surface of liposomes have been further liganded with small molecules, vitamins, carbohydrates, peptides, proteins, antibodies, aptamers and enzymes. These advanced liposomes exhibit greater solubility, higher stability, long-circulating time and specific drug targeting properties. The immense utility and demand of surface modified liposomes in different areas have led their way to the modern market. In addition to this, the multi-drug carrier approach of targeted liposomes is an innovative method to overcome drug resistance while treating ceratin tumors. Presently, several second-generation liposomal formulations of different anticancer drugs are at various stages of clinical trials. This review article summarizes briefly the preparation of liposomes, strategies of disease targeting and exclusively the surface modifications with different entities and their clinical applications especially as drug delivery system.
Collapse
Affiliation(s)
- Amjad Ali Khan
- Department of Basic Health Science, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Khaled S. Allemailem
- Department of Basic Health Science, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Ahmed Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| |
Collapse
|
25
|
Trivedi M, Johri P, Singh A, Singh R, Tiwari RK. Latest Tools in Fight Against Cancer: Nanomedicines. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
26
|
Le NTT, Cao VD, Nguyen TNQ, Le TTH, Tran TT, Hoang Thi TT. Soy Lecithin-Derived Liposomal Delivery Systems: Surface Modification and Current Applications. Int J Mol Sci 2019; 20:E4706. [PMID: 31547569 PMCID: PMC6801558 DOI: 10.3390/ijms20194706] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
The development of natural phospholipids for nanostructured drug delivery systems has attracted much attention in the past decades. Lecithin that was derived from naturally occurring in soybeans (SL) has introduced some auspicious accomplishments to the drug carrying aspect, like effectual encapsulation, controlled release, and successful delivery of the curative factors to intracellular regions in which they procure these properties from their flexible physicochemical and biophysical properties, such as large aqueous center and biocompatible lipid, self-assembly, tunable properties, and high loading capacity. Despite the almost perfect properties as a drug carrier, liposome is known to be quite quickly eliminated from the body systems. The surface modification of liposomes has been investigated in many studies to overcome this drawback. In this review, we intensively discussed the surface-modified liposomes that enhancing the targeting, cellular uptake, and therapeutic response. Moreover, the recent applications of soy lecithin-derived liposome, focusing on cancer treatment, brain targeting, and vaccinology, are also summarized.
Collapse
Affiliation(s)
- Ngoc Thuy Trang Le
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam.
| | - Van Du Cao
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam.
| | - Thi Nhu Quynh Nguyen
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam.
| | - Thi Thu Hong Le
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam.
| | - Thach Thao Tran
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam.
| | - Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| |
Collapse
|
27
|
Das M, Huang L. Liposomal Nanostructures for Drug Delivery in Gastrointestinal Cancers. J Pharmacol Exp Ther 2019; 370:647-656. [PMID: 30541917 PMCID: PMC6812858 DOI: 10.1124/jpet.118.254797] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Gastrointestinal (GI) cancers like liver, pancreatic, colorectal, and gastric cancer remain some of the most difficult and aggressive cancers. Nanoparticles like liposomes had been approved in the clinic for cancer therapy dating as far back as 1995. Over the years, liposomal formulations have come a long way, facing several roadblocks and failures, and advancing by optimizing formulations and incorporating novel design approaches to navigate therapeutic delivery challenges. The first liposomal formulation for a GI cancer drug was approved recently in 2015, setting the stage for further clinical developments of liposome-based delivery systems for therapies against GI malignancies. This article reviews the design considerations and strategies that can be used to deliver drugs to GI tumors, the wide range of therapeutic agents that have been explored in preclinical as well as clinical studies, and the current therapies that are being investigated in the clinic against GI malignancies.
Collapse
Affiliation(s)
- Manisit Das
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
28
|
Krajewska JB, Bartoszek A, Fichna J. New Trends in Liposome-based Drug Delivery in Colorectal Cancer. Mini Rev Med Chem 2018; 19:3-11. [DOI: 10.2174/1389557518666180903150928] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/23/2018] [Accepted: 08/30/2018] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers in both men and women. Approximately
one-third of patients do not survive five years from diagnosis, which indicates the need for
treatment improvement, also through new ways of drug delivery. A possible strategy to increase treatment
efficacy is the use of liposomal formulation, which allows delivering both hydrophobic and hydrophilic
compounds with better biocompatibility and reduced side-effects. Liposomal formulations
showed better antitumor activity, longer drug accumulation and no cytotoxic effect on normal cells
when compared to free drugs. In this review, we will present liposomal preparations studied in CRC in
vitro and in vivo. We will focus on the advantages of liposomal delivery over conventional therapy as
well as modifications which increase specificity, drug accumulation and efficacy. Moreover, we will
discuss formulations investigated in clinical trials. Liposomal delivery has a great potential in overcoming
current limitations of cancer therapy and development of this system gives new perspectives in
CRC treatment.
