1
|
Dillard A, Xu K, Sun Y, Lin HH, Shen C, Song E, Saxena A, Hissong E, Yemelyanova A, Lindeman NI, Velu PD, Solomon JP. Comparison of Targeted RNA-Sequencing Platforms for Oncogenic Fusion Detection in Non-Small-Cell Lung Cancer. J Mol Diagn 2025; 27:438-445. [PMID: 40122160 DOI: 10.1016/j.jmoldx.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/09/2025] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
Oncogenic fusion detection is an essential part of clinical diagnosis and management of non-small-cell lung carcinoma. Numerous methods are available for detection of oncogenic fusions in the clinical laboratory, although RNA sequencing has rapidly gained prominence. Accordingly, however, multiple different RNA-sequencing assays exist, with diverse methods and varying performance characteristics. Here, a single-institutional clinical experience with a testing algorithm for non-small-cell lung carcinoma that uses amplicon-based DNA/RNA sequencing, followed by reflex hybridization-capture-based RNA sequencing if the initial testing is negative for oncogenic drivers, is reported. A total of 1211 non-small-cell lung carcinoma specimens were received for molecular testing, and 120 (approximately 10%) were reflexed for hybridization-capture-based RNA sequencing. Of the 120 cases tested, oncogenic fusions were identified in 9 and included clinically actionable fusions involving ALK, BRAF, NRG1, NTRK3, ROS1, and RET. None of these fusions was detected by the amplicon-based assay. Review of the 20,900 non-small-cell lung cancer cases in the American Association for Cancer Research Project Genie version 15.1 publicly available database (registration required) revealed that of the 1081 cases harboring fusions, 893 (82.6%) could theoretically be detected by the amplicon-based assay. Overall, this study shows that the addition of reflex hybridization-capture-based RNA sequencing could improve detection of rare and novel oncogenic fusions, maximizing patient eligibility for appropriate targeted therapies or clinical trials.
Collapse
Affiliation(s)
- Alicia Dillard
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Kemin Xu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Yichao Sun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Han-Hsuan Lin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Cong Shen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Eric Song
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Ashish Saxena
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Erika Hissong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Anna Yemelyanova
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Neal I Lindeman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Priya D Velu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - James P Solomon
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
2
|
Yamagiwa H, Hashimoto R, Arakane K, Murakami K, Soeda S, Oyama M, Zhu Y, Okada M, Shimodaira H. Predicting drug-gene relations via analogy tasks with word embeddings. Sci Rep 2025; 15:17240. [PMID: 40383732 PMCID: PMC12086191 DOI: 10.1038/s41598-025-01418-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 05/06/2025] [Indexed: 05/20/2025] Open
Abstract
Natural language processing is utilized in a wide range of fields, where words in text are typically transformed into feature vectors called embeddings. BioConceptVec is a specific example of embeddings tailored for biology, trained on approximately 30 million PubMed abstracts using models such as skip-gram. Generally, word embeddings are known to solve analogy tasks through simple vector arithmetic. For example, subtracting the vector for man from that of king and then adding the vector for woman yields a point that lies closer to queen in the embedding space. In this study, we demonstrate that BioConceptVec embeddings, along with our own embeddings trained on PubMed abstracts, contain information about drug-gene relations and can predict target genes from a given drug through analogy computations. We also show that categorizing drugs and genes using biological pathways improves performance. Furthermore, we illustrate that vectors derived from known relations in the past can predict unknown future relations in datasets divided by year. Despite the simplicity of implementing analogy tasks as vector additions, our approach demonstrated performance comparable to that of large language models such as GPT-4 in predicting drug-gene relations.
Collapse
Affiliation(s)
| | | | - Kiwamu Arakane
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Ken Murakami
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Shou Soeda
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Momose Oyama
- Kyoto University, Kyoto, Japan
- RIKEN, Tokyo, Japan
| | | | - Mariko Okada
- Institute for Protein Research, Osaka University, Osaka, Japan
| | | |
Collapse
|
3
|
Qiu M, Guo P, Wang S, Zhu Y, Wu S, Peng H, Guo Z, Guo Y, Lin J, Cao Y. Case report: Durable response of immuno-chemotherapy targeting a rare ROS1 fusion-positive extensive-stage SCLC patient after primary resistance to crizotinib. Front Pharmacol 2025; 16:1522542. [PMID: 40365320 PMCID: PMC12069334 DOI: 10.3389/fphar.2025.1522542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Background Small cell lung cancer (SCLC) is characterized by an exceedingly low mutation rate in oncogenic driver alterations, and there are currently no articles or case reports documenting SCLC patients carrying ROS1 fusions. Tyrosine kinase inhibitors (TKIs) have demonstrated significant efficacy and safety in patients with ROS1 fusion-positive non-small cell lung cancer (NSCLC). However, effective treatment modalities for ROS1 fusion-positive SCLC patients remain poorly defined. Materials and Methods We report the first case of an extensive-stage SCLC (ES-SCLC) patient harboring ROS1 fusion, along with TP53, RB1, PTEN, and TERT mutations. The patient exhibited primary resistance to a 3-week course of crizotinib as first-line treatment. Following this, the patient was administered second-line therapy, including chemotherapy coupled with immune checkpoint inhibitor (ICI) and ICI maintenance treatment, resulting in a partial response (PR). Notably, the clinical response to second-line therapy persisted for over 19 months, surpassing the previously reported efficacy of immuno-chemotherapy in ES-SCLC cases (5.7 months) while maintaining a satisfactory quality of life. Conclusion We hypothesize that ROS1 fusion may not function as an oncogenic driver alteration in ES-SCLC. Immuno-chemotherapy, not ROS1-TKIs, might provide superior efficacy in ES-SCLC patients with ROS1 fusion.
Collapse
Affiliation(s)
- Mengli Qiu
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiwen Guo
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sisi Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Zhu
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siqi Wu
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiting Peng
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zehuai Guo
- Department of Internal Medicine, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yanmeng Guo
- The First Clinical School of Hubei University of Chinese Medicine, Wuhan, China
| | - Jieheng Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Cao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Csende K, Ferencz B, Boettiger K, Pozonec MD, Lantos A, Ferenczy A, Pipek O, Solta A, Ernhofer B, Laszlo V, Megyesfalvi E, Schelch K, Pozonec V, Skarda J, Skopelidou V, Lohinai Z, Lang C, Horvath L, Dezso K, Fillinger J, Renyi-Vamos F, Aigner C, Dome B, Megyesfalvi Z. Comparative profiling of surgically resected primary tumors and their lymph node metastases in small-cell lung cancer. ESMO Open 2025; 10:104514. [PMID: 40107154 PMCID: PMC11964634 DOI: 10.1016/j.esmoop.2025.104514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Profiling studies in small-cell lung cancer (SCLC) have mainly focused on primary tumors, omitting the potential molecular changes that might occur during lymphatic metastasis formation. Here, we assessed the molecular discordance between primary SCLCs and corresponding lymph node (LN) metastases in the light of subtype distribution and expression of clinically relevant proteins. METHODS Comparative profiling of 32 surgically resected primary SCLCs and their LN metastases was achieved by RNA expression analysis and immunohistochemistry (IHC). In addition to subtype markers (ASCL1, NEUROD1, POU2F3, and YAP1), the expression of nine cancer-specific proteins was evaluated. RESULTS The selected clinically relevant molecules showed no significant differences in their RNA expression profile when assessing the primary tumors and their corresponding LN metastases. Nevertheless, IHC analyses revealed significantly higher DLL3 expression in the primary tumors than in the LN metastases (P = 0.008). In contrast, NEUROD1 expression was significantly lower in the primary tumors (versus LN metastases, P < 0.001). No statistically significant difference was found by IHC analysis in the case of other clinically relevant proteins. Concerning SCLC molecular subtypes, a change in subtype distribution was detected in 21 cases. Phenotype switching from neuroendocrine (NE) subtypes toward non-NE lesions and from non-NE landscape toward NE subtypes were both detected. CONCLUSIONS Although the molecular landscape of SCLC LN metastases largely resembles that of the tumor of origin, key differences exist in terms of DLL3 and NEUROD1 expression, and in subtype distribution. These diagnostic pitfalls should be considered when establishing the tumors' molecular profile for future clinical trials solely based on LN biopsies.
Collapse
Affiliation(s)
- K Csende
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - B Ferencz
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - K Boettiger
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - M D Pozonec
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - A Lantos
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - A Ferenczy
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; Department of Obstetrics and Gynecology, South Buda Central Hospital, Saint Emeric University Teaching Hospital, Budapest, Hungary
| | - O Pipek
- Department of Physics of Complex Systems, Eotvos Lorand University, Budapest, Hungary
| | - A Solta
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - B Ernhofer
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - V Laszlo
- National Koranyi Institute of Pulmonology, Budapest, Hungary; Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - E Megyesfalvi
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; Department of Thoracic and Abdominal Tumors and Clinical Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - K Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - V Pozonec
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; Multidisciplinary Centre of Head and Neck Tumors, National Institute of Oncology, Budapest, Hungary
| | - J Skarda
- Institute of Clinical and Molecular Pathology, Medical Faculty, Palacký University Olomouc, Olomouc, Czech Republic; Department of Pathology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - V Skopelidou
- Department of Pathology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Z Lohinai
- Torokbalint County Institute of Pulmonology, Torokbalint, Hungary
| | - C Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - L Horvath
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - K Dezso
- Department of Pathology and Experimental Cancer Research, Budapest, Hungary
| | - J Fillinger
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - F Renyi-Vamos
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; National Koranyi Institute of Pulmonology, Budapest, Hungary; National Institute of Oncology and National Tumor Biology Laboratory, Budapest, Hungary
| | - C Aigner
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - B Dome
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; National Koranyi Institute of Pulmonology, Budapest, Hungary; Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Translational Medicine, Lund University, Lund, Sweden.
| | - Z Megyesfalvi
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; National Koranyi Institute of Pulmonology, Budapest, Hungary; Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Ka M, Matsumoto Y, Ando T, Hinata M, Xi Q, Sugiura Y, Iida T, Nakagawa N, Tokunaga M, Watanabe K, Kawakami M, Ushiku T, Sato M, Oda K, Kage H. Integrin-α5 expression and its role in non-small cell lung cancer progression. Cancer Sci 2025; 116:406-419. [PMID: 39581761 PMCID: PMC11786322 DOI: 10.1111/cas.16416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
Integrins are transmembrane receptors that facilitate cell adhesion to the extracellular matrix and neighboring cells. Aberrant expression of integrins has been associated with tumor progression and metastasis in various cancer types. Integrin alpha-5 (ITGA5) is an integrin subtype that serves as a receptor for fibronectin, fibrinogen, and fibrillin-1. The purpose of this study was to elucidate how ITGA5 expression plays a role in human non-small cell lung cancer (NSCLC). Our clinical data, along with data retrieved from The Cancer Genome Database (TCGA), revealed that high ITGA5 expression in NSCLC patients was associated with a lower recurrence-free survival and overall survival. In our in vitro functional assays, ITGA5 overexpression in human NSCLC cell lines resulted in increased cell size, adhesion, and migration properties, while knockdown of ITGA5 restored the phenotypes. Correspondingly, knockdown and inhibition of ITGA5 in endogenously high-expressing NSCLC cell lines resulted in decreased cell size, adhesion, migration, and proliferation. The antiproliferative effect was also confirmed by a reduction in Ki-67 without discernible changes in apoptosis. Collectively, these findings reveal the significant role of ITGA5 in various functional behaviors in NSCLC, providing a potential therapeutic target for NSCLC patients with high ITGA5 expression.
Collapse
Affiliation(s)
- Mirei Ka
- Division of Integrative GenomicsThe University of TokyoTokyoJapan
| | - Yoko Matsumoto
- Department of Respiratory MedicineThe University of TokyoTokyoJapan
| | - Takahiro Ando
- Department of Respiratory MedicineThe University of TokyoTokyoJapan
| | | | - Qian Xi
- Division of Integrative GenomicsThe University of TokyoTokyoJapan
| | - Yuriko Sugiura
- Department of Respiratory MedicineThe University of TokyoTokyoJapan
| | - Takahiro Iida
- Department of Thoracic SurgeryThe University of TokyoTokyoJapan
| | - Natsuki Nakagawa
- Department of Respiratory MedicineThe University of TokyoTokyoJapan
| | | | - Kousuke Watanabe
- Next‐Generation Precision Medicine Development Laboratory, Graduate School of MedicineThe University of TokyoTokyoJapan
| | | | - Tetsuo Ushiku
- Department of PathologyThe University of TokyoTokyoJapan
| | - Masaaki Sato
- Department of Thoracic SurgeryThe University of TokyoTokyoJapan
| | - Katsutoshi Oda
- Division of Integrative GenomicsThe University of TokyoTokyoJapan
| | - Hidenori Kage
- Department of Respiratory MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
6
|
Mina SA, Shanshal M, Leventakos K, Parikh K. Emerging Targeted Therapies in Non-Small-Cell Lung Cancer (NSCLC). Cancers (Basel) 2025; 17:353. [PMID: 39941723 PMCID: PMC11816067 DOI: 10.3390/cancers17030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Targeted therapies have changed the treatment landscape of non-small-cell lung cancer and led to improved patient survival across all stages of lung cancer. Newer advances in common and novel oncogenic drivers continue to occur at vigorous speed, making it challenging to stay up to date with the rapidly evolving field. In this article, we review the emerging perspectives in the treatment of actionable targets in lung cancer. We focus on the development of newer KRAS-directed therapies, particularly on non-G12C mutations, pan-RAS inhibitors, and RAS-GTP inhibitors. We also describe the current standard of care for EGFR- and ALK-altered NSCLC and dive into the novel treatments expected to be in the clinic soon. A similar approach is taken toward MET, HER2, RET, ROS1, and FGFR alterations as emerging targets in non-small-cell lung cancer. Finally, we conclude this review with the current body of evidence for targeting TROP-2 as a novel target, potentially of importance in post-targeted therapy scenarios.
Collapse
Affiliation(s)
- Syeda A. Mina
- Division of Hematology and Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Kaushal Parikh
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Myall NJ, Das M. ROS1-rearranged non-small cell lung cancer: Understanding biology and optimizing management in the era of new approvals. Curr Probl Cancer 2024; 53:101133. [PMID: 39260124 DOI: 10.1016/j.currproblcancer.2024.101133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 09/13/2024]
Abstract
Rearrangements involving the ROS1 gene are infrequent in non-small cell lung cancer (NSCLC) but represent an important targetable driver alteration. Occurring most commonly in patients with adenocarcinoma who have a light or never smoking history, ROS1 rearrangements can be identified by either fluorescence in-situ hybridization (FISH) or next-generation sequencing techniques. Multiple tyrosine kinase inhibitors (TKIs) are now available for the effective treatment of ROS1-rearranged NSCLC in the metastatic setting including crizotinib, entrectinib, and repotrectinib as first-line therapy options. In addition, newer targeted therapies with increased selectivity for ROS1 over other targets are also emerging. As treatment of the disease continues to evolve, understanding the clinical course of patients with ROS1-rearranged NSCLC as well as the data supporting the latest therapy options is key to timely, effective, and longitudinal care.
