1
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024; 82:3157-3208. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Percuoco V, Herlin E, Prada F, Riva M, Pessina F, Staartjes VE, Della Pepa GM, Menna G. Glioblastoma invasion patterns from a clinical perspective-a systematic review. Neurosurg Rev 2024; 47:864. [PMID: 39570467 PMCID: PMC11582338 DOI: 10.1007/s10143-024-02944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 11/22/2024]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Despite advances in treatment, mechanisms underlying GBM invasion remain incompletely understood. This systematic review synthesizes findings from laboratory and clinical studies to elucidate the molecular mechanisms driving GBM invasion and their implications for prognosis and therapy. This review adhered to PRISMA guidelines, conducting a comprehensive search of PubMed/Medline for studies published up to October 16, 2023. Inclusion criteria focused on studies investigating molecular mechanisms of GBM invasiveness with reported clinical outcomes (overall survival (OS) and progression-free survival (PFS). Exclusion criteria included systematic reviews, case reports, small case series, and studies limited to preclinical data. Risk of bias was assessed using the ROBINS-I tool. From 831 records, 21 studies (2198 patients) met the criteria. Key GBM invasion mechanisms included ECM degradation, vascular invasion, EMT, apoptotic regulation, cytoskeletal organization, and RNA sequencing. Vascular mechanisms were most studied. Bevacizumab resistance linked to poorer outcomes. EMT markers like TWIST and ECM degradation via MMPs such as CD147 correlated with decreased survival. Cytoskeletal and RNA studies highlighted the prognostic significance of tumor subtypes and microenvironmental interactions. This systematic review elucidates the molecular mechanisms underlying GBM invasiveness and their clinical implications. Integrating molecular profiling into routine clinical assessment may enhance prognostic accuracy and therapeutic efficacy, paving the way for personalized treatment strategies.
Collapse
Affiliation(s)
- Veronica Percuoco
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.
| | - Erica Herlin
- Faculty of Medicine and Surgery, University of Milan, Via Festa del Perdono, 7, 20122, Milan, Italy
| | - Francesco Prada
- Focused Ultrasound Foundation, 1230 Cedars Ct Suite 206, Charlottesville, VA, 22903, USA
| | - Marco Riva
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano Via Alessandro Manzoni, 56, 20089, Rozzano (MI), Italy
| | - Federico Pessina
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano Via Alessandro Manzoni, 56, 20089, Rozzano (MI), Italy
| | - Victor E Staartjes
- Machine Intelligence in Clinical Neuroscience & Microsurgical Neuroanatomy (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Giuseppe Maria Della Pepa
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Grazia Menna
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| |
Collapse
|
3
|
Shi J. Early 2-Factor Transcription Factors Associated with Progression and Recurrence in Bevacizumab-Responsive Subtypes of Glioblastoma. Cancers (Basel) 2024; 16:2536. [PMID: 39061176 PMCID: PMC11275000 DOI: 10.3390/cancers16142536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The early 2-factor (E2F) family of transcription factors, including E2F1 through 8, plays a critical role in apoptosis, metabolism, proliferation, and angiogenesis within glioblastoma (GBM). However, the specific functions of E2F transcription factors (E2Fs) and their impact on the malignancy of Bevacizumab (BVZ)-responsive GBM subtypes remain unclear. This study used data from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI), and Gene Expression Omnibus (GEO) to explore the impact of eight E2F family members on the clinical characteristics of BVZ-responsive GBM subtypes and possible mechanisms of recurrence after BVZ treatment. Using machine learning algorithms, including TreeBagger and deep neural networks, we systematically predicted and validated GBM patient survival terms based on the expression profiles of E2Fs across BVZ-responsive GBM subtypes. Our bioinformatics analyses suggested that a significant increase in E2F8 post-BVZ treatment may enhance the function of angiogenesis and stem cell proliferation, implicating this factor as a candidate mechanism of GBM recurrence after treatment. In addition, BVZ treatment in unresponsive GBM patients may potentially worsen disease progression. These insights underscore that E2F family members play important roles in GBM malignancy and BVZ treatment response, highlighting their potential as prognostic biomarkers, therapeutic targets, and recommending precision BVZ treatment to individual GBM patients.
Collapse
Affiliation(s)
- Jian Shi
- Department of Neurology, San Francisco Veterans Affairs Health Care System and University of California, San Francisco, CA 94121, USA
| |
Collapse
|
4
|
Hovis G, Chandra N, Kejriwal N, Hsieh KJY, Chu A, Yang I, Wadehra M. Understanding the Role of Endothelial Cells in Glioblastoma: Mechanisms and Novel Treatments. Int J Mol Sci 2024; 25:6118. [PMID: 38892305 PMCID: PMC11173095 DOI: 10.3390/ijms25116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma is a highly aggressive neoplasm and the most common primary malignant brain tumor. Endothelial tissue plays a critical role in glioblastoma growth and progression, facilitating angiogenesis, cellular communication, and tumorigenesis. In this review, we present an up-to-date and comprehensive summary of the role of endothelial cells in glioblastomas, along with an overview of recent developments in glioblastoma therapies and tumor endothelial marker identification.
Collapse
Affiliation(s)
- Gabrielle Hovis
- Department of Neurosurgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Neha Chandra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA (K.J.-Y.H.)
| | - Nidhi Kejriwal
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA (K.J.-Y.H.)
| | - Kaleb Jia-Yi Hsieh
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA (K.J.-Y.H.)
| | - Alison Chu
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Isaac Yang
- Department of Neurosurgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Department of Radiation Oncology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA (K.J.-Y.H.)
- Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Ezaki T, Tanaka T, Tamura R, Ohara K, Yamamoto Y, Takei J, Morimoto Y, Imai R, Kuranai Y, Akasaki Y, Toda M, Murayama Y, Miyake K, Sasaki H. Status of alternative angiogenic pathways in glioblastoma resected under and after bevacizumab treatment. Brain Tumor Pathol 2024; 41:61-72. [PMID: 38619734 PMCID: PMC11052834 DOI: 10.1007/s10014-024-00481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/25/2024] [Indexed: 04/16/2024]
Abstract
Glioblastoma multiforme (GBM) acquires resistance to bevacizumab (Bev) treatment. Bev affects angiogenic factors other than vascular endothelial growth factor (VEGF), which are poorly understood. We investigated changes in angiogenic factors under and after Bev therapy, including angiopoietin-1 (ANGPT1), angiopoietin-2 (ANGPT2), placental growth factor (PLGF), fibroblast growth factor 2, and ephrin A2 (EphA2). Fifty-four GBM tissues, including 28 specimens from 14 cases as paired specimens from the same patient obtained in three settings: initial tumor resection (naïve Bev), tumors resected following Bev therapy (effective Bev), and recurrent tumors after Bev therapy (refractory Bev). Immunohistochemistry assessed their expressions in tumor vessels and its correlation with recurrent MRI patterns. PLGF expression was higher in the effective Bev group than in the naïve Bev group (p = 0.024) and remained high in the refractory Bev group. ANGPT2 and EphA2 expressions were higher in the refractory Bev group than in the naïve Bev group (p = 0.047 and 0.028, respectively). PLGF expression was higher in the refractory Bev group compared with the naïve Bev group for paired specimens (p = 0.036). PLGF was more abundant in T2 diffuse/circumscribe patterns (p = 0.046). This is the first study to evaluate angiogenic factors other than VEGF during effective and refractory Bev therapy in patient-derived specimens.
Collapse
Affiliation(s)
- Taketo Ezaki
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Toshihide Tanaka
- Department of Neurosurgery, The Jikei University School, of Medicine Kashiwa Hospital, 163-1 Kashiwashita, Kashiwa-shi, Chiba, 277-8567, Japan.
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan.
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kentaro Ohara
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yohei Yamamoto
- Department of Neurosurgery, The Jikei University School of Medicine Daisan Hospital, 4-11-1 Izumi-Motomachi, Komae-Shi, Tokyo, 201-8601, Japan
| | - Jun Takei
- Department of Neurosurgery, The Jikei University School of Medicine Katsushika Medical Center, 6-41-2 Aoto, Katsushika-Ku, Tokyo, 125-8506, Japan
| | - Yukina Morimoto
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Ryotaro Imai
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yuki Kuranai
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yasuharu Akasaki
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yuichi Murayama
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Keisuke Miyake
- Department of Neurological Surgery, Faculty of medicine, Kagawa University Graduate School of Medicine, 1750-1 Miki-Choho, Ikenobe, Kita-Gun, Kagawa, 761-0793, Japan
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Neurosurgery, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
| |
Collapse
|
6
|
Luzzi S, Agosti A. Radiomics Multifactorial in Silico Model for Spatial Prediction of Glioblastoma Progression and Recurrence: A Proof-of-Concept. World Neurosurg 2024; 183:e677-e686. [PMID: 38184226 DOI: 10.1016/j.wneu.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
BACKGROUND Radiomics-based prediction of glioblastoma spatial progression and recurrence may improve personalized strategies. However, most prototypes are based on limited monofactorial Gompertzian models of tumor growth. The present study consists of a proof of concept on the accuracy of a radiomics multifactorial in silico model in predicting short-term spatial growth and recurrence of glioblastoma. METHODS A radiomics-based biomathematical multifactorial in silico model was developed using magnetic resonance imaging (MRI) data from a 53-year-old patient with newly diagnosed glioblastoma of the right supramarginal gyrus. Raw and optimized models were derived from the MRI at diagnosis and matched to the preoperative MRI obtained 28 days after diagnosis to test the accuracy in predicting the short-term spatial growth of the tumor. An additional optimized model was derived from the early postoperative MRI and matched to the MRI documenting tumor recurrence to test spatial accuracy in predicting the location of recurrence. The spatial prediction accuracy of the model was reported as an average Jaccard index. RESULTS Optimized models yielded an average Jaccard index of 0.69 and 0.26 for short-term tumor growth and long-term recurrence site, respectively. CONCLUSIONS The present radiomics-based multifactorial in silico model was feasible, reliable, and accurate for short-term spatial prediction of glioblastoma progression. The predictive value for the spatial location of recurrence was still low, and refinements in the description of tissue reorganization in the peritumoral and resected areas may be critical to optimize accuracy further.
Collapse
Affiliation(s)
- Sabino Luzzi
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Abramo Agosti
- Department of Mathematics, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Khadka S, Lin YH, Ackroyd J, Chen YA, Sheng Y, Qian W, Guo S, Chen Y, Behr E, Barekatain Y, Uddin N, Arthur K, Yan V, Hsu WH, Chang Q, Poral A, Tran T, Chaurasia S, Georgiou DK, Asara JM, Barthel FP, Millward SW, DePinho RA, Muller FL. Anaplerotic nutrient stress drives synergy of angiogenesis inhibitors with therapeutics targeting tumor metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539744. [PMID: 37214825 PMCID: PMC10197573 DOI: 10.1101/2023.05.07.539744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tumor angiogenesis is a cancer hallmark, and its therapeutic inhibition has provided meaningful, albeit limited, clinical benefit. While anti-angiogenesis inhibitors deprive the tumor of oxygen and essential nutrients, cancer cells activate metabolic adaptations to diminish therapeutic response. Despite these adaptations, angiogenesis inhibition incurs extensive metabolic stress, prompting us to consider such metabolic stress as an induced vulnerability to therapies targeting cancer metabolism. Metabolomic profiling of angiogenesis-inhibited intracranial xenografts showed universal decrease in tricarboxylic acid cycle intermediates, corroborating a state of anaplerotic nutrient deficit or stress. Accordingly, we show strong synergy between angiogenesis inhibitors (Avastin, Tivozanib) and inhibitors of glycolysis or oxidative phosphorylation through exacerbation of anaplerotic nutrient stress in intracranial orthotopic xenografted gliomas. Our findings were recapitulated in GBM xenografts that do not have genetically predisposed metabolic vulnerabilities at baseline. Thus, our findings cement the central importance of the tricarboxylic acid cycle as the nexus of metabolic vulnerabilities and suggest clinical path hypothesis combining angiogenesis inhibitors with pharmacological cancer interventions targeting tumor metabolism for GBM tumors.