Collapse
Affiliation(s)
- Julia B. Krajewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| | - Adrian Bartoszek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| |
Collapse
|
29
|
Improvement and extension of anti-EGFR targeting in breast cancer therapy by integration with the Avidin-Nucleic-Acid-Nano-Assemblies. Nat Commun 2018; 9:4070. [PMID: 30287819 PMCID: PMC6172284 DOI: 10.1038/s41467-018-06602-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 09/12/2018] [Indexed: 12/03/2022] Open
Abstract
Nowadays, personalized cancer therapy relies on small molecules, monoclonal antibodies, or antibody–drug conjugates (ADC). Many nanoparticle (NP)-based drug delivery systems are also actively investigated, but their advantage over ADCs has not been demonstrated yet. Here, using the Avidin-Nucleic-Acid-Nano-Assemblies (ANANAS), a class of polyavidins multifuctionalizable with stoichiometric control, we compare quantitatively anti-EGFR antibody(cetuximab)-targeted NPs to the corresponding ADC. We show that ANANAS tethering of cetuximab promotes a more efficient EGFR-dependent vesicle-mediated internalization. Cetuximab-guided ANANAS carrying doxorubicin are more cytotoxic in vitro and much more potent in vivo than the corresponding ADC, leading to 43% tumor reduction at low drug dosage (0.56 mg/kg). Advantage of cetuximab-guided ANANAS with respect to the ADC goes beyond the increase in drug-to-antibody ratio. Even if further studies are needed, we propose that NP tethering could expand application of the anti-EGFR antibody to a wider number of cancer patients including the KRAS-mutated ones, currently suffering from poor prognosis. The nature of the linker is known to affect the efficacy of antibody–drug conjugate (ADC). Here the authors show cetuximab-guided Avidin-Nucleic-Acid-Nanoassemblies to be superior to cetuximab-doxorubicin conjugate, and show its efficacy in KRAS mutant breast cancer, allowing for therapeutic expansion of anti-EGFR therapy.
Collapse
|
30
|
Merino M, Zalba S, Garrido MJ. Immunoliposomes in clinical oncology: State of the art and future perspectives. J Control Release 2018; 275:162-176. [DOI: 10.1016/j.jconrel.2018.02.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 02/02/2023]
|
31
|
Weddell JC, Imoukhuede PI. Integrative meta-modeling identifies endocytic vesicles, late endosome and the nucleus as the cellular compartments primarily directing RTK signaling. Integr Biol (Camb) 2018; 9:464-484. [PMID: 28436498 DOI: 10.1039/c7ib00011a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, intracellular receptor signaling has been identified as a key component mediating cell responses for various receptor tyrosine kinases (RTKs). However, the extent each endocytic compartment (endocytic vesicle, early endosome, recycling endosome, late endosome, lysosome and nucleus) contributes to receptor signaling has not been quantified. Furthermore, our understanding of endocytosis and receptor signaling is complicated by cell- or receptor-specific endocytosis mechanisms. Therefore, towards understanding the differential endocytic compartment signaling roles, and identifying how to achieve signal transduction control for RTKs, we delineate how endocytosis regulates RTK signaling. We achieve this via a meta-analysis across eight RTKs, integrating computational modeling with experimentally derived cell (compartment volume, trafficking kinetics and pH) and ligand-receptor (ligand/receptor concentration and interaction kinetics) physiology. Our simulations predict the abundance of signaling from eight RTKs, identifying the following hierarchy in RTK signaling: PDGFRβ > IGFR1 > EGFR > PDGFRα > VEGFR1 > VEGFR2 > Tie2 > FGFR1. We find that endocytic vesicles are the primary cell signaling compartment; over 43% of total receptor signaling occurs within the endocytic vesicle compartment for these eight RTKs. Mechanistically, we found that high RTK signaling within endocytic vesicles may be attributed to their low volume (5.3 × 10-19 L) which facilitates an enriched ligand concentration (3.2 μM per ligand molecule within the endocytic vesicle). Under the analyzed physiological conditions, we identified extracellular ligand concentration as the most sensitive parameter to change; hence the most significant one to modify when regulating absolute compartment signaling. We also found that the late endosome and nucleus compartments are important contributors to receptor signaling, where 26% and 18%, respectively, of average receptor signaling occurs across the eight RTKs. Conversely, we found very low membrane-based receptor signaling, exhibiting <1% of the total receptor signaling for these eight RTKs. Moreover, we found that nuclear translocation, mechanistically, requires late endosomal transport; when we blocked receptor trafficking from late endosomes to the nucleus we found a 57% reduction in nuclear translocation. In summary, our research has elucidated the significance of endocytic vesicles, late endosomes and the nucleus in RTK signal propagation.
