1
|
Piccolo EB, Ge ZD, Filipp ME, Sullivan DP, Thorp EB, Sumagin R. Hypoxia-inducible factor-2α enhances neutrophil survival to promote cardiac injury following myocardial infarction. Am J Physiol Heart Circ Physiol 2024; 327:H1230-H1243. [PMID: 39331023 PMCID: PMC11559636 DOI: 10.1152/ajpheart.00392.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Heart failure is a major cause of mortality following myocardial infarction. Neutrophils are among the first immune cells to accumulate in the infarcted region. Although beneficial functions of neutrophils in heart injury are now appreciated, neutrophils are also well known for their ability to exacerbate inflammation and promote tissue damage. Myocardial infarction induces hypoxia, where hypoxia-inducible factors (HIFs) are activated and play critical roles in cellular functions. In this context, the role of Hif2α in neutrophils during myocardial infarction is unknown. Here, we demonstrate that neutrophil Hif2α deletion markedly attenuates myocardial infarct size, improves cardiac function, reduces neutrophil survival and tissue accumulation, and correlates with increased macrophage engulfment rates. Mechanistic studies revealed that Hif2α promotes neutrophil survival through binding to hypoxia response element (HRE) in the promoter region of Birc2 to regulate expression of the prosurvival factor, cellular inhibitor of apoptosis protein-1 (cIAP1). Inhibition of cIAP1 in neutrophils using the pharmacological agent, Birinapant resulted in increased cell death, establishing a critical role of cIAP1 downstream of Hif2α in neutrophil survival. Taken together, our data demonstrate a protective effect of Hif2α deletion in neutrophils on cardiac injury outcomes through modulation of neutrophil cell survival.NEW & NOTEWORTHY Hif2α in neutrophils increases infarct size, cardiac dysfunction, and ventricular scar after myocardial infarction. Hif2α in neutrophils supports neutrophil survival via cIAP-1 signaling and delays macrophage engulfment.
Collapse
Affiliation(s)
- Enzo B Piccolo
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | | | - Mallory E Filipp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - David P Sullivan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| |
Collapse
|
2
|
Glasheen MQ, Caksa S, Young AG, Wilski NA, Ott CA, Chervoneva I, Flaherty KT, Herlyn M, Xu X, Aplin AE, Capparelli C. Targeting Upregulated cIAP2 in SOX10-Deficient Drug Tolerant Melanoma. Mol Cancer Ther 2023; 22:1087-1099. [PMID: 37343247 PMCID: PMC10527992 DOI: 10.1158/1535-7163.mct-23-0025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/07/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Drug tolerance and minimal residual disease (MRD) are likely to prelude acquired resistance to targeted therapy. Mechanisms that allow persister cells to survive in the presence of targeted therapy are being characterized but selective vulnerabilities for these subpopulations remain uncertain. We identified cellular inhibitor of apoptosis protein 2 (cIAP2) as being highly expressed in SOX10-deficient drug tolerant persister (DTP) melanoma cells. Here, we show that cIAP2 is sufficient to induce tolerance to MEK inhibitors, likely by decreasing the levels of cell death. Mechanistically, cIAP2 is upregulated at the transcript level in SOX10-deficient cells and the AP-1 complex protein, JUND, is required for its expression. Using a patient-derived xenograft model, we demonstrate that treatment with the cIAP1/2 inhibitor, birinapant, during the MRD phase delays the onset of resistance to BRAF inhibitor and MEK inhibitor combination therapy. Together, our data suggest that cIAP2 upregulation in SOX10-deficient subpopulations of melanoma cells induces drug tolerance to MAPK targeting agents and provides a rationale to test a novel therapeutical approach to target MRD.
Collapse
Affiliation(s)
- McKenna Q Glasheen
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Signe Caksa
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Amelia G Young
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nicole A Wilski
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Connor A Ott
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Inna Chervoneva
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, Philadelphia, Pennsylvania
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Claudia Capparelli
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Ito Y, Pan D, Zhang W, Zhang X, Juan TY, Pyrdol JW, Kyrysyuk O, Doench JG, Liu XS, Wucherpfennig KW. Addressing Tumor Heterogeneity by Sensitizing Resistant Cancer Cells to T cell-Secreted Cytokines. Cancer Discov 2023; 13:1186-1209. [PMID: 36811466 PMCID: PMC10164097 DOI: 10.1158/2159-8290.cd-22-1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/21/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
Tumor heterogeneity is a major barrier to cancer therapy, including immunotherapy. Activated T cells can efficiently kill tumor cells following recognition of MHC class I (MHC-I)-bound peptides, but this selection pressure favors outgrowth of MHC-I-deficient tumor cells. We performed a genome-scale screen to discover alternative pathways for T cell-mediated killing of MHC-I-deficient tumor cells. Autophagy and TNF signaling emerged as top pathways, and inactivation of Rnf31 (TNF signaling) and Atg5 (autophagy) sensitized MHC-I-deficient tumor cells to apoptosis by T cell-derived cytokines. Mechanistic studies demonstrated that inhibition of autophagy amplified proapoptotic effects of cytokines in tumor cells. Antigens from apoptotic MHC-I-deficient tumor cells were efficiently cross-presented by dendritic cells, resulting in heightened tumor infiltration by IFNγ-and TNFα-producing T cells. Tumors with a substantial population of MHC-I-deficient cancer cells could be controlled by T cells when both pathways were targeted using genetic or pharmacologic approaches. SIGNIFICANCE Tumor heterogeneity is a major barrier to immunotherapy. We show that MHC-I-deficient tumor cells are forced into apoptosis by T cell-derived cytokines when TNF signaling and autophagy pathways are targeted. This approach enables T cell-mediated elimination of tumors with a substantial population of resistant, MHC-I-deficient tumor cells. This article is highlighted in the In This Issue feature, p. 1027.
Collapse
Affiliation(s)
- Yoshinaga Ito
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Immunology, Harvard Medical School, Boston, MA 02115
- Laboratory of Immunopathogenesis, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Deng Pan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Wubing Zhang
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Xixi Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Tiffany Y. Juan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Jason W. Pyrdol
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Oleksandr Kyrysyuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - John G. Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - X. Shirley Liu
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Kai W. Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Immunology, Harvard Medical School, Boston, MA 02115
- Department of Neurology, Brigham & Women’s Hospital, Boston, MA 02115
| |
Collapse
|
4
|
Alghandour R, Sakr DH, Shaaban Y. Philadelphia-like acute lymphoblastic leukemia: the journey from molecular background to the role of bone marrow transplant-review article. Ann Hematol 2023; 102:1287-1300. [PMID: 37129698 PMCID: PMC10181978 DOI: 10.1007/s00277-023-05241-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Philadelphia chromosome-like (Ph-like) ALL is a recent subtype of acute lymphoblastic leukemia. Although it does not express the BCR-ABL fusion gene, it has a behavior like true BCR/ABL1-positive cases. This subtype harbors different molecular alterations most commonly CRLF2 rearrangements. Most cases of Ph-like ALL are associated with high white blood cell count, high minimal residual disease level after induction therapy, and high relapse rate. Efforts should be encouraged for early recognition of Ph-like ALL to enhance therapeutic strategies. Recently, many trials are investigating the possibility of adding the tyrosine kinase inhibitor (TKI) to chemotherapy to improve clinical outcomes. The role and best timing of allogeneic bone marrow transplant in those cases are still unclear. Precision medicine should be implemented in the treatment of such cases. Here in this review, we summarize the available data on Ph-like ALL.
Collapse
Affiliation(s)
- Reham Alghandour
- Medical oncology Unit, Oncology Center Mansoura University, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Doaa H Sakr
- Medical oncology Unit, Oncology Center Mansoura University, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Yasmin Shaaban
- Clinical Hematology Unit, Oncology Center Mansoura University, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Burton AM, Ligman BR, Kearney CA, Murray SE. SMAC mimetics inhibit human T cell proliferation and fail to augment type 1 cytokine responses. Cell Immunol 2023; 384:104674. [PMID: 36706656 PMCID: PMC10319349 DOI: 10.1016/j.cellimm.2023.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Second mitochondria-derived activator of caspases (SMAC) mimetics are small molecule drugs that mimic the activity of the endogenous SMAC protein. SMAC and SMAC mimetics antagonize inhibitors of apoptosis proteins (IAPs), thereby sensitizing cells to apoptosis. As such, SMAC mimetics are being tested in numerous clinical trials for cancer. In addition to their direct anti-cancer effect, it has been suggested that SMAC mimetics may activate T cells, thereby promoting anti-tumor immunity. Here, we tested the effect of three clinically relevant SMAC mimetics on activation of primary human T cells. As previously reported, SMAC mimetics killed tumor cells and activated non-canonical NF-κB in T cells at clinically relevant doses. Surprisingly, none of the SMAC mimetics augmented T cell responses. Rather, SMAC mimetics impaired T cell proliferation and decreased the proportion of IFNγ/TNFα double-producing T cells. These results question the assumption that SMAC mimetics are likely to boost anti-tumor immunity in cancer patients.