Collapse
Affiliation(s)
- Nathaniel J Myall
- Division of Oncology, Department of Medicine, Stanford Cancer Center, Stanford CA, United States
| | - Millie Das
- Division of Oncology, Department of Medicine, Stanford Cancer Center, Stanford CA, United States; Department of Medicine, VA Palo Alto Health Care System, 3801 Miranda Ave. (111ONC), Palo Alto CA 94304, United States.
| |
Collapse
|
8
|
Sun Y, Ma L, Zhang X, Wang Z. Advances in the Treatment of Rare Mutations in Non-Small Cell Lung Cancer. Onco Targets Ther 2024; 17:1095-1115. [PMID: 39583247 PMCID: PMC11585992 DOI: 10.2147/ott.s487870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
Lung cancer is a malignant tumor with the highest morbidity and mortality rate worldwide, with nearly 2.5 million new cases and more than 1.8 million deaths reported globally in 2022. Lung cancer is broadly categorized into two main types: non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), with NSCLC accounting for about 85% of all cases. Early-stage lung cancers often present without obvious symptoms, resulting in most patients being diagnosed at an advanced stage where traditional chemotherapy has limited efficacy. Recent advances in molecular biology have elucidated the pivotal role of gene mutations in tumor development, paving the way for targeted therapies that have markedly benefited patients. Beyond the well-known epidermal growth factor receptor (EGFR) mutation, an increasing number of new molecular targets have been identified, including ROS1 rearrangement, BRAF mutation, NTRK fusion, RET fusion, MET mutation, KRAS G12C mutation, HER2 mutation, ALK rearrangement, and NRG1 fusion. Some of these targeted therapies have already been approved by the Food and Drug Administration (FDA), and many others are currently undergoing clinical trials. This review summarizes recent advances in NSCLC treatment with molecular targets, highlighting progress, challenges, and their impact on patient prognosis.
Collapse
Affiliation(s)
- Yanning Sun
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xiaofei Zhang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
9
|
Desilets A, Repetto M, Drilon A. Repotrectinib: Redefining the therapeutic landscape for patients with ROS1 fusion-driven non-small cell lung cancer. Clin Transl Med 2024; 14:e70017. [PMID: 39402859 PMCID: PMC11473655 DOI: 10.1002/ctm2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 10/19/2024] Open
Abstract
The ROS1 proto-oncogene encodes a receptor tyrosine kinase with structural homology to other oncogenic drivers, including ALK and TRKA-B-C. The FDA-approved tyrosine kinase inhibitors (TKIs) crizotinib and entrectinib have demonstrated efficacy in treating ROS1 fusion-positive NSCLC. However, limitations such as poor blood-brain barrier penetration and acquired resistance, particularly the ROS1 G2032R solvent-front mutation, hinder treatment durability. Repotrectinib, a next-generation macrocyclic TKI, was rationally designed to overcome on-target resistance mutations and improve brain distribution through its low molecular weight. In the TRIDENT-1 clinical trial, repotrectinib demonstrated significant efficacy in both TKI-naïve and TKI-pretreated patients with ROS1-rearranged NSCLC, including those with CNS metastases and G2032R resistance mutations. In the TKI-naïve cohort (n = 71), 79% of patients achieved an objective response, with a median progression-free survival (PFS) of 35.7 months, surpassing all previously approved ROS1 TKIs. In patients who had received one prior ROS1 TKI but were chemotherapy-naïve (n = 56), objective responses were observed in 38%, and median PFS was 9.0 months. The safety profile of repotrectinib was consistent with earlier-generation ROS1 TKIs and common adverse events included anemia, neurotoxicity, increased creatine kinase levels, and weight gain. These findings underscore the potential of repotrectinib to address unmet needs in ROS1-rearranged NSCLC, offering durable responses and improved intracranial activity. Future research should prioritize developing next-generation, selective ROS1 inhibitors to reduce Trk-mediated toxicities and improve treatment tolerance.
Collapse
Affiliation(s)
- Antoine Desilets
- Department of MedicineEarly Drug Development ServiceMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Matteo Repetto
- Department of MedicineEarly Drug Development ServiceMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Department of Oncology and Hemato‐OncologyUniversity of MilanMilanItaly
| | - Alexander Drilon
- Department of MedicineEarly Drug Development ServiceMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Department of MedicineWeill Cornell Medicine and New York Presbyterian HospitalNew YorkNew YorkUSA
| |
Collapse
|
10
|
Murali A, Farsana A A, Subramaniam S, Eapen M, Nair IR, Pavithran K. Exceptional long term response to crizotinib in ROS 1-postive advanced non small cell lung cancer. Respirol Case Rep 2024; 12:e70033. [PMID: 39319330 PMCID: PMC11421889 DOI: 10.1002/rcr2.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Non-small-cell lung cancer (NSCLC) accounts for the majority of lung cancer cases worldwide, with a significant proportion of patients harbouring actionable oncogenic alterations. Among these alterations, the ROS1 rearrangement represents a distinct subset with therapeutic implications. Here, we present the case of a 52-year-old man diagnosed with advanced NSCLC harbouring the ROS1 fusion gene. Despite the initial poor response to conventional chemotherapy, the patient exhibited an exceptional and sustained response to crizotinib, with a progression-free survival of 94 months and complete metabolic response on PET scan. This case underscores the importance of molecular profiling in guiding treatment decisions and highlights the efficacy of targeted therapies for ROS1-positive NSCLC.
Collapse
Affiliation(s)
- Anjali Murali
- Department of Medical Oncology, Amrita Institute of Medical Science and Research CentreAmrita Vishwa VidyapeethamKochiIndia
| | - Anju Farsana A
- Department of Medical Oncology, Amrita Institute of Medical Science and Research CentreAmrita Vishwa VidyapeethamKochiIndia
| | - Sobha Subramaniam
- Department of Pulmonary Medicine, Amrita Institute of Medical Science and Research CentreAmrita Vishwa VidyapeethamKochiIndia
| | - Malini Eapen
- Department of Pathology, Amrita Institute of Medical Science and Research CentreAmrita Vishwa VidyapeethamKochiIndia
| | - Indu R. Nair
- Department of Pathology, Amrita Institute of Medical Science and Research CentreAmrita Vishwa VidyapeethamKochiIndia
| | - Keechilat Pavithran
- Department of Medical Oncology, Amrita Institute of Medical Science and Research CentreAmrita Vishwa VidyapeethamKochiIndia
| |
Collapse
|
11
|
Rina A, Maffeo D, Minnai F, Esposito M, Palmieri M, Serio VB, Rosati D, Mari F, Frullanti E, Colombo F. The Genetic Analysis and Clinical Therapy in Lung Cancer: Current Advances and Future Directions. Cancers (Basel) 2024; 16:2882. [PMID: 39199653 PMCID: PMC11352260 DOI: 10.3390/cancers16162882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Lung cancer, including both non-small cell lung cancer and small cell lung cancer, remains the leading cause of cancer-related mortality worldwide, representing 18% of the total cancer deaths in 2020. Many patients are identified already at an advanced stage with metastatic disease and have a worsening prognosis. Recent advances in the genetic understanding of lung cancer have opened new avenues for personalized treatments and targeted therapies. This review examines the latest discoveries in the genetics of lung cancer, discusses key biomarkers, and analyzes current clinical therapies based on this genetic information. It will conclude with a discussion of future prospects and potential research directions.
Collapse
Affiliation(s)
- Angela Rina
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
| | - Debora Maffeo
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Minnai
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Martina Esposito
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Maria Palmieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Viola Bianca Serio
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Diletta Rosati
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Mari
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Colombo
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| |
Collapse
|
12
|
Osorio A, Fernandez-Trujillo L, Restrepo JG, Sua LF, Proaño C, Zuñiga-Restrepo V. Importance of Testing for ROS1 Rearrangements in Non-Small Cell Lung Cancer in the Era of Targeted Therapy in a Latin American Country. Cancer Manag Res 2024; 16:781-789. [PMID: 39010861 PMCID: PMC11249106 DOI: 10.2147/cmar.s455809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/22/2024] [Indexed: 07/17/2024] Open
Abstract
Purpose Lung cancer is the leading cause of cancer-related deaths worldwide. However, with the optimization of screening strategies and advances in treatment, mortality has been decreasing in recent years. In this study, we describe non-small cell lung cancer patients diagnosed between 2021 and 2022 at a high-complexity hospital in Latin America, as well as the immunohistochemistry techniques used to screen for ROS1 rearrangements, in the context of the recent approval of crizotinib for the treatment of ROS1 rearrangements in non-small cell lung cancer in Colombia. Methods A descriptive cross-sectional study was conducted. Sociodemographic, clinical, and molecular pathology information from non-small cell lung cancer individuals who underwent immunohistochemistry to detect ROS1 rearrangements between 2021 and 2022 at Fundación Valle del Lili (Cali, Colombia) was recorded. The clinical outcomes of confirmed ROS1 rearrangements in non-small cell lung cancer patients were reported. Results One hundred and thirty-six patients with non-small cell lung cancer were included. The median age at diagnosis was 69.8 years (interquartile range 61.9-77.7). At diagnosis, 69.8% (n = 95) were at stage IV. ROS1 immunohistochemistry was performed using the monoclonal D4D6 antibody clone in 54.4% (n = 74) of the cases, while 45.6% (n = 62) were done with the monoclonal SP384 antibody clone. Two patients were confirmed to have ROS1 rearrangements in non-small cell lung cancer using next-generation sequencing and received crizotinib. On follow-up at months 5.3 and 7.0, one patient had a partial response, and the other had oligo-progression, respectively. Conclusion Screening for ROS1 rearrangements in non-small cell lung cancer is imperative, as multiple prospective studies have shown improved clinical outcomes with tyrosine kinase inhibitors. Given the recent approval of crizotinib in Colombia, public health policies must be oriented toward early detection of driver mutations and prompt treatment. Additionally, future approvals of newly tested tyrosine kinase inhibitors should be anticipated.
Collapse
Affiliation(s)
- Alvaro Osorio
- Department of Internal Medicine, Oncology Service, Fundación Valle Del Lili, Cali, Colombia
- Faculty of Health Sciences, Universidad Icesi, Cali, Colombia
| | - Liliana Fernandez-Trujillo
- Faculty of Health Sciences, Universidad Icesi, Cali, Colombia
- Department of Internal Medicine, Pulmonology Service, Fundación Valle Del Lili, Cali, Colombia
| | - Juan G Restrepo
- Department of Internal Medicine, Oncology Service, Fundación Valle Del Lili, Cali, Colombia
- Faculty of Health Sciences, Universidad Icesi, Cali, Colombia
| | - Luz F Sua
- Faculty of Health Sciences, Universidad Icesi, Cali, Colombia
- Department of Pathology and Laboratory Medicine, Fundación Valle Del Lili, Cali, Colombia
| | - Catalina Proaño
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
| | | |
Collapse
|
13
|
Wang Z, Lei Z, Wang Y, Wang S, Wang JP, Jin E, Liu X, Sun R, Zhang HT. Bone-metastatic lung adenocarcinoma cells bearing CD74-ROS1 fusion interact with macrophages to promote their dissemination. Oncogene 2024; 43:2215-2227. [PMID: 38802647 DOI: 10.1038/s41388-024-03072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Approximately 40% of patients with lung adenocarcinoma (LUAD) often develop bone metastases during the course of their disease. However, scarcely any in vivo model of LUAD bone metastasis has been established, leading to a poor understanding of the mechanisms underlying LUAD bone metastasis. Here, we established a multiorgan metastasis model via the left ventricular injection of luciferase-labeled LUAD cells into nude mice and then screened out lung metastasis (LuM) and bone metastasis (BoM) cell subpopulations. BoM cells exhibited greater stemness and epithelial-mesenchymal transition (EMT) plasticity than LuM cells and initially colonized the bone and subsequently disseminated to distant organs after being reinjected into mice. Moreover, a CD74-ROS1 fusion mutation (C6; R34) was detected in BoM cells but not in LuM cells. Mechanistically, BoM cells bearing the CD74-ROS1 fusion highly secrete the C-C motif chemokine ligand 5 (CCL5) protein by activating STAT3 signaling, recruiting macrophages in tumor microenvironment and strongly inducing M2 polarization of macrophages. BoM cell-activated macrophages produce a high level of TGF-β1, thereby facilitating EMT and invasion of LUAD cells via TGF-β/SMAD2/3 signaling. Targeting the CD74-ROS1/CCL5 axis with Crizotinib (a ROS1 inhibitor) and Maraviroc (a CCL5 receptor inhibitor) in vivo strongly impeded bone metastasis and secondary metastasis of BoM cells. Our findings reveal the critical role of the CD74-ROS1/STAT3/CCL5 axis in the interaction between LUAD bone metastasis cells and macrophages for controlling LUAD cell dissemination, highlighting the significance of the bone microenvironment in LUAD bone metastasis and multiorgan secondary metastasis, and suggesting that targeting CD74-ROS1 and CCL5 is a promising therapeutic strategy for LUAD bone metastasis.
Collapse
Affiliation(s)
- Zhao Wang
- Soochow University Laboratory of Cancer Molecular Genetics, Collaborative Innovation Center of Molecular Medicine between Soochow University and Donghai County People's Hospital, Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
- Department of Genetics, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Collaborative Innovation Center of Molecular Medicine between Soochow University and Donghai County People's Hospital, Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Yong Wang
- Soochow University Laboratory of Cancer Molecular Genetics, Collaborative Innovation Center of Molecular Medicine between Soochow University and Donghai County People's Hospital, Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
- Department of Genetics, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Shengjie Wang
- Soochow University Laboratory of Cancer Molecular Genetics, Collaborative Innovation Center of Molecular Medicine between Soochow University and Donghai County People's Hospital, Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang, 222000, Jiangsu Province, China
| | - Jia-Ping Wang
- Soochow University Laboratory of Cancer Molecular Genetics, Collaborative Innovation Center of Molecular Medicine between Soochow University and Donghai County People's Hospital, Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
- Donghai County People's Hospital, Lianyungang, 222000, Jiangsu Province, China
| | - Ersuo Jin
- Soochow University Laboratory of Cancer Molecular Genetics, Collaborative Innovation Center of Molecular Medicine between Soochow University and Donghai County People's Hospital, Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
- Department of Genetics, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Xia Liu
- Soochow University Laboratory of Cancer Molecular Genetics, Collaborative Innovation Center of Molecular Medicine between Soochow University and Donghai County People's Hospital, Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
- Department of Genetics, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Runfeng Sun
- Soochow University Laboratory of Cancer Molecular Genetics, Collaborative Innovation Center of Molecular Medicine between Soochow University and Donghai County People's Hospital, Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
- Donghai County People's Hospital, Lianyungang, 222000, Jiangsu Province, China.
| | - Hong-Tao Zhang
- Soochow University Laboratory of Cancer Molecular Genetics, Collaborative Innovation Center of Molecular Medicine between Soochow University and Donghai County People's Hospital, Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
- Department of Genetics, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
- Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, 215123, Jiangsu Province, China.