Collapse
Affiliation(s)
- Sunada Khadka
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Yu-Hsi Lin
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey Ackroyd
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Yi-An Chen
- Cancer and Cell Biology Division, The Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Yanghui Sheng
- Crown Bioscience Inc., Suzhou Industrial Park, 218 Xinghu Rd, Jiangsu, China
| | - Wubin Qian
- Crown Bioscience Inc., Suzhou Industrial Park, 218 Xinghu Rd, Jiangsu, China
| | - Sheng Guo
- Crown Bioscience Inc., Suzhou Industrial Park, 218 Xinghu Rd, Jiangsu, China
| | - Yining Chen
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eliot Behr
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yasaman Barekatain
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Nasir Uddin
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenisha Arthur
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Victoria Yan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Wen-Hao Hsu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qing Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anton Poral
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Theresa Tran
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Surendra Chaurasia
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John M Asara
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Floris P Barthel
- Cancer and Cell Biology Division, The Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Steve W Millward
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Florian L Muller
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
- Present address: Sporos Bioventures, Houston, TX, USA
| |
Collapse
|
8
|
Nayak D, Paul S, Das C, Bhal S, Kundu CN. Quinacrine and Curcumin in combination decreased the breast cancer angiogenesis by modulating ABCG2 via VEGF A. J Cell Commun Signal 2023; 17:609-626. [PMID: 36326988 PMCID: PMC10409692 DOI: 10.1007/s12079-022-00692-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer stem cells (CSCs) cause drug resistance in cancer due to its extensive drug efflux, DNA repair and self-renewal capability. ATP binding cassette subfamily G member 2 (ABCG2) efflux pump afford protection to CSCs in tumors, shielding them from the adverse effects of chemotherapy. Although the role of ABCG2 in cancer progression, invasiveness, recurrence are known but its role in metastasis and angiogenesis are not clear. Here, using in vitro (CSCs enriched side population [SP] cells), ex vivo (patient derived primary cells), in ovo (fertilized egg embryo) and in vivo (patient derived primary tissue mediated xenograft (PDX)) system, we have systematically studied the role of ABCG2 in angiogenesis and the regulation of the process by Curcumin (Cur) and Quinacrine (QC). Cur + QC inhibited the proliferation, invasion, migration and expression of representative markers of metastasis and angiogenesis. Following hypoxia, ABCG2 enriched cells released angiogenic factor vascular endothelial growth factor A (VEGF A) and induced the angiogenesis via PI3K-Akt-eNOS cascade. Cur + QC inhibited the ABCG2 expression and thus reduced the angiogenesis. Interestingly, overexpression of ABCG2 in SP cells and incubation of purified ABCG2 protein in media induced the angiogenesis but knockdown of ABCG2 decreased the vascularization. In agreement with in vitro results, ex vivo data showed similar phenomena. An induction of vascularization was noticed in PDX mice but reduction of vascularization was also observed after treatment of Cur + QC. Thus, data suggested that in hypoxia, ABCG2 enhances the production of angiogenesis factor VEGF A which in turn induced angiogenesis and Cur + QC inhibited the process by inhibiting ABCG2 in breast cancer.
Collapse
Affiliation(s)
- Deepika Nayak
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India
| | - Subarno Paul
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India
| | - Chinmay Das
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India
| | - Subhasmita Bhal
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India.
| |
Collapse
|
9
|
Takei J, Fukasawa N, Tanaka T, Yamamoto Y, Tamura R, Sasaki H, Akasaki Y, Kamata Y, Murahashi M, Shimoda M, Murayama Y. Impact of Neoadjuvant Bevacizumab on Neuroradiographic Response and Histological Findings Related to Tumor Stemness and the Hypoxic Tumor Microenvironment in Glioblastoma: Paired Comparison Between Newly Diagnosed and Recurrent Glioblastomas. Front Oncol 2022; 12:898614. [PMID: 35785200 PMCID: PMC9247463 DOI: 10.3389/fonc.2022.898614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/17/2022] [Indexed: 12/03/2022] Open
Abstract
Background Previously, we reported that bevacizumab (Bev) produces histological and neuroradiographic alterations including changes in tumor oxygenation, induction of an immunosupportive tumor microenvironment, and inhibition of stemness. To confirm how those effects vary during Bev therapy, paired samples from the same patients with newly diagnosed glioblastoma (GBM) who received preoperative neoadjuvant Bev (neoBev) were investigated with immunohistochemistry before and after recurrence. Methods Eighteen samples from nine patients with newly diagnosed GBM who received preoperative neoBev followed by surgery and chemoradiotherapy and then autopsy or salvage surgery after recurrence were investigated. The expression of carbonic anhydrase 9 (CA9), hypoxia-inducible factor-1 alpha (HIF-1α), nestin, and Forkhead box M1 (FOXM1) was evaluated with immunohistochemistry. For comparison between neoBev and recurrent tumors, we divided the present cohort into two groups based on neuroradiographic response: good and poor responders (GR and PR, respectively) to Bev were defined by the tumor regression rate on T1-weighted images with gadolinium enhancement (T1Gd) and fluid-attenuated inversion recovery images. Patterns of recurrence after Bev therapy were classified as cT1 flare-up and T2-diffuse/T2-circumscribed. Furthermore, we explored the possibility of utilizing FOXM1 as a biomarker of survival in this cohort. Results A characteristic “pseudo-papillary”-like structure containing round-shaped tumor cells clustered adjacent to blood vessels surrounded by spindle-shaped tumor cells was seen only in recurrent tumors. Tumor cells at the outer part of the “pseudo-papillary” structure were CA9-positive (CA9+)/HIF-1α+, whereas cells at the inner part of this structure were CA9−/HIF-1α+ and nestin+/FOXM1+. CA9 and HIF-1α expression was lower in T1Gd-GR and decreased in the “T2-circumscribed/T2-diffuse” pattern compared with the “T1 flare-up” pattern, suggesting that tumor oxygenation was frequently observed in T1Gd-GR in initial tumors and in the “T2-circumscribed/T2-diffuse” pattern in recurrent tumors. FOXM1 low-expression tumors tended to have a better prognosis than that of FOXM1 high-expression tumors. Conclusion A “pseudo-papillary” structure was seen in recurrent GBM after anti-vascular endothelial growth factor therapy. Bev may contribute to tumor oxygenation, leading to inhibition of stemness and correlation with a neuroimaging response during Bev therapy. FOXM1 may play a role as a biomarker of survival during Bev therapy.
Collapse
Affiliation(s)
- Jun Takei
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
| | - Nei Fukasawa
- Department of Pathology, Jikei University School of Medicine, Tokyo, Japan
| | - Toshihide Tanaka
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
- Department of Neurosurgery, Jikei University School of Medicine Kashiwa Hospital, Kashiwa, Japan
- *Correspondence: Toshihide Tanaka,
| | - Yohei Yamamoto
- Department of Neurosurgery, Jikei University School of Medicine Daisan Hospital, Tokyo, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasuharu Akasaki
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
| | - Yuko Kamata
- Division of Oncology, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo, Japan
| | - Mutsunori Murahashi
- Division of Oncology, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Shimoda
- Department of Pathology, Jikei University School of Medicine, Tokyo, Japan
| | - Yuichi Murayama
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Temozolomide-Acquired Resistance Is Associated with Modulation of the Integrin Repertoire in Glioblastoma, Impact of α5β1 Integrin. Cancers (Basel) 2022; 14:cancers14020369. [PMID: 35053532 PMCID: PMC8773618 DOI: 10.3390/cancers14020369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Despite extensive treatment, glioblastoma inevitably recurs, leading to an overall survival of around 16 months. Understanding why and how tumours resist to radio/chemotherapies is crucial to overcome this unmet oncological challenge. Primary and acquired resistance to Temozolomide (TMZ), the standard-of-care chemotherapeutic drug, have been the subjects of several studies. This work aimed to evaluate molecular and phenotypic changes occurring during and after TMZ treatment in a glioblastoma cell model, the U87MG. These initially TMZ-sensitive cells acquire long-lasting resistance even after removal of the drug. Transcriptomic analysis revealed that profound changes occurred between parental and resistant cells, particularly at the level of the integrin repertoire. Focusing on α5β1 integrin, which we proposed earlier as a glioblastoma therapeutic target, we demonstrated that its expression was decreased in the presence of TMZ but restored after removal of the drug. In this glioblastoma model of recurrence, α5β1 integrin plays an important role in the proliferation and migration of tumoral cells. We also demonstrated that reactivating p53 by MDM2 inhibitors concomitantly with the inhibition of this integrin in recurrent cells may overcome the TMZ resistance. Our results may explain some integrin-based targeted therapy failure as integrin expressions are highly switchable during the time of treatment. We also propose an alternative way to alter the viability of recurrent glioblastoma cells expressing a high level of α5β1 integrin.
Collapse
|
11
|
Histopathological investigation of the 1p/19q-codeleted gliomas resected following alkylating agent chemotherapy. J Neurooncol 2021; 155:235-246. [PMID: 34718935 DOI: 10.1007/s11060-021-03855-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/23/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Lower grade gliomas with 1p/19q codeletion are often responsive to chemotherapy, and several of these have been treated using upfront chemotherapy and subsequent resection following tumor volume decrease. This study aimed to elucidate the histological changes and the mechanism of recurrence after alkylating agent chemotherapy in 1p/19-codeleted gliomas. METHODS Fourteen 1p/19q-codeleted gliomas resected following tumor volume decrease after alkylating agent chemotherapy were included and compared with their pre-chemotherapy specimens. Histological changes were investigated using hematoxylin-eosin staining, and changes in proliferative activity, status of glioma stem cells (GSCs), and tumor-infiltrating macrophages were assessed using immunohistochemistry for Ki-67/MIB-1, CD68 as a pan-macrophage/monocyte marker, CD163 as a presumed marker of M2 polarity, and nestin and CD133 as markers of GSCs. RESULTS The most frequent histological findings following chemotherapy included a sparse glial background and abundant foamy cell infiltration. The Ki-67/MIB-1 index decreased and the number of CD68 + cells increased after chemotherapy. The increasing rate of CD68 + cells in the post-/pre-chemotherapy specimens was inversely correlated with patient prognosis but not tumor response. The number of CD163 + cells, M2/M1 + M2 ratio, and the ratio of GSCs to total tumor cells increased after chemotherapy, and those in the post-chemotherapy specimens were negatively correlated with patient prognosis. There was a correlation between the M2/M1 + M2 ratio and the ratio of GSCs in both pre- and post-chemotherapy specimens. CONCLUSION GSCs in conjunction with M2 macrophages constitute the mechanism of resistance to and recurrence after alkylating agent chemotherapy in 1p/19q-codeleted gliomas.
Collapse
|
12
|
Expression Analysis of α5 Integrin Subunit Reveals Its Upregulation as a Negative Prognostic Biomarker for Glioblastoma. Pharmaceuticals (Basel) 2021; 14:ph14090882. [PMID: 34577582 PMCID: PMC8465081 DOI: 10.3390/ph14090882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022] Open
Abstract
Integrin α5β1 was suggested to be involved in glioblastoma (GBM) aggressiveness and treatment resistance through preclinical studies and genomic analysis in patients. However, further protein expression data are still required to confirm this hypothesis. In the present study, we investigated by immunofluorescence the expression of integrin α5 and its prognostic impact in a glioblastoma series of patients scheduled to undergo the Stupp protocol as first-line treatment for GBM. The integrin α5 protein expression level was estimated in each tumor by the mean fluorescence intensity (MFI) and allowed us to identify two subpopulations showing either a high or low expression level. The distribution of patients in both subpopulations was not significantly different according to age, gender, recursive partitioning analysis (RPA) prognostic score, molecular markers or surgical and medical treatment. A high integrin α5 protein expression level was associated with a high risk of recurrence (HR = 1.696, 95% CI 1.031-2.792, p = 0.0377) and reduced overall survival (OS), even more significant in patients who completed the Stupp protocol (median OS: 15.6 vs. 22.8 months; HR = 2.324; 95% CI 1.168-4.621, p = 0.0162). In multivariate analysis, a high integrin α5 protein expression level was confirmed as an independent prognostic factor in the subpopulation of patients who completed the temozolomide-based first-line treatment for predicting OS over age, extent of surgery, RPA score and O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation (p = 0.029). In summary, for the first time, our study validates that a high integrin α5 protein expression level is associated with poor prognosis in GBM and confirms its potential as a therapeutic target implicated in the Stupp protocol resistance.
Collapse
|
13
|
Roy PK, Rajesh Y, Mandal M. Therapeutic targeting of membrane-associated proteins in central nervous system tumors. Exp Cell Res 2021; 406:112760. [PMID: 34339674 DOI: 10.1016/j.yexcr.2021.112760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/28/2021] [Accepted: 07/28/2021] [Indexed: 12/09/2022]
Abstract
The activity of the most complex system, the central nervous system (CNS) is profoundly regulated by a huge number of membrane-associated proteins (MAP). A minor change stimulates immense chemical changes and the elicited response is organized by MAP, which acts as a receptor of that chemical or channel enabling the flow of ions. Slight changes in the activity or expression of these MAPs lead to severe consequences such as cognitive disorders, memory loss, or cancer. CNS tumors are heterogeneous in nature and hard-to-treat due to random mutations in MAPs; like as overexpression of EGFRvIII/TGFβR/VEGFR, change in adhesion molecules α5β3 integrin/SEMA3A, imbalance in ion channel proteins, etc. Extensive research is under process for developing new therapeutic approaches using these proteins such as targeted cytotoxic radiotherapy, drug-delivery, and prodrug activation, blocking of receptors like GluA1, developing viral vector against cell surface receptor. The combinatorial approach of these strategies along with the conventional one might be more potential. Henceforth, our review focuses on in-depth analysis regarding MAPs aiming for a better understanding for developing an efficient therapeutic approach for targeting CNS tumors.
