1
|
Zhang Z, Song B, Wei H, Liu Y, Zhang W, Yang Y, Sun B. NDRG1 overcomes resistance to immunotherapy of pancreatic ductal adenocarcinoma through inhibiting ATG9A-dependent degradation of MHC-1. Drug Resist Updat 2024; 73:101040. [PMID: 38228036 DOI: 10.1016/j.drup.2023.101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024]
Abstract
AIMS Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is resistant to immune checkpoint blockade (ICB) therapies. Emerging evidence suggests that NDRG1 may be an important target for the development of new therapies for PDAC. Herein, we investigated the novel roles of NDRG1 and Combretastatin A-4 (CA-4) in the treatment of PDAC ICB resistance. METHODS Enrichment of MHC class I was detected by RNA sequence and verified by RT-qPCR and immunoblotting in NDRG1-knockdown human pancreatic cancer cell lines. The protein degradation mode was found by stimulation with various inhibitors, and the autophagy degradation pathway was found by immunoprecipitation and immunolocalization. The roles of NDRG1 and MHC-I in immunotherapy were investigated by orthotopic solid tumors, histology, immunohistochemistry, multiplex immunofluorescence staining and flow cytometry. RESULTS Here, we identified a previously undescribed role of NDRG1 in activating major histocompatibility complex class 1 (MHC-1) expression in pancreatic ductal adenocarcinoma (PDAC) cells through lysosomal-autophagy-dependent degradation. In mouse models of PDAC, either tumor cell overexpression or pharmacologic activation of NDRG1 leads to MHC-1 upregulation in tumor cells, which in turn promotes the infiltration and activity of CD8 + T cells, enhances anti-tumor immunity, and overcomes resistance to ICB therapy. Moreover, combination therapy of CA-4 and ICB overcomes the drug resistance of pancreatic cancer to ICB therapy. In PDAC patients, NDRG1 expression correlates with high MHC-1 expression and better survival. CONCLUSION Our results reveal NDRG1 in PDAC cancer cells as a tumor suppressor and suggest that pharmaceutically targeting NDRG1 is a promising way to overcome pancreatic cancer resistance to immunotherapy and provides a potential therapeutic strategy for the treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Zhiheng Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China; Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Bojiao Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haowei Wei
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yuhong Yang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
2
|
Elming PB, Busk M, Wittenborn TR, Bussink J, Horsman MR, Lønbro S. The effect of single bout and prolonged aerobic exercise on tumor hypoxia in mice. J Appl Physiol (1985) 2023; 134:692-702. [PMID: 36727633 DOI: 10.1152/japplphysiol.00561.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
The objectives of this study were to investigate 1) the effect of acute aerobic exercise on tumor hypoxia and blood perfusion, 2) the impact of exercise intensity, 3) the duration of the effect, and 4) the effect of prolonged training on tumor hypoxia and tumor growth. Female CDF1 mice were inoculated with the C3H mammary carcinoma either in the mammary fat pad or subcutaneously in the back. For experiments on the effect of different intensities in a single exercise bout, mice were randomized to 30-min treadmill running at low-, moderate-, or high-intensity speeds or no exercise. To investigate the prolonged effect on hypoxia and tumor growth, tumor-bearing mice were randomized to no exercise (CON) or daily 30-min high-intensity exercise averaging 2 wk (EX). Tumor hypoxic fraction was quantified using the hypoxia marker Pimonidazole. Initially, high-intensity exercise reduced tumor hypoxic fraction by 37% compared with CON [P = 0.046; 95% confidence interval (CI): 0.1; 10.3] in fat pad tumors. Low- and moderate-intensity exercises did not. Following experiments investigating the duration of the effect-as well as experiments in mice with back tumors-failed to show any exercise-induced changes in hypoxia. Interestingly, prolonged daily training significantly reduced hypoxic fraction by 60% (P = 0.002; 95% CI: 2.5; 10.1) compared with CON. Despite diverging findings on the acute effect of exercise on hypoxia, our data indicate that if exercise has a diminishing effect, high-intensity exercise is needed. Prolonged training reduced tumor hypoxic fraction-cautiously suggesting a potential clinical potential.NEW & NOTEWORTHY This study provides novel information on the effects of acute and chronic exercise on tumor hypoxia in mice. In contrast to the few related existing studies, diverging findings on tumor hypoxia after acute exercise were observed, suggesting that tumor model and location should be considered in future studies. Highly significant reductions in tumor hypoxia following chronic high-intensity exercise propose a future clinical potential but this should be investigated in patients.
Collapse
Affiliation(s)
| | - Morten Busk
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Rea Wittenborn
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Michael R Horsman
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Simon Lønbro
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Section for Sports Science, Department of Public Health, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
A scalable open-source MATLAB toolbox for reconstruction and analysis of multispectral optoacoustic tomography data. Sci Rep 2021; 11:19872. [PMID: 34615891 PMCID: PMC8494751 DOI: 10.1038/s41598-021-97726-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/17/2021] [Indexed: 12/03/2022] Open
Abstract
Multispectral photoacoustic tomography enables the resolution of spectral components of a tissue or sample at high spatiotemporal resolution. With the availability of commercial instruments, the acquisition of data using this modality has become consistent and standardized. However, the analysis of such data is often hampered by opaque processing algorithms, which are challenging to verify and validate from a user perspective. Furthermore, such tools are inflexible, often locking users into a restricted set of processing motifs, which may not be able to accommodate the demands of diverse experiments. To address these needs, we have developed a Reconstruction, Analysis, and Filtering Toolbox to support the analysis of photoacoustic imaging data. The toolbox includes several algorithms to improve the overall quantification of photoacoustic imaging, including non-negative constraints and multispectral filters. We demonstrate various use cases, including dynamic imaging challenges and quantification of drug effect, and describe the ability of the toolbox to be parallelized on a high performance computing cluster.