Collapse
Affiliation(s)
- Ashley M Burton
- Department of Biology, University of Portland, Portland, OR, United States
| | - Brittany R Ligman
- Department of Biology, University of Portland, Portland, OR, United States
| | - Claire A Kearney
- Department of Biology, University of Portland, Portland, OR, United States
| | - Susan E Murray
- Department of Biology, University of Portland, Portland, OR, United States; Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
6
|
Human Alpha 1 Antitrypsin Suppresses NF-κB Activity and Extends Lifespan in Adult Drosophila. Biomolecules 2022; 12:biom12101347. [PMID: 36291555 PMCID: PMC9599126 DOI: 10.3390/biom12101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Human alpha 1 antitrypsin (hAAT) is a multifunctional protein that has been shown to have anti-inflammatory and cellular protective properties. While previous studies demonstrated the antiaging potential of hAAT, the mechanism(s) underlying the antiaging effect remain elusive. In this study, we performed a detailed analysis of transcriptomic data that indicated that NF-κB-targeted genes and NF-κB-regulated pathways were selectively inhibited by hAAT treatment. We further showed that the first detectable impact of hAAT treatment was the inhibition of the nuclear activity of NF-κB. Subsequently, hAAT treatment suppressed the mRNA levels of NF-κB-targeted genes, as well as NF-κB itself (P65 and P50), in human senescent cells. Using Drosophila models, we further examined the impact of hAAT on locomotor activity and endurance. Finally, using an adult-specific promotor, we demonstrated that overexpression of hAAT in the late stage of life significantly extended the lifespan of transgenic flies. These results extend the current understanding of the anti-inflammatory function of hAAT.
Collapse
|
7
|
Jinesh GG, Brohl AS. Classical epithelial-mesenchymal transition (EMT) and alternative cell death process-driven blebbishield metastatic-witch (BMW) pathways to cancer metastasis. Signal Transduct Target Ther 2022; 7:296. [PMID: 35999218 PMCID: PMC9399134 DOI: 10.1038/s41392-022-01132-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a pivotal event that accelerates the prognosis of cancer patients towards mortality. Therapies that aim to induce cell death in metastatic cells require a more detailed understanding of the metastasis for better mitigation. Towards this goal, we discuss the details of two distinct but overlapping pathways of metastasis: a classical reversible epithelial-to-mesenchymal transition (hybrid-EMT)-driven transport pathway and an alternative cell death process-driven blebbishield metastatic-witch (BMW) transport pathway involving reversible cell death process. The knowledge about the EMT and BMW pathways is important for the therapy of metastatic cancers as these pathways confer drug resistance coupled to immune evasion/suppression. We initially discuss the EMT pathway and compare it with the BMW pathway in the contexts of coordinated oncogenic, metabolic, immunologic, and cell biological events that drive metastasis. In particular, we discuss how the cell death environment involving apoptosis, ferroptosis, necroptosis, and NETosis in BMW or EMT pathways recruits immune cells, fuses with it, migrates, permeabilizes vasculature, and settles at distant sites to establish metastasis. Finally, we discuss the therapeutic targets that are common to both EMT and BMW pathways.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| | - Andrew S Brohl
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| |
Collapse
|
8
|
García-Gutiérrez L, Fallahi E, Aboud N, Quinn N, Matallanas D. Interaction of LATS1 with SMAC links the MST2/Hippo pathway with apoptosis in an IAP-dependent manner. Cell Death Dis 2022; 13:692. [PMID: 35941108 PMCID: PMC9360443 DOI: 10.1038/s41419-022-05147-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/21/2023]
Abstract
Metastatic malignant melanoma is the deadliest skin cancer, and it is characterised by its high resistance to apoptosis. The main melanoma driving mutations are part of ERK pathway, with BRAF mutations being the most frequent ones, followed by NRAS, NF1 and MEK mutations. Increasing evidence shows that the MST2/Hippo pathway is also deregulated in melanoma. While mutations are rare, MST2/Hippo pathway core proteins expression levels are often dysregulated in melanoma. The expression of the tumour suppressor RASSF1A, a bona fide activator of the MST2 pathway, is silenced by promoter methylation in over half of melanomas and correlates with poor prognosis. Here, using mass spectrometry-based interaction proteomics we identified the Second Mitochondria-derived Activator of Caspases (SMAC) as a novel LATS1 interactor. We show that RASSF1A-dependent activation of the MST2 pathway promotes LATS1-SMAC interaction and negatively regulates the antiapoptotic signal mediated by the members of the IAP family. Moreover, proteomic experiments identified a common cluster of apoptotic regulators that bind to SMAC and LATS1. Mechanistic analysis shows that the LATS1-SMAC complex promotes XIAP ubiquitination and its subsequent degradation which ultimately results in apoptosis. Importantly, we show that the oncogenic BRAFV600E mutant prevents the proapoptotic signal mediated by the LATS1-SMAC complex while treatment of melanoma cell lines with BRAF inhibitors promotes the formation of this complex, indicating that inhibition of the LATS1-SMAC might be necessary for BRAFV600E-driven melanoma. Finally, we show that LATS1-SMAC interaction is regulated by the SMAC mimetic Birinapant, which requires C-IAP1 inhibition and the degradation of XIAP, suggesting that the MST2 pathway is part of the mechanism of action of Birinapant. Overall, the current work shows that SMAC-dependent apoptosis is regulated by the LATS1 tumour suppressor and supports the idea that LATS1 is a signalling hub that regulates the crosstalk between the MST2 pathway, the apoptotic network and the ERK pathway.
Collapse
Affiliation(s)
- Lucía García-Gutiérrez
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Emma Fallahi
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nourhan Aboud
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Niall Quinn
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
9
|
Cetraro P, Plaza-Diaz J, MacKenzie A, Abadía-Molina F. A Review of the Current Impact of Inhibitors of Apoptosis Proteins and Their Repression in Cancer. Cancers (Basel) 2022; 14:1671. [PMID: 35406442 PMCID: PMC8996962 DOI: 10.3390/cancers14071671] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The Inhibitor of Apoptosis (IAP) family possesses the ability to inhibit programmed cell death through different mechanisms; additionally, some of its members have emerged as important regulators of the immune response. Both direct and indirect activity on caspases or the modulation of survival pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), have been implicated in mediating its effects. As a result, abnormal expression of inhibitor apoptosis proteins (IAPs) can lead to dysregulated apoptosis promoting the development of different pathologies. In several cancer types IAPs are overexpressed, while their natural antagonist, the second mitochondrial-derived activator of caspases (Smac), appears to be downregulated, potentially contributing to the acquisition of resistance to traditional therapy. Recently developed Smac mimetics counteract IAP activity and show promise in the re-sensitization to apoptosis in cancer cells. Given the modest impact of Smac mimetics when used as a monotherapy, pairing of these compounds with other treatment modalities is increasingly being explored. Modulation of molecules such as tumor necrosis factor-α (TNF-α) present in the tumor microenvironment have been suggested to contribute to putative therapeutic efficacy of IAP inhibition, although published results do not show this consistently underlining the complex interaction between IAPs and cancer.