Collapse
Affiliation(s)
- Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Yetirajam Rajesh
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India.
| |
Collapse
|
14
|
Zhiani M, Mousavi MA, Rostamizadeh K, Pirizadeh R, Osali A, Mennati A, Motlagh B, Fathi M. Apoptosis induction by siRNA targeting integrin-β1 and regorafenib/DDAB-mPEG-PCL hybrid nanoparticles in regorafenib-resistant colon cancer cells. Am J Cancer Res 2021; 11:1170-1184. [PMID: 33948352 PMCID: PMC8085858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023] Open
Abstract
Colorectal cancer (CRC) is regarded as the third most common cancer worldwide. Although Regorafenib as a receptor tyrosine kinase inhibitor (RTKI) disrupts tumor growth and angiogenesis in metastatic CRC (mCRC) patients, drug resistance leads to poor prognosis and survival. Integrin-β1 overexpression has been proposed to be the major player in this regard. Herein, the Regorafenib-resistant human colon cancer cell line (SW-48) was induced, and the Integrin-β1 gene expression, as well as apoptosis, was assessed through the combination of small interfering RNA (siRNA) targeting Integrin-β1 and Regorafenib/Dimethyldioctadecylammonium bromide (DDAB)-methoxy poly (ethylene glycol) (mPEG)-poly-ε-caprolactone (PCL) hybrid nanoparticles (HNPs). In the current study, Regorafenib-resistant SW-48 cell line was generated in which the Regorafenib half-maximal inhibitory concentration (IC50) for non-resistant and resistant cells was 13.5±1.5 µM and 55.1±0.8 µM, respectively. The results of DLS also demonstrated that the size and the charge of the HNPs were equal to 66.56±0.5 nm and +29.5±1.2 mv, respectively. In addition, the Integrin-β1 gene expression was significantly higher in resistant cells than in non-resistant ones (P<0.05). The siRNA/HNP complexes in combination with Regorafenib/HNPs were accordingly identified as the most effective treatment to decrease the Integrin-β1 gene expression and to enhance the apoptosis rate in resistant cells (P<0.001). Overall, the study indicated that combination therapy using siRNA/HNP and Regorafenib/HNPs complex could down-regulate the Integrin-β1 gene expression and consequently trigger apoptosis, and this may potentially induce drug sensitivity.
Collapse
Affiliation(s)
- Mina Zhiani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical SciencesZanjan, Iran
- Student Research Committee, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
| | - Mir Ali Mousavi
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical SciencesZanjan, Iran
- Student Research Committee, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
| | - Kobra Rostamizadeh
- Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Zanjan University of Medical SciencesZanjan, Iran
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical SciencesZanjan, Iran
| | - Reza Pirizadeh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical SciencesZanjan, Iran
- Student Research Committee, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
| | - Abdolreza Osali
- Department of Immunology, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
| | - Afsaneh Mennati
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical SciencesZanjan, Iran
| | - Behrouz Motlagh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
| | - Mojtaba Fathi
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical SciencesZanjan, Iran
| |
Collapse
|
15
|
Nishikawa M, Inoue A, Ohnishi T, Yano H, Kanemura Y, Kohno S, Ohue S, Ozaki S, Matsumoto S, Suehiro S, Nakamura Y, Shigekawa S, Watanabe H, Kitazawa R, Tanaka J, Kunieda T. CD44 expression in the tumor periphery predicts the responsiveness to bevacizumab in the treatment of recurrent glioblastoma. Cancer Med 2021; 10:2013-2025. [PMID: 33543833 PMCID: PMC7957167 DOI: 10.1002/cam4.3767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/30/2020] [Accepted: 12/09/2020] [Indexed: 01/13/2023] Open
Abstract
Antiangiogenic therapy with bevacizumab (Bev), a monoclonal antibody targeting vascular endothelial growth factor (VEGF), is a common treatment for recurrent glioblastoma (GBM), but its survival benefit is limited. Resistance to Bev is thought to be a major cause of ineffectiveness on Bev therapy. To optimize Bev therapy, identification of a predictive biomarker for responsiveness to Bev is required. Based on our previous study, we focused on the expression and functions of CD44 and VEGF in the Bev therapy. Here, we analyze a relationship between CD44 expression and responsiveness to Bev and elucidate the role of CD44 in anti‐VEGF therapy. CD44 and VEGF expression in the tumor core and periphery of 22 GBMs was examined, and the relationship between expression of these molecules and progression‐free time on Bev therapy was analyzed. The degree of CD44 expression in the tumor periphery was evaluated by the ratio of the mRNA expression in the tumor periphery to that in the tumor core (P/C ratio). VEGF expression was evaluated by the amount of the mRNA expression in the tumor periphery. To elucidate the roles of CD44 in the Bev therapy, in vitro and in vivo studies were performed using glioma stem‐like cells (GSCs) and a GSC‐transplanted mouse xenograft model, respectively. GBMs expressing high P/C ratio of CD44 were much more refractory to Bev than those expressing low P/C ratio of CD44, and the survival time of the former was much shorter than that of the latter. In vitro inhibition of VEGF with siRNA or Bev‐activated CD44 expression and increased invasion of GSCs. Bev showed no antitumor effects in mice transplanted with CD44‐overexpressing GSCs. The P/C ratio of CD44 expression may become a useful biomarker predicting responsiveness to Bev in GBM. CD44 reduces the antitumor effect of Bev, resulting in much more highly invasive tumors.
Collapse
Affiliation(s)
- Masahiro Nishikawa
- Department of Neurosurgery, Ehime University School of Medicine, Toon, Japan
| | - Akihiro Inoue
- Department of Neurosurgery, Ehime University School of Medicine, Toon, Japan
| | - Takanori Ohnishi
- Department of Neurosurgery, Washoukai Sadamoto Hospital, Matsuyama, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Ehime University School of Medicine, Toon, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan.,Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Shohei Kohno
- Department of Neurosurgery, Ehime University School of Medicine, Toon, Japan
| | - Shiro Ohue
- Department of Neurosurgery, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Saya Ozaki
- Department of Neurosurgery, Ehime University School of Medicine, Toon, Japan
| | - Shirabe Matsumoto
- Department of Neurosurgery, Ehime University School of Medicine, Toon, Japan
| | - Satoshi Suehiro
- Department of Neurosurgery, Ehime University School of Medicine, Toon, Japan
| | - Yawara Nakamura
- Department of Neurosurgery, Ehime University School of Medicine, Toon, Japan
| | - Seiji Shigekawa
- Department of Neurosurgery, Ehime University School of Medicine, Toon, Japan
| | - Hideaki Watanabe
- Department of Neurosurgery, Ehime University School of Medicine, Toon, Japan
| | - Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital, Toon, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University School of Medicine, Toon, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University School of Medicine, Toon, Japan
| |
Collapse
|
16
|
Patel KS, Kejriwal S, Thammachantha S, Duong C, Murillo A, Gordon LK, Cloughesy TF, Liau L, Yong W, Yang I, Wadehra M. Increased epithelial membrane protein 2 expression in glioblastoma after treatment with bevacizumab. Neurooncol Adv 2020; 2:vdaa112. [PMID: 33063013 PMCID: PMC7542982 DOI: 10.1093/noajnl/vdaa112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Antiangiogenic therapy with bevacizumab has failed to provide substantial gains in overall survival. Epithelial membrane protein 2 (EMP2) is a cell surface protein that has been previously shown to be expressed in glioblastoma, correlate with poor survival, and regulate neoangiogenesis in cell lines. Thus, the relationship between bevacizumab and EMP2 was investigated. Methods Tumor samples were obtained from 12 patients with newly diagnosed glioblastoma at 2 time points: (1) during the initial surgery and (2) during a subsequent surgery following disease recurrence post-bevacizumab treatment. Clinical characteristics and survival data from these patients were collected, and tumor samples were stained for EMP2 expression. The IVY Glioblastoma Atlas Project database was used to evaluate EMP2 expression levels in 270 samples by differing histological areas of the tumor. Results Patients with high EMP2 staining at initial diagnosis had decreased progression-free and overall survival after bevacizumab (median progression-free survival 4.6 months vs 5.9 months; log-rank P = .076 and overall survival 7.7 months vs 14.4 months; log-rank P = .011). There was increased EMP2 staining in samples obtained after bevacizumab treatment in both unpaired (mean H-score 2.31 vs 1.76; P = .006) and paired analyses (mean difference 0.571; P = .019). This expression increase correlated with length of bevacizumab therapy (R 2 = 0.449; Pearson P = .024). Conclusions Bevacizumab treatment increased EMP2 protein expression. This increase in EMP2 correlated with reduced mean survival time post-bevacizumab therapy. We hypothesize a role of EMP2 in clinical bevacizumab resistance and as a potential antiangiogenic therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Kunal S Patel
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, USA
| | - Sameer Kejriwal
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Samasuk Thammachantha
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Courtney Duong
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, USA
| | - Adrian Murillo
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Lynn K Gordon
- Department of Ophthalmology, University of California Los Angeles, Los Angeles, California, USA
| | - Timothy F Cloughesy
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| | - Linda Liau
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| | - William Yong
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Isaac Yang
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
17
|
Fujita M, Sasada M, Iyoda T, Fukai F. Involvement of Integrin-Activating Peptides Derived from Tenascin-C in Cancer Aggression and New Anticancer Strategy Using the Fibronectin-Derived Integrin-Inactivating Peptide. Molecules 2020; 25:E3239. [PMID: 32708610 PMCID: PMC7396993 DOI: 10.3390/molecules25143239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Matricellular proteins, which exist in association with the extracellular matrix (ECM) and ECM protein molecules, harbor functional sites within their molecular structures. These functional sites are released through proteolytic cleavage by inflammatory proteinases, such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), and the peptides containing these functional sites have unique biological activities that are often not detected in the parent molecules. We previously showed that tenascin-C (TNC) and plasma fibronectin (pFN), examples of matricellular proteins, have cryptic bioactive sites that have opposite effects on cell adhesion to the ECM. A peptide containing the bioactive site of TNC, termed TNIIIA2, which is highly released at sites of inflammation and in the tumor microenvironment (TME), has the ability to potently and persistently activate β1-integrins. In the opposite manner, the peptide FNIII14 containing the bioactive site of pFN has the ability to inactivate β1-integrins. This review highlights that peptide TNIIIA2 can act as a procancer factor and peptide FNIII14 can act as an anticancer agent, based on the regulation on β1-integrin activation. Notably, the detrimental effects of TNIIIA2 can be inhibited by FNIII14. These findings open the possibility for new therapeutic strategies based on the inactivation of β1-integrin by FNIII14.
Collapse
Affiliation(s)
- Motomichi Fujita
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.F.); (M.S.)
| | - Manabu Sasada
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.F.); (M.S.)
- Clinical Research Center in Hiroshima, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8551, Japan
| | - Takuya Iyoda
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-Doori, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Fumio Fukai
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.F.); (M.S.)
| |
Collapse
|
18
|
Chandra A, Jahangiri A, Chen W, Nguyen AT, Yagnik G, Pereira MP, Jain S, Garcia JH, Shah SS, Wadhwa H, Joshi RS, Weiss J, Wolf KJ, Lin JMG, Müller S, Rick JW, Diaz AA, Gilbert LA, Kumar S, Aghi MK. Clonal ZEB1-Driven Mesenchymal Transition Promotes Targetable Oncologic Antiangiogenic Therapy Resistance. Cancer Res 2020; 80:1498-1511. [PMID: 32041837 PMCID: PMC7236890 DOI: 10.1158/0008-5472.can-19-1305] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/16/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) responses to bevacizumab are invariably transient with acquired resistance. We profiled paired patient specimens and bevacizumab-resistant xenograft models pre- and post-resistance toward the primary goal of identifying regulators whose targeting could prolong the therapeutic window, and the secondary goal of identifying biomarkers of therapeutic window closure. Bevacizumab-resistant patient specimens and xenografts exhibited decreased vessel density and increased hypoxia versus pre-resistance, suggesting that resistance occurs despite effective therapeutic devascularization. Microarray analysis revealed upregulated mesenchymal genes in resistant tumors correlating with bevacizumab treatment duration and causing three changes enabling resistant tumor growth in hypoxia. First, perivascular invasiveness along remaining blood vessels, which co-opts vessels in a VEGF-independent and neoangiogenesis-independent manner, was upregulated in novel biomimetic 3D bioengineered platforms modeling the bevacizumab-resistant microenvironment. Second, tumor-initiating stem cells housed in the perivascular niche close to remaining blood vessels were enriched. Third, metabolic reprogramming assessed through real-time bioenergetic measurement and metabolomics upregulated glycolysis and suppressed oxidative phosphorylation. Single-cell sequencing of bevacizumab-resistant patient GBMs confirmed upregulated mesenchymal genes, particularly glycoprotein YKL-40 and transcription factor ZEB1, in later clones, implicating these changes as treatment-induced. Serum YKL-40 was elevated in bevacizumab-resistant versus bevacizumab-naïve patients. CRISPR and pharmacologic targeting of ZEB1 with honokiol reversed the mesenchymal gene expression and associated stem cell, invasion, and metabolic changes defining resistance. Honokiol caused greater cell death in bevacizumab-resistant than bevacizumab-responsive tumor cells, with surviving cells losing mesenchymal morphology. Employing YKL-40 as a resistance biomarker and ZEB1 as a target to prevent resistance could fulfill the promise of antiangiogenic therapy. SIGNIFICANCE: Bevacizumab resistance in GBM is associated with mesenchymal/glycolytic shifts involving YKL-40 and ZEB1. Targeting ZEB1 reduces bevacizumab-resistant GBM phenotypes. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/7/1498/F1.large.jpg.