Collapse
|
4
|
Yang B, Zhou J, Wang F, Hu XW, Shi Y. Pyrazoline derivatives as tubulin polymerization inhibitors with one hit for Vascular Endothelial Growth Factor Receptor 2 inhibition. Bioorg Chem 2021; 114:105134. [PMID: 34246970 DOI: 10.1016/j.bioorg.2021.105134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/06/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023]
Abstract
In this work, to check the effect of the transposition of the rings in typical patterns, a series of pyrazoline derivatives 3a-3t bearing the characteristic 3,4,5-trimethoxy phenyl and thiophene moieties were synthesized and evaluated as tubulin polymerization inhibitors. Basically, as the concise output of our design, a majority of the synthesized compounds showed potency in inhibiting the tubulin polymerization. The top hit, 3q, exhibited potent anti-proliferation activity on cancer cell lines. It was comparable on tubulin-polymerization inhibition with the positive control Colchicine but lower toxic. The VEGFR2 inhibitory potency was introduced occasionally. The flow cytometry assay confirmed the apoptotic procedure and the confocal imaging revealed the tubulin-microtubule dynamics pattern. The anti-cancer mechanism of 3q was similar to Colchicine but not exactly the same on forming multi-polar spindles. The docking simulation visualized the possible binding patterns of 3q into tubulin and VEGFR2, respectively. The results inferred that further investigations on the transposition of the rings might lead to the improvement of tubulin polymerization inhibitory activity and the steadily introduction of the VEGFR2 inhibition.
Collapse
Affiliation(s)
- Bing Yang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Jiahua Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Fa Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiao-Wei Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China
| | - Yujun Shi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
5
|
Liu L, O’Kelly D, Schuetze R, Carlson G, Zhou H, Trawick ML, Pinney KG, Mason RP. Non-Invasive Evaluation of Acute Effects of Tubulin Binding Agents: A Review of Imaging Vascular Disruption in Tumors. Molecules 2021; 26:2551. [PMID: 33925707 PMCID: PMC8125421 DOI: 10.3390/molecules26092551] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor vasculature proliferates rapidly, generally lacks pericyte coverage, and is uniquely fragile making it an attractive therapeutic target. A subset of small-molecule tubulin binding agents cause disaggregation of the endothelial cytoskeleton leading to enhanced vascular permeability generating increased interstitial pressure. The resulting vascular collapse and ischemia cause downstream hypoxia, ultimately leading to cell death and necrosis. Thus, local damage generates massive amplification and tumor destruction. The tumor vasculature is readily accessed and potentially a common target irrespective of disease site in the body. Development of a therapeutic approach and particularly next generation agents benefits from effective non-invasive assays. Imaging technologies offer varying degrees of sophistication and ease of implementation. This review considers technological strengths and weaknesses with examples from our own laboratory. Methods reveal vascular extent and patency, as well as insights into tissue viability, proliferation and necrosis. Spatiotemporal resolution ranges from cellular microscopy to single slice tomography and full three-dimensional views of whole tumors and measurements can be sufficiently rapid to reveal acute changes or long-term outcomes. Since imaging is non-invasive, each tumor may serve as its own control making investigations particularly efficient and rigorous. The concept of tumor vascular disruption was proposed over 30 years ago and it remains an active area of research.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Devin O’Kelly
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Regan Schuetze
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Graham Carlson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Heling Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| |
Collapse
|
6
|
Zhang L, Zhang D, Gao M, Jin Q, Jiang C, Wu T, Feng Y, Ni Y, Yin Z, Zhang J. Design and Evaluation of Rhein-Based MRI Contrast Agents for Visualization of Tumor Necrosis Induced by Combretastatin A-4 Disodium Phosphate. Mol Imaging Biol 2020; 23:220-229. [PMID: 33048270 DOI: 10.1007/s11307-020-01551-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Visualization of tumor necrosis can determine tumor response to therapy. Our previous study showed that the rhein-based magnetic resonance imaging (MRI) contrast agent with alkane linker (GdL2) could clearly image tumor necrosis. However, its water solubility and cell safety needed to be improved. Herein, three rhein-based MRI agents with ether or lysine linkers were designed. PROCEDURES Three rhein-based MRI agents were synthesized with a tetracarbon ether (GdP1), a hexacarbon ether (GdP2), and a lysine (GdP3) linker, respectively. Their octanol-water partition coefficients (log P) and cytotoxicity were determined. Necrosis avidity of the leading agent was explored on HepG2 cells and ischemia reperfusion-induced liver necrosis (IRLN) rats by MRI. The effect of visualization of tumor necrosis was tested on nude mice with W256 tumor treated by combretastatin-A4 phosphate (CA4P). DNA binding assays were applied to evaluate the possible necrosis-avidity mechanism of the leading agent. RESULTS The log P of three agents (- 1.66 ± 0.09, - 1.74 ± 0.01, - 1.95 ± 0.01) decreased when compared with GdL2, indicating higher water solubility. GdP1 not only presented lower cytotoxicity and good necrotic affinity in vitro and in vivo, but also can be fast excreted by renal. According to MRI results of tumor, distinct visualization of tumor necrosis can be discernible from 3 to 4.5 h post-injection of GdP1. In DNA-binding assays, the fluorescence quenching constant KSV (1.00 × 104 M-1) and the ultraviolet binding constant Kb (1.11 × 104 M-1) suggested that GdP1 may bind to DNA through intercalation. CONCLUSION GdP1 may serve as a potential candidate for early evaluation of tumor response to CA4P treatment.