| |
Collapse
|
14
|
Huang Z, Zhang Y, Xu Q, Song L, Li Y, Guo W, Lin S, Jiang W, Wang Z, Deng L, Qin H, Zhang X, Tong F, Zhang R, Liu Z, Zhang L, Yu J, Dong X, Gong Q, Deng J, Chen X, Wang J, Zhang G, Yang N, Zeng L, Zhang Y. Clinical treatment patterns, molecular characteristics and survival outcomes of ROS1-rearranged non-small cell lung cancer: A large multicenter retrospective study. Lung Cancer 2024; 192:107827. [PMID: 38795459 DOI: 10.1016/j.lungcan.2024.107827] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/12/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) harboring ROS1 rearrangements is a molecular subset that exhibits favorable responses to tyrosine kinase inhibitor (TKI) treatment than chemotherapy. This study investigated real-world treatment patterns and survival outcomes among patients with ROS1-rearranged advanced NSCLC. METHODS We conducted a retrospective analysis of patients with ROS1-rearranged advanced NSCLC treated in four different hospitals in China from August 2018 to March 2022. The study analyzed gene fusion distribution, resistance patterns, and survival outcomes. RESULTS ROS1 rearrangement occurs in 1.8 % (550/31,225) of our study cohort. CD74 was the most common ROS1 fusion partner, accounting for 45.8 %. Crizotinib was used in 73.9 % of patients in the first-line treatment, and an increased use of chemotherapy, ceritinib, and lorlatinib was seen in the second-line setting. Lung (43.2 %) and brain (27.6 %) were the most common sites of progression in first-line setting, while brain progression (39.2 %) was the most common site of progression in second-line. Median overall survival was 46 months (95 % confidence intervals: 39.6-52.4). First-line crizotinib use yielded significantly superior survival outcomes over chemotherapy in terms of progression-free (18.5 vs. 6.0; p < 0.001) and overall survival (49.8 vs. 37; p = 0.024). The choice of treatment in the latter line also had survival implications, wherein survival outcomes were better when first-line crizotinib was followed by sequential TKI therapy than first-line chemotherapy followed by TKI therapy. CONCLUSIONS Our study provided insights into the real-world treatment, drug resistance patterns, and survival outcomes among patients with ROS1-rearranged NSCLC. This information serves as a valuable reference for guiding the treatment of this molecular subset of NSCLC.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuda Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qinqin Xu
- Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining 810000, China
| | - Lianxi Song
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Medical Oncology, Yiyang Central Hospital, Yiyang 413000, China
| | - Yizhi Li
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China
| | - Wenhuan Guo
- Department of Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, China
| | - Shaoding Lin
- Department of Medical Oncology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua 418000, China
| | - Wenjuan Jiang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China
| | - Zhan Wang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China
| | - Li Deng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China
| | - Haoyue Qin
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xing Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhaoyi Liu
- Department of Medical Oncology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, China
| | - Lin Zhang
- Department of Radiotherapy, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha Hunan 410008, China
| | - Juan Yu
- Department of Medical Oncology, Zhangjiajie People's Hospital, Zhangjiajie, Hunan 410008, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Gong
- Department of Good Clinical Trials, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, China
| | - Jun Deng
- Early Clinical Trails Center, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, China
| | - Xue Chen
- Early Clinical Trails Center, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, China
| | - Jing Wang
- Early Clinical Trails Center, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun 999077, Hong Kong, China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liang Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China.
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Early Clinical Trails Center, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410000, China.
| |
Collapse
|
15
|
Xu Y, Duan S, Ye W, Zheng Z, Zhang J, Gao Y, Ye S. SLC34A2 promotes cell proliferation by activating STX17-mediated autophagy in esophageal squamous cell carcinoma. Thorac Cancer 2024; 15:1369-1384. [PMID: 38720472 PMCID: PMC11168907 DOI: 10.1111/1759-7714.15314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Solute carrier family 34 member 2 (SLC34A2) has been implicated in the development of various malignancies. However, the clinical significance and underlying molecular mechanisms of SLC34A2 in esophageal squamous cell carcinoma (ESCC) remain elusive. METHODS Western blotting, quantitative real-time PCR and immunohistochemistry were utilized to evaluate the expression levels of SLC34A2 mRNA/protein in ESCC cell lines or tissues. Kaplan-Meier curves were employed for survival analysis. CCK-8, colony formation, EdU and xenograft tumor model assays were conducted to determine the impact of SLC34A2 on ESCC cell proliferation. Cell cycle was examined using flow cytometry. RNA-sequencing and enrichment analysis were carried out to explore the potential signaling pathways. The autophagic flux was evaluated by western blotting, mRFP-GFP-LC3 reporter system and transmission electron microscopy. Immunoprecipitation and mass spectrometry were utilized for identification of potential SLC34A2-interacting proteins. Cycloheximide (CHX) chase and ubiquitination assays were conducted to test the protein stability. RESULTS The expression of SLC34A2 was significantly upregulated in ESCC and correlated with unfavorable clinicopathologic characteristics particularly the Ki-67 labeling index and poor prognosis of ESCC patients. Overexpression of SLC34A2 promoted ESCC cell proliferation, while silencing SLC34A2 had the opposite effect. Moreover, SLC34A2 induced autophagy to promote ESCC cell proliferation, whereas inhibition of autophagy suppressed the proliferation of ESCC cells. Further studies showed that SLC34A2 interacted with an autophagy-related protein STX17 to promote autophagy and proliferation of ESCC cells by inhibiting the ubiquitination and degradation of STX17. CONCLUSIONS These findings indicate that SLC34A2 may serve as a prognostic biomarker for ESCC.
Collapse
Affiliation(s)
- Yi Xu
- Department of Oncology, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Shiyu Duan
- Department of Pathology, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Wen Ye
- Department of Oncology, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Zhousan Zheng
- Department of Oncology, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Jiaxing Zhang
- Department of Oncology, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Ying Gao
- Department of Radiation Oncology, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Sheng Ye
- Department of Oncology, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
16
|
Plomer E, Früh M, Lauber A, Demmer I, Jochum W, Koster KL. Prolonged Response to Afatinib and Crizotinib in a Rare Case of EGFR-, HER2-, MET- and ROS1-Alterated Lung Adenocarcinoma. Int J Mol Sci 2024; 25:5698. [PMID: 38891886 PMCID: PMC11171607 DOI: 10.3390/ijms25115698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
We present the case of a 70-year-old never-smoking female patient with epidermal growth factor receptor (EGFR) p.L858R-mutated metastatic non-small cell lung cancer (NSCLC). After three months of first-line treatment with erlotinib, progression occurred and platinum/pemetrexed was initiated, followed by a response for more than two years. After the progression, the molecular testing of a vertebral metastasis revealed a ROS proto-oncogene 1 (ROS1) translocation and a human epidermal growth factor receptor 2 (HER2) p.S310F mutation, in addition to the known EGFR p.L858R mutation. Crizotinib then led to a durable response of 17 months. The molecular retesting of the tumour cells obtained from the recurrent pleural effusion revealed the absence of the ROS1 translocation, whereas the EGFR and HER2 mutations were still present. Afatinib was added to the crizotinib, and the combination treatment resulted in another durable response of more than two years. The patient died more than 7 years after the initial diagnosis of metastatic NSCLC. This case demonstrates that the repeated molecular testing of metastatic NSCLC may identify new druggable genomic alterations that can impact the patient management and improve the patient outcome.
Collapse
Affiliation(s)
- Eva Plomer
- Department of Medical Oncology and Haematology, Cantonal Hospital St. Gallen, Rorschacher Strasse 95, 9007 St. Gallen, Switzerland; (E.P.); (M.F.)
| | - Martin Früh
- Department of Medical Oncology and Haematology, Cantonal Hospital St. Gallen, Rorschacher Strasse 95, 9007 St. Gallen, Switzerland; (E.P.); (M.F.)
- Faculty of Medicine, University of Bern, Murtenstrasse 11, 3008 Bern, Switzerland
| | - Arno Lauber
- Department of Radiology, Cantonal Hospital St. Gallen, Rorschacher Strasse 95, 9007 St. Gallen, Switzerland;
| | - Izadora Demmer
- Institute of Pathology, Cantonal Hospital St. Gallen, Rorschacher Strasse 95, 9007 St. Gallen, Switzerland; (I.D.); (W.J.)
| | - Wolfram Jochum
- Institute of Pathology, Cantonal Hospital St. Gallen, Rorschacher Strasse 95, 9007 St. Gallen, Switzerland; (I.D.); (W.J.)
| | - Kira-Lee Koster
- Department of Medical Oncology and Haematology, Cantonal Hospital St. Gallen, Rorschacher Strasse 95, 9007 St. Gallen, Switzerland; (E.P.); (M.F.)
| |
Collapse
|
17
|
Liang H, Xu Y, Zhao J, Chen M, Wang M. Hippo pathway in non-small cell lung cancer: mechanisms, potential targets, and biomarkers. Cancer Gene Ther 2024; 31:652-666. [PMID: 38499647 PMCID: PMC11101353 DOI: 10.1038/s41417-024-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Lung cancer is the primary contributor to cancer-related deaths globally, and non-small cell lung cancer (NSCLC) constitutes around 85% of all lung cancer cases. Recently, the emergence of targeted therapy and immunotherapy revolutionized the treatment of NSCLC and greatly improved patients' survival. However, drug resistance is inevitable, and extensive research has demonstrated that the Hippo pathway plays a crucial role in the development of drug resistance in NSCLC. The Hippo pathway is a highly conserved signaling pathway that is essential for various biological processes, including organ development, maintenance of epithelial balance, tissue regeneration, wound healing, and immune regulation. This pathway exerts its effects through two key transcription factors, namely Yes-associated protein (YAP) and transcriptional co-activator PDZ-binding motif (TAZ). They regulate gene expression by interacting with the transcriptional-enhanced associate domain (TEAD) family. In recent years, this pathway has been extensively studied in NSCLC. The review summarizes a comprehensive overview of the involvement of this pathway in NSCLC, and discusses the mechanisms of drug resistance, potential targets, and biomarkers associated with this pathway in NSCLC.
Collapse
Affiliation(s)
- Hongge Liang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Zhao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
Peng Y, Ernani V, Liu D, Guo Q, Hopps M, Cappelleri JC, Gupta R, de Andrade M, Chen J, Yi ES, Yang P. Lung adenocarcinoma patients with ROS1-rearranged tumors by sex and smoking intensity. Heliyon 2024; 10:e28285. [PMID: 38560203 PMCID: PMC10981064 DOI: 10.1016/j.heliyon.2024.e28285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Background ROS1 rearrangements (ROS1+) define a distinct molecular subset of lung adenocarcinomas. ROS1 + tumors are known to occur more in never-smokers, but the frequency and outcome of ROS1 positivity by sex and smoking intensity are not clearly documented. Patients and methods This patient cohort study included all never- (<100 cigarettes lifetime) and light- (100 cigarettes-20 pack-years) smokers, and a sample of heavy-smokers. ROS1 + rates by sex and smoking intensity were compared within and beyond our study. Survival outcomes were analyzed using Kaplan-Meier curves and Cox proportional hazards models. Results Of the 571 total patients, ROS1 + was detected in 24 (4.2%): 6.4% in men and 3.0% in women; 5.1% in never-, 5.7% in light-, and 1.8% in heavy-smokers (P=0.05). Among the 209 stage IIIB-IV patients, men had much higher ROS1 + rate (11.1%) not only than women (1.7%, P=0.004) in our study, but also than men (0.4%-1.8%) in 8 published studies (Ps = 0.0019-0.0001). ROS1+ rates were similar between never- (9.3%) and light-smokers (8.1%) and significantly lower in heavy-smokers (1.2%, P=0.017), a finding confirmed by 6 published studies (Ps = 0.041-0.0001). Overall survival of ROS1 + patients were significantly better than the ROS1- (P=0.023) mainly due to targeted therapy. Among patients who exhibited resistance to crizotinib, follow-up treatment of entrectinib and lorlatinib showed remarkable survival benefits. Conclusions The ROS1 + rates were higher in men than in women, and similar in never- and light-smokers, more pronounced in stage IIIB-IV patients. Newer-generation ALK/ROS1-targeted drugs showed efficacy in a cohort of crizotinib resistant ROS1 + patients. These results, when validated, could assist efficiently accruing ROS1 + patients.
Collapse
Affiliation(s)
- Yanmei Peng
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, AZ, 85259, USA
- Department of Oncology, Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Vinicius Ernani
- Division of Hematology and Medical Oncology, Department of Medicine, Mayo Clinic, AZ, 85054, USA
| | - Dan Liu
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, AZ, 85259, USA
- Division of Pulmonary & Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Qian Guo
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, AZ, 85259, USA
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Markay Hopps
- Vaccine R&D, Pfizer Inc, New York, NY, 10017, USA
| | | | - Ruchi Gupta
- Division of Biostatistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mariza de Andrade
- Division of Biostatistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jun Chen
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, AZ, 85259, USA
- The Second Affiliated Hospital of Dalian Medical University, Shahekou District, Dalian, 116023, China
| | - Eunhee S. Yi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ping Yang
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, AZ, 85259, USA
| |
Collapse
|
19
|
Xiang Y, Liu X, Wang Y, Zheng D, Meng Q, Jiang L, Yang S, Zhang S, Zhang X, Liu Y, Wang B. Mechanisms of resistance to targeted therapy and immunotherapy in non-small cell lung cancer: promising strategies to overcoming challenges. Front Immunol 2024; 15:1366260. [PMID: 38655260 PMCID: PMC11035781 DOI: 10.3389/fimmu.2024.1366260] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Resistance to targeted therapy and immunotherapy in non-small cell lung cancer (NSCLC) is a significant challenge in the treatment of this disease. The mechanisms of resistance are multifactorial and include molecular target alterations and activation of alternative pathways, tumor heterogeneity and tumor microenvironment change, immune evasion, and immunosuppression. Promising strategies for overcoming resistance include the development of combination therapies, understanding the resistance mechanisms to better use novel drug targets, the identification of biomarkers, the modulation of the tumor microenvironment and so on. Ongoing research into the mechanisms of resistance and the development of new therapeutic approaches hold great promise for improving outcomes for patients with NSCLC. Here, we summarize diverse mechanisms driving resistance to targeted therapy and immunotherapy in NSCLC and the latest potential and promising strategies to overcome the resistance to help patients who suffer from NSCLC.