Collapse
Affiliation(s)
- Jared C Weddell
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W Springfield Ave., 3233 Digital Computer Laboratory, Urbana, IL 61801, USA.
| | | |
Collapse
|
32
|
Riaz MK, Riaz MA, Zhang X, Lin C, Wong KH, Chen X, Zhang G, Lu A, Yang Z. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review. Int J Mol Sci 2018; 19:E195. [PMID: 29315231 PMCID: PMC5796144 DOI: 10.3390/ijms19010195] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 12/23/2022] Open
Abstract
Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes) containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed.
Collapse
Affiliation(s)
- Muhammad Kashif Riaz
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Muhammad Adil Riaz
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Xue Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Congcong Lin
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Ka Hong Wong
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Ge Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| |
Collapse
|
33
|
Molinaro R, Corbo C, Livingston M, Evangelopoulos M, Parodi A, Boada C, Agostini M, Tasciotti E. Inflammation and Cancer: In Medio Stat Nano. Curr Med Chem 2018; 25:4208-4223. [PMID: 28933296 PMCID: PMC5860929 DOI: 10.2174/0929867324666170920160030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 06/06/2017] [Accepted: 07/02/2017] [Indexed: 12/21/2022]
Abstract
Cancer treatment still remains a challenge due to the several limitations of currently used chemotherapeutics, such as their poor pharmacokinetics, unfavorable chemical properties, as well as inability to discriminate between healthy and diseased tissue. Nanotechnology offered potent tools to overcome these limitations. Drug encapsulation within a delivery system permitted i) to protect the payload from enzymatic degradation/ inactivation in the blood stream, ii) to improve the physicochemical properties of poorly water-soluble drugs, like paclitaxel, and iii) to selectively deliver chemotherapeutics to the cancer lesions, thus reducing the off-target toxicity, and promoting the intracellular internalization. To accomplish this purpose, several strategies have been developed, based on biological and physical changes happening locally and systemically as a consequence of tumorigenesis. Here, we will discuss the role of inflammation in the different steps of tumor development and the strategies based on the use of nanoparticles that exploit the inflammatory pathways in order to selectively target the tumor-associated microenvironment for therapeutic and diagnostic purposes.
Collapse
Affiliation(s)
- Roberto Molinaro
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Claudia Corbo
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Megan Livingston
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Michael Evangelopoulos
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Alessandro Parodi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Christian Boada
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, 64710, Mexico
| | - Marco Agostini
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, 35124, Italy
- Nanoinspired Biomedicine Laboratory, Institute of Pediatric Research, Fondazione Citta della Speranza, 35129, Padua, Italy
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, United States
| |
Collapse
|
34
|
Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0329-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Zamay GS, Ivanchenko TI, Zamay TN, Grigorieva VL, Glazyrin YE, Kolovskaya OS, Garanzha IV, Barinov AA, Krat AV, Mironov GG, Gargaun A, Veprintsev DV, Bekuzarov SS, Kirichenko AK, Zukov RA, Petrova MM, Modestov AA, Berezovski MV, Zamay AS. DNA Aptamers for the Characterization of Histological Structure of Lung Adenocarcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 6:150-162. [PMID: 28325282 PMCID: PMC5363495 DOI: 10.1016/j.omtn.2016.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 12/31/2022]
Abstract
Nucleic acid aptamers are becoming popular as molecular probes for identification and imaging pathology and, at the same time, as a convenient platform for targeted therapy. Recent studies have shown that aptamers may be effectively used for tumor characterization and as commercially available monoclonal antibodies. Here we present three DNA aptamers binding to whole transformed lung cancer tissues, including tumor cells, connective tissues, and blood vessels. Protein targets have been revealed using affinity purification followed by mass spectrometry analyses, and they have been validated using a panel of correspondent antibodies and 3D imaging of tumor tissues. Each of the proteins targeted by the aptamers is involved in cancer progression and most of them are crucial for lung adenocarcinoma. We propose the use of these aptamers in aptahistochemistry for the characterization of the histological structure of lung adenocarcinoma. The value of the presented aptamers is their application together or separately for indicating the spread of neoplastic transformation, for complex differential diagnostics, and for targeted therapy of the tumor itself as well as all transformed structures of the adjacent tissues. Moreover, it has been demonstrated that these aptamers could be used for intraoperative tumor visualization and margin assessment.