Collapse
Affiliation(s)
- Libang Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No.100, Shizi Street, Hongshan Road, Qixia District, Nanjing, 210028, Jiangsu Province, People's Republic of China
- Department of TCMs Pharmaceuticals, School of TCM & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No.100, Shizi Street, Hongshan Road, Qixia District, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No.100, Shizi Street, Hongshan Road, Qixia District, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No.100, Shizi Street, Hongshan Road, Qixia District, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No.100, Shizi Street, Hongshan Road, Qixia District, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Tianze Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No.100, Shizi Street, Hongshan Road, Qixia District, Nanjing, 210028, Jiangsu Province, People's Republic of China
- Department of TCMs Pharmaceuticals, School of TCM & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuanbo Feng
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, 3000, Leuven, Belgium
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, 3000, Leuven, Belgium
| | - Zhiqi Yin
- Department of TCMs Pharmaceuticals, School of TCM & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No.100, Shizi Street, Hongshan Road, Qixia District, Nanjing, 210028, Jiangsu Province, People's Republic of China.
| |
Collapse
|
7
|
Ragha Suma V, Sreenivasulu R, Subramanyam M, Rao KRM. Design, Synthesis, and Anticancer Activity of Amide Derivatives of Structurally Modified Combretastatin-A4. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219030228] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Vascular disrupting agent in pancreatic and hepatic tumour allografts: observations of location-dependent efficacy by MRI, microangiography and histomorphology. Br J Cancer 2017; 117:1529-1536. [PMID: 28910821 PMCID: PMC5680470 DOI: 10.1038/bjc.2017.324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/11/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tumours growing in organs of different vascular environment could exhibit diverse responses to vascular disrupting agent (VDA). This study was aimed to identify in vivo imaging biomarkers for evaluation of pancreatic and hepatic tumours and comparison of their responses to a VDA Combretastatin A4 Phosphate (CA4P) using multiparametric MRI. METHODS Male WAG/Rij rats were used for orthotopic pancreatic head tumour and hepatic tumour implantation; tumour growth was monitored by 3D isotropic MRI using a 3.0-T clinic scanner. Therapeutic intervention using CA4P was investigated by in vivo quantitative MRI measurements including T2/T1 relaxation mapping, diffusion kurtosis imaging and dynamic contrast-enhancement (DCE) imaging. Animals were scarified 10 h after CA4P treatment for ex vivo validation using microangiography and histomorphology. RESULTS State-of-the-art clinical MRI protocols were successfully adapted for imaging small animal tumour with high reliability. One hour after CA4P injection, marked vascular shutdown was detected with DCE MRI in both pancreatic and hepatic tumours. However, 10 h later, therapeutic necrosis was limited in pancreatic tumours compared with that in hepatic tumours (P<0.01). Heterogeneous therapeutic changes were depicted in tumour lesions using pixel-wise Tofts model, which was generated from dynamic T1 mapping. In addition, tumour responses including haemorrhage, oedema and necrosis were detected using quantitative T2/T1 relaxation maps and diffusion kurtosis images, and were validated using histomorphology. CONCLUSIONS Using multiparametric imaging biomarkers, hepatic tumours were found to be significantly more responsive to CA4P than pancreatic tumours, which could be of reference for designing future clinical trials on this agent.
Collapse
|
9
|
Robinson SP, Boult JKR, Vasudev NS, Reynolds AR. Monitoring the Vascular Response and Resistance to Sunitinib in Renal Cell Carcinoma In Vivo with Susceptibility Contrast MRI. Cancer Res 2017; 77:4127-4134. [PMID: 28566330 PMCID: PMC6175052 DOI: 10.1158/0008-5472.can-17-0248] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/03/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022]
Abstract
Antiangiogenic therapy is efficacious in metastatic renal cell carcinoma (mRCC). However, the ability of antiangiogenic drugs to delay tumor progression and extend survival is limited, due to either innate or acquired drug resistance. Furthermore, there are currently no validated biomarkers that predict which mRCC patients will benefit from antiangiogenic therapy. Here, we exploit susceptibility contrast MRI (SC-MRI) using intravascular ultrasmall superparamagnetic iron oxide particles to quantify and evaluate tumor fractional blood volume (fBV) as a noninvasive imaging biomarker of response to the antiangiogenic drug sunitinib. We also interrogate the vascular phenotype of RCC xenografts exhibiting acquired resistance to sunitinib. SC-MRI of 786-0 xenografts prior to and 2 weeks after daily treatment with 40 mg/kg sunitinib revealed a 71% (P < 0.01) reduction in fBV in the absence of any change in tumor volume. This response was associated with significantly lower microvessel density (P < 0.01) and lower uptake of the perfusion marker Hoechst 33342 (P < 0.05). The average pretreatment tumor fBV was negatively correlated (R2 = 0.92, P < 0.0001) with sunitinib-induced changes in tumor fBV across the cohort. SC-MRI also revealed suppressed fBV in tumors that acquired resistance to sunitinib. In conclusion, SC-MRI enabled monitoring of the antiangiogenic response of 786-0 RCC xenografts to sunitinib, which revealed that pretreatment tumor fBV was found to be a predictive biomarker of subsequent reduction in tumor blood volume in response to sunitinib, and acquired resistance to sunitinib was not associated with a parallel increase in tumor blood volume. Cancer Res; 77(15); 4127-34. ©2017 AACR.