Collapse
Affiliation(s)
- Yuchu Xiang
- West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Xudong Liu
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Wang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Dawei Zheng
- The College of Life Science, Sichuan University, Chengdu, China
| | - Qiuxing Meng
- Department of Laboratory Medicine, Liuzhou People’s Hospital, Liuzhou, China
- Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People’s Hospital), Liuzhou, China
| | - Lingling Jiang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sha Yang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Zhongshan Hospital of Fudan University, Xiamen, Fujian, China
| | - Yan Liu
- Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bo Wang
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
20
|
Terrones M, Deben C, Rodrigues-Fortes F, Schepers A, de Beeck KO, Van Camp G, Vandeweyer G. CRISPR/Cas9-edited ROS1 + non-small cell lung cancer cell lines highlight differential drug sensitivity in 2D vs 3D cultures while reflecting established resistance profiles. J Transl Med 2024; 22:234. [PMID: 38433235 PMCID: PMC10910754 DOI: 10.1186/s12967-024-04988-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
INTRODUCTION The study of resistance-causing mutations in oncogene-driven tumors is fundamental to guide clinical decisions. Several point mutations affecting the ROS1 kinase domain have been identified in the clinical setting, but their impact requires further exploration, particularly in improved pre-clinical models. Given the scarcity of solid pre-clinical models to approach rare cancer subtypes like ROS1 + NSCLC, CRISPR/Cas9 technology allows the introduction of mutations in patient-derived cell lines for which resistant variants are difficult to obtain due to the low prevalence of cases within the clinical setting. METHODS In the SLC34A2-ROS1 rearranged NSCLC cell line HCC78, we knocked-in through CRISPR/Cas9 technology three ROS1 drug resistance-causing mutations: G2032R, L2026M and S1986Y. Such variants are located in different functional regions of the ROS1 kinase domain, thus conferring TKI resistance through distinct mechanisms. We then performed pharmacological assays in 2D and 3D to assess the cellular response of the mutant lines to crizotinib, entrectinib, lorlatinib, repotrectinib and ceritinib. In addition, immunoblotting assays were performed in 2D-treated cell lines to determine ROS1 phosphorylation and MAP kinase pathway activity. The area over the curve (AOC) defined by the normalized growth rate (NGR_fit) dose-response curves was the variable used to quantify the cellular response towards TKIs. RESULTS Spheroids derived from ROS1G2032R cells were significantly more resistant to repotrectinib (AOC fold change = - 7.33), lorlatinib (AOC fold change = - 6.17), ceritinib (AOC fold change = - 2.8) and entrectinib (AOC fold change = - 2.02) than wild type cells. The same cells cultured as a monolayer reflected the inefficacy of crizotinib (AOC fold change = - 2.35), entrectinib (AOC fold change = - 2.44) and ceritinib (AOC fold change = - 2.12) in targeting the ROS1 G2032R mutation. ROS1L2026M cells showed also remarkable resistance both in monolayer and spheroid culture compared to wild type cells, particularly against repotrectinib (spheroid AOC fold change = - 2.19) and entrectinib (spheroid AOC fold change = - 1.98). ROS1S1986Y cells were resistant only towards crizotinib in 2D (AOC fold change = - 1.86). Overall, spheroids showed an increased TKI sensitivity compared to 2D cultures, where the impact of each mutation that confers TKI resistance could be clearly distinguished. Western blotting assays qualitatively reflected the patterns of response towards TKI observed in 2D culture through the levels of phosphorylated-ROS1. However, we observed a dose-response increase of phosphorylated-Erk1/2, suggesting the involvement of the MAPK pathway in the mediation of apoptosis in HCC78 cells. CONCLUSION In this study we knock-in for the first time in a ROS1 + patient-derived cell line, three different known resistance-causing mutations using CRISPR/Cas9 in the endogenous translocated ROS1 alleles. Pharmacological assays performed in 2D and 3D cell culture revealed that spheroids are more sensitive to TKIs than cells cultured as a monolayer. This direct comparison between two culture systems could be done thanks to the implementation of normalized growth rates (NGR) to uniformly quantify drug response between 2D and 3D cell culture. Overall, this study presents the added value of using spheroids and positions lorlatinib and repotrectinib as the most effective TKIs against the studied ROS1 resistance point mutations.
Collapse
Affiliation(s)
- Marc Terrones
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Christophe Deben
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Felicia Rodrigues-Fortes
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Anne Schepers
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Geert Vandeweyer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium.
| |
Collapse
|
21
|
Xu SM, Cheng Y, Fisher H, Janitz M. Recent advances in the investigation of fusion RNAs and their role in molecular pathology of cancer. Int J Biochem Cell Biol 2024; 168:106529. [PMID: 38246262 DOI: 10.1016/j.biocel.2024.106529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Gene fusions have had a significant role in the development of various types of cancer, oftentimes involved in oncogenic activities through dysregulation of gene expression or signalling pathways. Some cancer-associated chromosomal translocations can undergo backsplicing, resulting in fusion-circular RNAs, a more stable isoform immune to RNase degradation. This stability makes fusion circular RNAs a promising diagnostic biomarker for cancer. While the detection of linear fusion RNAs and their function in certain cancers have been described in literature, fusion circular RNAs lag behind due to their low abundance in cancer cells. This review highlights current literature on the role of linear and circular fusion transcripts in cancer, tools currently available for detecting of these chimeric RNAs and their function and how they play a role in tumorigenesis.
Collapse
Affiliation(s)
- Si-Mei Xu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Yuning Cheng
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Harry Fisher
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
22
|
Arigoni M, Ratto ML, Riccardo F, Balmas E, Calogero L, Cordero F, Beccuti M, Calogero RA, Alessandri L. A single cell RNAseq benchmark experiment embedding "controlled" cancer heterogeneity. Sci Data 2024; 11:159. [PMID: 38307867 PMCID: PMC10837414 DOI: 10.1038/s41597-024-03002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has emerged as a vital tool in tumour research, enabling the exploration of molecular complexities at the individual cell level. It offers new technical possibilities for advancing tumour research with the potential to yield significant breakthroughs. However, deciphering meaningful insights from scRNA-seq data poses challenges, particularly in cell annotation and tumour subpopulation identification. Efficient algorithms are therefore needed to unravel the intricate biological processes of cancer. To address these challenges, benchmarking datasets are essential to validate bioinformatics methodologies for analysing single-cell omics in oncology. Here, we present a 10XGenomics scRNA-seq experiment, providing a controlled heterogeneous environment using lung cancer cell lines characterised by the expression of seven different driver genes (EGFR, ALK, MET, ERBB2, KRAS, BRAF, ROS1), leading to partially overlapping functional pathways. Our dataset provides a comprehensive framework for the development and validation of methodologies for analysing cancer heterogeneity by means of scRNA-seq.
Collapse
Affiliation(s)
- Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Maria Luisa Ratto
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elisa Balmas
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Lorenzo Calogero
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, Torino, Italy
| | | | - Marco Beccuti
- Department of Computer Science, University of Torino, Torino, Italy
| | - Raffaele A Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
| | - Luca Alessandri
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
23
|
Kim HH, Lee JC, Oh IJ, Kim EY, Yoon SH, Lee SY, Lee MK, Lee JE, Park CK, Lee KY, Lee SY, Kim SJ, Lim JH, Choi CM. Real-World Outcomes of Crizotinib in ROS1-Rearranged Advanced Non-Small-Cell Lung Cancer. Cancers (Basel) 2024; 16:528. [PMID: 38339278 PMCID: PMC10854608 DOI: 10.3390/cancers16030528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Real-world data on the use and outcomes of crizotinib in ROS1-rearranged non-small-cell lung cancer (NSCLC) are limited. This study aims to analyze the real-world efficacy of crizotinib in South Korea and explore the utilization of liquid biopsies that implement next-generation sequencing (NGS) using cell-free total nucleic acids. In this prospective multicenter cohort study, 40 patients with ROS1-rearranged NSCLC, either starting or already on crizotinib, were enrolled. Patients had a median age of 61 years, with 32.5% presenting brain/central nervous system (CNS) metastases at treatment initiation. At the data cutoff, 48.0% were still in treatment; four continued with it even after disease progression due to the clinical benefits. The objective response rate was 70.0%, with a median duration of response of 27.8 months. The median progression-free survival was 24.1 months, while the median overall survival was not reached. Adverse events occurred in 90.0% of patients, primarily with elevated transaminases, yet these were mostly manageable. The NGS assay detected a CD74-ROS1 fusion in 2 of the 14 patients at treatment initiation and identified emerging mutations, such as ROS1 G2032R, ROS1 D2033N, and KRAS G12D, during disease progression. These findings confirm crizotinib's sustained clinical efficacy and safety in a real-world context, which was characterized by a higher elderly population and higher rates of brain/CNS metastases. The study highlights the clinical relevance of liquid biopsy for detecting resistance mechanisms, suggesting its value in personalized treatment strategies.
Collapse
Affiliation(s)
- Hyeon Hwa Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea;
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Gwangju 58128, Republic of Korea;
| | - Eun Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seong Hoon Yoon
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
| | - Shin Yup Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 41404, Republic of Korea
| | - Min Ki Lee
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University Hospital, Busan 49241, Republic of Korea;
| | - Jeong Eun Lee
- Division of Pulmonology, Department of Internal Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea;
| | - Kye Young Lee
- Departments of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Republic of Korea;
| | - Sung Yong Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea;
| | - Jun Hyeok Lim
- Department of Internal Medicine, Inha University Hospital, Incheon 22332, Republic of Korea
| | - Chang-min Choi
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea;
- Department of Oncology, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| |
Collapse
|
24
|
Ohishi Y, Nakanishi Y, Hirotani Y, Suzuki A, Tanino T, Nishimaki‐Watanabe H, Kobayashi H, Nozaki F, Ohni S, Tang X, Hayashi K, Nakagawa Y, Shimizu T, Tsujino I, Takahashi N, Gon Y, Masuda S. Different effects of crizotinib treatment in two non-small cell lung cancer patients with SDC4::ROS1 fusion variants. Thorac Cancer 2024; 15:89-93. [PMID: 38093515 PMCID: PMC10761618 DOI: 10.1111/1759-7714.15168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 01/04/2024] Open
Abstract
The possibility of stratifying patients according to differences in ROS proto-oncogene 1 (ROS1) fusion partners has been discussed. This study aimed to clarify the clinicopathological differences between two SDC4::ROS1 positive NSCLC cases who had different responses to crizotinib. Cytology and pathology samples from two NSCLC cases with SDC4::ROS1 who were diagnosed and treated with crizotinib at Nihon University Itabashi Hospital were obtained. Case 1 has been well-controlled with crizotinib for over 5 years, but case 2 was worse and overall survival was 19 months. Sequencing analysis of ROS1 fusion genes was performed by reverse-transcription-PCR and Sanger's sequencing methods. In addition, thyroid transcription factor (TTF)-1, ROS-1, Ki67, and phosphorylated extracellular signal-regulated kinase (pERK)1/2 expression were investigated using immunohistochemistry. Sequencing analysis showed SDC4 exon2::ROS1 exon 32 (exon33 deleted) in case 1, and coexistence of SDC4 exon2::ROS1 exon 34 and SDC4 exon2::ROS1 exon35 in case 2. The Ki67 index was not different, but ROS1 and pERK1/2 expression levels tended to be higher in the tumor cells of case 2 than in case 1. Therapeutic response to crizotinib and patients' prognosis in ROS1 rearranged NSCLC may be related to the activation of ROS1 signaling, depending on ROS1 and pERK1/2 overexpression status, even if the ROS1 fusion partner is the same.
Collapse
Affiliation(s)
- Yuta Ohishi
- Nihon University Itabashi HospitalTokyoJapan
| | - Yoko Nakanishi
- Division of Oncologic Pathology, Department Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Yukari Hirotani
- Division of Oncologic Pathology, Department Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Atsuko Suzuki
- Division of Pathology LaboratoryNihon University Itabashi HospitalTokyoJapan
| | - Tomoyuki Tanino
- Division of Oncologic Pathology, Department Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Haruna Nishimaki‐Watanabe
- Division of Oncologic Pathology, Department Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Hiroko Kobayashi
- Division of Oncologic Pathology, Department Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Fumi Nozaki
- Division of Oncologic Pathology, Department Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Sumie Ohni
- Division of Oncologic Pathology, Department Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Xiaoyan Tang
- Division of Oncologic Pathology, Department Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Kentaro Hayashi
- Division of Respiratory Medicine, Department of Internal MedicineNihon University School of MedicineTokyoJapan
| | - Yoshiko Nakagawa
- Division of Respiratory Medicine, Department of Internal MedicineNihon University School of MedicineTokyoJapan
| | - Tetsuo Shimizu
- Division of Respiratory Medicine, Department of Internal MedicineNihon University School of MedicineTokyoJapan
| | - Ichiro Tsujino
- Division of Respiratory Medicine, Department of Internal MedicineNihon University School of MedicineTokyoJapan
| | - Noriaki Takahashi
- Division of Respiratory Medicine, Department of Internal MedicineNihon University School of MedicineTokyoJapan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal MedicineNihon University School of MedicineTokyoJapan
| | - Shinobu Masuda
- Division of Oncologic Pathology, Department Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| |
Collapse
|
25
|
Al-Qadhi MA, Allam HA, Fahim SH, Yahya TAA, Ragab FAF. Design and synthesis of certain 7-Aryl-2-Methyl-3-Substituted Pyrazolo{1,5-a}Pyrimidines as multikinase inhibitors. Eur J Med Chem 2023; 262:115918. [PMID: 37922829 DOI: 10.1016/j.ejmech.2023.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Four new series 7a-e, 8a-e, 9a-e, and 10a-e of 7-aryl-3-substituted pyrazolo[1,5-a]pyrimidines were synthesized and tested for their RTK and STK inhibitory activity. Compound 7d demonstrated potent enzymatic inhibitory activity against TrkA and ALK2 with IC50 0.087and 0.105 μM, respectively, and potent antiproliferative activity against KM12 and EKVX cell lines with IC50 0.82 and 4.13 μM, respectively. Compound 10e showed good enzyme inhibitory activity against TrkA, ALK2, c-KIT, EGFR, PIM1, CK2α, CHK1, and CDK2 in submicromolar values. Additionally 10e revealed antiproliferative activity against MCF7, HCT116 and EKVX with IC50 3.36, 1.40 and 3.49 μM, respectively; with good safety profile. Moreover, 10e showed cell cycle arrest at the G1/S phase and G1 phase in MCF7 and HCT116 cells with good apoptotic effect. Molecular docking studies were fulfilled for compound 10e and illustrated good interaction with the hot spots of the active site of the tested enzymes.
Collapse
Affiliation(s)
- Mustafa A Al-Qadhi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Sana'a University, P.O. Box, 18084, Sana'a, Yemen
| | - Heba Abdelrasheed Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt.
| | - Samar H Fahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt
| | - Tawfeek A A Yahya
- Department of Medicinal Chemistry, Faculty of Pharmacy, Sana'a University, P.O. Box, 18084, Sana'a, Yemen
| | - Fatma A F Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt
| |
Collapse
|
26
|
Nogami N, Nakamura A, Shiraiwa N, Kikkawa H, Emir B, Wiltshire R, Morise M. Effectiveness of crizotinib in patients with ROS1-positive non-small-cell lung cancer: real-world evidence in Japan. Future Oncol 2023; 19:2453-2463. [PMID: 37605861 DOI: 10.2217/fon-2023-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
Aim: Crizotinib, approved in Japan (2017) for ROS1-positive NSCLC, has limited real-world data. Materials & methods: Crizotinib monotherapy real-world effectiveness and treatment status were analyzed from claims data (June 2017-March 2021; Japanese Medical Data Vision; 58 patients tested for ROS1-NSCLC). Results: Median duration of treatment ([DoT]; primary end point), any line: 12.9 months; 22 patients on crizotinib, 23 discontinued, 13 receiving post-crizotinib treatment. 1L (n = 27) median DoT: 13.0 months (95% CI, 4.4-32.0 months); 13 patients on crizotinib; seven discontinued; seven receiving post-crizotinib treatment. 2L (n = 13) median DoT: 14.0 months (95% CI, 4.6-22.2 months); 2L+ (n = 31): nine patients on crizotinib; 16 discontinued; six receiving post-crizotinib treatment. Post-crizotinib treatments (chemotherapy, cancer immunotherapy, anti-VEGF/R) did not affect crizotinib DoT. Conclusion: Data supplement crizotinib's effectiveness in ROS1-positive NSCLC previously seen in clinical trials/real-world.