Collapse
Affiliation(s)
- Galina S Zamay
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia; Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Science, Krasnoyarsk 660036, Russia
| | - Tatiana I Ivanchenko
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Tatiana N Zamay
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Valentina L Grigorieva
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Yury E Glazyrin
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Olga S Kolovskaya
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia; Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Science, Krasnoyarsk 660036, Russia
| | - Irina V Garanzha
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia; Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Science, Krasnoyarsk 660036, Russia
| | | | - Alexey V Krat
- Krasnoyarsk Regional Clinical Cancer Center, Krasnoyarsk 660022, Russia
| | - Gleb G Mironov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Ana Gargaun
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Dmitry V Veprintsev
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia; Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Science, Krasnoyarsk 660036, Russia
| | - Sergey S Bekuzarov
- Krasnoyarsk Regional Clinical Pathological Anatomical Bureau, Krasnoyarsk 660022, Russia
| | - Andrey K Kirichenko
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Ruslan A Zukov
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia; Krasnoyarsk Regional Clinical Cancer Center, Krasnoyarsk 660022, Russia
| | - Marina M Petrova
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Andrey A Modestov
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia; Krasnoyarsk Regional Clinical Cancer Center, Krasnoyarsk 660022, Russia
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Anna S Zamay
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia; Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Science, Krasnoyarsk 660036, Russia.
| |
Collapse
|
36
|
Tsunoda SI. [Screening of functional antibodies by a scFv phage display library system for innovative biodrug development]. Nihon Yakurigaku Zasshi 2016; 148:149-153. [PMID: 27581963 DOI: 10.1254/fpj.148.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
37
|
Falcon BL, Chintharlapalli S, Uhlik MT, Pytowski B. Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR-2) as anti-angiogenic agents. Pharmacol Ther 2016; 164:204-25. [PMID: 27288725 DOI: 10.1016/j.pharmthera.2016.06.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interaction of numerous signaling pathways in endothelial and mesangial cells results in exquisite control of the process of physiological angiogenesis, with a central role played by vascular endothelial growth factor receptor 2 (VEGFR-2) and its cognate ligands. However, deregulated angiogenesis participates in numerous pathological processes. Excessive activation of VEGFR-2 has been found to mediate tissue-damaging vascular changes as well as the induction of blood vessel expansion to support the growth of solid tumors. Consequently, therapeutic intervention aimed at inhibiting the VEGFR-2 pathway has become a mainstay of treatment in cancer and retinal diseases. In this review, we introduce the concepts of physiological and pathological angiogenesis, the crucial role played by the VEGFR-2 pathway in these processes, and the various inhibitors of its activity that have entered the clinical practice. We primarily focus on the development of ramucirumab, the antagonist monoclonal antibody (mAb) that inhibits VEGFR-2 and has recently been approved for use in patients with gastric, colorectal, and lung cancers. We examine in-depth the pre-clinical studies using DC101, the mAb to mouse VEGFR-2, which provided a conceptual foundation for the role of VEGFR-2 in physiological and pathological angiogenesis. Finally, we discuss further clinical development of ramucirumab and the future of targeting the VEGF pathway for the treatment of cancer.
Collapse
|
38
|
Goins B, Phillips WT, Bao A. Strategies for improving the intratumoral distribution of liposomal drugs in cancer therapy. Expert Opin Drug Deliv 2016; 13:873-89. [PMID: 26981891 DOI: 10.1517/17425247.2016.1167035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION A major limitation of current liposomal cancer therapies is the inability of liposome therapeutics to penetrate throughout the entire tumor mass. This inhomogeneous distribution of liposome therapeutics within the tumor has been linked to treatment failure and drug resistance. Both liposome particle transport properties and tumor microenvironment characteristics contribute to this challenge in cancer therapy. This limitation is relevant to both intravenously and intratumorally administered liposome therapeutics. AREAS COVERED Strategies to improve the intratumoral distribution of liposome therapeutics are described. Combination therapies of intravenous liposome therapeutics with pharmacologic agents modulating abnormal tumor vasculature, interstitial fluid pressure, extracellular matrix components, and tumor associated macrophages are discussed. Combination therapies using external stimuli (hyperthermia, radiofrequency ablation, magnetic field, radiation, and ultrasound) with intravenous liposome therapeutics are discussed. Intratumoral convection-enhanced delivery (CED) of liposomal therapeutics is reviewed. EXPERT OPINION Optimization of the combination therapies and drug delivery protocols are necessary. Further research should be conducted in appropriate cancer types with consideration of physiochemical features of liposomes and their timing sequence. More investigation of the role of tumor associated macrophages in intratumoral distribution is warranted. Intratumoral infusion of liposomes using CED is a promising approach to improve their distribution within the tumor mass.