Collapse
Affiliation(s)
- Ankush Chandra
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Arman Jahangiri
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - William Chen
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Alan T Nguyen
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Garima Yagnik
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Matheus P Pereira
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Saket Jain
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Joseph H Garcia
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Sumedh S Shah
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Harsh Wadhwa
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Rushikesh S Joshi
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Jacob Weiss
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Kayla J Wolf
- Department of Bioengineering, University of California Berkeley, Berkeley, California
| | - Jung-Ming G Lin
- Department of Bioengineering, University of California Berkeley, Berkeley, California
| | - Sören Müller
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Jonathan W Rick
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Aaron A Diaz
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Luke A Gilbert
- Department of Urology, University of California San Francisco, San Francisco, California
| | - Sanjay Kumar
- Department of Bioengineering, University of California Berkeley, Berkeley, California
| | - Manish K Aghi
- Department of Neurosurgery, University of California San Francisco, San Francisco, California.
| |
Collapse
|
19
|
Prager BC, Bhargava S, Mahadev V, Hubert CG, Rich JN. Glioblastoma Stem Cells: Driving Resilience through Chaos. Trends Cancer 2020; 6:223-235. [PMID: 32101725 PMCID: PMC8779821 DOI: 10.1016/j.trecan.2020.01.009] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/22/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma is an aggressive and heterogeneous tumor in which glioblastoma stem cells (GSCs) are at the apex of an entropic hierarchy and impart devastating therapy resistance. The high entropy of GSCs is driven by a permissive epigenetic landscape and a mutational landscape that revokes crucial cellular checkpoints. The GSC population encompasses a complex array of diverse microstates that are defined and maintained by a wide variety of attractors including the complex tumor ecosystem and therapeutic intervention. Constant dynamic transcriptional fluctuations result in a highly adaptable and heterogeneous entity primed for therapy evasion and survival. Analyzing the transcriptional, epigenetic, and metabolic landscapes of GSC dynamics in the context of a stochastically fluctuating tumor network will provide novel strategies to target resistant populations of GSCs in glioblastoma.
Collapse
Affiliation(s)
- Briana C Prager
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, 92037, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA; Case Western Reserve University Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Shruti Bhargava
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, 92037, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Vaidehi Mahadev
- Department of Neurosurgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | | | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, 92037, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
Soni H, Bode J, Nguyen CDL, Puccio L, Neßling M, Piro RM, Bub J, Phillips E, Ahrends R, Eipper BA, Tews B, Goidts V. PERK-mediated expression of peptidylglycine α-amidating monooxygenase supports angiogenesis in glioblastoma. Oncogenesis 2020; 9:18. [PMID: 32054826 PMCID: PMC7018722 DOI: 10.1038/s41389-020-0201-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
PKR-like kinase (PERK) plays a significant role in inducing angiogenesis in various cancer types including glioblastoma. By proteomics analysis of the conditioned medium from a glioblastoma cell line treated with a PERK inhibitor, we showed that peptidylglycine α-amidating monooxygenase (PAM) expression is regulated by PERK under hypoxic conditions. Moreover, PERK activation via CCT020312 (a PERK selective activator) increased the cleavage and thus the generation of PAM cleaved cytosolic domain (PAM sfCD) that acts as a signaling molecule from the cytoplasm to the nuclei. PERK was also found to interact with PAM, suggesting a possible involvement in the generation of PAM sfCD. Knockdown of PERK or PAM reduced the formation of tubes by HUVECs in vitro. Furthermore, in vivo data highlighted the importance of PAM in the growth of glioblastoma with reduction of PAM expression in engrafted tumor significantly increasing the survival in mice. In summary, our data revealed PAM as a potential target for antiangiogenic therapy in glioblastoma.
Collapse
Affiliation(s)
- Himanshu Soni
- Brain Tumor Translational Targets, DKFZ Junior Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Bode
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chi D L Nguyen
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Laura Puccio
- Brain Tumor Translational Targets, DKFZ Junior Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michelle Neßling
- Central Unit Electron Microscopy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rosario M Piro
- Institute of Computer Science, Institute of Bioinformatics, Freie Universität Berlin, Berlin, Germany.,Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK) partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas Bub
- Brain Tumor Translational Targets, DKFZ Junior Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Emma Phillips
- Brain Tumor Translational Targets, DKFZ Junior Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany.,Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Wien, Austria
| | | | - Björn Tews
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Violaine Goidts
- Brain Tumor Translational Targets, DKFZ Junior Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
21
|
Long Y, Tao H, Karachi A, Grippin AJ, Jin L, Chang YE, Zhang W, Dyson KA, Hou AY, Na M, Deleyrolle LP, Sayour EJ, Rahman M, Mitchell DA, Lin Z, Huang J. Dysregulation of Glutamate Transport Enhances Treg Function That Promotes VEGF Blockade Resistance in Glioblastoma. Cancer Res 2019; 80:499-509. [PMID: 31723000 DOI: 10.1158/0008-5472.can-19-1577] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/15/2019] [Accepted: 11/08/2019] [Indexed: 11/16/2022]
Abstract
Anti-VEGF therapy prolongs recurrence-free survival in patients with glioblastoma but does not improve overall survival. To address this discrepancy, we investigated immunologic resistance mechanisms to anti-VEGF therapy in glioma models. A screening of immune-associated alterations in tumors after anti-VEGF treatment revealed a dose-dependent upregulation of regulatory T-cell (Treg) signature genes. Enhanced numbers of Tregs were observed in spleens of tumor-bearing mice and later in tumors after anti-VEGF treatment. Elimination of Tregs with CD25 blockade before anti-VEGF treatment restored IFNγ production from CD8+ T cells and improved antitumor response from anti-VEGF therapy. The treated tumors overexpressed the glutamate/cystine antiporter SLC7A11/xCT that led to elevated extracellular glutamate in these tumors. Glutamate promoted Treg proliferation, activation, suppressive function, and metabotropic glutamate receptor 1 (mGlutR1) expression. We propose that VEGF blockade coupled with glioma-derived glutamate induces systemic and intratumoral immunosuppression by promoting Treg overrepresentation and function, which can be pre-emptively overcome through Treg depletion for enhanced antitumor effects. SIGNIFICANCE: Resistance to VEGF therapy in glioblastoma is driven by upregulation of Tregs, combined blockade of VEGF, and Tregs may provide an additive antitumor effect for treating glioblastoma.
Collapse
Affiliation(s)
- Yu Long
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Haipeng Tao
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Aida Karachi
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Adam J Grippin
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Yifan Emily Chang
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Wang Zhang
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Kyle A Dyson
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Alicia Y Hou
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Meng Na
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Loic P Deleyrolle
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| | - Elias J Sayour
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| | - Maryam Rahman
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| | - Zhiguo Lin
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Jianping Huang
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida.
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| |
Collapse
|
22
|
Faltings L, Kulason KO, Patel NV, Wong T, Fralin S, Li M, Schneider JR, Filippi CG, Langer DJ, Ortiz R, Boockvar JA. Rechallenging Recurrent Glioblastoma with Intra-Arterial Bevacizumab with Blood Brain-Barrier Disruption Results in Radiographic Response. World Neurosurg 2019; 131:234-241. [PMID: 31351210 DOI: 10.1016/j.wneu.2019.07.137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND High-dose bevacizumab delivered via super selective intra-arterial cerebral infusion (SIACI) is one promising clinical trial combination for patients with glioblastoma (GBM). Although both continuous intravenous and intra-arterial administration of bevacizumab, and rechallenge with intravenous bevacizumab, have demonstrated improved survival, this is the first description of rechallenging GBM with SIACI of bevacizumab. CASE DESCRIPTION We report a case of a 43-year-old woman with recurrent GBM who had received treatment from 3 clinical trials, including a rechallenge with SIACI of bevacizumab. First, she enrolled into a phase I/II trial for patients newly diagnosed with GBM (NCT01811498) and received 3 doses of SIACI bevacizumab over 180 days in addition to standard of care chemotherapy and radiation. Following progression, as indicated on her magnetic resonance imaging scan, she consented for a separate clinical trial for her disease and received 2 cycles of temozolomide with an investigational agent. The patient was removed from the study on tumor progression. Subsequently, she was rechallenged with SIACI of bevacizumab via a third clinical trial (NCT01269853) and then completed 3 intravenous infusions. After completing the third trial, her magnetic resonance imaging scan demonstrated improvement based on Response Assessment In Neuro-Oncology criteria. CONCLUSIONS This is the first report to highlight the effect of rechallenging a patient with SIACI of bevacizumab following disease progression after initial bevacizumab treatment and subsequent alternate clinical trial failure. There is a need to conduct further clinical trials to evaluate the benefits of rechallenge with SIACI versus intravenous bevacizumab for GBM and further explore theories of bevacizumab resistance.
Collapse
Affiliation(s)
- Lukas Faltings
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, New York, USA
| | - Kay O Kulason
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, New York, USA
| | - Nitesh V Patel
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, New York, USA
| | - Tamika Wong
- Brain Tumor Center, Department of Neurosurgery, Lenox Hill Hospital, New York, New York, USA
| | - Sherese Fralin
- Brain Tumor Center, Department of Neurosurgery, Lenox Hill Hospital, New York, New York, USA
| | - Mona Li
- Brain Tumor Center, Department of Neurosurgery, Lenox Hill Hospital, New York, New York, USA
| | - Julia R Schneider
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, New York, USA
| | - Christopher G Filippi
- Department of Radiology, Division of Neuroradiology, Lenox Hill Hospital, New York, New York, USA; Department of Radiology, Zucker School of Medicine, at Hofstra/Northwell, Manhasset, New York, USA
| | - David J Langer
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, New York, USA; Brain Tumor Center, Department of Neurosurgery, Lenox Hill Hospital, New York, New York, USA
| | - Rafael Ortiz
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, New York, USA; Brain Tumor Center, Department of Neurosurgery, Lenox Hill Hospital, New York, New York, USA
| | - John A Boockvar
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, New York, USA; Brain Tumor Center, Department of Neurosurgery, Lenox Hill Hospital, New York, New York, USA.
| |
Collapse
|
23
|
Cruz da Silva E, Dontenwill M, Choulier L, Lehmann M. Role of Integrins in Resistance to Therapies Targeting Growth Factor Receptors in Cancer. Cancers (Basel) 2019; 11:cancers11050692. [PMID: 31109009 PMCID: PMC6562376 DOI: 10.3390/cancers11050692] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Integrins contribute to cancer progression and aggressiveness by activating intracellular signal transduction pathways and transducing mechanical tension forces. Remarkably, these adhesion receptors share common signaling networks with receptor tyrosine kinases (RTKs) and support their oncogenic activity, thereby promoting cancer cell proliferation, survival and invasion. During the last decade, preclinical studies have revealed that integrins play an important role in resistance to therapies targeting RTKs and their downstream pathways. A remarkable feature of integrins is their wide-ranging interconnection with RTKs, which helps cancer cells to adapt and better survive therapeutic treatments. In this context, we should consider not only the integrins expressed in cancer cells but also those expressed in stromal cells, since these can mechanically increase the rigidity of the tumor microenvironment and confer resistance to treatment. This review presents some of these mechanisms and outlines new treatment options for improving the efficacy of therapies targeting RTK signaling.
Collapse
Affiliation(s)
- Elisabete Cruz da Silva
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Monique Dontenwill
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Laurence Choulier
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Maxime Lehmann
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| |
Collapse
|
24
|
Tomita Y, Kurozumi K, Yoo JY, Fujii K, Ichikawa T, Matsumoto Y, Uneda A, Hattori Y, Shimizu T, Otani Y, Oka T, Kaur B, Date I. Oncolytic Herpes Virus Armed with Vasculostatin in Combination with Bevacizumab Abrogates Glioma Invasion via the CCN1 and AKT Signaling Pathways. Mol Cancer Ther 2019; 18:1418-1429. [PMID: 31092561 DOI: 10.1158/1535-7163.mct-18-0799] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/30/2019] [Accepted: 05/10/2019] [Indexed: 11/16/2022]
Abstract
Anti-VEGF treatments such as bevacizumab have demonstrated convincing therapeutic advantage in patients with glioblastoma. However, bevacizumab has also been reported to induce invasiveness of glioma. In this study, we examined the effects of rapid antiangiogenesis mediated by oncolytic virus (RAMBO), an oncolytic herpes simplex virus-1 expressing vasculostatin, on bevacizumab-induced glioma invasion. The effect of the combination of RAMBO and bevacizumab in vitro was assessed by cytotoxicity, migration, and invasion assays. For in vivo experiments, glioma cells were stereotactically inoculated into the brain of mice. RAMBO was intratumorally injected 7 days after tumor inoculation, and bevacizumab was administered intraperitoneally twice a week. RAMBO significantly decreased both the migration and invasion of glioma cells treated with bevacizumab. In mice treated with bevacizumab and RAMBO combination, the survival time was significantly longer and the depth of tumor invasion was significantly smaller than those treated with bevacizumab monotherapy. Interestingly, RAMBO decreased the expression of cysteine-rich protein 61 and phosphorylation of AKT, which were increased by bevacizumab. These results suggest that RAMBO suppresses bevacizumab-induced glioma invasion, which could be a promising approach to glioma therapy.