Collapse
Affiliation(s)
- Naoyuki Nogami
- Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Atsushi Nakamura
- Sendai Kousei Hospital, 4-15 Hirosecho, Aoba Ward, Sendai, Miyagi, 980-0873, Japan
| | - Naoko Shiraiwa
- Pfizer Japan, 3-22-7 Yoyogi, Shibuya-ku, Tokyo, 151-8589, Japan
| | | | - Birol Emir
- Pfizer Inc., 235 E 42nd St, New York, NY 10017, USA
| | | | - Masahiro Morise
- Nagoya University Hospital Respiratory Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| |
Collapse
|
27
|
Vargas J, Pantouris G. Analysis of CD74 Occurrence in Oncogenic Fusion Proteins. Int J Mol Sci 2023; 24:15981. [PMID: 37958963 PMCID: PMC10650716 DOI: 10.3390/ijms242115981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
CD74 is a type II cell surface receptor found to be highly expressed in several hematological and solid cancers, due to its ability to activate pathways associated with tumor cell survival and proliferation. Over the past 16 years, CD74 has emerged as a commonly detected fusion partner in multiple oncogenic fusion proteins. Studies have found CD74 fusion proteins in a range of cancers, including lung adenocarcinoma, inflammatory breast cancer, and pediatric acute lymphoblastic leukemia. To date, there are five known CD74 fusion proteins, CD74-ROS1, CD74-NTRK1, CD74-NRG1, CD74-NRG2α, and CD74-PDGFRB, with a total of 16 different variants, each with unique genetic signatures. Importantly, the occurrence of CD74 in the formation of fusion proteins has not been well explored despite the fact that ROS1 and NRG1 families utilize CD74 as the primary partner for the formation of oncogenic fusions. Fusion proteins known to be oncogenic drivers, including those of CD74, are typically detected and targeted after standard chemotherapeutic plans fail and the disease relapses. The analysis reported herein provides insights into the early intervention of CD74 fusions and highlights the need for improved routine assessment methods so that targeted therapies can be applied while they are most effective.
Collapse
Affiliation(s)
| | - Georgios Pantouris
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|
28
|
Zhang J, Yao H, Lai C, Sun X, Yang X, Li S, Guo Y, Luo J, Wen Z, Tang K. A novel multimodal prediction model based on DNA methylation biomarkers and low-dose computed tomography images for identifying early-stage lung cancer. Chin J Cancer Res 2023; 35:511-525. [PMID: 37969955 PMCID: PMC10643339 DOI: 10.21147/j.issn.1000-9604.2023.05.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023] Open
Abstract
Objective DNA methylation alterations are early events in carcinogenesis and immune signalling in lung cancer. This study aimed to develop a model based on short stature homeobox 2 gene (SHOX2)/prostaglandin E receptor 4 gene (PTGER4) DNA methylation in plasma, appearance subtype of pulmonary nodules (PNs) and low-dose computed tomography (LDCT) images to distinguish early-stage lung cancers. Methods We developed a multimodal prediction model with a training set of 257 individuals. The performance of the multimodal prediction model was further validated in an independent validation set of 42 subjects. In addition, we explored the association between SHOX2/PTGER4 DNA methylation and driver gene mutations in lung cancer based on data from The Cancer Genome Atlas (TCGA) portal. Results There were significant differences between the early-stage lung cancers and benign groups in the methylation levels. The area under a receiver operator characteristic curve (AUC) of SHOX2 in patients with solid nodules, mixed ground-glass opacity nodules and pure ground-glass opacity nodules were 0.693, 0.497 and 0.864, respectively, while the AUCs of PTGER4 were 0.559, 0.739 and 0.619, respectively. With the highest AUC of 0.894, the novel multimodal prediction model outperformed the Mayo Clinic model (0.519) and LDCT-based deep learning model (0.842) in the independent validation set. Database analysis demonstrated that patients with SHOX2/PTGER4 DNA hypermethylation were enriched in TP53 mutations. Conclusions The present multimodal prediction model could more efficiently distinguish early-stage lung cancer from benign PNs. A prognostic index based on DNA methylation and lung cancer driver gene alterations may separate the patients into groups with good or poor prognosis.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Haohua Yao
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Chunliu Lai
- Division of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xue Sun
- Department of Respiratory and Critical Care Medicine, the Fourth People’s Hospital of Shenyang, Shenyang 110031, China
| | - Xiujuan Yang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shurong Li
- Department of Radiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yubiao Guo
- Division of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Junhang Luo
- Department of Urology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihua Wen
- Department of Radiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Kejing Tang
- Division of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Department of Pharmacy, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
29
|
Kawasoe K, Watanabe T, Yoshida-Sakai N, Yamamoto Y, Kurahashi Y, Kidoguchi K, Ureshino H, Kamachi K, Fukuda-Kurahashi Y, Kimura S. A Combination of Alectinib and DNA-Demethylating Agents Synergistically Inhibits Anaplastic-Lymphoma-Kinase-Positive Anaplastic Large-Cell Lymphoma Cell Proliferation. Cancers (Basel) 2023; 15:5089. [PMID: 37894456 PMCID: PMC10605931 DOI: 10.3390/cancers15205089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The recent evolution of molecular targeted therapy has improved clinical outcomes in several human malignancies. The translocation of anaplastic lymphoma kinase (ALK) was originally identified in anaplastic large-cell lymphoma (ALCL) and subsequently in non-small cell lung carcinoma (NSCLC). Since ALK fusion gene products act as a driver of carcinogenesis in both ALCL and NSCLC, several ALK tyrosine kinase inhibitors (TKIs) have been developed. Crizotinib and alectinib are first- and second-generation ALK TKIs, respectively, approved for the treatment of ALK-positive ALCL (ALK+ ALCL) and ALK+ NSCLC. Although most ALK+ NSCLC patients respond to crizotinib and alectinib, they generally relapse after several years of treatment. We previously found that DNA-demethylating agents enhanced the efficacy of ABL TKIs in chronic myeloid leukemia cells. Moreover, aberrant DNA methylation has also been observed in ALCL cells. Thus, to improve the clinical outcomes of ALK+ ALCL therapy, we investigated the synergistic efficacy of the combination of alectinib and the DNA-demethylating agent azacytidine, decitabine, or OR-2100 (an orally bioavailable decitabine derivative). As expected, the combination of alectinib and DNA-demethylating agents synergistically suppressed ALK+ ALCL cell proliferation, concomitant with DNA hypomethylation and a reduction in STAT3 (a downstream target of ALK fusion proteins) phosphorylation. The combination of alectinib and OR-2100 markedly altered gene expression in ALCL cells, including that of genes implicated in apoptotic signaling, which possibly contributed to the synergistic anti-ALCL effects of this drug combination. Therefore, alectinib and OR-2100 combination therapy has the potential to improve the outcomes of patients with ALK+ ALCL.
Collapse
Affiliation(s)
- Kazunori Kawasoe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Nao Yoshida-Sakai
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Yuta Yamamoto
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Yuki Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- OHARA Pharmaceutical Co., Ltd., Koka 520-3403, Japan
| | - Keisuke Kidoguchi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Hiroshi Ureshino
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Kazuharu Kamachi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Yuki Fukuda-Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- OHARA Pharmaceutical Co., Ltd., Koka 520-3403, Japan
| | - Shinya Kimura
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| |
Collapse
|
30
|
Zhou S, Zhang F, Xu M, Zhang L, Liu Z, Yang Q, Wang C, Wang B, Ma T, Feng J. Novel insights into molecular patterns of ROS1 fusions in a large Chinese NSCLC cohort: a multicenter study. Mol Oncol 2023; 17:2200-2212. [PMID: 37584407 PMCID: PMC10552890 DOI: 10.1002/1878-0261.13509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 08/17/2023] Open
Abstract
ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) rearrangements are a crucial therapeutic target in non-small cell lung cancer (NSCLC). However, there is limited comprehensive analysis of the molecular patterns of ROS1 fusions. This study aimed to address this gap by analysing 135 ROS1 fusions from 134 Chinese NSCLC patients using next-generation sequencing (NGS). The fusions were categorized into common and uncommon based on their incidence. Our study revealed, for the first time, a unique distribution preference of breakpoints within ROS1, with common fusions occurring in introns 31-33 and uncommon fusions occurring in introns 34 and 35. Additionally, we identified previously unknown breakpoints within intron 28 of ROS1. Furthermore, we identified a close association between the distribution patterns of fusion partners and breakpoints on ROS1, providing important insights into the molecular landscape of ROS1 fusions. We also confirmed the presence of inconsistent breakpoints in ROS1 fusions between DNA-based NGS and RNA-based NGS through rigorous validation methods. These inconsistencies were attributed to alternative splicing resulting in out-of-frame or exonic ROS1 fusions. These findings significantly contribute to our understanding of the molecular characteristics of ROS1 fusions, which have implications for panel design and the treatment of NSCLC patients with ROS1 rearrangements.
Collapse
Affiliation(s)
- Shengyu Zhou
- Clinical Nursing Department, School of Nursing and Rehabilitation, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Fayan Zhang
- College of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Mengxiang Xu
- Jichenjunchuang Clinical LaboratoryHangzhouChina
- Genecn‐Biotech Co.LtdHangzhouChina
| | - Lei Zhang
- Cancer Center, Daping HospitalArmy Medical UniversityChongqingChina
| | - Zhengchuang Liu
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical CollegeChina
| | - Qiong Yang
- General Surgery, Cancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)China
| | - Chunyang Wang
- Jichenjunchuang Clinical LaboratoryHangzhouChina
- Genecn‐Biotech Co.LtdHangzhouChina
| | - Baoming Wang
- Jichenjunchuang Clinical LaboratoryHangzhouChina
- Genecn‐Biotech Co.LtdHangzhouChina
| | - Tonghui Ma
- Jichenjunchuang Clinical LaboratoryHangzhouChina
- Genecn‐Biotech Co.LtdHangzhouChina
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical CollegeChina
| | - Jiao Feng
- Cancer Center, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeChina
- General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Cancer CenterZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeChina
- School of PharmacyHangzhou Normal UniversityChina
| |
Collapse
|
31
|
Dülger O, Öz B. Comparison of Different ROS1 Immunohistochemistry Clones and Consistency with Fluorescence In Situ Hybridization Results in Non-Small Cell Lung Carcinoma. Balkan Med J 2023; 40:344-350. [PMID: 37318131 PMCID: PMC10500138 DOI: 10.4274/balkanmedj.galenos.2023.2022-12-88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Background The study of ROS1 rearrangement in non-small cell lung carcinoma (NSCLC) has gained importance as it enables personalized treatment of NSCLC with tyrosine kinase inhibitors. Therefore, it is important that the ROS1 assessment tests become more standardized. In this study, we compared the two immunohistochemistry (IHC) antibodies (D4D6 and SP384 clones) and consistency with the fluorescence in situ hybridization (FISH) results in NSCLC. Aims To investigate the effectiveness of the commonly used two IHC antibodies (SP384 and D4D6 clones) to detect ROS1 rearrangement in NSCLC. Study Design A retrospective cohort study. Methods The study included 103 samples diagnosed with NSCLC, confirmed using IHC and FISH ROS1 results (14 positives, four discordant, and 85 consecutive negatives), with sufficient tissue samples (≥ 50 tumor cells). All samples were initially tested with ROS1-IHC antibodies (D4D6 and SP384 clones); their ROS1 status was then analyzed using the FISH method. Finally, samples with discordant IHC and FISH results were confirmed using the reverse transcription polymerase chain reaction method. Results The sensitivity of SP384 and D4D6 clones of ROS1 antibody was 100% with a ≥ 1 + cut-off. When the ≥ 2 + cut-off was used, the sensitivity rate for the SP384 clone was 100%, whereas the sensitivity for the D4D6 clone was 42.86%. ROS1 FISH rearranged samples were positive for both clones, but SP384 had generally higher intensity than D4D6. The mean IHC score was + 2 for SP384 and + 1.17 for D4D6. SP384 mostly tended to have a higher IHC score intensity, which made the evaluation easier than D4D6. SP384 has a higher sensitivity than D4D6. However, false positives were found in both clones. There was no significant correlation between ROS1 FISH-positivity percentage with SP384 (p = 0.713, p = 0.108) and D4D6 (p = 0.26, p = -0.323) IHC staining intensity. The staining patterns of both clones were similar (homogeneity/heterogeneity). Conclusion Our findings show that the SP384 clone is more sensitive than D4D6. However, SP384 can also cause false positive results like D4D6. Knowing the variable diagnostic performance of different ROS1 antibodies before using them in clinical applications is necessary. IHC-positive results should be confirmed using FISH.
Collapse
Affiliation(s)
- Onur Dülger
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, İstanbul University, İstanbul, Turkey
- Institute of Graduate Studies in Health Sciences, İstanbul University, İstanbul, Turkey
| | - Büge Öz
- Department of Pathology, Cerrahpaşa Medical Faculty, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| |
Collapse
|
32
|
Ilnytskyy Y, Petersen L, McIntyre JB, Konno M, D'Silva A, Dean M, Elegbede A, Golubov A, Kovalchuk O, Kovalchuk I, Bebb G. Genome-wide Detection of Chimeric Transcripts in Early-stage Non-small Cell Lung Cancer. Cancer Genomics Proteomics 2023; 20:417-432. [PMID: 37643782 PMCID: PMC10464939 DOI: 10.21873/cgp.20394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND/AIM Lung cancer remains the main culprit in cancer-related mortality worldwide. Transcript fusions play a critical role in the initiation and progression of multiple cancers. Treatment approaches based on specific targeting of discovered driver events, such as mutations in EGFR, and fusions in NTRK, ROS1, and ALK genes led to profound improvements in clinical outcomes. The formation of chimeric proteins due to genomic rearrangements or at the post-transcriptional level is widespread and plays a critical role in tumor initiation and progression. Yet, the fusion landscape of lung cancer remains underexplored. MATERIALS AND METHODS We used the JAFFA pipeline to discover transcript fusions in early-stage non-small cell lung cancer (NSCLC). The set of detected fusions was further analyzed to identify recurrent events, genes with multiple partners and fusions with high predicted oncogenic potential. Finally, we used a generalized linear model (GLM) to establish statistical associations between fusion occurrences and clinicopathological variables. RNA sequencing was used to discover and characterize transcript fusions in 270 NSCLC samples selected from the Glans-Look specimen repository. The samples were obtained during the early stages of disease prior to the initiation of chemo- or radiotherapy. RESULTS We identified a set of 792 fusions where 751 were novel, and 33 were recurrent. Four of the 33 recurrent fusions were significantly associated with clinicopathological variables. Several of the fusion partners were represented by well-established oncogenes ERBB4, BRAF, FGFR2, and MET. CONCLUSION The data presented in this study allow researchers to identify, select, and validate promising candidates for targeted clinical interventions.
Collapse
Affiliation(s)
| | | | | | - Mie Konno
- Alberta Health Services, Calgary, Alberta, Canada
| | | | | | | | | | | | | | - Gwyn Bebb
- University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
33
|
Shen F, Guo W, Song X, Wang B. Molecular profiling and prognostic biomarkers in chinese non-small cell lung cancer cohort. Diagn Pathol 2023; 18:71. [PMID: 37301854 PMCID: PMC10257305 DOI: 10.1186/s13000-023-01349-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/25/2023] [Indexed: 06/12/2023] Open
Abstract
INTRODUCTION Comprehensive information about the genome analysis and its prognostic values of NSCLC patients in Chinese population are still needed. PATIENTS A total of 117 Chinese patients with NSCLC were enrolled in this study. Tumor tissues or blood were collected and sequenced by targeted next-generation sequencing of 556 cancer related genes. The associations between clinical outcomes and clinical characteristics, TMB, mutated genes, treatment therapies were analyzed using Kaplan-Meier methods and further evaluated using multivariable Cox proportional hazards regression model. RESULTS A total of 899 mutations were identified by targeted NGS. The most frequently mutations included EGFR (47%), TP53 (46%), KRAS (18%), LRP1B (12%) and SPTA1 (10%). Patients with mutant TP53, PREX2, ARID1A, PTPRT and PIK3CG had lower median overall survival (OS) than those patients with wild-type (P = 0.0056, P < 0.001, P < 0.0001, P < 0.0001 and P = 0.036, respectively). Using a multivariate Cox regression model, PREX2 (P < 0.001), ARID1A (P < 0.001) and PIK3CG (P = 0.04) were independent prognostic factors in NSCLC. In the patients received chemotherapy, squamous patients had a significantly longer median OS than adenocarcinoma patients (P = 0.011). In the patients received targeted therapy, adenocarcinoma patients had a significantly longer survival period than squamous patients (P = 0.01). CONCLUSIONS Our study provided comprehensive genomic alterations in a cohort of Chinese NSCLC. We also identified new prognostic biomarkers, which could provide potential clues for targeted therapies.