Collapse
Affiliation(s)
- Beth Goins
- a Department of Radiology , University of Texas Health Science Center San Antonio , San Antonio , TX , USA
| | - William T Phillips
- a Department of Radiology , University of Texas Health Science Center San Antonio , San Antonio , TX , USA
| | - Ande Bao
- b Department of Radiation Oncology, School of Medicine, Case Western Reserve University/University Hospitals Case Medical Center , Cleveland , OH , USA
| |
Collapse
|
39
|
Yu R. Animal models of spontaneous pancreatic neuroendocrine tumors. Mol Cell Endocrinol 2016; 421:60-7. [PMID: 26261055 DOI: 10.1016/j.mce.2015.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/10/2015] [Accepted: 08/04/2015] [Indexed: 01/20/2023]
Abstract
Pancreatic neuroendocrine tumors (PNETs) are usually low-grade neoplasms derived from the endocrine pancreas. PNETs can be functioning and cause well-described hormonal hypersecretion syndromes or non-functioning and cause only tumor mass effect. PNETs appear to be more common recently likely due to incidental detection by imaging. Although the diagnosis and management of PNETs have been evolving rapidly, much remains to be studied in the areas of molecular pathogenesis, molecular markers of tumor behavior, early detection, and targeted drug therapy. Unique challenges facing PNETs studies are long disease course, the deep location of pancreas and difficult access to pancreatic tissue, and the variety of tumors, which make animal models valuable tools for PNETs studies. Existing animal models of PNETs have provided insights into the pathogenesis and natural history of human PNETs. Future studies on animal models of PNETs should address early tumor detection, molecular markers of tumor behavior, and novel targeted therapies.
Collapse
Affiliation(s)
- Run Yu
- Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
40
|
Wu SC, Chen YJ, Wang HC, Chou MY, Chang TY, Yuan SS, Chen CY, Hou MF, Hsu JTA, Wang YM. Bispecific Antibody Conjugated Manganese-Based Magnetic Engineered Iron Oxide for Imaging of HER2/neu- and EGFR-Expressing Tumors. Am J Cancer Res 2016; 6:118-30. [PMID: 26722378 PMCID: PMC4679359 DOI: 10.7150/thno.13069] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/21/2015] [Indexed: 11/05/2022] Open
Abstract
The overexpression of HER2/neu and EGFR receptors plays important roles in tumorigenesis and tumor progression. Targeting these two receptors simultaneously can have a more widespread application in early diagnosis of cancers. In this study, a new multifunctional nanoparticles (MnMEIO-CyTE777-(Bis)-mPEG NPs) comprising a manganese-doped iron oxide nanoparticle core (MnMEIO), a silane-amino functionalized poly(ethylene glycol) copolymer shell, a near infrared fluorescence dye (CyTE777), and a covalently conjugated anti-HER2/neu and anti-EGFR receptors bispecific antibody (Bis) were successfully developed. In vitro T2-weighted MR imaging studies in SKBR-3 and A431 tumor cells incubated with MnMEIO-CyTE777-(Bis)-mPEG NPs showed - 94.8 ± 3.8 and - 84.1 ± 2.8% negative contrast enhancement, respectively. Pharmacokinetics study showed that MnMEIO-CyTE777-(Bis)-mPEG NPs were eliminated from serum with the half-life of 21.3 mins. In vivo MR imaging showed that MnMEIO-CyTE777-(Bis)-mPEG NPs could specifically and effectively target to HER2/neu- and EGFR-expressing tumors in mice; the relative contrast enhancements were 11.8 (at 2 hrs post-injection) and 61.5 (at 24 hrs post-injection) fold higher in SKBR-3 tumors as compared to Colo-205 tumors. T2-weighted MR and optical imaging studies revealed that the new contrast agent (MnMEIO-CyTE777-(Bis)-mPEG NPs) could specifically and effectively target to HER2/neu- and/or EGFR-expressing tumors. Our results demonstrate that MnMEIO-CyTE777-(Bis)-mPEG NPs are able to recognize the tumors expressing both HER2/neu and/or EGFR, and may provide a novel molecular imaging tool for early diagnosis of cancers expressing HER2/neu and/or EGFR.
Collapse
|
41
|
Qian Y, Wang W, Wang Z, Han Q, Jia X, Yang S, Hu Z. Switchable probes: pH-triggered and VEGFR2 targeted peptides screening through imprinting microarray. Chem Commun (Camb) 2016; 52:5690-3. [DOI: 10.1039/c6cc01302c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, we use an integrated imprinted microarray to screen out a switchable peptide probe, STP, with a novel sequence towards VEGFR2 in mild acidic conditions. In addition, STP has the characteristic of penetrating into cells in the presence of protons because its formation of an α-helix.