Collapse
Affiliation(s)
- Simon P Robinson
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom.
| | - Jessica K R Boult
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Naveen S Vasudev
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Andrew R Reynolds
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
- Early Clinical Development, Innovative Medicines and Early Development, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
10
|
Guan F, Ding R, Zhang Q, Chen W, Li F, Long L, Li W, Li L, Yang D, Xie L, Yuan S, Wang L. WX-132-18B, a novel microtubule inhibitor, exhibits promising anti-tumor effects. Oncotarget 2017; 8:71782-71796. [PMID: 29069746 PMCID: PMC5641089 DOI: 10.18632/oncotarget.17710] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/24/2017] [Indexed: 11/25/2022] Open
Abstract
Cancer drug researchers have been seeking microtubule-inhibiting agents (MIAs) with higher bioactivity and lower toxicity than currently marketed drugs. WX-132-18B, a novel structural compound synthesized at our institute, specifically bound to the colchicine-binding site on tubulin rather than the vinblastine site, and concentration-dependently reduced microtubule content via depolymerization. It exhibited the same cellular phenotypic profiles as the classic MIAs (colchicine, vincristine, and taxol), including inducing cell cycle arrest at the G2/M phase, triggering tumor cell apoptosis, promoting nuclear membrane permeability, reducing mitochondrial membrane potential, and disrupting the redox system balance. Importantly, WX-132-18B displayed more potent in vitro bioactivity (IC50 0.45–0.99 nM) than did the classic MIAs; it inhibited the proliferation of human umbilical vein endothelial cells and seven types of human tumor cells, especially the taxol-resistant breast cancer cells MX-1/T. WX-132-18B also dose-dependently inhibited mice sarcoma, human lung, and gastric cancer xenograft tumors and the formation of tumor blood vessels in mice. In conclusion, WX-132-18B is a novel microtubule-depolymerizing agent that selectively acts on the colchicine-binding site of tubulin and exerts potent in vitro and in vivo anti-tumor effects. These characteristics, along with its anti-angiogenesis and anti-drug resistance properties, make WX-132-18B a promising anti-tumor drug candidate.
Collapse
Affiliation(s)
- Fang Guan
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Rui Ding
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Qi Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wei Chen
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Feifei Li
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Long Long
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Wei Li
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Linna Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Dexuan Yang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Lan Xie
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Shoujun Yuan
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Lili Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| |
Collapse
|
11
|
Deoxypodophyllotoxin suppresses tumor vasculature in HUVECs by promoting cytoskeleton remodeling through LKB1-AMPK dependent Rho A activatio. Oncotarget 2016; 6:29497-512. [PMID: 26470595 PMCID: PMC4745742 DOI: 10.18632/oncotarget.4985] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/16/2015] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis plays a critical role in the growth and metastasis of tumors, which makes it an attractive target for anti-tumor drug development. Deoxypodophyllotoxin (DPT), a natural product isolated from Anthriscus sylvestris, inhibits cell proliferation and migration in various cancer cell types. Our previous studies indicate that DPT possesses both anti-angiogenic and vascular-disrupting activities. Although the RhoA/ RhoA kinase (ROCK) signaling pathway is implicated in DPT-stimulated cytoskeleton remodeling and tumor vasculature suppressing, the detailed mechanisms by which DPT mediates these effects are poorly understood. In the current study, we found that DPT promotes cytoskeleton remodeling in human umbilical vein endothelial cells (HUVECs) via stimulation of AMP-activated protein kinase (AMPK) and that this effect is abolished by either treatment with a selective AMPK inhibitor or knockdown. Moreover, the cellular levels of LKB1, a kinase upstream of AMPK, were enhanced following DPT exposure. DPT-induced activation of AMPK in tumor vasculature effect was also verified by transgenic zebrafish (VEGFR2:GFP), Matrigel plug assay, and xenograft model in nude mice. The present findings may lay the groundwork for a novel therapeutic approach in treating cancer.
Collapse
|
12
|
Shi YW, Yuan W, Wang X, Gong J, Zhu SX, Chai LL, Qi JL, Qin YY, Gao Y, Zhou YL, Fan XL, Ji CY, Wu JY, Wang ZW, Liu D. Combretastatin A-4 efficiently inhibits angiogenesis and induces neuronal apoptosis in zebrafish. Sci Rep 2016; 6:30189. [PMID: 27452835 PMCID: PMC4958954 DOI: 10.1038/srep30189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022] Open
Abstract
Cis-stilbene combretastatin A-4 (CA-4) and a large group of its derivant compounds have been shown significant anti-angiogenesis activity. However the side effects even the toxicities of these chemicals were not evaluated adequately. The zebrafish model has become an important vertebrate model for evaluating drug effects. The testing of CA-4 on zebrafish is so far lacking and assessment of CA-4 on this model will provide with new insights of understanding the function of CA-4 on angiogenesis, the toxicities and side effects of CA-4. We discovered that 7-9 ng/ml CA-4 treatments resulted in developmental retardation and morphological malformation, and led to potent angiogenic defects in zebrafish embryos. Next, we demonstrated that intraperitoneal injection of 5, 10 and 20 mg/kg CA-4 obviously inhibited vessel plexus formation in regenerated pectoral fins of adult zebrafish. Interestingly, we proved that CA-4 treatment induced significant cell apoptosis in central nervous system of zebrafish embryos and adults. Furthermore, it was demonstrated that the neuronal apoptosis induced by CA-4 treatment was alleviated in p53 mutants. In addition, notch1a was up-regulated in CA-4 treated embryos, and inhibition of Notch signaling by DAPT partially rescued the apoptosis in zebrafish central nervous system caused by CA-4.