Collapse
Affiliation(s)
- Yusuke Tomita
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Kurozumi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Ji Young Yoo
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Kentaro Fujii
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomotsugu Ichikawa
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuji Matsumoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atsuhito Uneda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuhiko Hattori
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshihiko Shimizu
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiro Otani
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Tetsuo Oka
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Balveen Kaur
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
25
|
Yao L, Zhang Z. The reversal of MRP1 expression induced by low-frequency and low-intensity ultrasound and curcumin mediated by VEGF in brain glioma. Onco Targets Ther 2019; 12:3581-3593. [PMID: 31190861 PMCID: PMC6526172 DOI: 10.2147/ott.s195205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose: To explore the effect of curcumin and low-frequency and low-intensity ultrasound (LFLIU) on C6 and U87 cell, and whether LFLIU could inhibit multidrug resistance protein 1 (MRP1) by increasing the sensitivity of curcumin via vascular epithelial growth factor (VEGF)/PI3K/Akt signaling pathway targeting. Methods: C6 and U87 cells were treated with various doses of curcumin and/or different intensities of LFLIU for 60 s. After 24 hrs, the effects of curcumin and/or LFLIU on the proliferation of C6 and U87 cells were examined. Real-time PCR and western blot analysis were used to detect the expression of VEGF and MRP1 at both mRNA and protein levels. The expression of MRP1 in C6 and U87 cells was also determined following stimulation with recombinant human VEGF and/or LY294002. Results: Curcumin and LFLIU inhibited the proliferation of glioma cells in an intensity- or dose-dependent manner. Furthermore, survivin was significant after combined treatment compares with that of curcumin or LFLIU treatment alone. VEGF and MRP1 were highly expressed in C6 and U87 cells, curcumin and LFLIU alone or in combination could decrease the expression of both VEGF and MRP1. MRP1 expression was down-regulated following LY294002 treatment, which blocked after exposure to VEGF. Conclusion: The synergistic effects, such as a higher inhibition rate, and lower expressions of MRP1 and VEGF, of combined curcumin and LFLIU against glioma was much better than that of a single treatment. The down-regulation of MRP1 may be related with the VEGF/PI3K/Akt pathway in glioma.
Collapse
Affiliation(s)
- Lei Yao
- Department of ultrasound, First Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, People's Republic of China
| | - Zhen Zhang
- Department of ultrasound, First Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, People's Republic of China
| |
Collapse
|
26
|
Chen X, Pan C, Xu C, Sun Y, Geng Y, Kong L, Xiao X, Zhao Z, Zhou W, Huang L, Song Y, Zhang L. Identification of survival‑associated key genes and long non‑coding RNAs in glioblastoma multiforme by weighted gene co‑expression network analysis. Int J Mol Med 2019; 43:1709-1722. [PMID: 30816427 PMCID: PMC6414176 DOI: 10.3892/ijmm.2019.4101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/14/2019] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary malignant brain tumour. However, the causes of GBM are not clear, and the prognosis remains poor. The aim of the present study was to elucidate the key coding genes and long non‑coding RNAs (lncRNAs) associated with the survival time of GBM patients by obtaining the RNA expression profiles from the Chinese Glioma Genome Atlas database and conducting weighted gene co‑expression network analysis. Modules associated with overall survival (OS) were identified, and Gene Ontology and pathway enrichment analyses were performed. The hub genes of these modules were validated via survival analysis, while the biological functions of crucial lncRNAs were also analysed in the publicly available data. The results identified a survival‑associated module with 195 key genes. Among them, 33 key genes were demonstrated to be associated with OS, and the majority of these were involved in extracellular matrix‑associated and tyrosine kinase receptor signalling pathways. Furthermore, LOC541471 was identified as an OS‑associated lncRNA, and was reported to be involved in the oxidative phosphorylation of GBM with pleckstrin‑2. These findings may significantly enhance our understanding on the aetiology and underlying molecular events of GBM, while the identified candidate genes may serve as novel prognostic markers and potential therapeutic targets for GBM.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Changcun Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Cheng Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yu Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yibo Geng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Lu Kong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xiong Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wei Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Lijie Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
27
|
Nowosielski M, Ellingson BM, Chinot OL, Garcia J, Revil C, Radbruch A, Nishikawa R, Mason WP, Henriksson R, Saran F, Kickingereder P, Platten M, Sandmann T, Abrey LE, Cloughesy TF, Bendszus M, Wick W. Radiologic progression of glioblastoma under therapy-an exploratory analysis of AVAglio. Neuro Oncol 2019; 20:557-566. [PMID: 29016943 DOI: 10.1093/neuonc/nox162] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background In this exploratory analysis of AVAglio, a randomized phase III clinical study that investigated the addition of bevacizumab (Bev) to radiotherapy/temozolomide in newly diagnosed glioblastoma, we aim to radiologically characterize glioblastoma on therapy until progression and investigate whether the type of radiologic progression differs between treatment arms and is related to survival and molecular data. Methods Five progression types (PTs) were categorized using an adapted algorithm according to MRI contrast enhancement behavior in T1- and T2-weighted images in 621 patients (Bev, n = 299; placebo, n = 322). Frequencies of PTs (designated as classic T1, cT1 relapse, T2 diffuse, T2 circumscribed, and primary nonresponder), time to progression (PFS), and overall survival (OS) were assessed within each treatment arm and compared with molecular subtypes and O6-methylguanine DNA methyltransferase (MGMT) promoter methylation status. Results PT frequencies differed between the Bev and placebo arms, except for "T2 diffuse" (12.4% and 7.1%, respectively). PTs showed differences in PFS and OS; with "T2 diffuse" being associated with longest survival. Complete disappearance of contrast enhancement during treatment ("cT1 relapse") showed longer survival than only partial contrast enhancement decrease ("classic T1"). "T2 diffuse" was more commonly MGMT hypermethylated. Only weak correlations to molecular subtypes from primary tissue were detected. Conclusions Progression of glioblastoma under therapy can be characterized radiologically. These radiologic phenotypes are influenced by treatment and develop differently over time with differential outcomes. Complete resolution of contrast enhancement during treatment is a favorable factor for outcome.
Collapse
Affiliation(s)
- Martha Nowosielski
- Medical University Innsbruck, Department of Neurology, Innsbruck, Austria.,University Medical Center, Neurology, and Neurooncology, German Cancer Research Center and the German Cancer Consortium, Heidelberg, Germany
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory and Neuro-Oncology Program, Los Angeles, California, USA
| | - Olivier L Chinot
- Aix-Marseille University, AP-HM, Service de Neuro-Oncologie, CHU Timone, Marseille, France
| | | | | | | | | | | | - Roger Henriksson
- Regional Cancer Center Stockholm and Umeå University, Stockholm and Umeå, Sweden
| | - Frank Saran
- The Royal Marsden NHS Foundation Trust, Surrey, UK
| | | | - Michael Platten
- University Medical Center, Neurology, and Neurooncology, German Cancer Research Center and the German Cancer Consortium, Heidelberg, Germany.,Neurology University Clinic, Mannheim, Germany
| | | | - Lauren E Abrey
- University Medical Center, Neuroradiology, Heidelberg, Germany
| | - Timothy F Cloughesy
- UCLA Brain Tumor Imaging Laboratory and Neuro-Oncology Program, Los Angeles, California, USA
| | - Martin Bendszus
- University Medical Center, Neuroradiology, Heidelberg, Germany
| | - Wolfgang Wick
- University Medical Center, Neurology, and Neurooncology, German Cancer Research Center and the German Cancer Consortium, Heidelberg, Germany
| |
Collapse
|
28
|
EL-Hajjar L, Jalaleddine N, Shaito A, Zibara K, Kazan JM, El-Saghir J, El-Sabban M. Bevacizumab induces inflammation in MDA-MB-231 breast cancer cell line and in a mouse model. Cell Signal 2019; 53:400-412. [DOI: 10.1016/j.cellsig.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
|
29
|
Falchetti ML, D'Alessandris QG, Pacioni S, Buccarelli M, Morgante L, Giannetti S, Lulli V, Martini M, Larocca LM, Vakana E, Stancato L, Ricci-Vitiani L, Pallini R. Glioblastoma endothelium drives bevacizumab-induced infiltrative growth via modulation of PLXDC1. Int J Cancer 2018; 144:1331-1344. [PMID: 30414187 PMCID: PMC6590500 DOI: 10.1002/ijc.31983] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/10/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022]
Abstract
Bevacizumab, a VEGF‐targeting monoclonal antibody, may trigger an infiltrative growth pattern in glioblastoma. We investigated this pattern using both a human specimen and rat models. In the human specimen, a substantial fraction of infiltrating tumor cells were located along perivascular spaces in close relationship with endothelial cells. Brain xenografts of U87MG cells treated with bevacizumab were smaller than controls (p = 0.0055; Student t‐test), however, bands of tumor cells spread through the brain farther than controls (p < 0.001; Student t‐test). Infiltrating tumor Cells exhibited tropism for vascular structures and propensity to form tubules and niches with endothelial cells. Molecularly, bevacizumab triggered an epithelial to mesenchymal transition with over‐expression of the receptor Plexin Domain Containing 1 (PLXDC1). These results were validated using brain xenografts of patient‐derived glioma stem‐like cells. Enforced expression of PLXDC1 in U87MG cells promoted brain infiltration along perivascular spaces. Importantly, PLXDC1 inhibition prevented perivascular infiltration and significantly increased the survival of bevacizumab‐treated rats. Our study indicates that bevacizumab‐induced brain infiltration is driven by vascular endothelium and depends on PLXDC1 activation of tumor cells. What's new? Bevacizumab, a VEGF‐targeting monoclonal antibody, has been observed to trigger an infiltrative growth pattern in glioblastoma as an escape mechanism. The mechanisms underlying this gliomatosis‐like growth pattern, however, remain unclear. Here, the authors found that the infiltrative growth pattern occurs mostly along perivascular spaces and relies on the over‐expression of PLXDC1 by tumor cells and on the restoration of the endothelial component of blood brain barrier. Altogether, the data show that the brain infiltration induced by bevacizumab is mainly driven by the vascular endothelium. Importantly, inhibition of PLXDC1 prevents bevacizumab‐induced infiltrative growth, resulting in significant increase of survival.
Collapse
Affiliation(s)
| | - Quintino Giorgio D'Alessandris
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simone Pacioni
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Liliana Morgante
- Institute of Anatomy and Cell Biology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Giannetti
- Institute of Anatomy and Cell Biology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Lulli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Martini
- Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luigi Maria Larocca
- Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eliza Vakana
- Discovery Research, Eli Lilly and Company, Indianapolis, IN
| | - Louis Stancato
- Discovery Research, Eli Lilly and Company, Indianapolis, IN
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Pallini
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
30
|
Brenner A, Zuniga R, Sun JD, Floyd J, Hart CP, Kroll S, Fichtel L, Cavazos D, Caflisch L, Gruslova A, Huang S, Liu Y, Lodi A, Tiziani S. Hypoxia-activated evofosfamide for treatment of recurrent bevacizumab-refractory glioblastoma: a phase I surgical study. Neuro Oncol 2018; 20:1231-1239. [PMID: 29415215 PMCID: PMC6071657 DOI: 10.1093/neuonc/noy015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Background Anti-angiogenic therapy is known to induce a greater degree of hypoxia, including in glioblastoma (GBM). Evofosfamide (Evo) is a hypoxia-activated prodrug which is reduced, leading to the release of the alkylating agent bromo-isophosphoramide mustard. We assessed the safety, tolerability, preliminary efficacy, and biomarkers of Evo plus bevacizumab (Bev) in Bev-refractory GBM. Methods Twenty-eight patients with Bev-refractory GBM were enrolled in a dose escalation study receiving from 240 mg/m2 (cohort 1) to 670 mg/m2 (cohort 4) of Evo every 2 weeks in combination with Bev. Patients deemed surgical candidates underwent a single dose of Evo or placebo with pimonidazole immediately prior to surgery for biomarker evaluation, followed by dose escalation upon recovery. Assessments included adverse events, response, and survival. Results Evo plus Bev was well tolerated up to and including the maximum dose of 670 mg/m2, which was determined to be the recommended phase II dose. Overall response rate was 17.4%, with disease control (complete response, partial response, and stable disease) observed in 14 (60.9%) of the 23 patients. The ratio of enhancement to non-enhancement was significant on log-rank analysis with time to progression (P = 0.023), with patients having a ratio of less than 0.37 showing a median progression-free survival of 98 days versus 56 days for those with more enhancement. Conclusions Evo plus Bev was well tolerated in patients with Bev-refractory GBM, with preliminary evidence of activity that merits further investigation.