Collapse
Affiliation(s)
- Pierina Cetraro
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Armilla, 18016 Granada, Spain;
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Alex MacKenzie
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Francisco Abadía-Molina
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, Armilla, 18016 Granada, Spain
- Department of Cell Biology, School of Sciences, University of Granada, 18071 Granada, Spain
| |
Collapse
|
10
|
Gong T, Cai Y, Sun F, Chen J, Su Z, Shuai X, Shan H. A nanodrug incorporating siRNA PD-L1 and Birinapant for enhancing tumor immunotherapy. Biomater Sci 2021; 9:8007-8018. [PMID: 34714906 DOI: 10.1039/d1bm01299a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Triple-negative breast cancer (TNBC) is associated with a worse prognosis and higher mortality than other breast cancers, and intensive effort has been made to develop therapies targeting TNBC. TNBC shows higher expression levels of programmed cell death ligand 1 (PD-L1) than other breast cancer types, which leads to a decrease in the killing effects of CD8+ T cells in the tumor microenvironment. Inhibitors of apoptosis proteins (IAPs) could prevent cell death through suppressing caspase activity. Here, Birinapant, an antagonist of IAPs, was found to promote the tumor infiltration of CD8+ T cells via increasing the secretion of the chemokine CXCL9. In addition, Birinapant could inhibit tumor growth via increasing the secretion of and the sensitivity to TNF-α in a TNBC xenotransplantation mouse model. Consequently, liposomes encapsulating Birinapant and siPD-L1 mediated a form of combination therapy based on two drugs to significantly increase the therapeutic effects toward TNBC.
Collapse
Affiliation(s)
- Tingting Gong
- Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China. .,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.
| | - Yujun Cai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Fengze Sun
- Department of Biotherapy, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510000, China
| | - Jiaxin Chen
- Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China.
| | - Zhongzhen Su
- Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China. .,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China. .,Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China
| |
Collapse
|
11
|
Cerna D, Lim B, Adelabu Y, Yoo S, Carter D, Fahim A, Mitsuuchi Y, Teicher BA, Bernhard E, Coleman CN, Takebe N, Ahmed MM. SMAC Mimetic/IAP Inhibitor Birinapant Enhances Radiosensitivity of Glioblastoma Multiforme. Radiat Res 2021; 195:549-560. [PMID: 33826739 DOI: 10.1667/rade-20-00171.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/01/2021] [Indexed: 11/03/2022]
Abstract
Birinapant is a novel SMAC peptidomimetic molecule in clinical development. It suppresses the inhibitor of apoptosis proteins (IAPs) and promotes cytochrome-C/Apaf-1/caspase-9 activation to induce effective apoptosis. Because IAP inhibition has been shown to enhance the sensitivity of cancer cells to radiation, we investigated the role of birinapant in radiosensitization of glioblastoma cells in vitro and in vivo. Two glioblastoma cell lines, U-251 and U-87, were used to analyze radiosensitization in vitro with 7-AAD cell death/apoptosis and clonogenic assays. Subcutaneous flank (U-251 and U-87) and intracranial orthotopic (U-251) xenografts in nude mice were used to evaluate radiosensitization in vivo. TNF-α levels in media and serum were measured using electrochemiluminescence. Radiosensitization in vitro was more prominent for U-251 cells than for U-87 cells. In vivo, in both tumor models, significant tumor growth delay was observed with combination treatment compared to radiation alone. There was a survival benefit with combination treatment in the orthotopic U-251 model. TNF-α levels in media correlated directly with radiation dose in vitro. These findings show that birinapant can enhance the radiosensitivity of glioblastoma cell lines in cell-based assays and tumor models via radiation-induced TNF-α. Further study into the use of birinapant with radiation therapy is warranted.
Collapse
Affiliation(s)
- David Cerna
- Molecular Radiation Therapeutics Branch Support, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yusuf Adelabu
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, Maryland 20850
| | - Stephen Yoo
- Molecular Radiation Therapeutics Branch, National Cancer Institute, Rockville, Maryland 20850
| | - Donna Carter
- Molecular Radiation Therapeutics Branch Support, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Ahmed Fahim
- Molecular Radiation Therapeutics Branch Support, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | | | - Beverly A Teicher
- Molecular Pharmacology Branch, National Cancer Institute, Rockville, Maryland 20850
| | - Eric Bernhard
- Radiotherapy Development Branch, National Cancer Institute, Rockville, Maryland 20850
| | - C Norman Coleman
- Radiation Research Program, National Cancer Institute, Rockville, Maryland 20850
| | - Naoko Takebe
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, Maryland 20850
| | - Mansoor M Ahmed
- Molecular Radiation Therapeutics Branch, National Cancer Institute, Rockville, Maryland 20850.,Radiotherapy Development Branch, National Cancer Institute, Rockville, Maryland 20850.,Radiation Research Program, National Cancer Institute, Rockville, Maryland 20850
| |
Collapse
|
12
|
Gautron A, Bachelot L, Aubry M, Leclerc D, Quéméner AM, Corre S, Rambow F, Paris A, Tardif N, Leclair HM, Marin‐Bejar O, Coulouarn C, Marine J, Galibert M, Gilot D. CRISPR screens identify tumor-promoting genes conferring melanoma cell plasticity and resistance. EMBO Mol Med 2021; 13:e13466. [PMID: 33724679 PMCID: PMC8103100 DOI: 10.15252/emmm.202013466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Most genetic alterations that drive melanoma development and resistance to targeted therapy have been uncovered. In contrast, and despite their increasingly recognized contribution, little is known about the non-genetic mechanisms that drive these processes. Here, we performed in vivo gain-of-function CRISPR screens and identified SMAD3, BIRC3, and SLC9A5 as key actors of BRAFi resistance. We show that their expression levels increase during acquisition of BRAFi resistance and remain high in persister cells and during relapse. The upregulation of the SMAD3 transcriptional activity (SMAD3-signature) promotes a mesenchymal-like phenotype and BRAFi resistance by acting as an upstream transcriptional regulator of potent BRAFi-resistance genes such as EGFR and AXL. This SMAD3-signature predicts resistance to both current melanoma therapies in different cohorts. Critically, chemical inhibition of SMAD3 may constitute amenable target for melanoma since it efficiently abrogates persister cells survival. Interestingly, decrease of SMAD3 activity can also be reached by inhibiting the Aryl hydrocarbon Receptor (AhR), another druggable transcription factor governing SMAD3 expression level. Our work highlights novel drug vulnerabilities that can be exploited to develop long-lasting antimelanoma therapies.
Collapse
Affiliation(s)
- Arthur Gautron
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
| | - Laura Bachelot
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
| | - Marc Aubry
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
- Plateforme GEH, CNRS, InsermBIOSIT ‐ UMS 3480, US_S 018Univ RennesRennesFrance
| | | | - Anaïs M Quéméner
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
| | - Sébastien Corre
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
| | - Florian Rambow
- Department of OncologyKU LeuvenLeuvenBelgium
- VIB Center for Cancer BiologyVIBLeuvenBelgium
| | - Anaïs Paris
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
| | - Nina Tardif
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
| | - Héloïse M Leclair
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
| | - Oskar Marin‐Bejar
- Department of OncologyKU LeuvenLeuvenBelgium
- VIB Center for Cancer BiologyVIBLeuvenBelgium
| | | | - Jean‐Christophe Marine
- Department of OncologyKU LeuvenLeuvenBelgium
- VIB Center for Cancer BiologyVIBLeuvenBelgium
| | - Marie‐Dominique Galibert
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
- Service de Génétique Moléculaire et GénomiqueCHU RennesRennesFrance
| | - David Gilot
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
- Present address:
INSERM U1242Centre Eugène MarquisRennesFrance
| |
Collapse
|
13
|
Knoll G, Ehrenschwender M. The non-peptidomimetic IAP antagonist ASTX660 sensitizes colorectal cancer cells for extrinsic apoptosis. FEBS Open Bio 2021; 11:714-723. [PMID: 33484626 PMCID: PMC7931242 DOI: 10.1002/2211-5463.13096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 01/16/2023] Open
Abstract
Apoptosis resistance worsens treatment response in cancer and is associated with poor prognosis. Inhibition of anti-apoptotic proteins can restore cell death and improve treatment efficacy. cIAP1, cIAP2, and XIAP belong to the inhibitor of apoptosis protein (IAP) family and block apoptosis. Targeting IAPs with peptides or peptidomimetics mimicking the IAP-antagonizing activity of the cell's endogenous IAP antagonist SMAC (SMAC mimetics) showed promising results and fueled development of novel compounds. ASTX660 belongs to the recently introduced class of non-peptidomimetic IAP antagonists and successfully completed phase I clinical trials. However, ASTX660 has thus far only been evaluated in few cancer entities. Here, we demonstrate that ASTX660 has cell death-promoting activity in colorectal cancer and provide a head-to-head comparison with birinapant, the clinically most advanced peptidomimetic IAP antagonist. ASTX660 facilitates activation of the extrinsic apoptosis pathway upon stimulation with the death ligands TNF and TRAIL and boosts effector caspase activation and subsequent apoptosis. Mechanistically, ASTX660 enhances amplification of death receptor-generated apoptotic signals in a mitochondria-dependent manner. Failure to activate the mitochondria-associated (intrinsic) apoptosis pathway attenuated the apoptosis-promoting effect of ASTX660. Further clinical studies are warranted to highlight the therapeutic potential of ASTX660 in colorectal cancer.