Collapse
Affiliation(s)
- Yun-Wei Shi
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Wei Yuan
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Xin Wang
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Jie Gong
- School of life science, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Shun-Xing Zhu
- Laboratory Animal Center, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Lin-Lin Chai
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Jia-Ling Qi
- School of medicine, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Yin-Yin Qin
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Yu Gao
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Yu-Ling Zhou
- School of medicine, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Xiao-Le Fan
- School of medicine, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Chun-Ya Ji
- School of medicine, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Jia-Yi Wu
- School of medicine, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Zhi-Wei Wang
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC.,Department of Pharmacology, University of California, Irvine, CA 92697, USA
| | - Dong Liu
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC
| |
Collapse
|
13
|
Pérez-Pérez MJ, Priego EM, Bueno O, Martins MS, Canela MD, Liekens S. Blocking Blood Flow to Solid Tumors by Destabilizing Tubulin: An Approach to Targeting Tumor Growth. J Med Chem 2016; 59:8685-8711. [DOI: 10.1021/acs.jmedchem.6b00463] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Eva-María Priego
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Oskía Bueno
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | - María-Dolores Canela
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Sandra Liekens
- Rega
Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
14
|
Krajewska J, Jarzab B. Fosbretabulin tromethamine in the treatment of thyroid cancer. Expert Opin Orphan Drugs 2016. [DOI: 10.1517/21678707.2016.1169172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Johnson SP, Ramasawmy R, Campbell-Washburn AE, Wells JA, Robson M, Rajkumar V, Lythgoe MF, Pedley RB, Walker-Samuel S. Acute changes in liver tumour perfusion measured non-invasively with arterial spin labelling. Br J Cancer 2016; 114:897-904. [PMID: 27031853 PMCID: PMC4984798 DOI: 10.1038/bjc.2016.51] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/26/2016] [Accepted: 02/04/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Non-invasive measures of tumour vascular perfusion are desirable, in order to assess response to vascular targeting (or modifying) therapies. In this study, hepatic arterial spin labelling (ASL) magnetic resonance imaging (MRI) was investigated to measure acute changes in perfusion of colorectal cancer in the liver, in response to vascular disruption therapy with OXi4503. METHODS SW1222 and LS174T tumours were established in the liver of MF1 nu/nu mice via intrasplenic injection. Perfusion and R2(*) MRI measurements were acquired with an Agilent 9.4T horizontal bore scanner, before and at 90 min after 40 mg kg(-1) OXi4503. RESULTS A significant decrease in SW1222 tumour perfusion was observed (-43±33%, P<0.005). LS174T tumours had a significantly lower baseline level of perfusion. Intrinsic susceptibility MRI showed a significant increase in R2(*) in LS174T tumours (28±25%, P<0.05). An association was found between the change in tumour perfusion and the proximity to large vessels, with pre-treatment blood flow predictive of subsequent response. Histological evaluation confirmed the onset of necrosis and evidence of heterogeneous response between tumour deposits. CONCLUSIONS Hepatic ASL-MRI can detect acute response to targeted tumour vascular disruption entirely non-invasively. Hepatic ASL of liver tumours has potential for use in a clinical setting.
Collapse
Affiliation(s)
- S Peter Johnson
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
- UCL Centre for Advanced Biomedical Imaging, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - Rajiv Ramasawmy
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
- UCL Centre for Advanced Biomedical Imaging, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - Adrienne E Campbell-Washburn
- UCL Centre for Advanced Biomedical Imaging, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jack A Wells
- UCL Centre for Advanced Biomedical Imaging, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - Mathew Robson
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - Vineeth Rajkumar
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - R Barbara Pedley
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - Simon Walker-Samuel
- UCL Centre for Advanced Biomedical Imaging, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
16
|
Okuyama K, Kaida A, Hayashi Y, Hayashi Y, Harada K, Miura M. KPU-300, a Novel Benzophenone-Diketopiperazine-Type Anti-Microtubule Agent with a 2-Pyridyl Structure, Is a Potent Radiosensitizer That Synchronizes the Cell Cycle in Early M Phase. PLoS One 2015; 10:e0145995. [PMID: 26716455 PMCID: PMC4696839 DOI: 10.1371/journal.pone.0145995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/06/2015] [Indexed: 12/13/2022] Open
Abstract
KPU-300 is a novel colchicine-type anti-microtubule agent derived from plinabulin (NPI-2358). We characterized the effects of KPU-300 on cell cycle kinetics and radiosensitization using HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci). Cells treated with 30 nM KPU-300 for 24 h were efficiently synchronized in M phase and contained clearly detectable abnormal Fucci fluorescence. Two-dimensional flow-cytometric analysis revealed a fraction of cells distinct from the normal Fucci fluorescence pattern. Most of these cells were positive for an M phase marker, the phosphorylated form of histone H3. Cells growing in spheroids responded similarly to the drug, and the inner quiescent fraction also responded after recruitment to the growth fraction. When such drug-treated cells were irradiated in monolayer, a remarkable radiosensitization was observed. To determine whether this radiosensitization was truly due to the synchronization in M phase, we compared the radiosensitivity of cells synchronized by KPU-300 treatment and cells in early M phase isolated by a combined method that took advantage of shake-off and the properties of the Fucci system. Following normalization against the surviving fraction of cells treated with KPU-300 alone, the surviving fractions of cells irradiated in early M phase coincided. Taken together with potential vascular disrupting function in vivo, we propose a novel radiosensitizing strategy using KPU-300.