Collapse
Affiliation(s)
- Andrew Brenner
- University of Texas Health San Antonio Cancer Center, San Antonio, Texas
- University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas
| | - Richard Zuniga
- University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas
| | - Jessica D Sun
- Threshold Pharmaceuticals, South San Francisco, California
| | - John Floyd
- University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas
| | - Charles P Hart
- Threshold Pharmaceuticals, South San Francisco, California
| | - Stew Kroll
- University of Texas Health San Antonio Cancer Center, San Antonio, Texas
| | - Lisa Fichtel
- South Texas Oncology and Hematology, San Antonio, Texas
| | - David Cavazos
- University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas
| | - Laura Caflisch
- University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas
| | - Aleksandra Gruslova
- University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas
| | - Shiliang Huang
- University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas
| | - Yichu Liu
- University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas
| | | | | |
Collapse
|
31
|
Otani Y, Ichikawa T, Uneda A, Kurozumi K, Ishida J, Date I. Comparative Histologic and Molecular Analysis of 2 Recurrent Lesions Showing Different Magnetic Resonance Imaging Responses After Bevacizumab Treatment: Report of a Case of Anaplastic Astrocytoma. World Neurosurg 2018; 116:464-471.e1. [PMID: 29772361 DOI: 10.1016/j.wneu.2018.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND We report the case of a patient with anaplastic astrocytoma whose 2 recurrent lesions showed different imaging responses from one another after bevacizumab treatment. Histologic and genetic features of this patient are also described. CASE DESCRIPTION A 31-year-old patient with left temporal anaplastic astrocytoma had surgery, local radiotherapy, and chemotherapy. Recurrent lesions appeared in the cerebellar vermis and left cerebellar hemisphere, and the patient was started on biweekly bevacizumab. Subsequently, the 2 enhanced lesions showed different response patterns on magnetic resonance imaging. Although the lesion in the cerebellar vermis showed an enlargement of enhancing mass, the lesion in the left cerebellar hemisphere showed disappearance of enhancement. We resected the cerebellar vermis lesion and performed biopsy on the cerebellar hemisphere lesion. The specimens were investigated. Both recurrent lesions showed higher Ki-67 labeling indices and pericyte proliferation, and less angiogenesis compared with the initial specimen. Transmission electron microscopy showed a reduction in the distance between the endothelial cells and tumor cells in both recurrent lesions, compared with the initial lesion. However, the tight junctions in the vermian lesion were still disrupted compared with the initial lesion and the cerebellar hemispheric lesion. Genetic analysis of the initial specimen showed proneural signature; however, the recurrent vermian lesion exhibited decreased expression of proneural markers. CONCLUSIONS We report a case of anaplastic astrocytoma with 2 different imaging responses to bevacizumab. Our analysis suggests that differences in tight junctions possibly contributed to the changes on magnetic resonance imaging observed after bevacizumab treatment.
Collapse
Affiliation(s)
- Yoshihiro Otani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomotsugu Ichikawa
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Atsuhito Uneda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Kurozumi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Joji Ishida
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
32
|
Itatani Y, Kawada K, Yamamoto T, Sakai Y. Resistance to Anti-Angiogenic Therapy in Cancer-Alterations to Anti-VEGF Pathway. Int J Mol Sci 2018; 19:ijms19041232. [PMID: 29670046 PMCID: PMC5979390 DOI: 10.3390/ijms19041232] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 02/06/2023] Open
Abstract
Anti-angiogenic therapy is one of the promising strategies for many types of solid cancers. Bevacizumab (Avastin), a recombinant humanized monoclonal antibody of vascular endothelial growth factor (VEGF) A, was approved for the first time as an anti-angiogenic drug for the treatment of metastatic colorectal cancer (CRC) by the Food and Drug Administration (FDA) in 2004. In addition, the other VEGF pathway inhibitors including small molecule tyrosine kinase inhibitors (sunitinib, sorafenib, and pazopanib), a soluble VEGF decoy receptor (aflibercept), and a humanized monoclonal antibody of VEGF receptor 2 (VEGFR2) (ramucirumab) have been approved for cancer therapy. Although many types of VEGF pathway inhibitors can improve survival in most cancer patients, some patients have little or no beneficial effect from them. The primary or acquired resistance towards many oncological drugs, including anti-VEGF inhibitors, is a common problem in cancer treatment. This review summarizes the proposed alternative mechanisms of angiogenesis other than the VEGF pathway. These mechanisms are involved in the development of resistance to anti-VEGF therapies in cancer patients.
Collapse
Affiliation(s)
- Yoshiro Itatani
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| | - Takamasa Yamamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
- Moores Cancer Center, University of California San Diego, San Diego, CA 92093, USA.
| | - Yoshiharu Sakai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
33
|
Overexpression of PLOD3 promotes tumor progression and poor prognosis in gliomas. Oncotarget 2018; 9:15705-15720. [PMID: 29644003 PMCID: PMC5884658 DOI: 10.18632/oncotarget.24594] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/21/2018] [Indexed: 11/25/2022] Open
Abstract
High-grade gliomas are the most threatening brain tumors due to aggressive proliferation and poor prognosis. Thus, utilizing genetic glioma biomarkers to forecast prognosis and guide clinical management is crucial. Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3) modulates cancer progression and metastasis. However, its detailed function in cancer remains largely uninvestigated. PLOD3 expression was evaluated with real-time PCR in glioblastoma (GBM) cell lines and by Gene Expression Omnibus dataset analysis and immunohistochemistry of glioma tissues. We investigated the clinical use of PLOD3 for determining glioma prognosis. The biological roles of PLOD3 in proliferation, migration and invasion of GBM cells were studied both in vitro with wound-healing and transwell assays and in vivo using an orthotopic xenograft mouse model. Hypoxia and western blotting were applied to discover the molecular mechanisms underlying PLOD3 functions. PLOD3 mRNA and protein expression were upregulated in glioma tissues compared to normal brain tissues. PLOD3 overexpression was correlated with negative survival in glioma patients. PLOD3 silencing suppressed cell proliferation and induced G1 phase arrest through p53-independent regulation of the p21 pathway. Inhibition of PLOD3 in glioma cells decreased VEGF expression, migration and invasion by downregulating mesenchymal markers, including Snail and Twist. Notably, knockdown of PLOD3 inhibited HIF-1α accumulation via the ERK signaling pathway under hypoxia. Taken together, these discoveries reveal that PLOD3 is a potential therapeutic target in human gliomas.
Collapse
|
34
|
Ulivi P, Marisi G, Passardi A. Relationship between hypoxia and response to antiangiogenic therapy in metastatic colorectal cancer. Oncotarget 2018; 7:46678-46691. [PMID: 27081084 PMCID: PMC5216829 DOI: 10.18632/oncotarget.8712] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/31/2016] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer remains a major public health problem worldwide. Despite the introduction of antiangiogenic drugs for the treatment of metastatic disease, a large number of issues remains unresolved. In particular, studies on predictive biomarkers of response and pathways of resistance to these agents are lacking, making it difficult to accurately select candidates for treatment. Hypoxia is the prime driving force for tumor angiogenesis and a vicious cycle between hypoxia and angiogenesis can be observed in tumors. Anti-angiogenic drugs act inhibiting tumor vasculature and, as consequence, inducing hypoxia. However, hypoxia could, in turn, induce an increase of metastatic potential of cells and a series of phenomena that could induce drug resistance. In the present review biological mechanisms of hypoxia and its relation with angiogenesis, and resistance to antiangiogenic therapy will be discussed. Moreover, data from clinical trials on antiangiogenic drugs in metastatic colorectal cancer will be reviewed, and the role of hypoxia in monitoring the response to treatment will be analysed. Combination strategies using anti-angiogenic and hypoxia inhibiting drugs are also discussed as they constitute promising field of research.
Collapse
Affiliation(s)
- Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giorgia Marisi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Alessandro Passardi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
35
|
Histopathological investigation of glioblastomas resected under bevacizumab treatment. Oncotarget 2018; 7:52423-52435. [PMID: 27244880 PMCID: PMC5239563 DOI: 10.18632/oncotarget.9387] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/09/2016] [Indexed: 12/20/2022] Open
Abstract
To date, no clinical observations have been reported for histopathological changes in human gliomas under antiangiogenic treatment. We collected six glioblastomas resected under bevacizumab treatment. Histopathological investigation was performed by hematoxilyn-eosin staining and immunohistochemistry for CD34, VEGF, VEGFR1/2, HIF-1α, CA9, and nestin as compared to eleven control glioblastomas to assess the differences in histological features, microvessel density, expression of VEGF and its receptors, tumor oxygenation, and status of glioma stem-like cells. In the six tumors resected under bevacizumab, microvascular proliferation was absent, and microvessel density had significantly decreased compared with that of the controls. The expressions of VEGF and its receptors were downregulated in two cases of partial response. HIF-1α or CA9 expression was decreased in five of the six tumors, whereas the decreased expression of these markers was noted in only one of the 11 control glioblastomas. The expression of nestin significantly decreased in the six tumors compared with that of the controls, with the remaining nestin-positive cells being relatively concentrated around vessels. We provide the first clinicopathological evidence that antiangiogenic therapy induces the apparent normalization of vascular structure, decrease of microvessel density, and improvement of tumor oxygenation in glioblastomas. These in situ observations will help to optimize therapy.
Collapse
|
36
|
Eriksson JA, Wanka C, Burger MC, Urban H, Hartel I, von Renesse J, Harter PN, Mittelbronn M, Steinbach JP, Rieger J. Suppression of oxidative phosphorylation confers resistance against bevacizumab in experimental glioma. J Neurochem 2018; 144:421-430. [DOI: 10.1111/jnc.14264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Jule A. Eriksson
- Dr Senckenberg Institute of Neurooncology; Goethe University; Frankfurt Germany
- Department of Neurology; University Hospital Basel; Switzerland
| | - Christina Wanka
- Dr Senckenberg Institute of Neurooncology; Goethe University; Frankfurt Germany
| | - Michael C. Burger
- Dr Senckenberg Institute of Neurooncology; Goethe University; Frankfurt Germany
| | - Hans Urban
- Dr Senckenberg Institute of Neurooncology; Goethe University; Frankfurt Germany
| | - Ines Hartel
- Dr Senckenberg Institute of Neurooncology; Goethe University; Frankfurt Germany
| | | | | | - Michel Mittelbronn
- Edinger Institute; Goethe University; Frankfurt Germany
- Luxembourg Centre of Neuropathology Dudelange; Luxembourg
| | | | - Johannes Rieger
- Dr Senckenberg Institute of Neurooncology; Goethe University; Frankfurt Germany
- Department of Neurology; Hertie Institute for Clinical Brain Research; University Hospital Tuebingen; Germany
| |
Collapse
|
37
|
|
38
|
Sharma S, Mann AP, Mölder T, Kotamraju VR, Mattrey R, Teesalu T, Ruoslahti E. Vascular changes in tumors resistant to a vascular disrupting nanoparticle treatment. J Control Release 2017; 268:49-56. [PMID: 29030222 PMCID: PMC5819600 DOI: 10.1016/j.jconrel.2017.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/27/2017] [Accepted: 10/06/2017] [Indexed: 12/11/2022]
Abstract
Anti-angiogenic and vascular disrupting therapies rely on the dependence of tumors on new blood vessels to sustain tumor growth. We previously reported a potent vascular disrupting agent, a theranostic nanosystem consisting of a tumor vasculature-homing peptide (CGKRK) fused to a pro-apoptotic peptide [D(KLAKLAK)2] coated on iron oxide nanoparticles. This nanosystem showed promising therapeutic efficacy in glioblastoma (GBM) and breast cancer models. However, complete control of the tumors was not achieved, and some tumors became non-responsive to the treatment. Here we examined the non-responder phenomenon in an aggressive MCF10-CA1a breast tumor model. In the treatment-resistant tumors we noted the emergence of CD31-negative patent neovessels and a concomitant loss of tumor homing of the nanosystem. In vivo phage library screening in mice bearing non-responder tumors showed that compared to untreated and treatment-sensitive tumors, treatment sensitive tumors yield a distinct landscape of vascular homing peptides characterized by over-representation of peptides that target αv integrins. Our approach may be generally applicable to the development of targeted therapies for tumors that have failed treatment.
Collapse
Affiliation(s)
- Shweta Sharma
- Sanford-Burnham-Prebys Medical Discovery Institute, Cancer Research Center, La Jolla, CA, USA
| | - Aman P Mann
- Sanford-Burnham-Prebys Medical Discovery Institute, Cancer Research Center, La Jolla, CA, USA
| | - Tarmo Mölder
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Venkata Ramana Kotamraju
- Sanford-Burnham-Prebys Medical Discovery Institute, Cancer Research Center, La Jolla, CA, USA; Center for Nanomedicine and the Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Robert Mattrey
- Radiology, Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tambet Teesalu
- Sanford-Burnham-Prebys Medical Discovery Institute, Cancer Research Center, La Jolla, CA, USA; Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia; Center for Nanomedicine and the Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Erkki Ruoslahti
- Sanford-Burnham-Prebys Medical Discovery Institute, Cancer Research Center, La Jolla, CA, USA; Center for Nanomedicine and the Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
39
|
Tamura R, Ohara K, Sasaki H, Morimoto Y, Yoshida K, Toda M. Histopathological vascular investigation of the peritumoral brain zone of glioblastomas. J Neurooncol 2017; 136:233-241. [PMID: 29188530 DOI: 10.1007/s11060-017-2648-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/22/2017] [Indexed: 11/28/2022]
Abstract
To date, no histopathological vascular investigation focusing on peritumoral brain zone (PBZ) has been reported for glioblastoma. We analyzed 10 newly diagnosed cases of glioblastomas. For these PBZs, histopathological investigation was performed by hematoxylin-eosin (H&E) staining and immunohistochemistry was analyzed for CD31, CD34, Factor VIII, VEGF, VEGFR-1/2, Ki67, p53 and nestin. Although it was difficult to identify PBZ by H&E, Ki67 and p53 staining, there were apparent differences in nestin staining among PBZ, tumor core (TC), and normal zone (NZ). Therefore, in this study, we divided PBZ from TC and NZ by nestin staining. Differences in histological features, microvessel density, expression of VEGF and its receptors were assessed for PBZ, TC and NZ. The microvessel density, as determined by counting CD31, CD34 and VEGF receptors, and VEGF-A expression were lower in PBZ than TC. The expression patterns for CD31, CD34 and VEGF receptors in vessels show dissociation in PBZ. In addition, the vascular characteristics of the PBZ may correlate with findings of radiographic imaging. We provide the first clinicopathological evidence that PBZ exhibits unique angiogenic characteristics. These in situ observations will help to elucidate the mechanisms of tumor recurrence.