Collapse
Affiliation(s)
- Yixia Qian
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
- University of Chinese Academy of Science
| | - Weizhi Wang
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Zihua Wang
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Qiuju Han
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
- Pharmacy College
| | - Xiangqian Jia
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
- Pharmacy College
| | - Shu Yang
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Zhiyuan Hu
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| |
Collapse
|
42
|
Han Q, Jia X, Qian Y, Wang Z, Yang S, Jia Y, Wang W, Hu Z. Peptide functionalized targeting liposomes: for nanoscale drug delivery towards angiogenesis. J Mater Chem B 2016; 4:7087-7091. [DOI: 10.1039/c6tb01823h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
VEGFR2-targeted peptide S1 functionalized liposomes show high drug delivery towards targeted tumors.
Collapse
Affiliation(s)
- Qiuju Han
- Jinzhou Medical University
- Jinzhou 121001
- China
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
| | - Xiangqian Jia
- Jinzhou Medical University
- Jinzhou 121001
- China
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
| | - Yixia Qian
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
- University of Chinese Academy of Sciences
| | - Zihua Wang
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Shu Yang
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Yunhong Jia
- Jinzhou Medical University
- Jinzhou 121001
- China
| | - Weizhi Wang
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Zhiyuan Hu
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| |
Collapse
|
43
|
Orleth A, Mamot C, Rochlitz C, Ritschard R, Alitalo K, Christofori G, Wicki A. Simultaneous targeting of VEGF-receptors 2 and 3 with immunoliposomes enhances therapeutic efficacy. J Drug Target 2015. [PMID: 26204325 DOI: 10.3109/1061186x.2015.1056189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Tumor progression depends on angiogenesis. Vascular endothelial growth factor (VEGF) receptors (VEGFRs) are the main signal transducers that stimulate endothelial cell migration and vessel sprouting. At present, only VEGFR2 is targeted in the clinical practice. PURPOSE To develop new, anti-angiogenic nanoparticles (immunoliposomes, ILs), that redirect cytotoxic compounds to tumor-associated vascular cells. METHODS Pegylated liposomal doxorubicin (PLD) was targeted against VEGFR2- and VEGFR3-expressing cells by inserting anti-VEGFR2 and/or anti-VEGFR3 antibody fragments into the lipid bilayer membrane of PLD. These constructs were tested in vitro, and in vivo in the Rip1Tag2 mouse model of human cancer. RESULTS The combination treatment with anti-VEGFR2-ILs-dox and anti-VEGFR3-ILs-dox was superior to targeting only VEGFR2 cells and provides a highly efficient approach of depleting tumor-associated vasculature. This leads to tumor starvation and pronounced reduction of tumor burden. CONCLUSION Nanoparticles against VEGFR2 and -3 expressing tumor-associated endothelial cells represent a promising and novel anti-cancer strategy.
Collapse
Affiliation(s)
- Annette Orleth
- a Department of Medical Oncology , University Hospital , Basel , Switzerland .,b Department of Biomedicine , University of Basel, Basel , Switzerland
| | - Christoph Mamot
- b Department of Biomedicine , University of Basel, Basel , Switzerland .,c Division of Medical Oncology , Cantonal Hospital , Aarau , Switzerland , and
| | - Christoph Rochlitz
- a Department of Medical Oncology , University Hospital , Basel , Switzerland .,b Department of Biomedicine , University of Basel, Basel , Switzerland
| | - Reto Ritschard
- a Department of Medical Oncology , University Hospital , Basel , Switzerland .,b Department of Biomedicine , University of Basel, Basel , Switzerland
| | - Kari Alitalo
- d Biomedicum Helsinki, Haartman Institute, University of Helsinki , Helsinki , Finland
| | | | - Andreas Wicki
- a Department of Medical Oncology , University Hospital , Basel , Switzerland .,b Department of Biomedicine , University of Basel, Basel , Switzerland
| |
Collapse
|
44
|
Weijer R, Broekgaarden M, Kos M, van Vught R, Rauws EA, Breukink E, van Gulik TM, Storm G, Heger M. Enhancing photodynamic therapy of refractory solid cancers: Combining second-generation photosensitizers with multi-targeted liposomal delivery. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2015.05.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Huang J, Tang Q, Wang C, Yu H, Feng Z, Zhu J. Molecularly Targeted Therapy of Human Hepatocellular Carcinoma Xenografts with Radio-iodinated Anti-VEGFR2 Murine-Human Chimeric Fab. Sci Rep 2015; 5:10660. [PMID: 26021484 PMCID: PMC4448128 DOI: 10.1038/srep10660] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/21/2015] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2) is traditionally regarded as an important therapeutic target in a wide variety of malignancies, such as hepatocellular carcinoma (HCC). We previously generated a murine-human anti-VEGFR2 chimeric Fab (cFab), named FA8H1, which has the potential to treat VEGFR2-overexpressing solid tumors. Here, we investigated whether FA8H1 can be used as a carrier in molecularly targeted therapy in HCC xenograft models. FA8H1 was labeled with 131I, and two HCC xenograft models were generated using BEL-7402 (high VEGFR2-expressing) and SMMC-7721 (low VEGFR2-expressing) cells, which were selected from five HCC cell lines. The biodistribution of 131I-FA8H1 was determined in both models by Single-Photon Emission Computed Tomography and therapeutic effects were monitored in nude mice bearing BEL-7402 xenografts. Finally, we determined the involvement of necrosis and apoptotic pathways in treated mice using immunohistochemistry. 131I-FA8H1 levels were dramatically reduced in blood and other viscera. The therapeutic effect of 131I-labeled FA8H1 in the BEL-7402 model was significantly better than that by 131I and FA8H1 alone. We observed extensive necrosis in the treated tumors, and both FasL and caspase 3 were up-regulated. Thus, 131I-anti-VEGFR2 cFab has the potential to be used for molecularly targeted treatment of HCC overexpressing VEGFR2.