Collapse
Affiliation(s)
- Gertrud Knoll
- Institute of Clinical Microbiology and HygieneUniversity Hospital RegensburgGermany
| | | |
Collapse
|
14
|
Vacchelli E, Aranda F, Eggermont A, Galon J, Sautès-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Tumor-targeting monoclonal antibodies in cancer therapy. Oncoimmunology 2021; 3:e27048. [PMID: 24605265 PMCID: PMC3937194 DOI: 10.4161/onci.27048] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/01/2013] [Indexed: 02/06/2023] Open
Abstract
In 1997, for the first time in history, a monoclonal antibody (mAb), i.e., the chimeric anti-CD20 molecule rituximab, was approved by the US Food and Drug Administration for use in cancer patients. Since then, the panel of mAbs that are approved by international regulatory agencies for the treatment of hematopoietic and solid malignancies has not stopped to expand, nowadays encompassing a stunning amount of 15 distinct molecules. This therapeutic armamentarium includes mAbs that target tumor-associated antigens, as well as molecules that interfere with tumor-stroma interactions or exert direct immunostimulatory effects. These three classes of mAbs exert antineoplastic activity via distinct mechanisms, which may or may not involve immune effectors other than the mAbs themselves. In previous issues of OncoImmunology, we provided a brief scientific background to the use of mAbs, all types confounded, in cancer therapy, and discussed the results of recent clinical trials investigating the safety and efficacy of this approach. Here, we focus on mAbs that primarily target malignant cells or their interactions with stromal components, as opposed to mAbs that mediate antineoplastic effects by activating the immune system. In particular, we discuss relevant clinical findings that have been published during the last 13 months as well as clinical trials that have been launched in the same period to investigate the therapeutic profile of hitherto investigational tumor-targeting mAbs.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Fernando Aranda
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| | | | - Jérôme Galon
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, U872; Paris, France ; Equipe 15, Centre de Recherche des Cordeliers; Paris, France
| | - Catherine Sautès-Fridman
- Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, U872; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| |
Collapse
|
15
|
An Updated Review of Smac Mimetics, LCL161, Birinapant, and GDC-0152 in Cancer Treatment. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibitor of apoptosis proteins (IAPs) are suggested as therapeutic targets for cancer treatment. Smac/DIABLO is a natural IAP antagonist in cells; therefore, Smac mimetics have been developed for cancer treatment in the past decade. In this article, we review the anti-cancer potency and novel molecular targets of LCL161, birinapant, and GDC-0152. Preclinical studies demonstrated that Smac mimetics not only induce apoptosis but also arrest cell cycle, induce necroptosis, and induce immune storm in vitro and in vivo. The safety and tolerance of Smac mimetics are evaluated in phase 1 and phase 2 clinical trials. In addition, the combination of Smac mimetics and chemotherapeutic compounds was reported to improve anti-cancer effects. Interestingly, the novel anti-cancer molecular mechanism of action of Smac mimetics was reported in recent studies, suggesting that many unknown functions of Smac mimetics still need to be revealed. Exploring these currently unknown signaling pathways is important to provide hints for the modification and combination therapy of further compounds.
Collapse
|
16
|
Park EJ, Kim HD, Choi EK, Hoe KL, Kim DU. Co-treatment of birinapant with TRAIL synergistically induces apoptosis by downregulating cFLIP(L) in MDA-MB-453 cell lines. Biochem Biophys Res Commun 2020; 533:289-295. [PMID: 32958259 DOI: 10.1016/j.bbrc.2020.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has received much attention owing to its ability to specifically induce cell death in cancer. However, several types of cancer, including some forms of breast cancer, are resistant to TRAIL. Various chemotherapeutic agents, phytochemicals, and TRAIL combination therapies have been proposed to resolve TRAIL resistance. Here, we explored the sensitization effect of birinapant on TRAIL-induced apoptosis in the MDA-MB-453 cell line. Although neither birinapant nor TRAIL showed any cytotoxic effect when used alone, apoptosis was induced when birinapant and TRAIL were used together. Our data suggest that the combination of birinapant and TRAIL induces downregulation of FLICE-like inhibitory protein (cFLIP) (L) protein expression. Interestingly, cFLIP(L) overexpression reversed apoptosis caused by co-treatment with TRAIL. Taken together, our results indicate that a combination of birinapant and TRAIL may be a promising treatment for TRAIL-resistant breast cancer.
Collapse
Affiliation(s)
- Eun Jung Park
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hae Dong Kim
- Department of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun Kyoung Choi
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| | - Kwang-Lae Hoe
- Department of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Dong-Uk Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
17
|
Colombo M, Marabese M, Vargiu G, Broggini M, Caiola E. Activity of Birinapant, a SMAC Mimetic Compound, Alone or in Combination in NSCLCs With Different Mutations. Front Oncol 2020; 10:532292. [PMID: 33194590 PMCID: PMC7643013 DOI: 10.3389/fonc.2020.532292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/30/2020] [Indexed: 01/30/2023] Open
Abstract
Liver kinase B1 (LKB1/STK11) is the second tumor suppressor gene most frequently mutated in non-small-cell lung cancer (NSCLC) and its activity is impaired in about half KRAS-mutated NSCLCs. Nowadays, no effective therapies are available for patients having these mutations. To highlight new vulnerabilities of this subgroup of tumors exploitable to design specific therapies we screened an US FDA-approved drug library using an isogenic system of wild-type (WT) or deleted LKB1. Among eight hit compounds, Birinapant, an inhibitor of the Inhibitor of Apoptosis Proteins (IAPs), was the most active compound in LKB1-deleted clone only compared to its LKB1 WT counterpart. We validated the Birinapant cells response and its mechanism of action to be dependent on LKB1 deletion. Indeed, we demonstrated the ability of this compound to induce apoptosis, through activation of caspases in the LKB1-deleted clone only. Expanding our results, we found that the presence of KRAS mutations could mediate Birinapant resistance in a panel of NSCLC cell lines. The combination of Birinapant with Ralimetinib, inhibitor of p38α, restores the sensitivity of LKB1- and KRAS-mutated cell lines to the IAP inhibitor Birinapant. Our study shows how the use of Birinapant could be a viable therapeutic option for patients with LKB1-mutated NSCLCs. In addition, combination of Birinapant and a KRAS pathway inhibitor, as Ralimetinib, could be useful for patients with LKB1 and KRAS-mutated NSCLC.
Collapse
Affiliation(s)
- Marika Colombo
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mirko Marabese
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giulia Vargiu
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa Caiola
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
18
|
Niu J, Wang X, Qu J, Mager DE, Straubinger RM. Pharmacodynamic modeling of synergistic birinapant/paclitaxel interactions in pancreatic cancer cells. BMC Cancer 2020; 20:1024. [PMID: 33097020 PMCID: PMC7583190 DOI: 10.1186/s12885-020-07398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022] Open
Abstract
Background For most patients, pancreatic adenocarcinoma responds poorly to treatment, and novel therapeutic approaches are needed. Standard-of-care paclitaxel (PTX), combined with birinapant (BRP), a bivalent mimetic of the apoptosis antagonist SMAC (second mitochondria-derived activator of caspases), exerts synergistic killing of PANC-1 human pancreatic adenocarcinoma cells. Methods To investigate potential mechanisms underlying this synergistic pharmacodynamic interaction, data capturing PANC-1 cell growth, apoptosis kinetics, and cell cycle distribution were integrated with high-quality IonStar-generated proteomic data capturing changes in the relative abundance of more than 3300 proteins as the cells responded to the two drugs, alone and combined. Results PTX alone (15 nM) elicited dose-dependent G2/M-phase arrest and cellular polyploidy. Combined BRP/PTX (150/15 nM) reduced G2/M by 35% and polyploid cells by 45%, and increased apoptosis by 20%. Whereas BRP or PTX alone produced no change in the pro-apoptotic protein pJNK, and a slight increase in the anti-apoptotic protein Bcl2, the drug combination increased pJNK and decreased Bcl2 significantly compared to the vehicle control. A multi-scale, mechanism-based mathematical model was developed to investigate integrated birinapant/paclitaxel effects on temporal profiles of key proteins involved in kinetics of cell growth, death, and cell cycle distribution. Conclusions The model, consistent with the observed reduction in the Bcl2/BAX ratio, suggests that BRP-induced apoptosis of mitotically-arrested cells is a major contributor to the synergy between BRP and PTX. Coupling proteomic and cellular response profiles with multi-scale pharmacodynamic modeling provides a quantitative mechanistic framework for evaluating pharmacodynamically-based drug-drug interactions in combination chemotherapy, and could potentially guide the development of promising drug regimens.