Collapse
Affiliation(s)
- Kohei Okuyama
- Section of Oral Radiation Oncology, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113–8549, Japan
- Section of Maxillofacial Surgery, Department of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113–8549, Japan
| | - Atsushi Kaida
- Section of Oral Radiation Oncology, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113–8549, Japan
| | - Yoshiki Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432–1 Horinouchi, Hachioji, Tokyo, 192–0392, Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432–1 Horinouchi, Hachioji, Tokyo, 192–0392, Japan
| | - Kiyoshi Harada
- Section of Maxillofacial Surgery, Department of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113–8549, Japan
| | - Masahiko Miura
- Section of Oral Radiation Oncology, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113–8549, Japan
- * E-mail:
| |
Collapse
|
17
|
Kim E, Lee E, Plummer C, Gil S, Popel AS, Pathak AP. Vasculature-specific MRI reveals differential anti-angiogenic effects of a biomimetic peptide in an orthotopic breast cancer model. Angiogenesis 2015; 18:125-36. [PMID: 25408417 PMCID: PMC4366284 DOI: 10.1007/s10456-014-9450-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/09/2014] [Indexed: 12/31/2022]
Abstract
Translational vasculature-specific MRI biomarkers were used to measure the effects of a novel anti-angiogenic biomimetic peptide in an orthotopic MDA-MB-231 human triple-negative breast cancer model at an early growth stage. In vivo diffusion-weighted and steady-state susceptibility contrast (SSC) MRI was performed pre-treatment and 2 weeks post-treatment in tumor volume-matched treatment and control groups (n = 5/group). Treatment response was measured by changes in tumor volume; baseline transverse relaxation time (T2); apparent diffusion coefficient (ADC); and SSC-MRI metrics of blood volume, vessel size, and vessel density. These vasculature-specific SSC-MRI biomarkers were compared to the more conventional, non-vascular biomarkers (tumor growth, ADC, and T2) in terms of their sensitivity to anti-angiogenic treatment response. After 2 weeks of peptide treatment, tumor growth inhibition was evident but not yet significant, and the changes in ADC or T2 were not significantly different between treated and control groups. In contrast, the vascular MRI biomarkers revealed a significant anti-angiogenic response to the peptide after 2 weeks—blood volume and vessel size decreased, and vessel density increased in treated tumors; the opposite was seen in control tumors. The MRI results were validated with histology—H&E staining showed no difference in tumor viability between groups, while peptide-treated tumors exhibited decreased vascularity. These results indicate that translational SSC-MRI biomarkers are able to detect the differential effects of anti-angiogenic therapy on the tumor vasculature before significant tumor growth inhibition or changes in tumor viability.
Collapse
Affiliation(s)
- Eugene Kim
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Esak Lee
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charlesa Plummer
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stacy Gil
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aleksander S. Popel
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 720 Rutland Ave, 217 Traylor Bldg., Baltimore, MD 21205, USA
| | - Arvind P. Pathak
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 720 Rutland Ave, 217 Traylor Bldg., Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Voitovich YV, Shegravina ES, Sitnikov NS, Faerman VI, Fokin VV, Schmalz HG, Combes S, Allegro D, Barbier P, Beletskaya IP, Svirshchevskaya EV, Fedorov AY. Synthesis and Biological Evaluation of Furanoallocolchicinoids. J Med Chem 2014; 58:692-704. [DOI: 10.1021/jm501678w] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuliya V. Voitovich
- Department
of Organic Chemistry, Nizhny Novgorod State University, Gagarina
av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Ekaterina S. Shegravina
- Department
of Organic Chemistry, Nizhny Novgorod State University, Gagarina
av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Nikolay S. Sitnikov
- Department
of Organic Chemistry, Nizhny Novgorod State University, Gagarina
av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Vladimir I. Faerman
- Department
of Organic Chemistry, Nizhny Novgorod State University, Gagarina
av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Valery V. Fokin
- Department
of Organic Chemistry, Nizhny Novgorod State University, Gagarina
av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Hans-Gunther Schmalz
- Department
of Chemistry, University of Cologne, Greinstrasse 4, 50939 Koln, Germany
| | - Sebastien Combes
- CRCM,
CNRS UMR7258, Laboratory of Integrative Structural and Chemical Biology
(ISCB), INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Universit́e, UM105,
F-13009, Marseille, France
| | - Diane Allegro
- Centre de Recherche en Oncologie Biologique et en Oncopharmacologie,
CRO2 INSERM UMR 911, Faculte de Pharmacie, Universite d’Aix-Marseille, 27 Boulevard Jean Moulin, Marseille 13005, France
| | - Pascal Barbier
- Centre de Recherche en Oncologie Biologique et en Oncopharmacologie,
CRO2 INSERM UMR 911, Faculte de Pharmacie, Universite d’Aix-Marseille, 27 Boulevard Jean Moulin, Marseille 13005, France