Collapse
Affiliation(s)
- Jianfei Huang
- 1] Key Laboratory of Antibody Technique, Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China [2] Department of Pathology, Affiliated Hospital of Nantong University. Nantong, Jiangsu 226001, China
| | - Qi Tang
- Key Laboratory of Antibody Technique, Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Changjun Wang
- Huadong Medical Institute of Biotechniques, Nanjing, Jiangsu 210002, China
| | - Huixin Yu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Zhenqing Feng
- 1] Key Laboratory of Antibody Technique, Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China [2] Jiangsu Key Lab of Cancer Biomarkers, Prevention &Treatment, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jin Zhu
- 1] Key Laboratory of Antibody Technique, Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China [2] Huadong Medical Institute of Biotechniques, Nanjing, Jiangsu 210002, China
| |
Collapse
|
46
|
Fernandes E, Ferreira JA, Andreia P, Luís L, Barroso S, Sarmento B, Santos LL. New trends in guided nanotherapies for digestive cancers: A systematic review. J Control Release 2015; 209:288-307. [PMID: 25957905 DOI: 10.1016/j.jconrel.2015.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
Abstract
Digestive tract tumors are among the most common and deadliest malignancies worldwide, mainly due to late diagnosis and lack of efficient therapeutics. Current treatments essentially rely on surgery associated with (neo)adjuvant chemotherapy agents. Despite an upfront response, conventional drugs often fail to eliminate highly aggressive clones endowed with chemoresistant properties, which are responsible for tumor recurrence and disease dissemination. Synthetic drugs also present severe adverse systemic effects, hampering the administration of biologically effective dosages. Nanoencapsulation of chemotherapeutic agents within biocompatible polymeric or lipid matrices holds great potential to improve the pharmacokinetics and efficacy of conventional chemotherapy while reducing systemic toxicity. Tagging nanoparticle surfaces with specific ligands for cancer cells, namely monoclonal antibodies or antibody fragments, has provided means to target more aggressive clones, further improving the selectivity and efficacy of nanodelivery vehicles. In fact, over the past twenty years, significant research has translated into a wide array of guided nanoparticles, providing the molecular background for a new generation of intelligent and more effective anti-cancer agents. Attempting to bring awareness among the medical community to emerging targeted nanopharmaceuticals and foster advances in the field, we have conducted a systematic review about this matter. Emphasis was set on ongoing preclinical and clinical trials for liver, colorectal, gastric and pancreatic cancers. To the best of our knowledge this is the first systematic and integrated overview on this field. Using a specific query, 433 abstracts were gathered and narrowed to 47 manuscripts when matched against inclusion/exclusion criteria. All studies showed that active targeting improves the effectiveness of the nanodrugs alone, while lowering its side effects. The main focus has been on hepatocarcinomas, mainly by exploring glycans as homing molecules. Other ligands such as peptides/small proteins and antibodies/antibody fragments, with affinity to either tumor vasculature or tumor cells, have also been widely and successfully applied to guide nanodrugs to gastrointestinal carcinomas. Conversely, few solutions have been presented for pancreatic tumors. To this date only three nanocomplexes have progressed beyond pre-clinical stages: i) PK2, a galactosamine-functionalized polymeric-DOX formulation for hepatocarcinomas; ii) MCC-465, an anti-(myosin heavy chain a) immunoliposome for advanced stage metastatic solid tumors; and iii) MBP-426, a transferrin-liposome-oxaliplatin conjugate, also for advanced stage tumors. Still, none has been approved for clinical use. However, based on the high amount of pre-clinical studies showing enthusiastic results, the number of clinical trials is expected to increase in the near future. A more profound understanding about the molecular nature of chemoresistant clones and cancer stem cell biology will also contribute to boost the field of guided nanopharmacology towards more effective solutions.