Collapse
Affiliation(s)
- Fangfang Shen
- Department of Respiratory Medicine, Shanxi Hospital Affiliated to Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030001, China
| | - Wei Guo
- Department of Respiratory Medicine, Shanxi Hospital Affiliated to Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030001, China
| | - Xia Song
- Department of Respiratory Medicine, Shanxi Hospital Affiliated to Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030001, China
| | - Bei Wang
- The Second Hospital, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
34
|
Jönsson ÅLM, Hilberg O, Simonsen U, Christensen JH, Bendstrup E. New insights in the genetic variant spectrum of SLC34A2 in pulmonary alveolar microlithiasis; a systematic review. Orphanet J Rare Dis 2023; 18:130. [PMID: 37259144 DOI: 10.1186/s13023-023-02712-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/30/2023] [Indexed: 06/02/2023] Open
Abstract
Pulmonary alveolar microlithiasis (PAM) is a rare autosomal recessive lung disease caused by variants in the SLC34A2 gene encoding the sodium-dependent phosphate transport protein 2B, NaPi-2b. PAM is characterized by deposition of calcium phosphate crystals in the alveoli. Onset and clinical course vary considerably; some patients remain asymptomatic while others develop severe respiratory failure with a significant symptom burden and compromised survival. It is likely that PAM is under-reported due to lack of recognition, misdiagnosis, and mild clinical presentation. Most patients are genetically uncharacterized as the diagnostic confirmation of PAM has traditionally not included a genetic analysis. Genetic testing may in the future be the preferred tool for diagnostics instead of invasive methods. This systematic review aims to provide an overview of the growing knowledge of PAM genetics. Rare variants in SLC34A2 are found in almost all genetically tested patients. So far, 34 allelic variants have been identified in at least 68 patients. A majority of these are present in the homozygous state; however, a few are found in the compound heterozygous form. Most of the allelic variants involve only a single nucleotide. Half of the variants are either nonsense or frameshifts, resulting in premature termination of the protein or decay of the mRNA. There is currently no cure for PAM, and the only effective treatment is lung transplantation. Management is mainly symptomatic, but an improved understanding of the underlying pathophysiology will hopefully result in development of targeted treatment options. More standardized data on PAM patients, including a genetic diagnosis covering larger international populations, would support the design and implementation of clinical studies to the benefit of patients. Further genetic characterization and understanding of how the molecular changes influence disease phenotype will hopefully allow earlier diagnosis and treatment of the disease in the future.
Collapse
Affiliation(s)
- Åsa Lina M Jönsson
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Ole Hilberg
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.
- Department of Medicine, Lillebaelt Hospital, Vejle, Denmark.
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Elisabeth Bendstrup
- Centre for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
35
|
Ahmed M, Wuethrich A, Constantin N, Shanmugasundaram KB, Mainwaring P, Kulasinghe A, O'Leary C, O'Byrne K, Sina AAI, Carrascosa LG, Trau M. Liquid Biopsy Snapshots of Key Phosphoproteomic Pathways in Lung Cancer Patients for Diagnosis and Therapy Monitoring. Anal Chem 2023. [PMID: 37224231 DOI: 10.1021/acs.analchem.3c00519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Phosphorylation is a post-translational modification in proteins that changes protein conformation and activity for regulating signal transduction pathways. This mechanism is frequently impaired in lung cancer, resulting in permanently active constitutive phosphorylation to initiate tumor growth and/or reactivate pathways in response to therapy. We developed a multiplexed phosphoprotein analyzer chip (MPAC) that enables rapid (detection time: 5 min) and sensitive (LOD: 2 pg/μL) detection of protein phosphorylation and presents phosphoproteomic profiling of major phosphorylation pathways in lung cancer. We monitored phosphorylated receptors and downstream proteins involved in mitogen-activated protein kinase (MAPK) and PI3K/AKT/mTOR pathways in lung cancer cell line models and patient-derived extracellular vesicles (EV). Using kinase inhibitor drugs in cell line models, we found that the drug can inhibit the phosphorylation and/or activation of the kinase pathway. We then generated a phosphorylation heatmap by EV phosphoproteomic profiling of plasma samples isolated from 36 lung cancer patients and 8 noncancer individuals. The heatmap showed a clear difference between the noncancer and cancer samples and identify the specific proteins that are activated in the cancer samples. Our data also showed that MPAC could monitor immunotherapy responses by assessment of the phosphorylation states of the proteins, particularly for PD-L1. Finally, with a longitudinal study, we found that the phosphorylation levels of the proteins were indicative of a positive response to therapy. We believe that this study will lead to personalized treatment by providing a better understanding of the active and resistant pathways and will provide a tool for selecting combined and targeted therapies for precision medicine.
Collapse
Affiliation(s)
- Mostak Ahmed
- Center for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Alain Wuethrich
- Center for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Nicolas Constantin
- Center for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Karthik Balaji Shanmugasundaram
- Center for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Paul Mainwaring
- Center for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Arutha Kulasinghe
- School of Biomedical Sciences, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Connor O'Leary
- Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia
| | - Ken O'Byrne
- School of Biomedical Sciences, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Abu Ali Ibn Sina
- Center for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Laura G Carrascosa
- Center for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Matt Trau
- Center for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
36
|
Zhang HL, Kong Q. Current landscape and future prospects of RET and ROS1 targets. Pharm Pat Anal 2023; 12:113-126. [PMID: 37671904 DOI: 10.4155/ppa-2023-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
RET and ROS1 are becoming key targets for targeted therapy. To show current landscape of ROS1 and RET targets, a patent analysis was performed. The present results indicated that inhibitor structures of ROS1 target demonstrated unique elements compared with inhibitor structures of RET or BRAF targets. Our study was the first time to uncover that a number of inhibitor structures of ROS1 target contained sulfur and boron elements. The inhibitors of RET target could be developed for treatment of various cancers, including lung cancer, thyroid cancer, and other solid tumor, while the inhibitors of ROS1 target are virtually developed for treatment of lung cancer. Our findings provide a new insight for drug discovery of ROS1 and RET target.
Collapse
Affiliation(s)
- Hai-Long Zhang
- Central International Intellectual Property (Baotou) Co., Ltd., Baotou, 014030, China
| | - Qian Kong
- Department of Chemistry, College of Science, Southern University of Science & Technology, Shenzhen, 518055, China
| |
Collapse
|
37
|
van Gulik AL, Sluydts E, Vervoort L, Kockx M, Kortman P, Ylstra B, Finn SP, Bubendorf L, Bahce I, Sie D, Radonic T, Lissenberg-Witte B, Thunnissen E. False positivity in break apart fluorescence in-situ hybridization due to polyploidy. Transl Lung Cancer Res 2023; 12:676-688. [PMID: 37197629 PMCID: PMC10183404 DOI: 10.21037/tlcr-22-516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/08/2023] [Indexed: 05/19/2023]
Abstract
Background In-situ hybridization (ISH) is a diagnostic tool in the detection of chromosomal anomalies, which has important implications for diagnosis, classification and prediction of cancer therapy in various diseases. Certain thresholds of number of cells showing an aberrant pattern are commonly used to declare a sample as positive for genomic rearrangements. The phenomenon of polyploidy can be misleading in the interpretation of break apart fluorescence in-situ hybridization (FISH). The aim of this study is to investigate the impact of cell size and ploidy on FISH results. Methods In sections of varying thickness of control liver tissue and non-small cell lung cancer cases, nuclear size was measured and the number of MET chromogenic ISH and ALK FISH (liver) or ALK and ROS1 FISH (lung cancer) signals was manually counted and quantified. Results In liver cell nuclei the number of FISH/chromogenic ISH signals increases with nuclear size related to physiological polyploidy and is related to section thickness. In non-small cell lung cancer cases tumour cells with higher ploidy levels and nuclear size have an increased chance of single signals. Furthermore, additional lung cancer samples with borderline ALK FISH results were examined with a commercial kit for rearrangements. No rearrangements could be demonstrated, proving a false positive ALK FISH result. Conclusions In case of polyploidy there is an increased likelihood of false positivity when using break apart FISH probes. Therefore, we state that prescribing one single cut-off in FISH is inappropriate. In polyploidy, the currently proposed cut-off should only be used with caution and the result should be confirmed by an additional technique.
Collapse
Affiliation(s)
| | | | | | | | - Pim Kortman
- Department of Pathology, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - Bauke Ylstra
- Department of Pathology, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - Stephen P. Finn
- University of Dublin, Trinity College and St. James’s Hospital, Dublin, Ireland
| | - Lukas Bubendorf
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Idris Bahce
- Department of Pulmonology, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - Daoud Sie
- Amsterdam University Medical Center, Location VUmc, Tumor Genome Analysis Core, Amsterdam, The Netherlands
| | - Teodora Radonic
- Department of Pathology, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - Birgit Lissenberg-Witte
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - Erik Thunnissen
- Department of Pathology, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Leone GM, Candido S, Lavoro A, Vivarelli S, Gattuso G, Calina D, Libra M, Falzone L. Clinical Relevance of Targeted Therapy and Immune-Checkpoint Inhibition in Lung Cancer. Pharmaceutics 2023; 15:1252. [PMID: 37111737 PMCID: PMC10142433 DOI: 10.3390/pharmaceutics15041252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Lung cancer (LC) represents the second most diagnosed tumor and the malignancy with the highest mortality rate. In recent years, tremendous progress has been made in the treatment of this tumor thanks to the discovery, testing, and clinical approval of novel therapeutic approaches. Firstly, targeted therapies aimed at inhibiting specific mutated tyrosine kinases or downstream factors were approved in clinical practice. Secondly, immunotherapy inducing the reactivation of the immune system to efficiently eliminate LC cells has been approved. This review describes in depth both current and ongoing clinical studies, which allowed the approval of targeted therapies and immune-checkpoint inhibitors as standard of care for LC. Moreover, the present advantages and pitfalls of new therapeutic approaches will be discussed. Finally, the acquired importance of human microbiota as a novel source of LC biomarkers, as well as therapeutic targets to improve the efficacy of available therapies, was analyzed. Therapy against LC is increasingly becoming holistic, taking into consideration not only the genetic landscape of the tumor, but also the immune background and other individual variables, such as patient-specific gut microbial composition. On these bases, in the future, the research milestones reached will allow clinicians to treat LC patients with tailored approaches.
Collapse
Affiliation(s)
- Gian Marco Leone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy;
| |
Collapse
|
39
|
Li D, Jiang H, Jin F, Pan L, Xie Y, Zhang L, Li C. Concurrent classic driver oncogenes mutation with ROS1 rearrangement predicts superior clinical outcome in NSCLC patients. Genes Genomics 2023; 45:93-102. [PMID: 36445572 DOI: 10.1007/s13258-022-01326-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/01/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND There is high mortality rate and poor prognosis in lung cancer, especially non-small-cell lung cancer (NSCLC). Recent study showed that concurrent classic driver oncogene mutation with ROS1 rearrangement was found in NSCLC patients. However, whether this would affect the development and prognosis of NSCLC is still unclear. OBJECTIVE To explore the clinical characteristics and prognosis of NSCLC patients harboring concurrent classic driver oncogene mutation with ROS1 rearrangement. METHODS A retrospective study was conducted on 220 patients diagnosed with NSCLC. All samples were screened for EGFR and KRAS using amplification-refractory mutation system assay, and for ALK, ROS1 using RT-PCR. The clinical characteristics and clinical outcomes of concurrent gene alterations with ROS1 rearrangement were analyzed. RESULTS In 220 patients, 12 (5.45%) were ROS1 rearrangement, who tend to be younger, non-smokers. The mutation rates of EGFR, KRAS, ALK and ROS1 in NSCLC were 28.64%, 1.82%, 3.64% and 5.45%, respectively. ROS1 rearrangement was identified to co-occur in 5 (2.27%) NSCLC patients. ROS1/EGFR co-alterations were found in 3.17% of NSCLC patients, 16.67% of ROS1-positive NSCLC patients. Concomitant ROS1/ALK rearrangement constituted 37.50% in ALK-positive patients, and 25.00% in ROS1-positive patients. SDC4-ROS1 was the most common fusion partner in concurrent ROS1 rearrangement patients. The median overall survival of NSCLC with concurrent ROS1 rearrangement group and single ROS1 rearrangement group were 25 months and 14 months. CONCLUSION Concurrent driver oncogenes mutation with ROS1 rearrangement defines a unique subgroup of NSCLC. Patients with concomitant ROS1 rearrangement might have a better prognosis.
Collapse
Affiliation(s)
- Dandan Li
- Department of Respiration, Tangdu Hospital, Air Force Medical University, Xi'an, 710000, China
| | - Hua Jiang
- Department of Respiration, Tangdu Hospital, Air Force Medical University, Xi'an, 710000, China
| | - Faguang Jin
- Department of Respiration, Tangdu Hospital, Air Force Medical University, Xi'an, 710000, China
| | - Lei Pan
- Department of Respiration, Tangdu Hospital, Air Force Medical University, Xi'an, 710000, China
| | - Yonghong Xie
- Department of Respiration, Tangdu Hospital, Air Force Medical University, Xi'an, 710000, China
| | - Liang Zhang
- Medical Team of Chinese People's Liberation Army of 93932 Unit, Qinghai, 810000, China
| | - Chunmei Li
- Department of Respiration, Tangdu Hospital, Air Force Medical University, Xi'an, 710000, China.
| |
Collapse
|
40
|
Schubert L, Elliott A, Le AT, Estrada-Bernal A, Doebele RC, Lou E, Borghaei H, Demeure MJ, Kurzrock R, Reuss JE, Ou SHI, Braxton DR, Thomas CA, Darabi S, Korn WM, El-Deiry WS, Liu SV. ERBB family fusions are recurrent and actionable oncogenic targets across cancer types. Front Oncol 2023; 13:1115405. [PMID: 37168365 PMCID: PMC10164992 DOI: 10.3389/fonc.2023.1115405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/05/2023] [Indexed: 05/13/2023] Open
Abstract
Purpose Gene fusions involving receptor tyrosine kinases (RTKs) define an important class of genomic alterations with many successful targeted therapies now approved for ALK, ROS1, RET and NTRK gene fusions. Fusions involving the ERBB family of RTKs have been sporadically reported, but their frequency has not yet been comprehensively analyzed and functional characterization is lacking on many types of ERBB fusions. Materials and methods We analyzed tumor samples submitted to Caris Life Sciences (n=64,354), as well as the TCGA (n=10,967), MSK IMPACT (n=10,945) and AACR GENIE (n=96,324) databases for evidence of EGFR, ERBB2 and ERBB4 gene fusions. We also expressed several novel fusions in cancer cell lines and analyzed their response to EGFR and HER2 tyrosine kinase inhibitors (TKIs). Results In total, we identified 1,251 ERBB family fusions, representing an incidence of approximately 0.7% across all cancer types. EGFR, ERBB2, and ERBB4 fusions were most frequently found in glioblastoma, breast cancer and ovarian cancer, respectively. We modeled two novel types of EGFR and ERBB2 fusions, one with a tethered kinase domain and the other with a tethered adapter protein. Specifically, we expressed EGFR-ERBB4, EGFR-SHC1, ERBB2-GRB7 and ERBB2-SHC1, in cancer cell lines and demonstrated that they are oncogenic, regulate downstream signaling and are sensitive to small molecule inhibition with EGFR and HER2 TKIs. Conclusions We found that ERBB fusions are recurrent mutations that occur across multiple cancer types. We also establish that adapter-tethered and kinase-tethered fusions are oncogenic and can be inhibited with EGFR or HER2 inhibitors. We further propose a nomenclature system to categorize these fusions into several functional classes.