| | - Irina P. Beletskaya
- Department
of Chemistry, M.V. Lomonosov Moscow State University, Vorobyevy Gory, 119992 Moscow, Russian Federation
| | - Elena V. Svirshchevskaya
- Laboratory
of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, GSP-7, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russian Federation
| | - Alexey Yu. Fedorov
- Department
of Organic Chemistry, Nizhny Novgorod State University, Gagarina
av. 23, Nizhny Novgorod 603950, Russian Federation
| |
Collapse
|
19
|
Emblem KE, Farrar CT, Gerstner ER, Batchelor TT, Borra RJH, Rosen BR, Sorensen AG, Jain RK. Vessel caliber--a potential MRI biomarker of tumour response in clinical trials. Nat Rev Clin Oncol 2014; 11:566-84. [PMID: 25113840 PMCID: PMC4445139 DOI: 10.1038/nrclinonc.2014.126] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Our understanding of the importance of blood vessels and angiogenesis in cancer has increased considerably over the past decades, and the assessment of tumour vessel calibre and structure has become increasingly important for in vivo monitoring of therapeutic response. The preferred method for in vivo imaging of most solid cancers is MRI, and the concept of vessel-calibre MRI has evolved since its initial inception in the early 1990s. Almost a quarter of a century later, unlike traditional contrast-enhanced MRI techniques, vessel-calibre MRI remains widely inaccessible to the general clinical community. The narrow availability of the technique is, in part, attributable to limited awareness and a lack of imaging standardization. Thus, the role of vessel-calibre MRI in early phase clinical trials remains to be determined. By contrast, regulatory approvals of antiangiogenic agents that are not directly cytotoxic have created an urgent need for clinical trials incorporating advanced imaging analyses, going beyond traditional assessments of tumour volume. To this end, we review the field of vessel-calibre MRI and summarize the emerging evidence supporting the use of this technique to monitor response to anticancer therapy. We also discuss the potential use of this biomarker assessment in clinical imaging trials and highlight relevant avenues for future research.
Collapse
Affiliation(s)
- Kyrre E Emblem
- The Intervention Centre, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Christian T Farrar
- Department of Radiology and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Elizabeth R Gerstner
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA
| | - Tracy T Batchelor
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA
| | - Ronald J H Borra
- Department of Radiology and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Bruce R Rosen
- Department of Radiology and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - A Gregory Sorensen
- Siemens Healthcare Health Services, 51 Valley Stream Parkway, Malvern, PA 19355, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratory of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA
| |
Collapse
|
20
|
Funahashi Y, Okamoto K, Adachi Y, Semba T, Uesugi M, Ozawa Y, Tohyama O, Uehara T, Kimura T, Watanabe H, Asano M, Kawano S, Tizon X, McCracken PJ, Matsui J, Aoshima K, Nomoto K, Oda Y. Eribulin mesylate reduces tumor microenvironment abnormality by vascular remodeling in preclinical human breast cancer models. Cancer Sci 2014; 105:1334-42. [PMID: 25060424 PMCID: PMC4462349 DOI: 10.1111/cas.12488] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 12/19/2022] Open
Abstract
Eribulin mesylate is a synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B and an inhibitor of microtubule dynamics. Some tubulin-binding drugs are known to have antivascular (antiangiogenesis or vascular-disrupting) activities that can target abnormal tumor vessels. Using dynamic contrast-enhanced MRI analyses, here we show that eribulin induces remodeling of tumor vasculature through a novel antivascular activity in MX-1 and MDA-MB-231 human breast cancer xenograft models. Vascular remodeling associated with improved perfusion was shown by Hoechst 33342 staining and by increased microvessel density together with decreased mean vascular areas and fewer branched vessels in tumor tissues, as determined by immunohistochemical staining for endothelial marker CD31. Quantitative RT-PCR analysis of normal host cells in the stroma of xenograft tumors showed that eribulin altered the expression of mouse (host) genes in angiogenesis signaling pathways controlling endothelial cell–pericyte interactions, and in the epithelial–mesenchymal transition pathway in the context of the tumor microenvironment. Eribulin also decreased hypoxia-associated protein expression of mouse (host) vascular endothelial growth factor by ELISA and human CA9 by immunohistochemical analysis. Prior treatment with eribulin enhanced the anti-tumor activity of capecitabine in the MDA-MB-231 xenograft model. These findings suggest that eribulin-induced remodeling of abnormal tumor vasculature leads to a more functional microenvironment that may reduce the aggressiveness of tumors due to elimination of inner tumor hypoxia. Because abnormal tumor microenvironments enhance both drug resistance and metastasis, the apparent ability of eribulin to reverse these aggressive characteristics may contribute to its clinical benefits.