Collapse
Affiliation(s)
- Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kentaro Ohara
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yukina Morimoto
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
40
|
Casillas AL, Toth RK, Sainz AG, Singh N, Desai AA, Kraft AS, Warfel NA. Hypoxia-Inducible PIM Kinase Expression Promotes Resistance to Antiangiogenic Agents. Clin Cancer Res 2017; 24:169-180. [PMID: 29084916 DOI: 10.1158/1078-0432.ccr-17-1318] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/22/2017] [Accepted: 10/19/2017] [Indexed: 01/06/2023]
Abstract
Purpose: Patients develop resistance to antiangiogenic drugs, secondary to changes in the tumor microenvironment, including hypoxia. PIM kinases are prosurvival kinases and their expression increases in hypoxia. The goal of this study was to determine whether targeting hypoxia-induced PIM kinase expression is effective in combination with VEGF-targeting agents. The rationale for this therapeutic approach is based on the fact that antiangiogenic drugs can make tumors hypoxic, and thus more sensitive to PIM inhibitors.Experimental Design: Xenograft and orthotopic models of prostate and colon cancer were used to assess the effect of PIM activation on the efficacy of VEGF-targeting agents. IHC and in vivo imaging were used to analyze angiogenesis, apoptosis, proliferation, and metastasis. Biochemical studies were performed to characterize the novel signaling pathway linking PIM and HIF1.Results: PIM was upregulated following treatment with anti-VEGF therapies, and PIM1 overexpression reduced the ability of these drugs to disrupt vasculature and block tumor growth. PIM inhibitors reduced HIF1 activity, opposing the shift to a pro-angiogenic gene signature associated with hypoxia. Combined inhibition of PIM and VEGF produced a synergistic antitumor response characterized by decreased proliferation, reduced tumor vasculature, and decreased metastasis.Conclusions: This study describes PIM kinase expression as a novel mechanism of resistance to antiangiogenic agents. Our data provide justification for combining PIM and VEGF inhibitors to treat solid tumors. The unique ability of PIM inhibitors to concomitantly target HIF1 and selectively kill hypoxic tumor cells addresses two major components of tumor progression and therapeutic resistance. Clin Cancer Res; 24(1); 169-80. ©2017 AACR.
Collapse
Affiliation(s)
- Andrea L Casillas
- Department of Cancer Biology, University of Arizona, Tucson, Arizona
| | - Rachel K Toth
- University of Arizona Cancer Center, Tucson, Arizona
| | - Alva G Sainz
- Biological and Biomedical Sciences graduate program, Yale University, New Haven, Connecticut
| | - Neha Singh
- University of Arizona Cancer Center, Tucson, Arizona
| | - Ankit A Desai
- Department of Medicine, University of Arizona, Tucson, Arizona
| | - Andrew S Kraft
- University of Arizona Cancer Center, Tucson, Arizona.,Department of Medicine, University of Arizona, Tucson, Arizona
| | - Noel A Warfel
- University of Arizona Cancer Center, Tucson, Arizona. .,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
41
|
Yamamoto Y, Tamura R, Tanaka T, Ohara K, Tokuda Y, Miyake K, Takei J, Akasaki Y, Yoshida K, Murayama Y, Sasaki H. "Paradoxical" findings of tumor vascularity and oxygenation in recurrent glioblastomas refractory to bevacizumab. Oncotarget 2017; 8:103890-103899. [PMID: 29262608 PMCID: PMC5732774 DOI: 10.18632/oncotarget.21978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 10/17/2017] [Indexed: 11/25/2022] Open
Abstract
Anti-angiogenic therapy induces the apparent normalization of vascular structure, decreases microvessel density (MVD), and improves tumor oxygenation in glioblastomas (GBMs). Six initial and recurrent tumor pairs after bevacizumab (Bev) treatment were compared with GBMs from nine patients resected under neoadjuvant Bev treatment with regard to histological characteristics; MVD; MIB-1 index; and expression of vascular endothelial growth factor (VEGF) and its receptors, hypoxia markers (hypoxia-inducible factor 1 alpha, carbonic anhydrase 9), and nestin as a marker of glioma stem-like cells. In recurrent tumors post-Bev treatment, while the MVD remained low compared with the paired initial tumors (pre-Bev tumors), the expression of hypoxic markers were increased and were even higher in expression compared with the paired pre-Bev tumors in three of the six cases. MIB-1 indices were similar among the initial GBMs, neoadjuvant group, and recurrent tumors post-Bev treatment. The nestin-positive cell ratio of the post-Bev recurrent tumors was as high as that of the pre-Bev tumors. The expression of VEGF and VEGFR1 was increased in the post-Bev recurrent tumors in three and four cases, respectively, compared with the paired pre-Bev tumors. In the majority of Bev-refractory GBMs, tumor hypoxia was present with a paradoxical decrease in MVD. These findings suggest that re-activation of tumor angiogenesis is not initially involved in the acquisition of resistance to Bev.
Collapse
Affiliation(s)
- Yohei Yamamoto
- Department of Neurosurgery, Jikei University School of Medicine Kashiwa Hospital, Kashiwa-shi, Chiba 277-8567, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshihide Tanaka
- Department of Neurosurgery, Jikei University School of Medicine Kashiwa Hospital, Kashiwa-shi, Chiba 277-8567, Japan
| | - Kentaro Ohara
- Division of Diagnostic Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yukina Tokuda
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Keisuke Miyake
- Department of Neurosurgery, Kagawa University Hospital, Kita-gun, Kagawa 761-0793, Japan
| | - Jun Takei
- Department of Neurosurgery, Jikei University School of Medicine Kashiwa Hospital, Kashiwa-shi, Chiba 277-8567, Japan
| | - Yasuharu Akasaki
- Department of Neurosurgery, Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuichi Murayama
- Department of Neurosurgery, Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
42
|
Otani Y, Ichikawa T, Kurozumi K, Inoue S, Ishida J, Oka T, Shimizu T, Tomita Y, Hattori Y, Uneda A, Matsumoto Y, Michiue H, Date I. Fibroblast growth factor 13 regulates glioma cell invasion and is important for bevacizumab-induced glioma invasion. Oncogene 2017; 37:777-786. [PMID: 29059154 DOI: 10.1038/onc.2017.373] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022]
Abstract
Glioblastoma has the poorest prognosis, and is characterized by excessive invasion and angiogenesis. To determine the invasive mechanisms, we previously used two glioma cell lines (J3T-1 and J3T-2) with different invasive phenotypes. The J3T-1 showed abundant angiogenesis and tumor cell invasion around neovasculature, while J3T-2 showed diffuse cell infiltration into surrounding healthy parenchyma. Microarray analyses were used to identify invasion-related genes in J3T-2 cells, and the expressed genes and their intracellular and intratumoral distribution patterns were evaluated in J3T-2 cell lines, human glioma cell lines, human glioblastoma stem cells and human glioblastoma specimens. To determine the role of the invasion-related genes, invasive activities were evaluated in vitro and in vivo. Fibroblast growth factor 13 (FGF13) was overexpressed in J3T-2 cells compared to J3T-1 cells, and in human glioma cell lines, human glioblastoma stem cells and human glioblastoma specimens, when compared to that of normal human astrocytes. Immunohistochemical staining and the RNA-seq (sequencing) data from the IVY Glioblastoma Atlas Project showed FGF13 expression in glioma cells in the invasive edges of tumor specimens. Also, the intracellular distribution was mainly in the cytoplasm of tumor cells and colocalized with tubulin. Overexpression of FGF13 stabilized tubulin dynamics in vitro and knockdown of FGF13 decreased glioma invasion both in vitro and in vivo and prolonged overall survival of several xenograft models. FGF13 was negatively regulated by hypoxic condition. Silencing of FGF13 also decreased in vivo bevacizumab-induced glioma invasion. In conclusion, FGF13 regulated glioma cell invasion and bevacizumab-induced glioma invasion, and could be a novel target for glioma treatment.
Collapse
Affiliation(s)
- Y Otani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - T Ichikawa
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - K Kurozumi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - S Inoue
- Department of Neurosurgery, Okayama City Hospital, Okayama, Japan
| | - J Ishida
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - T Oka
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - T Shimizu
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Y Tomita
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Y Hattori
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - A Uneda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Y Matsumoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - H Michiue
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - I Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
43
|
Miranda-Gonçalves V, Cardoso-Carneiro D, Valbom I, Cury FP, Silva VA, Granja S, Reis RM, Baltazar F, Martinho O. Metabolic alterations underlying Bevacizumab therapy in glioblastoma cells. Oncotarget 2017; 8:103657-103670. [PMID: 29262591 PMCID: PMC5732757 DOI: 10.18632/oncotarget.21761] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022] Open
Abstract
Anti-VEGF therapy with Bevacizumab is approved for glioblastoma treatment, however, it is known that tumors acquired resistance and eventually became even more aggressive and infiltrative after treatment. In the present study we aimed to unravel the potential cellular mechanisms of resistance to Bevacizumab in glioblastoma in vitro models. Using a panel of glioblastoma cell lines we found that Bevacizumab is able to block the secreted VEGF by the tumor cells and be internalized to the cytoplasm, inducing cytotoxicity in vitro. We further found that Bevacizumab increases the expression of hypoxic (HIF-1α and CAIX) and glycolytic markers (GLUT1 and MCT1), leading to higher glucose uptake and lactate production. Furthermore, we showed that part of the consumed glucose by the tumor cells can be stored as glycogen, hampering cell dead following Bevacizumab treatment. Importantly, we found that this change on the glycolytic metabolism occurs independently of hypoxia and before mitochondrial impairment or autophagy induction. Finally, the combination of Bevacizumab with glucose uptake inhibitors decreased in vivo tumor growth and angiogenesis and shift the expression of glycolytic proteins. In conclusion, we reported that Bevacizumab is able to increase the glucose metabolism on cancer cells by abrogating autocrine VEGF in vitro. Define the effects of anti-angiogenic drugs at the cellular level can allow us to discover ways to revert acquired resistance to this therapeutic approaches in the future.
Collapse
Affiliation(s)
- Vera Miranda-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Diana Cardoso-Carneiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Valbom
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernanda Paula Cury
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Viviane Aline Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui M Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| |
Collapse
|
44
|
Thiepold AL, Lorenz NI, Foltyn M, Engel AL, Divé I, Urban H, Heller S, Bruns I, Hofmann U, Dröse S, Harter PN, Mittelbronn M, Steinbach JP, Ronellenfitsch MW. Mammalian target of rapamycin complex 1 activation sensitizes human glioma cells to hypoxia-induced cell death. Brain 2017; 140:2623-2638. [PMID: 28969371 DOI: 10.1093/brain/awx196] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/21/2017] [Indexed: 11/13/2022] Open
Abstract
Glioblastomas are characterized by fast uncontrolled growth leading to hypoxic areas and necrosis. Signalling from EGFR via mammalian target of rapamycin complex 1 (mTORC1) is a major driver of cell growth and proliferation and one of the most commonly altered signalling pathways in glioblastomas. Therefore, epidermal growth factor receptor and mTORC1 signalling are plausible therapeutic targets and clinical trials with inhibitors are in progress. However, we have previously shown that epidermal growth factor receptor and mTORC1 inhibition triggers metabolic changes leading to adverse effects under the conditions of the tumour microenvironment by protecting from hypoxia-induced cell death. We hypothesized that conversely mTORC1 activation sensitizes glioma cells to hypoxia-induced cell death. As a model for mTORC1 activation we used gene suppression of its physiological inhibitor TSC2 (TSC2sh). TSC2sh glioma cells showed increased sensitivity to hypoxia-induced cell death that was accompanied by an earlier ATP depletion and an increase in reactive oxygen species. There was no difference in extracellular glucose consumption but an altered intracellular metabolic profile with an increase of intermediates of the pentose phosphate pathway. Mechanistically, mTORC1 upregulated the first and rate limiting enzyme of the pentose phosphate pathway, G6PD. Furthermore, an increase in oxygen consumption in TSC2sh cells was detected. This appeared to be due to higher transcription rates of genes involved in mitochondrial respiratory function including PPARGC1A and PPARGC1B (also known as PGC-1α and -β). The finding that mTORC1 activation causes an increase in oxygen consumption and renders malignant glioma cells susceptible to hypoxia and nutrient deprivation could help identify glioblastoma patient cohorts more likely to benefit from hypoxia-inducing therapies such as the VEGFA-targeting antibody bevacizumab in future clinical evaluations.