Collapse
Affiliation(s)
- Laura Schubert
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Denver, CO, United States
| | | | - Anh T. Le
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Denver, CO, United States
| | - Adriana Estrada-Bernal
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Denver, CO, United States
| | - Robert C. Doebele
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Denver, CO, United States
| | - Emil Lou
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Hossein Borghaei
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Michael J. Demeure
- Hoag Memorial Hospital Presbyterian, Center for Applied Genomic Technologies, Newport Beach, CA, United States
| | - Razelle Kurzrock
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Joshua E. Reuss
- Department of Medicine, Georgetown University, Washington, DC, United States
| | - Sai-Hong Ignatius Ou
- Department of Medicine, Division of Hematology/Oncology, University of California Irvine School of Medicine, Orange, CA, United States
| | - David R. Braxton
- Hoag Memorial Hospital Presbyterian, Department of Pathology and Laboratory Medicine, Newport Beach, CA, United States
| | | | - Sourat Darabi
- Hoag Memorial Hospital Presbyterian, Center for Applied Genomic Technologies, Newport Beach, CA, United States
| | - Wolfgang Michael Korn
- Department of Pathology and Laboratory Medicine, Cancer Center at Brown University, Providence, RI, United States
| | - Wafik S. El-Deiry
- Cancer Center at Brown University, Department of Pathology and Laboratory Medicine, Providence, RI, United States
| | - Stephen V. Liu
- Department of Medicine, Georgetown University, Washington, DC, United States
- *Correspondence: Stephen V. Liu,
| |
Collapse
|
41
|
Rossi S, Marinello A, Pagliaro A, Franceschini D, Navarria P, Finocchiaro G, Toschi L, Scorsetti M, Santoro A. Current treatment approaches for brain metastases in ALK/ ROS1/ NTRK-positive non-small-cell lung cancer. Expert Rev Anticancer Ther 2023; 23:29-41. [PMID: 36548111 DOI: 10.1080/14737140.2023.2162044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Oncogene-addicted non-small cell lung cancer (NSCLC) patients present a high incidence of CNS metastases either at diagnosis or during the course of the disease. In this case, patients present with worse prognosis and are often excluded from clinical trials unless brain metastases are pre-treated or clinically stable. AREAS COVERED As a result of the discovery of several oncogenic drivers in ALK/ROS1/NTRK-positive NSCLC, targeted agents have been tested in several trials. We evaluate and compare the intracranial efficacy of available targeted agents in ALK/ROS1/NTRK-positive NSCLC based on subgroup analysis from pivotal trials. EXPERT OPINION Last-generation ALK inhibitors have shown slightly superior intracranial activity but pivotal trials do not consider the same endpoints for intracranial efficacy, therefore data are not comparable. Local treatments for BM including surgical resection, stereotactic radiosurgery (SRS) and WBRT, should be integrated with systemic therapies basing on specific criteria like presence of oligoprogression or symptomatic progression.
Collapse
Affiliation(s)
- Sabrina Rossi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Arianna Marinello
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Arianna Pagliaro
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Davide Franceschini
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Pierina Navarria
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giovanna Finocchiaro
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luca Toschi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Armando Santoro
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
42
|
Xu J, Xiong Y, Xu Z, Xing H, Zhou L, Zhang X. From targeted therapy to a novel way: Immunogenic cell death in lung cancer. Front Med (Lausanne) 2022; 9:1102550. [PMID: 36619616 PMCID: PMC9816397 DOI: 10.3389/fmed.2022.1102550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer (LC) is one of the most incident malignancies and a leading cause of cancer mortality worldwide. Common tumorigenic drivers of LC mainly include genetic alterations of EGFR, ALK, KRAS, BRAF, ROS1, and MET. Small inhibitory molecules and antibodies selectively targeting these alterations or/and their downstream signaling pathways have been approved for treatment of LC. Unfortunately, following initial positive responses to these targeted therapies, a large number of patients show dismal prognosis due to the occurrence of resistance mechanisms, such as novel mutations of these genes and activation of alternative signaling pathways. Over the past decade, it has become clear that there is no possible cure for LC unless potent antitumor immune responses are induced by therapeutic intervention. Immunogenic cell death (ICD) is a newly emerged concept, a form of regulated cell death that is sufficient to activate adaptive immune responses against tumor cells. It transforms dying cancer cells into a therapeutic vaccine and stimulates long-lasting protective antitumor immunity. In this review, we discuss the key targetable genetic aberrations and the underlying mechanism of ICD in LC. Various agents inducing ICD are summarized and the possibility of harnessing ICD in LC immunotherapy is further explored.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China,The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yiyi Xiong
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zhou Xu
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Hongquan Xing
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China,The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Lingyun Zhou
- International Education College, Jiangxi University of Chinese Medicine, Nanchang, China,*Correspondence: Lingyun Zhou,
| | - Xinyi Zhang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China,The Second Clinical Medical College of Nanchang University, Nanchang, China,Xinyi Zhang,
| |
Collapse
|
43
|
Thurfjell V, Micke P, Yu H, Krupar R, Svensson MA, Brunnström H, Lamberg K, Moens LNJ, Strell C, Gulyas M, Helenius G, Yoshida A, Goldmann T, Mattsson JSM. Comparison of ROS1-rearrangement detection methods in a cohort of surgically resected non-small cell lung carcinomas. Transl Lung Cancer Res 2022; 11:2477-2494. [PMID: 36636421 PMCID: PMC9830269 DOI: 10.21037/tlcr-22-504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/06/2022] [Indexed: 12/14/2022]
Abstract
Background Patients with non-small cell lung cancer (NSCLC) harboring a ROS proto-oncogene 1 (ROS1)-rearrangement respond to treatment with ROS1 inhibitors. To distinguish these rare cases, screening with immunohistochemistry (IHC) for ROS1 protein expression has been suggested. However, the reliability of such an assay and the comparability of the antibody clones has been debated. Therefore we evaluated the diagnostic performance of current detection strategies for ROS1-rearrangement in two NSCLC-patient cohorts. Methods Resected tissue samples, retrospectively collected from consecutive NSCLC-patients surgically treated at Uppsala University Hospital were incorporated into tissue microarrays [all n=676, adenocarcinomas (AC) n=401, squamous cell carcinomas (SCC) n=213, other NSCLC n=62]. ROS1-rearrangements were detected using fluorescence in situ hybridization (FISH) (Abbott Molecular; ZytoVision). In parallel, ROS1 protein expression was detected using IHC with three antibody clones (D4D6, SP384, EPMGHR2) and accuracy, sensitivity, and specificity were determined. Gene expression microarray data (Affymetrix) and RNA-sequencing data were available for a subset of patients. NanoString analyses were performed for samples with positive or ambiguous results (n=21). Results Using FISH, 2/630 (0.3% all NSCLC; 0.5% non-squamous NSCLC) cases were positive for ROS1 fusion. Additionally, nine cases demonstrated ambiguous FISH results. Using IHC, ROS1 protein expression was detected in 24/665 (3.6% all NSCLC; 5.1% non-squamous NSCLC) cases with clone D4D6, in 18/639 (2.8% all NSCLC; 3.9% non-squamous NSCLC) cases with clone SP384, and in 1/593 (0.2% all NSCLC; 0.3% non-squamous NSCLC) case with clone EPMGHR2. Elevated RNA-levels were seen in 19/369 (5.1%) cases (Affymetrix and RNA-sequencing combined). The overlap of positive results between the assays was poor. Only one of the FISH-positive cases was positive with all antibodies and demonstrated high RNA-expression. This rearrangement was confirmed in the NanoString-assay and also in the RNA-sequencing data. Other cases with high protein/RNA-expression or ambiguous FISH were negative in the NanoString-assay. Conclusions The occurrence of ROS1 fusions is low in our cohorts. The IHC assays detected the fusions, but the accuracy varied depending on the clone. The presumably false-positive and uncertain FISH results questions this method for detection of ROS1-rearrangements. Thus, when IHC is used for screening, transcript-based assays are preferable for validation in clinical diagnostics.
Collapse
Affiliation(s)
- Viktoria Thurfjell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hui Yu
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rosemarie Krupar
- Division of Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany;,Institute of Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Maria A. Svensson
- Clinical Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Hans Brunnström
- Division of Pathology, Lund University and Laboratory Medicine Region Skåne, Lund, Sweden
| | - Kristina Lamberg
- Department of Pulmonary and Allergic Diseases, Uppsala University Hospital, Uppsala, Sweden
| | - Lotte N. J. Moens
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden;,Clinical Genomics Uppsala, Science for Life Laboratory, Uppsala, Sweden
| | - Carina Strell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Miklos Gulyas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Gisela Helenius
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Torsten Goldmann
- Division of Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany;,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Großhansdorf, Germany
| | | |
Collapse
|
44
|
Yamazoe M, Ozasa H, Tsuji T, Funazo T, Yoshida H, Hashimoto K, Hosoya K, Ogimoto T, Ajimizu H, Yoshida H, Itotani R, Sakamori Y, Kuninaga K, Aoki W, Hirai T. Yes-associated protein 1 mediates initial cell survival during lorlatinib treatment through AKT signaling in ROS1-rearranged lung cancer. Cancer Sci 2022; 114:546-560. [PMID: 36285485 PMCID: PMC9899615 DOI: 10.1111/cas.15622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 02/07/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) that target the ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) gene have shown dramatic therapeutic effects in patients with ROS1-rearranged non-small-cell lung cancer (NSCLC). Nevertheless, advanced ROS1-rearranged NSCLC is rarely cured as a portion of the tumor cells can survive the initial stages of ROS1-TKI treatment, even after maximum tumor shrinkage. Therefore, understanding the mechanisms underlying initial cell survival during ROS1-TKI treatment is necessary to prevent cell survival and achieve a cure for ROS1-rearranged NSCLC. In this study, we clarified the initial survival mechanisms during treatment with lorlatinib, a ROS1 TKI. First, we established a patient-derived ezrin gene-ROS1-rearranged NSCLC cell line (KTOR71). Then, following proteomic analysis, we focused on yes-associated protein 1 (YAP1), which is a major mediator of the Hippo pathway, as a candidate factor involved in cell survival during early lorlatinib treatment. Yes-associated protein 1 was activated by short-term lorlatinib treatment both in vitro and in vivo. Genetic inhibition of YAP1 using siRNA, or pharmacological inhibition of YAP1 function by the YAP1-inhibitor verteporfin, enhanced the sensitivity of KTOR71 cells to lorlatinib. In addition, the prosurvival effect of YAP1 was exerted through the reactivation of AKT. Finally, combined therapy with verteporfin and lorlatinib was found to achieve significantly sustained tumor remission compared with lorlatinib monotherapy in vivo. These results suggest that YAP1 could mediate initial cell resistance to lorlatinib in KTOR71 cells. Thus, combined therapy targeting both YAP1 and ROS1 could potentially improve the outcome of ROS1-rearranged NSCLC.
Collapse
Affiliation(s)
- Masatoshi Yamazoe
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hiroaki Ozasa
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Takahiro Tsuji
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan,Department of Anatomy and Molecular Cell Biology, Graduate School of MedicineNagoya UniversityNagoyaJapan
| | - Tomoko Funazo
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hiroshi Yoshida
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Kentaro Hashimoto
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Kazutaka Hosoya
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Tatsuya Ogimoto
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hitomi Ajimizu
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hironori Yoshida
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Ryo Itotani
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yuichi Sakamori
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Kiyomitsu Kuninaga
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
45
|
Tyler LC, Le AT, Chen N, Nijmeh H, Bao L, Wilson TR, Chen D, Simmons B, Turner KM, Perusse D, Kasibhatla S, Christiansen J, Dudek AZ, Doebele RC. MET gene amplification is a mechanism of resistance to entrectinib in ROS1+ NSCLC. Thorac Cancer 2022; 13:3032-3041. [PMID: 36101520 PMCID: PMC9626307 DOI: 10.1111/1759-7714.14656] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND ROS1 tyrosine kinase inhibitors (TKIs) have demonstrated significant clinical benefit for ROS1+ NSCLC patients. However, TKI resistance inevitably develops through ROS1 kinase domain (KD) modification or another kinase driving bypass signaling. While multiple TKIs have been designed to target ROS1 KD mutations, less is known about bypass signaling in TKI-resistant ROS1+ lung cancers. METHODS Utilizing a primary, patient-derived TPM3-ROS1 cell line (CUTO28), we derived an entrectinib-resistant line (CUTO28-ER). We evaluated proliferation and signaling responses to TKIs, and utilized RNA sequencing, whole exome sequencing, and fluorescence in situ hybridization to detect transcriptional, mutational, and copy number alterations, respectively. We substantiated in vitro findings using a CD74-ROS1 NSCLC patient's tumor samples. Last, we analyzed circulating tumor DNA (ctDNA) from ROS1+ NSCLC patients in the STARTRK-2 entrectinib trial to determine the prevalence of MET amplification. RESULTS CUTO28-ER cells did not exhibit ROS1 KD mutations. MET TKIs inhibited proliferation and downstream signaling and MET transcription was elevated in CUTO28-ER cells. CUTO28-ER cells displayed extrachromosomal (ecDNA) MET amplification without MET activating mutations, exon 14 skipping, or fusions. The CD74-ROS1 patient samples illustrated MET amplification while receiving ROS1 TKI. Finally, two of 105 (1.9%) entrectinib-resistant ROS1+ NSCLC STARTRK-2 patients with ctDNA analysis at enrollment and disease progression displayed MET amplification. CONCLUSIONS Treatment with ROS1-selective inhibitors may lead to MET-mediated resistance. The discovery of ecDNA MET amplification is noteworthy, as ecDNA is associated with more aggressive cancers. Following progression on ROS1-selective inhibitors, MET gene testing and treatments targeting MET should be explored to overcome MET-driven resistance.