Collapse
Affiliation(s)
- Elisabete Fernandes
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal and INEB - Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal; Mass Spectrometry Center, QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - Peixoto Andreia
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Lima Luís
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal; Nucleo de Investigação em Farmácia - Centro de Investigação em Saúde e Ambiente (CISA), Health School of the Polytechnic Institute of Porto, Porto, Portugal
| | - Sérgio Barroso
- Serviço de Oncologia, Hospital de Évora, Évora, Portugal
| | - Bruno Sarmento
- I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal and INEB - Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra PRD, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal; Health School of University of Fernando Pessoa, Porto, Portugal; Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| |
Collapse
|
47
|
Alekseeva A, Kapkaeva M, Shcheglovitova O, Boldyrev I, Pazynina G, Bovin N, Vodovozova E. Interactions of antitumour Sialyl Lewis X liposomes with vascular endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1099-110. [DOI: 10.1016/j.bbamem.2015.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/27/2014] [Accepted: 01/23/2015] [Indexed: 12/11/2022]
|
48
|
Liang B, Shahbaz M, Wang Y, Gao H, Fang R, Niu Z, Liu S, Wang B, Sun Q, Niu W, Liu E, Wang J, Niu J. Integrinβ6-Targeted Immunoliposomes Mediate Tumor-Specific Drug Delivery and Enhance Therapeutic Efficacy in Colon Carcinoma. Clin Cancer Res 2014; 21:1183-95. [PMID: 25549721 DOI: 10.1158/1078-0432.ccr-14-1194] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Benjia Liang
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China. Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Public Health, Jinan, Shandong, P.R. China
| | - Muhammad Shahbaz
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Yang Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, P.R. China
| | - Huijie Gao
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China. Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Public Health, Jinan, Shandong, P.R. China
| | - Ruliang Fang
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Zhengchuan Niu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China. Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Public Health, Jinan, Shandong, P.R. China
| | - Song Liu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China. Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Public Health, Jinan, Shandong, P.R. China
| | - Ben Wang
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China. Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Public Health, Jinan, Shandong, P.R. China
| | - Qi Sun
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China. Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Public Health, Jinan, Shandong, P.R. China
| | - Weibo Niu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Enyu Liu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Jiayong Wang
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Jun Niu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China.
| |
Collapse
|
49
|
Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 2014; 200:138-57. [PMID: 25545217 DOI: 10.1016/j.jconrel.2014.12.030] [Citation(s) in RCA: 1198] [Impact Index Per Article: 119.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death worldwide. Currently available therapies are inadequate and spur demand for improved technologies. Rapid growth in nanotechnology towards the development of nanomedicine products holds great promise to improve therapeutic strategies against cancer. Nanomedicine products represent an opportunity to achieve sophisticated targeting strategies and multi-functionality. They can improve the pharmacokinetic and pharmacodynamic profiles of conventional therapeutics and may thus optimize the efficacy of existing anti-cancer compounds. In this review, we discuss state-of-the-art nanoparticles and targeted systems that have been investigated in clinical studies. We emphasize the challenges faced in using nanomedicine products and translating them from a preclinical level to the clinical setting. Additionally, we cover aspects of nanocarrier engineering that may open up new opportunities for nanomedicine products in the clinic.
Collapse
|
50
|
Izumi Y, Hoshino Y, Hosoya K, Takagi S, Okumura M. Isolation and characterization of canine tumor endothelial cells. J Vet Med Sci 2014; 77:359-63. [PMID: 25482496 PMCID: PMC4383786 DOI: 10.1292/jvms.14-0347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The present study involved the isolation and characterization of canine tumor endothelial
cells (TECs) from 2 malignancies. TECs were isolated using magnetic cell sorting following
FITC labeling with UEA1 lectin, and they were characterized by measuring genetic and
histopathological endothelial markers. Isolated TECs exhibited a cobblestone-like
morphology and expressed both vascular endothelial growth factor receptor 2 (VEGFR2) and
Von Willebrand factor (vWF). Further, both TECs and tumor cells derived from a seminoma
exhibited increased C-X-C chemokine receptor type 7 (CXCR7) expression. However, CXCR7
expression was not detected in TECs and tumor cells derived from a hepatocellular
carcinoma. Understanding TEC specific traits may be important in the development of more
efficacious anti-angiogenic therapies that do not induce adverse effects.
Collapse
Affiliation(s)
- Yusuke Izumi
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | | | | | | | | |
Collapse
|