Collapse
Affiliation(s)
- Jin Niu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Xue Wang
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.,Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, USA
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA. .,New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, USA. .,Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, 14214, USA.
| |
Collapse
|
19
|
Zhao XY, Wang XY, Wei QY, Xu YM, Lau ATY. Potency and Selectivity of SMAC/DIABLO Mimetics in Solid Tumor Therapy. Cells 2020; 9:cells9041012. [PMID: 32325691 PMCID: PMC7226512 DOI: 10.3390/cells9041012] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 02/05/2023] Open
Abstract
Aiming to promote cancer cell apoptosis is a mainstream strategy of cancer therapy. The second mitochondria-derived activator of caspase (SMAC)/direct inhibitor of apoptosis protein (IAP)-binding protein with low pI (DIABLO) protein is an essential and endogenous antagonist of inhibitor of apoptosis proteins (IAPs). SMAC mimetics (SMs) are a series of synthetically chemical compounds. Via database analysis and literature searching, we summarize the potential mechanisms of endogenous SMAC inefficiency, degradation, mutation, releasing blockage, and depression. We review the development of SMs, as well as preclinical and clinical outcomes of SMs in solid tumor treatment, and we analyze their strengths, weaknesses, opportunities, and threats from our point of view. We also highlight several questions in need of further investigation.
Collapse
Affiliation(s)
| | | | | | - Yan-Ming Xu
- Correspondence: (Y.-M.X.); (A.T.Y.L.); Tel.: +86-754-8890-0437 (Y.-M.X.); +86-754-8853-0052 (A.T.Y.L.)
| | - Andy T. Y. Lau
- Correspondence: (Y.-M.X.); (A.T.Y.L.); Tel.: +86-754-8890-0437 (Y.-M.X.); +86-754-8853-0052 (A.T.Y.L.)
| |
Collapse
|
20
|
Zhang R, Sun H, Wang H, Zhang W, Geng K, Liu Q, Wang P. ANTP-SmacN7 fusion peptide-induced radiosensitization in A549 cells and its potential mechanisms. Thorac Cancer 2020; 11:1271-1279. [PMID: 32155687 PMCID: PMC7180582 DOI: 10.1111/1759-7714.13393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Background Radioresistance in tumors limits the curative effect of the radiotherapy. Mimetic compounds of second mitochondria‐derived activator of caspase (Smac) are potential new tumor radiation‐sensitizing drugs because they can increase radiation‐induced tumor cell apoptosis. Here, we observed the radiosensitization effect of a new Smac mimetic Antennapedia protein (ANTP)‐SmacN7 fusion peptide in A549 cells and investigated the underlying mechanisms behind the effects of this protein on tumor cells. Methods The ANTP‐SmacN7 fusion peptide was synthesized and linked with fluorescein isothiocyanate to observe the protein's ability to penetrate cells. A549 cells were divided into the control, radiation‐only, ANTP‐SmacN7‐only and ANTP‐SmacN7 + radiation groups. The cells were exposed to 0, 2, 4 and 6 Gy, with 20 μmol/L of ANTP‐SmacN7. The radiation‐sensitizing effects of the ANTP‐SmacN7 fusion proteins were observed via clonogenic assay. Apoptosis was detected using flow cytometry. A comet assay was used to assess DNA damage. The levels and degrees of cytochrome‐c, PARP, H2AX, caspase‐8, caspase‐3, and caspase‐9 activation were detected via western blot assay. The radiation sensitization of the fusion peptide, expression of γ‐H2AX and C‐PARP were compared after adding the caspase inhibitor, Z‐VAD. Results ANTP‐SmacN7 fusion proteins entered the cells and promoted A549 cell radiosensitization. Treatment with ANTP‐SmacN7 + radiation significantly reduced the A549 cell clone‐forming rate, increased the cytochrome‐c, cleaved caspase‐8, cleaved caspase‐3 and cleaved caspase‐9 expression levels, promoted caspase activation, and increased the rate of radiation‐induced apoptosis. The ANTP‐SmacN7 fusion peptide significantly increased radiation‐induced double‐stranded DNA rupture in the A549 cells and increased DNA damage. Adding Z‐VAD reduced the fusion peptide's proapoptotic effect but not the level of double‐stranded DNA breakage. Conclusions The ANTP‐SmacN7 fusion peptide exerted a remarkable radiosensitization effect on A549 cells. This protein may reduce tumor cell radioresistance by inducing caspase activation and may be a potential new Smac mimetic that can be applied in radiosensitization therapy.
Collapse
Affiliation(s)
- Rongxin Zhang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Radiotherapy Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Radiation Medicine, Tianjin, China
| | - Hong Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, Geriatric Health Engineering Research Center, Tianjin, China
| | - Wenxue Zhang
- Radiotherapy Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Kai Geng
- Radiotherapy Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Radiation Medicine, Tianjin, China
| | - Ping Wang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
21
|
Vetma V, Guttà C, Peters N, Praetorius C, Hutt M, Seifert O, Meier F, Kontermann R, Kulms D, Rehm M. Convergence of pathway analysis and pattern recognition predicts sensitization to latest generation TRAIL therapeutics by IAP antagonism. Cell Death Differ 2020; 27:2417-2432. [PMID: 32081986 PMCID: PMC7370234 DOI: 10.1038/s41418-020-0512-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/28/2022] Open
Abstract
Second generation TRAIL-based therapeutics, combined with sensitising co-treatments, have recently entered clinical trials. However, reliable response predictors for optimal patient selection are not yet available. Here, we demonstrate that a novel and translationally relevant hexavalent TRAIL receptor agonist, IZI1551, in combination with Birinapant, a clinically tested IAP antagonist, efficiently induces cell death in various melanoma models, and that responsiveness can be predicted by combining pathway analysis, data-driven modelling and pattern recognition. Across a panel of 16 melanoma cell lines, responsiveness to IZI1551/Birinapant was heterogeneous, with complete resistance and pronounced synergies observed. Expression patterns of TRAIL pathway regulators allowed us to develop a combinatorial marker that predicts potent cell killing with high accuracy. IZI1551/Birinapant responsiveness could be predicted not only for cell lines, but also for 3D tumour cell spheroids and for cells directly isolated from patient melanoma metastases (80–100% prediction accuracies). Mathematical parameter reduction identified 11 proteins crucial to ensure prediction accuracy, with x-linked inhibitor of apoptosis protein (XIAP) and procaspase-3 scoring highest, and Bcl-2 family members strongly represented. Applied to expression data of a cohort of n = 365 metastatic melanoma patients in a proof of concept in silico trial, the predictor suggested that IZI1551/Birinapant responsiveness could be expected for up to 30% of patient tumours. Overall, response frequencies in melanoma models were very encouraging, and the capability to predict melanoma sensitivity to combinations of latest generation TRAIL-based therapeutics and IAP antagonists can address the need for patient selection strategies in clinical trials based on these novel drugs.
Collapse
Affiliation(s)
- Vesna Vetma
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cristiano Guttà
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Nathalie Peters
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Christian Praetorius
- Center for Regenerative Therapies, Technical University Dresden, Dresden, Germany.,Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Meike Hutt
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Friedegund Meier
- Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Dagmar Kulms
- Center for Regenerative Therapies, Technical University Dresden, Dresden, Germany.,Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany.,Experimental Dermatology, Department of Dermatology, Technical University Dresden, Dresden, Germany
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany. .,Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland. .,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany. .,Stuttgart Centre for Simulation Science (SC SimTech), University of Stuttgart, Stuttgart, Germany. .,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
22
|
Future Therapeutic Directions for Smac-Mimetics. Cells 2020; 9:cells9020406. [PMID: 32053868 PMCID: PMC7072318 DOI: 10.3390/cells9020406] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
It is well accepted that the ability of cancer cells to circumvent the cell death program that untransformed cells are subject to helps promote tumor growth. Strategies designed to reinstate the cell death program in cancer cells have therefore been investigated for decades. Overexpression of members of the Inhibitor of APoptosis (IAP) protein family is one possible mechanism hindering the death of cancer cells. To promote cell death, drugs that mimic natural IAP antagonists, such as second mitochondria-derived activator of caspases (Smac/DIABLO) were developed. Smac-Mimetics (SMs) have entered clinical trials for hematological and solid cancers, unfortunately with variable and limited results so far. This review explores the use of SMs for the treatment of cancer, their potential to synergize with up-coming treatments and, finally, discusses the challenges and optimism facing this strategy.