Collapse
Affiliation(s)
- Logan C. Tyler
- Department of Medicine—Division of Medical OncologyUniversity of Colorado—Anschutz Medical CampusAuroraColoradoUSA
| | - Anh T. Le
- Department of Medicine—Division of Medical OncologyUniversity of Colorado—Anschutz Medical CampusAuroraColoradoUSA
| | - Nan Chen
- Department of Medicine—Division of Medical OncologyUniversity of Colorado—Anschutz Medical CampusAuroraColoradoUSA
| | - Hala Nijmeh
- Department of PathologyUniversity of Colorado—Anschutz Medical CampusAuroraColoradoUSA
| | - Liming Bao
- Department of PathologyUniversity of Colorado—Anschutz Medical CampusAuroraColoradoUSA
| | | | - David Chen
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | | | | | | | | | | | - Arkadiusz Z. Dudek
- HealthPartners Cancer Center at Regions HospitalSt. PaulMinnesotaUSA,Department of Medicine—Division of Hematology, Oncologyand Transplantation University of MinnesotaMinneapolisMinnesotaUSA
| | - Robert C. Doebele
- Department of Medicine—Division of Medical OncologyUniversity of Colorado—Anschutz Medical CampusAuroraColoradoUSA
| |
Collapse
|
46
|
Ruzzi F, Angelicola S, Landuzzi L, Nironi E, Semprini MS, Scalambra L, Altimari A, Gruppioni E, Fiorentino M, Giunchi F, Ferracin M, Astolfi A, Indio V, Ardizzoni A, Gelsomino F, Nanni P, Lollini PL, Palladini A. ADK-VR2, a cell line derived from a treatment-naïve patient with SDC4-ROS1 fusion-positive primarily crizotinib-resistant NSCLC: a novel preclinical model for new drug development of ROS1-rearranged NSCLC. Transl Lung Cancer Res 2022; 11:2216-2229. [PMID: 36519016 PMCID: PMC9742620 DOI: 10.21037/tlcr-22-163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/12/2022] [Indexed: 08/27/2023]
Abstract
BACKGROUND ROS1 fusions are driver molecular alterations in 1-2% of non-small cell lung cancers (NSCLCs). Several tyrosine kinase inhibitors (TKIs) have shown high efficacy in patients whose tumors harbour a ROS1 fusion. However, the limited availability of preclinical models of ROS1-positive NSCLC hinders the discovery of new drugs and the understanding of the mechanisms underlying drug resistance and strategies to overcome it. METHODS The ADK-VR2 cell line was derived from the pleural effusion of a treatment-naïve NSCLC patient bearing SDC4-ROS1 gene fusion. The sensitivity of ADK-VR2 and its crizotinib-resistant clone ADK-VR2 AG143 (selected in 3D culture in the presence of crizotinib) to different TKIs was tested in vitro, in both 2D and 3D conditions. Tumorigenic and metastatic ability was assessed in highly immunodeficient mice. In addition, crizotinib efficacy on ADK-VR2 was evaluated in vivo. RESULTS 2D-growth of ADK-VR2 cells was partially inhibited by crizotinib. On the contrary, the treatment with other TKIs, such as lorlatinib, entrectinib and DS-6051b, did not result in cell growth inhibition. TKIs showed dramatically different efficacy on ADK-VR2 cells, depending on the cell culture conditions. In 3D culture, ADK-VR2 growth was indeed almost totally inhibited by lorlatinib and DS-6051b. The clone ADK-VR2 AG143 showed higher resistance to crizotinib treatment in vitro, compared to its parental cell line, in both 2D and 3D cultures. Similarly to ADK-VR2, ADK-VR2 AG143 growth was strongly inhibited by lorlatinib in 3D conditions. Nevertheless, ADK-VR2 AG143 sphere formation was less affected by TKIs treatment, compared to the parental cell line. In vivo experiments highlighted the high tumorigenic and metastatic ability of ADK-VR2 cell line, which, once injected in immunodeficient mice, gave rise to both spontaneous and experimental lung metastases while the crizotinib-resistant clone ADK-VR2 AG143 showed a slower growth in vivo. In addition, ADK-VR2 tumor growth was significantly reduced but not eradicated by crizotinib treatment. CONCLUSIONS The ADK-VR2 cell line is a promising NSCLC preclinical model for the study of novel targeted therapies against ROS1 fusions and the mechanisms of resistance to TKI therapies.
Collapse
Affiliation(s)
- Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Stefania Angelicola
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elena Nironi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Sofia Semprini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Laura Scalambra
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Annalisa Altimari
- Divisione di Anatomia Patologica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisa Gruppioni
- Divisione di Anatomia Patologica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michelangelo Fiorentino
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Francesca Giunchi
- Divisione di Anatomia Patologica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Annalisa Astolfi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Valentina Indio
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Ardizzoni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Gelsomino
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrizia Nanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Alma Mater Institute on Healthy Planet, University of Bologna, Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Alma Mater Institute on Healthy Planet, University of Bologna, Bologna, Italy
| | - Arianna Palladini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
47
|
Yu ZQ, Wang M, Zhou W, Mao MX, Chen YY, Li N, Peng XC, Cai J, Cai ZQ. ROS1-positive non-small cell lung cancer (NSCLC): biology, diagnostics, therapeutics and resistance. J Drug Target 2022; 30:845-857. [PMID: 35658765 DOI: 10.1080/1061186x.2022.2085730] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
Abstract
ROS1 is a proto-oncogene encoding a receptor tyrosine protein kinase (RTK), homologous to the v - Ros sequence of University of Manchester tumours virus 2 (UR2) sarcoma virus, whose ligands are still being investigated. ROS1 fusion genes have been identified in various types of tumours. As an oncoprotein, it promotes cell proliferation, activation and cell cycle progression by activating downstream signalling pathways, accelerating the development and progression of non-small cell lung cancer (NSCLC). Studies have demonstrated that ROS1 inhibitors are effective in patients with ROS1-positive NSCLC and are used for first-line clinical treatment. These small molecule inhibitors provide a rational therapeutic option for the treatment of ROS1-positive patients. Inevitably, ROS1 inhibitor resistance mutations occur, leading to tumours recurrence or progression. Here, we comprehensively review the identified biological properties and Differential subcellular localisation of ROS1 fusion oncoprotein promotes tumours progression. We summarise recently completed and ongoing clinical trials of the classic and new ROS1 inhibitors. More importantly, we classify the complex evolving tumours cell resistance mechanisms. This review contributes to our understanding of the biological properties of ROS1 and current therapeutic advances and resistant tumours cells, and the future directions to develop ROS1 inhibitors with durable effects.
Collapse
Affiliation(s)
- Zhi-Qiong Yu
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Meng Wang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Wen Zhou
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Meng-Xia Mao
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Yuan-Yuan Chen
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Na Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, Jingzhou, PR China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, PR China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Zhi-Qiang Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| |
Collapse
|
48
|
Ricciuti B, Wang X, Alessi JV, Rizvi H, Mahadevan NR, Li YY, Polio A, Lindsay J, Umeton R, Sinha R, Vokes NI, Recondo G, Lamberti G, Lawrence M, Vaz VR, Leonardi GC, Plodkowski AJ, Gupta H, Cherniack AD, Tolstorukov MY, Sharma B, Felt KD, Gainor JF, Ravi A, Getz G, Schalper KA, Henick B, Forde P, Anagnostou V, Jänne PA, Van Allen EM, Nishino M, Sholl LM, Christiani DC, Lin X, Rodig SJ, Hellmann MD, Awad MM. Association of High Tumor Mutation Burden in Non-Small Cell Lung Cancers With Increased Immune Infiltration and Improved Clinical Outcomes of PD-L1 Blockade Across PD-L1 Expression Levels. JAMA Oncol 2022; 8:1160-1168. [PMID: 35708671 PMCID: PMC9204620 DOI: 10.1001/jamaoncol.2022.1981] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/03/2022] [Indexed: 01/16/2023]
Abstract
Importance Although tumor mutation burden (TMB) has been explored as a potential biomarker of immunotherapy efficacy in solid tumors, there still is a lack of consensus about the optimal TMB threshold that best discriminates improved outcomes of immune checkpoint inhibitor therapy among patients with non-small cell lung cancer (NSCLC). Objectives To determine the association between increasing TMB levels and immunotherapy efficacy across clinically relevant programmed death ligand-1 (PD-L1) levels in patients with NSCLC. Design, Setting, and Participants This multicenter cohort study included patients with advanced NSCLC treated with immunotherapy who received programmed cell death-1 (PD-1) or PD-L1 inhibition in the Dana-Farber Cancer Institute (DFCI), Memorial Sloan Kettering Cancer Center (MSKCC), and in the Stand Up To Cancer (SU2C)/Mark Foundation data sets. Clinicopathological and genomic data were collected from patients between September 2013 and September 2020. Data analysis was performed from November 2021 to February 2022. Exposures Treatment with PD-1/PD-L1 inhibition without chemotherapy. Main Outcomes and Measures Association of TMB levels with objective response rate (ORR), progression-free survival (PFS), and overall survival (OS). Results In the entire cohort of 1552 patients with advanced NSCLC who received PD-1/PD-L1 blockade, the median (range) age was 66 (22-92) years, 830 (53.5%) were women, and 1347 (86.8%) had cancer with nonsquamous histologic profile. A regression tree modeling ORR as a function of TMB identified 2 TMB groupings in the discovery cohort (MSKCC), defined as low TMB (≤19.0 mutations per megabase) and high TMB (>19.0 mutations per megabase), which were associated with increasing improvements in ORR, PFS, and OS in the discovery cohort and in 2 independent cohorts (DFCI and SU2C/Mark Foundation). These TMB levels also were associated with significant improvements in outcomes of immunotherapy in each PD-L1 tumor proportion score subgroup of less than 1%, 1% to 49%, and 50% or higher. The ORR to PD-1/PD-L1 inhibition was as high as 57% in patients with high TMB and PD-L1 expression 50% or higher and as low as 8.7% in patients with low TMB and PD-L1 expression less than 1%. Multiplexed immunofluorescence and transcriptomic profiling revealed that high TMB levels were associated with increased CD8-positive, PD-L1-positive T-cell infiltration, increased PD-L1 expression on tumor and immune cells, and upregulation of innate and adaptive immune response signatures. Conclusions and Relevance These findings suggest that increasing TMB levels are associated with immune cell infiltration and an inflammatory T-cell-mediated response, resulting in increased sensitivity to PD-1/PD-L1 blockade in NSCLC across PD-L1 expression subgroups.
Collapse
Affiliation(s)
- Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Xinan Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Joao V. Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Hira Rizvi
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Navin R. Mahadevan
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Yvonne Y. Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Andrew Polio
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - James Lindsay
- Knowledge Systems Group, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Renato Umeton
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Rileen Sinha
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Natalie I. Vokes
- Department of Thoracic/Head and Neck Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Gonzalo Recondo
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Giuseppe Lamberti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Marissa Lawrence
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Victor R. Vaz
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Giulia C. Leonardi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Andrew J. Plodkowski
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hersh Gupta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Andrew D. Cherniack
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Michael Y. Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bijaya Sharma
- ImmunoProfile, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kristen D. Felt
- ImmunoProfile, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Justin F. Gainor
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston
| | - Arvind Ravi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Kurt A. Schalper
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Brian Henick
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Patrick Forde
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pasi A. Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Eliezer M. Van Allen
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Lynette M. Sholl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Scott J. Rodig
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Matthew D. Hellmann
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark M. Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
49
|
Sharma S, Mishra SK, Bhardwaj M, Jha S, Geller M, Dewan A, Jain E, Dixit M, Jain D, Munjal G, Kumar S, Mohanty SK. Correlation of ROS1 (D4D6) Immunohistochemistry with ROS1 Fluorescence In Situ Hybridization Assay in a Contemporary Cohort of Pulmonary Adenocarcinomas. South Asian J Cancer 2022; 11:249-255. [PMID: 36588618 PMCID: PMC9803544 DOI: 10.1055/s-0042-1750187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sambit K. MohantyObjective Repressor of Silencing ( ROS1 ) gene rearrangement in the lung adenocarcinomas is one of the targetable mutually exclusive genomic alteration. Fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), next-generation sequencing, and reverse transcriptase polymerase chain reaction assays are generally used to detect ROS1 gene alterations. We evaluated the correlation between ROS1 IHC and FISH analysis considering FISH as the gold standard method to determine the utility of IHC as a screening method for lung adenocarcinoma. Materials and Methods A total of 374 advanced pulmonary adenocarcinoma patients were analyzed for ROS1 IHC on Ventana Benchmark XT platform using D4D6 rabbit monoclonal antibody. FISH assay was performed in parallel in all these cases using the Vysis ROS1 Break Apart FISH probe. Statistical Analysis The sensitivity, specificity, positive and negative likelihood ratios, positive and negative predictive values, and accuracy were evaluated. Results A total of 17 tumors were positive either by IHC or FISH analysis or both (true positive). Four tumors were positive by IHC (H-score range: 120-270), while negative on FISH analysis (false positive by IHC). One tumor was IHC negative, but positive by FISH analysis (false negative). The sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, positive predictive value, negative predictive value, and accuracy were 94.4% (confidence interval [CI]: 72.71-99.86%), 63.6% (CI: 30.79-89.07%), 2.6 (CI: 1.18-5.72), 0.09 (CI: 0.01-0.62), 80.95% (CI: 65.86-90.35%), 87.5% (CI: 49.74-98.02%), and 82.76%, respectively. Conclusion ROS1 IHC has high sensitivity at a cost of lower specificity for the detection of ROS1 gene rearrangement. All IHC positive cases should undergo a confirmatory FISH test as this testing algorithm stands as a reliable and economic tool to screen ROS1 rearrangement in lung adenocarcinomas.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Sourav K. Mishra
- Department of Medical Oncology, SUM Hospital, Bhubaneswar, Odisha, India
| | - Mohit Bhardwaj
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Shilpy Jha
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute, Bhubaneswar, Odisha, India
| | - Matthew Geller
- Department of Pathology and Laboratory Medicine, Washington County Pathologists, PC Hillsboro, Oregon, United States
| | - Aditi Dewan
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Ekta Jain
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Mallika Dixit
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Deepika Jain
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Gauri Munjal
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Shivmurti Kumar
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Sambit K. Mohanty
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India,Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute, Bhubaneswar, Odisha, India,Address for correspondence Sambit K. Mohanty, MD Director, Oncologic Surgical and Molecular Pathology, Advanced Medical Research Institute, Senior Oncologic Surgical and Molecular Pathologist, CORE Diagnostics406, Udyog Vihar III, Gurgaon, Haryana, 122001India
| |
Collapse
|
50
|
Management of Combined Therapy (Ceritinib, A. cinnamomea, G. lucidum, and Photobiomodulation) in Advanced Non-Small-Cell Lung Cancer: A Case Report. Life (Basel) 2022; 12:life12060862. [PMID: 35743893 PMCID: PMC9228003 DOI: 10.3390/life12060862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
The 5-year survival rate of non-small-cell lung cancer (NSCLC) is still low (<21%) despite recent improvements. Since conventional therapies have a lot of side effects, combined therapy is strongly recommended. Here, we report a patient with advanced NSCLC who received combined therapy, including ceritinib, photobiomodulation (PBM), ACGL (Antrodia cinnamomea (A. cinnamomea), and Ganoderma lucidum (G. lucidum)). Based on combined therapy, suitable doses of A. cinnamomea, G. lucidum, and PBM are important for tumor inhibition. This case report presents clinical evidence on the efficacy of combined therapy in advanced NSCLC patients, including computed tomography (CT) scan, magnetic resonance imaging (MRI), carcinoembryonic antigen (CEA), and blood tests. The effective inhibition of human lung adenocarcinoma cells is demonstrated. Our case highlights important considerations for PBM and ACGL applications in NSCLC patients, the side effects of ceritinib, and long-term health maintenance.
Collapse
|