Collapse
Affiliation(s)
- Yasuhiro Funahashi
- Biomarkers and Personalized Medicine Core Function Unit, Eisai Inc., Andover, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Colliez F, Neveu MA, Magat J, Cao Pham TT, Gallez B, Jordan BF. Qualification of a Noninvasive Magnetic Resonance Imaging Biomarker to Assess Tumor Oxygenation. Clin Cancer Res 2014; 20:5403-11. [DOI: 10.1158/1078-0432.ccr-13-3434] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Troprès I, Pannetier N, Grand S, Lemasson B, Moisan A, Péoc'h M, Rémy C, Barbier EL. Imaging the microvessel caliber and density: Principles and applications of microvascular MRI. Magn Reson Med 2014; 73:325-41. [DOI: 10.1002/mrm.25396] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/08/2014] [Accepted: 07/11/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Irène Troprès
- IRMaGe; Université Grenoble Alpes; Grenoble France
- UMS 3552; CNRS; Grenoble France
- US 017; INSERM; Grenoble France
- IRMaGe, Hôpital Michallon; Centre Hospitalier Universitaire de Grenoble; Grenoble France
- Université Joseph Fourier; Grenoble Institut des Neurosciences; Grenoble France. INSERM; U836 Grenoble France
| | - Nicolas Pannetier
- Université Joseph Fourier; Grenoble Institut des Neurosciences; Grenoble France
- INSERM; U836 Grenoble France
| | - Sylvie Grand
- Université Joseph Fourier; Grenoble Institut des Neurosciences; Grenoble France
- INSERM; U836 Grenoble France
- CLUNI, Hôpital Michallon; Centre Hospitalier Universitaire de Grenoble; Grenoble France
| | - Benjamin Lemasson
- Université Joseph Fourier; Grenoble Institut des Neurosciences; Grenoble France
- INSERM; U836 Grenoble France
| | - Anaïck Moisan
- Université Joseph Fourier; Grenoble Institut des Neurosciences; Grenoble France
- INSERM; U836 Grenoble France
| | - Michel Péoc'h
- Service d'anatomo-pathologie; Centre Hospitalier Universitaire de Saint Etienne; Saint-Etienne France
- EA 2521; Université Jean Monnet; Saint-Etienne France
| | - Chantal Rémy
- Université Joseph Fourier; Grenoble Institut des Neurosciences; Grenoble France
- INSERM; U836 Grenoble France
| | - Emmanuel L. Barbier
- Université Joseph Fourier; Grenoble Institut des Neurosciences; Grenoble France
- INSERM; U836 Grenoble France
| |
Collapse
|
23
|
Dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging noninvasive evaluation of vascular disrupting treatment on rabbit liver tumors. PLoS One 2013; 8:e82649. [PMID: 24376560 PMCID: PMC3871575 DOI: 10.1371/journal.pone.0082649] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 11/04/2013] [Indexed: 12/31/2022] Open
Abstract
Evaluation of vascular disrupting treatment (VDT) is generally based on tumor size and enhancement on conventional magnetic resonance imaging (MRI) which, unfortunately, may be limited in providing satisfactory information. The purpose of the study is to evaluate consecutive changes of 20 rabbit VX2 liver tumors after VDT by dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI) at a 3.0 T MR unit. Twenty four hours after intravenous injection of Combretastatin A-4-phosphate (CA4P) at 20 mg/kg, DCE-MRI derived Maximum Slope of Increase (MSI) and Positive Enhancement Integral (PEI) decreased sharply due to sudden shutting down of tumor feeding vessels. DWI derived Apparent Diffusion Coefficient (ADC) in tumor periphery decreased because of ischemic cell edema. On day 4, an increase of MSI was probably caused by the recovery of blood supply. A remarkable increase of ADC represented a large scale of necrosis among tumors. On day 8, the blood perfusion further decreased and the extent of necrosis further increased, reflected by lower MSI and PEI values and higher ADC value. On day 12, a second decrease of ADC was noticed because the re-growth of periphery tumor. The experimental data indicate that the therapeutic effects of VDT may be noninvasively monitored with DCE-MRI (reflecting tumor blood perfusion) and DWI (reflecting the changes of histology), which provide powerful measures for assessment of anticancer treatments.
Collapse
|
24
|
Nakamura M, Kajita D, Matsumoto Y, Hashimoto Y. Design and synthesis of silicon-containing tubulin polymerization inhibitors: Replacement of the ethylene moiety of combretastatin A-4 with a silicon linker. Bioorg Med Chem 2013; 21:7381-91. [DOI: 10.1016/j.bmc.2013.09.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 11/30/2022]
|
25
|
Persigehl T, Ring J, Bremer C, Heindel W, Holtmeier R, Stypmann J, Claesener M, Hermann S, Schäfers M, Zerbst C, Schliemann C, Mesters RM, Berdel WE, Schwöppe C. Non-invasive monitoring of tumor-vessel infarction by retargeted truncated tissue factor tTF-NGR using multi-modal imaging. Angiogenesis 2013; 17:235-46. [PMID: 24136410 DOI: 10.1007/s10456-013-9391-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
The fusion protein tTF-NGR consists of the extracellular domain of the thrombogenic human tissue factor (truncated tissue factor, tTF) and the peptide GNGRAHA (NGR), a ligand of the surface protein CD13 (aminopeptidase N), upregulated on endothelial cells of tumor vessels. tTF-NGR preferentially activates blood coagulation within tumor vasculature, resulting in tumor vessel infarction and subsequent tumor growth retardation/regression. The anti-vascular mechanism of the tTF-NGR therapy approach was verified by quantifying the reduced tumor blood-perfusion with contrast-enhanced ultrasound, the reduced relative tumor blood volume by ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging, and by in vivo-evaluation of hemorrhagic bleeding with fluorescent biomarkers (AngioSense(680)) in fluorescence reflectance imaging. The accumulation of tTF-NGR within the tumor was proven by visualizing the distribution of the iodine-123-labelled protein by single-photon emission computed tomography. Use of these multi-modal vascular and molecular imaging tools helped to assess the therapeutic effect even at real time and to detect non-responding tumors directly after the first tTF-NGR treatment. This emphasizes the importance of imaging within clinical studies with tTF-NGR. The imaging techniques as used here have applicability within a wider scope of therapeutic regimes interfering with tumor vasculature. Some even are useful to obtain predictive biosignals in personalized cancer treatment.
Collapse
Affiliation(s)
- Thorsten Persigehl
- Department of Clinical Radiology, University of Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|