Collapse
|
23
|
Zhu H, Li Y, Liu Y, Han B. Bivalent SMAC Mimetics for Treating Cancer by Antagonizing Inhibitor of Apoptosis Proteins. ChemMedChem 2019; 14:1951-1962. [DOI: 10.1002/cmdc.201900410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/10/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Hongping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of PharmacyChengdu University of Traditional Chinese Medicine 1166 Liutai Avenue Chengdu 611137 China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Huaguan Road Chengdu 610052 China
| | - Yi Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Huaguan Road Chengdu 610052 China
| | - Yue Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Huaguan Road Chengdu 610052 China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of PharmacyChengdu University of Traditional Chinese Medicine 1166 Liutai Avenue Chengdu 611137 China
| |
Collapse
|
24
|
Hagenbuchner J, Oberacher H, Arnhard K, Kiechl-Kohlendorfer U, Ausserlechner MJ. Modulation of Respiration and Mitochondrial Dynamics by SMAC-Mimetics for Combination Therapy in Chemoresistant Cancer. Am J Cancer Res 2019; 9:4909-4922. [PMID: 31410190 PMCID: PMC6691393 DOI: 10.7150/thno.33758] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022] Open
Abstract
Inhibitor of apoptosis proteins (IAP) are cell death regulators that bind caspases and interfere with apoptotic signalling via death receptors or intrinsic cell death pathways. BIRC4/XIAP is the most potent anti-apoptotic IAP-member and it physically interacts with caspases via its BIR2 and its BIR3 domain. These domains are also critical for the interaction with mitochondria-derived SMAC/Diablo and with the IAP protein survivin. Survivin is frequently overexpressed in neuroblastoma due to a gain of 17q and we have demonstrated that survivin confers resistance to chemotherapeutic agents and reprograms metabolism of neuroblastoma cells towards glycolysis. As regulator of mitochondrial fission and autophagy survivin acts at the crossroads of mitochondrial architecture, autophagy and cellular energy metabolism. Methods: We tested the effect of SMAC-mimetics on the XIAP/survivin axis as modulator of cellular metabolism analysing mitochondrial morphology, metabolic intermediates and cellular survival. Finally, the impact of the combined treatment was evaluated in a xenograft neuroblastoma mouse model assessing the therapy effect on tumour size and volume. Results: Here we demonstrated that XIAP sequesters significant amounts of survivin within the cell that can be mobilized by so called SMAC-mimetics. SMAC-mimetics are drugs that are designed to bind with high affinity to XIAP-BIR2 / BIR3 domains to release caspases and re-sensitize XIAP-overexpressing tumors for chemotherapy. However, SMAC-mimetic treatment releases also survivin from XIAP and thereby induces mitochondrial fragmentation, prevents ROS accumulation and leads to the Warburg effect, an unwanted side effect of this therapy. Importantly, cells that drift into a highly glycolytic state due to SMAC-mimetic treatment become also highly sensitive to non-genotoxic treatment with glycolysis inhibitors such as 2-Deoxy-D-glucose (2DG) in vitro and in vivo. Conclusion: A combinational therapy of non-genotoxic SMAC-mimetics and glycolysis-inhibitors overcomes IAP-mediated cell survival in cancer and provides therefore an attractive usage of SMAC-mimetics.
Collapse
|
25
|
Fauster A, Rebsamen M, Willmann KL, César-Razquin A, Girardi E, Bigenzahn JW, Schischlik F, Scorzoni S, Bruckner M, Konecka J, Hörmann K, Heinz LX, Boztug K, Superti-Furga G. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ 2019; 26:1138-1155. [PMID: 30237509 PMCID: PMC6748104 DOI: 10.1038/s41418-018-0192-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/04/2018] [Accepted: 07/22/2018] [Indexed: 12/13/2022] Open
Abstract
Regulation of cell and tissue homeostasis by programmed cell death is a fundamental process with wide physiological and pathological implications. The advent of scalable somatic cell genetic technologies creates the opportunity to functionally map such essential pathways, thereby identifying potential disease-relevant components. We investigated the genetic basis underlying necroptotic cell death by performing a complementary set of loss-of-function and gain-of-function genetic screens. To this end, we established FADD-deficient haploid human KBM7 cells, which specifically and efficiently undergo necroptosis after a single treatment with either TNFα or the SMAC mimetic compound birinapant. A series of unbiased gene-trap screens identified key signaling mediators, such as TNFR1, RIPK1, RIPK3, and MLKL. Among the novel components, we focused on the zinc transporter SLC39A7, whose knock-out led to necroptosis resistance by affecting TNF receptor surface levels. Orthogonal, solute carrier (SLC)-focused CRISPR/Cas9-based genetic screens revealed the exquisite specificity of SLC39A7, among ~400 SLC genes, for TNFR1-mediated and FAS-mediated but not TRAIL-R1-mediated responses. Mechanistically, we demonstrate that loss of SLC39A7 resulted in augmented ER stress and impaired receptor trafficking, thereby globally affecting downstream signaling. The newly established cellular model also allowed genome-wide gain-of-function screening for genes conferring resistance to necroptosis via the CRISPR/Cas9-based synergistic activation mediator approach. Among these, we found cIAP1 and cIAP2, and characterized the role of TNIP1, which prevented pathway activation in a ubiquitin-binding dependent manner. Altogether, the gain-of-function and loss-of-function screens described here provide a global genetic chart of the molecular factors involved in necroptosis and death receptor signaling, prompting further investigation of their individual contribution and potential role in pathological conditions.
Collapse
Affiliation(s)
- Astrid Fauster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Manuele Rebsamen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
| | - Katharina L Willmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090, Vienna, Austria
| | - Adrian César-Razquin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Johannes W Bigenzahn
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Fiorella Schischlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Stefania Scorzoni
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Manuela Bruckner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Justyna Konecka
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Katrin Hörmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090, Vienna, Austria
- Department of Pediatrics, St. Anna Kinderspital and Children's Cancer Research Institute, Medical University of Vienna, 1090, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Boddu P, Carter BZ, Verstovsek S, Pemmaraju N. SMACmimetics as potential cancer therapeutics in myeloid malignancies. Br J Haematol 2019; 185:219-231. [DOI: 10.1111/bjh.15829] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Prajwal Boddu
- Department of Hematology and Oncology Yale University School of Medicine New Haven CTUSA
| | - Bing Z. Carter
- Department of Leukemia University of Texas MD Anderson Cancer Center Houston TX USA
| | - Srdan Verstovsek
- Department of Leukemia University of Texas MD Anderson Cancer Center Houston TX USA
| | - Naveen Pemmaraju
- Department of Leukemia University of Texas MD Anderson Cancer Center Houston TX USA
| |
Collapse
|
27
|
Michie J, Beavis PA, Freeman AJ, Vervoort SJ, Ramsbottom KM, Narasimhan V, Lelliott EJ, Lalaoui N, Ramsay RG, Johnstone RW, Silke J, Darcy PK, Voskoboinik I, Kearney CJ, Oliaro J. Antagonism of IAPs Enhances CAR T-cell Efficacy. Cancer Immunol Res 2019; 7:183-192. [DOI: 10.1158/2326-6066.cir-18-0428] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/06/2018] [Accepted: 01/10/2019] [Indexed: 11/16/2022]
|
28
|
HTiP: High-Throughput Immunomodulator Phenotypic Screening Platform to Reveal IAP Antagonists as Anti-cancer Immune Enhancers. Cell Chem Biol 2019; 26:331-339.e3. [PMID: 30639259 DOI: 10.1016/j.chembiol.2018.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/08/2018] [Accepted: 11/16/2018] [Indexed: 01/27/2023]
Abstract
Protein- and cell-based immunotherapeutic agents have revolutionized cancer treatment. However, small-molecule immunomodulators with favorable pharmacological properties for reaching intracellular targets remain to be developed. To explore the vast chemical space, a robust method that recapitulates the complex cancer-immune microenvironment in a high-throughput format is essential. To address this critical gap, we developed a high-throughput immunomodulator phenotypic screening platform, HTiP, which integrates the immune and cancer cell co-culture system with imaging- and biochemical-based multiplexed readouts. Using the HTiP platform, we have demonstrated its capability in modeling an oncogenic KRAS mutation-driven immunosuppressive phenotype. From a bioactive chemical library, multiple structurally distinct compounds were identified, all of which target the same class of proteins, inhibitor of apoptosis protein (IAP). IAP has demonstrated roles in cancer immunity. Identification of IAP antagonists as potent anti-tumor immune enhancers provides strong validating evidence for the use of the HTiP platform to discover small-molecule immunomodulators.