Collapse
Affiliation(s)
- Anna-Luisa Thiepold
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | - Nadja I Lorenz
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | - Martha Foltyn
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | - Anna L Engel
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | - Iris Divé
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | - Hans Urban
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | - Sonja Heller
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | - Ines Bruns
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tübingen, Germany
| | - Stefan Dröse
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Patrick N Harter
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,Institute of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Michel Mittelbronn
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,Institute of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | - Michael W Ronellenfitsch
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| |
Collapse
|
45
|
Cross-activating c-Met/β1 integrin complex drives metastasis and invasive resistance in cancer. Proc Natl Acad Sci U S A 2017; 114:E8685-E8694. [PMID: 28973887 DOI: 10.1073/pnas.1701821114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular underpinnings of invasion, a hallmark of cancer, have been defined in terms of individual mediators but crucial interactions between these mediators remain undefined. In xenograft models and patient specimens, we identified a c-Met/β1 integrin complex that formed during significant invasive oncologic processes: breast cancer metastases and glioblastoma invasive resistance to antiangiogenic VEGF neutralizing antibody, bevacizumab. Inducing c-Met/β1 complex formation through an engineered inducible heterodimerization system promoted features crucial to overcoming stressors during metastases or antiangiogenic therapy: migration in the primary site, survival under hypoxia, and extravasation out of circulation. c-Met/β1 complex formation was up-regulated by hypoxia, while VEGF binding VEGFR2 sequestered c-Met and β1 integrin, preventing their binding. Complex formation promoted ligand-independent receptor activation, with integrin-linked kinase phosphorylating c-Met and crystallography revealing the c-Met/β1 complex to maintain the high-affinity β1 integrin conformation. Site-directed mutagenesis verified the necessity for c-Met/β1 binding of amino acids predicted by crystallography to mediate their extracellular interaction. Far-Western blotting and sequential immunoprecipitation revealed that c-Met displaced α5 integrin from β1 integrin, creating a complex with much greater affinity for fibronectin (FN) than α5β1. Thus, tumor cells adapt to microenvironmental stressors induced by metastases or bevacizumab by coopting receptors, which normally promote both cell migration modes: chemotaxis, movement toward concentrations of environmental chemoattractants, and haptotaxis, movement controlled by the relative strengths of peripheral adhesions. Tumor cells then redirect these receptors away from their conventional binding partners, forming a powerful structural c-Met/β1 complex whose ligand-independent cross-activation and robust affinity for FN drive invasive oncologic processes.
Collapse
|
46
|
Du Y, Liu JQ, Tang J, Ge J, Chen Y, Cheng K, Ding J, Li ZK, Liu JY. Acquired tumor cell resistance to sunitinib by increased invasion and epithelial-mesenchymal transition in LL/2 murine lung cancer. Oncotarget 2017; 8:68270-68279. [PMID: 28978115 PMCID: PMC5620255 DOI: 10.18632/oncotarget.19295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/05/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE This study aims to investigate biological behavior changes in a murine lung cancer cell characterized by acquired resistance to sunitinib, a potent inhibitor of multiple-targeted receptor tyrosine kinase. METHODS A lung cancer cell line resistant to sunitinib (LL/2-R) was developed from its parental cell line (LL/2-P). Differences in biological characteristics and associated molecular profiles between these two cells were compared in vitro and in vivo. RESULTS LL/2-R cells showed an approximately 5-fold higher IC50 of sunitinib than LL/2-P cells and exhibited a reduced growth inhibition following sunitinib treatment compared with LL/2-P. In LL/2-R cells and tumors, increased migration, invasion and metastasis were observed, along with upregulation of MMP-2 and MMP-9. We also analyzed the molecular profiles involved in EMT, and found that E-cadherin was downregulated in LL/2-R tumors, and vimentin was upregulated in LL/2-R cells and tumors, along with β-catenin translocating to the nuclei in LL/2-R cells. Furthermore, transcriptional factors mediated EMT, snail and twist, and the secretion of TGFβ1 also increased in LL/2-R cells and tumors. CONCLUSIONS We established a sunitinib-resistant lung cancer cell line and confirmed its drug-resistance to sunitinib in vivo. Our results implied that increased invasion and EMT may associate with the acquisition of resistant phenotype to sunitinib in cancer cells.
Collapse
Affiliation(s)
- Yang Du
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, GuoXue Xiang, Chengdu 610041, Sichuan Province, China
| | - Jia-Qi Liu
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, GuoXue Xiang, Chengdu 610041, Sichuan Province, China
| | - Jie Tang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, GuoXue Xiang, Chengdu 610041, Sichuan Province, China
| | - Jun Ge
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, GuoXue Xiang, Chengdu 610041, Sichuan Province, China
| | - Ye Chen
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, GuoXue Xiang, Chengdu 610041, Sichuan Province, China
| | - Ke Cheng
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, GuoXue Xiang, Chengdu 610041, Sichuan Province, China
| | - Jing Ding
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, GuoXue Xiang, Chengdu 610041, Sichuan Province, China
| | - Zhi-Ke Li
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, GuoXue Xiang, Chengdu 610041, Sichuan Province, China
| | - Ji-Yan Liu
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, GuoXue Xiang, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
47
|
Angara K, Borin TF, Arbab AS. Vascular Mimicry: A Novel Neovascularization Mechanism Driving Anti-Angiogenic Therapy (AAT) Resistance in Glioblastoma. Transl Oncol 2017; 10:650-660. [PMID: 28668763 PMCID: PMC5496207 DOI: 10.1016/j.tranon.2017.04.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is a hypervascular neoplasia of the central nervous system with an extremely high rate of mortality. Owing to its hypervascularity, anti-angiogenic therapies (AAT) have been used as an adjuvant to the traditional surgical resection, chemotherapy, and radiation. The benefits of AAT have been transient and the tumors were shown to relapse faster and demonstrated particularly high rates of AAT therapy resistance. Alternative neovascularization mechanisms were shown to be at work in these resilient tumors to counter the AAT therapy insult. Vascular Mimicry (VM) is the uncanny ability of tumor cells to acquire endothelial-like properties and lay down vascular patterned networks reminiscent of host endothelial blood vessels. The VM channels served as an irrigation system for the tumors to meet with the increasing metabolic and nutrient demands of the tumor in the event of the ensuing hypoxia resulting from AAT. In our previous studies, we have demonstrated that AAT accelerates VM in GBM. In this review, we will focus on the origins of VM, visualizing VM in AAT-treated tumors and the development of VM as a resistance mechanism to AAT.
Collapse
Affiliation(s)
- Kartik Angara
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Thaiz F Borin
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Ali S Arbab
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA.
| |
Collapse
|
48
|
Hundsberger T, Reardon DA, Wen PY. Angiogenesis inhibitors in tackling recurrent glioblastoma. Expert Rev Anticancer Ther 2017; 17:507-515. [PMID: 28438066 DOI: 10.1080/14737140.2017.1322903] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Despite aggressive multimodality treatment of glioblastoma, outcome remains poor and patients mostly die of local recurrences. Besides reoperation and occasionally reirradiation, systemic treatment of recurrent glioblastoma consists of alkylating chemotherapy (lomustine, temozolomide), bevacizumab and combinations thereof. Unfortunately, antiangiogenic agents failed to improve survival either as a monotherapy or in combination treatments. This review provides current insights into tumor-derived escape mechanisms and other areas of treatment failure of antiangiogenic agents in glioblastoma. Areas covered: We summarize the current literature on antiangiogenic agents in the treatment of glioblastoma, with a focus on recurrent disease. A literature search was performed using the terms 'glioblastoma', 'bevacizumab', 'antiangiogenic', 'angiogenesis', 'resistance', 'radiotherapy', 'chemotherapy' and derivations thereof. Expert commentary: New insights in glioma neoangiogenesis, increasing understanding of vascular pathway escape mechanisms, and upcoming immunotherapy approaches might revitalize the therapeutic potential of antiangiogenic agents against glioblastoma, although with a different treatment intention. The combination of antiangiogenic approaches with or without radiotherapy might still hold promise to complement the therapeutic armamentarium of fighting glioblastoma.
Collapse
Affiliation(s)
- Thomas Hundsberger
- a Department of Neurology and Department of Hematology /Oncology , Cantonal hospital , St. Gallen , Switzerland
| | - David A Reardon
- b Center for Neuro-Oncology , Dana-Farber Cancer Institute /Brigham and Women's Cancer Center , Boston , MA , USA
| | - Patrick Y Wen
- b Center for Neuro-Oncology , Dana-Farber Cancer Institute /Brigham and Women's Cancer Center , Boston , MA , USA
| |
Collapse
|
49
|
Mahase S, Rattenni RN, Wesseling P, Leenders W, Baldotto C, Jain R, Zagzag D. Hypoxia-Mediated Mechanisms Associated with Antiangiogenic Treatment Resistance in Glioblastomas. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:940-953. [PMID: 28284719 PMCID: PMC5417003 DOI: 10.1016/j.ajpath.2017.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/31/2016] [Accepted: 01/05/2017] [Indexed: 12/28/2022]
Abstract
Glioblastomas (GBMs) are malignant tumors characterized by their vascularity and invasive capabilities. Antiangiogenic therapy (AAT) is a treatment option that targets GBM-associated vasculature to mitigate the growth of GBMs. However, AAT demonstrates transient effects because many patients eventually develop resistance to this treatment. Several recent studies attempt to explain the molecular and biochemical basis of resistance to AAT in GBM patients. Experimental investigations suggest that the induction of extensive intratumoral hypoxia plays a key role in GBM escape from AAT. In this review, we examine AAT resistance in GBMs, with an emphasis on six potential hypoxia-mediated mechanisms: enhanced invasion and migration, including increased expression of matrix metalloproteinases and activation of the c-MET tyrosine kinase pathway; shifts in cellular metabolism, including up-regulation of hypoxia inducible factor-1α's downstream processes and the Warburg effect; induction of autophagy; augmentation of GBM stem cell self-renewal; possible implications of GBM-endothelial cell transdifferentiation; and vasoformative responses, including vasculogenesis, alternative angiogenic pathways, and vascular mimicry. Juxtaposing recent studies on well-established resistance pathways with that of emerging mechanisms highlights the overall complexity of GBM treatment resistance while also providing direction for further investigation.
Collapse
Affiliation(s)
- Sean Mahase
- Microvascular and Molecular Neuro-Oncology Laboratory, New York University School of Medicine, New York, New York
| | - Rachel N Rattenni
- Microvascular and Molecular Neuro-Oncology Laboratory, New York University School of Medicine, New York, New York
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands; Department of Pathology, Princess Máxima Center for Pediatric Oncology and University Medical Center, Utrecht, the Netherlands
| | - William Leenders
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clarissa Baldotto
- Medical Oncology, Instituto Nacionale de Cancer, Rio de Janeiro, Brazil
| | - Rajan Jain
- Department of Radiology, New York University School of Medicine, New York, New York; Department of Neurosurgery, New York University School of Medicine, New York, New York
| | - David Zagzag
- Microvascular and Molecular Neuro-Oncology Laboratory, New York University School of Medicine, New York, New York; Department of Neurosurgery, New York University School of Medicine, New York, New York; Division of Neuropathology, Department of Pathology, New York University School of Medicine, New York, New York; Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York.
| |
Collapse
|
50
|
Tokuda Y, Tamura R, Ohara K, Yoshida K, Sasaki H. A case of glioblastoma resected immediately after administering bevacizumab: consideration on histopathological findings and safety of surgery. Brain Tumor Pathol 2017; 34:98-102. [PMID: 28429093 DOI: 10.1007/s10014-017-0285-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/12/2017] [Indexed: 11/28/2022]
Abstract
Surgery after administering bevacizumab should be carefully considered particularly because of wound healing concerns. A 27-year-old man presented with multiple tumor recurrences after gross total removal of a left temporal oligodendroglioma (1p/19q-noncodeleted). Whole brain radiotherapy with concomitant temozolomide and bevacizumab was immediately prescribed; however, the patient's condition deteriorated because of brain herniation. Three days after administering bevacizumab, an emergency tumor removal with external decompression and a ventriculo-peritoneal shunt was performed. The surgery and postoperative clinical course were uneventful. On histopathological examination, the tumor showed findings such as tumor vessel thrombosis, numerous interstitial red blood cells, and cells with degraded, fragmented nuclei possibly suggesting apoptosis, which could be attributable to bevacizumab. Performing craniotomy shortly after administering bevacizumab is not recommended; however, it can still be safely performed as long as surgery and wound management is carefully performed. Vessel thrombosis might be among the mechanisms of action of bevacizumab.
Collapse
Affiliation(s)
- Yukina Tokuda
- Department of Neurosurgery, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kentaro Ohara
- Division of Diagnostic Pathology, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|