Collapse
|
29
|
Nikkhoo A, Rostami N, Hojjat-Farsangi M, Azizi G, Yousefi B, Ghalamfarsa G, Jadidi-Niaragh F. Smac mimetics as novel promising modulators of apoptosis in the treatment of breast cancer. J Cell Biochem 2018; 120:9300-9314. [PMID: 30506843 DOI: 10.1002/jcb.28205] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most prevalent cancer in women. Despite improvements in treatment, the rate of breast cancer-related deaths is still high, and this issue needs further, accurate investigations. Although several treatment options are available, none of them are efficient for complete remission, particularly in advanced stages of the disease. It is known that cancerous cells have dysregulated apoptosis-related pathways, by which they can remain alive for a long time, expand freely, and escape from apoptosis-inducing drugs or antitumor immune responses. Therefore, modulation of apoptosis resistance in cancer cells may be an efficient strategy to overcome current problems faced in the development of immunotherapeutic approaches for the treatment of breast cancer. The inhibitors of apoptosis protein (IAPs) are important targets for cancer therapy because it has been shown that these molecules are overexpressed and highly active in various cancer cells and suppress apoptosis process in malignant cells by blockage of caspase proteins. There is evidence of Smac mimetics efficacy as a single agent; however, recent studies have indicated the efficacy of current anticancer immunotherapeutic approaches when combined with Smac mimetics, which are potent inhibitors of IAPs and synthesized mimicking Smac/Diablo molecules. In this review, we are going to discuss the efficacy of treatment of breast cancer by Smac mimetics alone or in combination with other therapeutics.
Collapse
Affiliation(s)
- Afshin Nikkhoo
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Rostami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden.,Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Rosner A, Kravchenko O, Rinkevich B. IAP genes partake weighty roles in the astogeny and whole body regeneration in the colonial urochordate Botryllus schlosseri. Dev Biol 2018; 448:320-341. [PMID: 30385275 DOI: 10.1016/j.ydbio.2018.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/29/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Inhibitors of Apoptosis Protein (IAP) genes participate in processes like apoptosis, proliferation, innate immunity, inflammation, cell motility, differentiation and in malignancies. Here we reveal 25 IAP genes in the tunicate Botryllus schlosseri's genome and their functions in two developmental biology phenomena, a new mode of whole body regeneration (WBR) induced by budectomy, and blastogenesis, the four-staged cycles of botryllid ascidian astogeny. IAP genes that were specifically upregulated during these developmental phenomena were identified, and protein expression patterns of one of these genes, IAP28, were followed. Most of the IAP genes upregulation recorded at blastogenetic stages C/D was in concert with the upregulation at 100 μM H2O2 apoptotic-induced treatment and in parallel to expressions of AIF1, Bax, Mcl1, caspase 2 and two orthologues of caspase 7. Wnt agonist altered the takeover duration along with reduced IAP expressions, and displacement of IAP28+ phagocytes. WBR was initiated solely at blastogenetic stage D, where zooidal absorption was attenuated and regeneration centers were formed either from remains of partially absorbed zooids or from deformed ampullae. Subsequently, bud-bearing zooids developed, in concert with a massive IAP28-dependent phagocytic wave that eliminated the old zooids, then proceeded with the establishment of morphologically normal-looking colonies. IAP4, IAP14 and IAP28 were also involved in WBR, in conjunction with the expression of the pro-survival PI3K-Akt pathway. IAPs function deregulation by Smac mimetics resulted in severe morphological damages, attenuation in bud growth and differentiation, and in destabilization of colonial coordination. Longtime knockdown of IAP functions prior to the budectomy, resulted in colonial death.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic&Limnological Research Institute, Tel Shikmona, P.O.B. 8030, Haifa 31080, Israel.
| | - Olha Kravchenko
- Israel Oceanographic&Limnological Research Institute, Tel Shikmona, P.O.B. 8030, Haifa 31080, Israel; National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony, Str 17, building 2, of 45, Kyiv 03041, Ukraine
| | - Baruch Rinkevich
- Israel Oceanographic&Limnological Research Institute, Tel Shikmona, P.O.B. 8030, Haifa 31080, Israel
| |
Collapse
|
31
|
Hattori SI, Matsuda K, Tsuchiya K, Gatanaga H, Oka S, Yoshimura K, Mitsuya H, Maeda K. Combination of a Latency-Reversing Agent With a Smac Mimetic Minimizes Secondary HIV-1 Infection in vitro. Front Microbiol 2018; 9:2022. [PMID: 30283406 PMCID: PMC6156138 DOI: 10.3389/fmicb.2018.02022] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/09/2018] [Indexed: 01/22/2023] Open
Abstract
Latency-reversing agents (LRAs) are considered a potential tool to cure human immunodeficiency virus type 1 (HIV-1) infection, but when they are taken alone, virus production by reactivated cells and subsequent infection will occur. Hence, it is crucial to simultaneously take appropriate measures to prevent such secondary HIV-1 infection. In this regard, a strategy to minimize the production of infectious viruses from LRA-reactivated cells is worth pursuing. Here, we focused on a second mitochondria-derived activator of caspases (Smac) mimetic, birinapant, to induce apoptosis in latent HIV-1-infected cells. When birinapant was administered alone, it only slightly increased the expression of caspase-3. However, in combination with an LRA (e.g., PEP005), it strongly induced the expression of caspase-3 followed by enhanced apoptosis. Importantly, the combination eliminated reactivated cells and drastically reduced HIV-1 production. Finally, we found that birinapant decreased the mRNA expression of HIV-1 that was induced by PEP005 in the primary CD4+ T-cells from HIV-1-carrying patients as well. These results suggest that the combination of an LRA and an “apoptosis-inducing” agent, such as a Smac mimetic, is a possible treatment option to decrease HIV-1 reservoirs without the occurrence of HIV-1 production by reactivated cells.
Collapse
Affiliation(s)
- Shin-Ichiro Hattori
- National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Kouki Matsuda
- National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroaki Mitsuya
- National Center for Global Health and Medicine Research Institute, Tokyo, Japan.,Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kenji Maeda
- National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| |
Collapse
|
32
|
Interferon-γ and Smac mimetics synergize to induce apoptosis of lung cancer cells in a TNFα-independent manner. Cancer Cell Int 2018; 18:84. [PMID: 29946223 PMCID: PMC6001173 DOI: 10.1186/s12935-018-0579-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022] Open
Abstract
Background The prognosis of lung cancer is very poor and hence new therapeutic strategies are urgently desired. In this study, we searched for efficacious Smac mimetic-based combination therapies with biomarkers to predict responses for non-small cell lung cancer (NSCLC). Methods NSCLC cell lines and normal human alveolar epithelial cells were treated with Smac mimetics plus IFNγ or other agonists and cell viabilities were assessed by MTS assay, cell counting, flow cytometry and cell colony assay. Western blot analysis was performed to assess the cleavage (activation) of caspases and expression of signaling molecules. Caspase activity was determined to verify caspase activation. The pathways involved in NSCLC cell death were investigated using specific inhibitors. Results We found that IFNγ could cooperate with various Smac mimetics to trigger a profound apoptosis in a number of NSCLC cell lines that are competent for IFNγ signaling (i.e. expressing IFNγ receptor-1 and STAT1) but have low expression levels of inhibitor of apoptosis proteins survivin and livin without harming normal human lung epithelial cells. IFNγ co-treatment with a novel class dimeric Smac mimetic AZD5582 eradicated NSCLC cell colony formation. Unlike IFNγ, IFNα, IFNλ, TNFα, or TRAIL alone or plus AZD5582 had minor effects on NSCLC cell viability. IFNγ/AZD5582-induced cell death in NSCLC cells was independent of TNFα autocrine but relied on apoptosis mediated by JAK kinase, caspase 8 and RIPK1 pathways. Conclusion Our results indicate that IFNγ and Smac mimetics can synergize to induce apoptosis of NSCLC cells and suggest that IFNγ and Smac mimetic regimen may be a novel and efficacious apoptosis targeted therapy with biomarkers to predict responses for NSCLC cells.
Collapse
|
33
|
Rijal D, Ariana A, Wight A, Kim K, Alturki NA, Aamir Z, Ametepe ES, Korneluk RG, Tiedje C, Menon MB, Gaestel M, McComb S, Sad S. Differentiated macrophages acquire a pro-inflammatory and cell death-resistant phenotype due to increasing XIAP and p38-mediated inhibition of RipK1. J Biol Chem 2018; 293:11913-11927. [PMID: 29899110 DOI: 10.1074/jbc.ra118.003614] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Monocytes differentiate into macrophages, which deactivate invading pathogens. Macrophages can be resistant to cell death mechanisms in some situations, and the mechanisms involved are not clear. Here, using mouse immune cells, we investigated whether the differentiation of macrophages affects their susceptibility to cell death by the ripoptosome/necrosome pathways. We show that treatment of macrophages with a mimetic of second mitochondrial activator of caspases (SMAC) resulted in ripoptosome-driven cell death that specifically depended on tumor necrosis factor α (TNFα) expression and the receptor-interacting serine/threonine protein kinase 1 (RipK1)-RipK3-caspase-8 interaction in activated and cycling macrophages. Differentiation of macrophages increased the expression of pro-inflammatory cytokines but reduced RipK1-dependent cell death and the RipK3-caspase-8 interaction. The expression of the anti-apoptotic mediators, X-linked inhibitor of apoptosis protein (XIAP) and caspase-like apoptosis regulatory protein (cFLIPL), also increased in differentiated macrophages, which inhibited caspase activation. The resistance to cell death was abrogated in XIAP-deficient macrophages. However, even in the presence of increased XIAP expression, inhibition of the mitogen-activated protein kinase (MAPK) p38 and MAPK-activated protein kinase 2 (MK2) made differentiated macrophages susceptible to cell death. These results suggest that the p38/MK2 pathway overrides apoptosis inhibition by XIAP and that acquisition of resistance to cell death by increased expression of XIAP and cFLIPL may allow inflammatory macrophages to participate in pathogen control for a longer duration.
Collapse
Affiliation(s)
- Dikchha Rijal
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada
| | - Ardeshir Ariana
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada
| | - Andrew Wight
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada
| | - Kwangsin Kim
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada
| | - Norah A Alturki
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada
| | - Zoya Aamir
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada
| | - Emmanuelle S Ametepe
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada
| | - Robert G Korneluk
- the Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 5B2, Canada
| | - Christopher Tiedje
- the Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany.,the Department of Cellular and Molecular Medicine, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Manoj B Menon
- the Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Matthias Gaestel
- the Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Scott McComb
- the Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa K1A 0R6, Ontario, Canada, and
| | - Subash Sad
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada, .,the uOttawa Centre for Infection, Immunity, and Inflammation, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
34
|
Dull AB, Wilsker D, Hollingshead M, Mazcko C, Annunziata CM, LeBlanc AK, Doroshow JH, Kinders RJ, Parchment RE. Development of a quantitative pharmacodynamic assay for apoptosis in fixed tumor tissue and its application in distinguishing cytotoxic drug-induced DNA double strand breaks from DNA double strand breaks associated with apoptosis. Oncotarget 2018; 9:17104-17116. [PMID: 29682208 PMCID: PMC5908309 DOI: 10.18632/oncotarget.24936] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/06/2018] [Indexed: 11/25/2022] Open
Abstract
DNA double strand breaks (DSBs) induced by cancer therapeutic agents can lead to DNA damage repair or persistent DNA damage, which can induce apoptotic cell death; however, apoptosis also induces DSBs independent of genotoxic insult. γH2AX is an established biomarker for DSBs but cannot distinguish between these mechanisms. Activated cleaved caspase-3 (CC3) promotes apoptosis by enhancing nuclear condensation, DNA fragmentation, and plasma membrane blebbing. Here, we describe an immunofluorescence assay that distinguishes between apoptosis and drug-induced DSBs by measuring coexpression of γH2AX and membrane blebbing−associated CC3 to indicate apoptosis, and γH2AX in the absence of CC3 blebbing to indicate drug-induced DNA damage. These markers were examined in xenograft models following treatment with topotecan, cisplatin, or birinapant. A topotecan regimen conferring tumor regression induced tumor cell DSBs resulting from both apoptosis and direct DNA damage. In contrast, a cisplatin regimen yielding tumor growth delay, but not regression, resulted in tumor cell DSBs due solely to direct DNA damage. MDA-MB-231 xenografts exposed to birinapant, which promotes apoptosis but does not directly induce DSBs, exhibited dose-dependent increases in colocalized γH2AX/CC3 blebbing in tumor cells. Clinical feasibility was established using formalin-fixed, paraffin-embedded biopsies from a canine cancer clinical trial; γH2AX/CC3 colocalization analysis revealed apoptosis induction by two novel indenoisoquinoline topoisomerase I inhibitors, which was consistent with pathologist-assessed apoptosis and reduction of tumor volume. This assay is ready for use in clinical trials to elucidate the mechanism of action of investigational agents and combination regimens intended to inflict DNA damage, apoptotic cell death, or both.
Collapse
Affiliation(s)
- Angie B Dull
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Deborah Wilsker
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Melinda Hollingshead
- Biological Testing Branch, National Cancer Institute-Frederick, Frederick, Maryland, USA
| | - Christina Mazcko
- Comparative Oncology Program, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Amy K LeBlanc
- Comparative Oncology Program, National Cancer Institute, Bethesda, Maryland, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis and Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert J Kinders
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ralph E Parchment
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
35
|
Rathore R, McCallum JE, Varghese E, Florea AM, Büsselberg D. Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs). Apoptosis 2018; 22:898-919. [PMID: 28424988 PMCID: PMC5486846 DOI: 10.1007/s10495-017-1375-1] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inhibitors of apoptosis (IAPs) are a family of proteins that play a significant role in the control of programmed cell death (PCD). PCD is essential to maintain healthy cell turnover within tissue but also to fight disease or infection. Uninhibited, IAPs can suppress apoptosis and promote cell cycle progression. Therefore, it is unsurprising that cancer cells demonstrate significantly elevated expression levels of IAPs, resulting in improved cell survival, enhanced tumor growth and subsequent metastasis. Therapies to target IAPs in cancer has garnered substantial scientific interest and as resistance to anti-cancer agents becomes more prevalent, targeting IAPs has become an increasingly attractive strategy to re-sensitize cancer cells to chemotherapies, antibody based-therapies and TRAIL therapy. Antagonism strategies to modulate the actions of XIAP, cIAP1/2 and survivin are the central focus of current research and this review highlights advances within this field with particular emphasis upon the development and specificity of second mitochondria-derived activator of caspase (SMAC) mimetics (synthetic analogs of endogenously expressed inhibitors of IAPs SMAC/DIABLO). While we highlight the potential of SMAC mimetics as effective single agent or combinatory therapies to treat cancer we also discuss the likely clinical implications of resistance to SMAC mimetic therapy, occasionally observed in cancer cell lines.
Collapse
Affiliation(s)
- Rama Rathore
- College of Literature, Sciences and the Arts, University of Michigan-Ann Arbor, Ann Arbor, MI, 48109, USA
| | | | | | - Ana-Maria Florea
- Institute of Neuropathology, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | | |
Collapse
|
36
|
Crawford N, Salvucci M, Hellwig CT, Lincoln FA, Mooney RE, O'Connor CL, Prehn JH, Longley DB, Rehm M. Simulating and predicting cellular and in vivo responses of colon cancer to combined treatment with chemotherapy and IAP antagonist Birinapant/TL32711. Cell Death Differ 2018; 25:1952-1966. [PMID: 29500433 DOI: 10.1038/s41418-018-0082-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022] Open
Abstract
Apoptosis resistance contributes to treatment failure in colorectal cancer (CRC). New treatments that reinstate apoptosis competency have potential to improve patient outcome but require predictive biomarkers to target them to responsive patient populations. Inhibitor of apoptosis proteins (IAPs) suppress apoptosis, contributing to drug resistance; IAP antagonists such as TL32711 have therefore been developed. We developed a systems biology approach for predicting response of CRC cells to chemotherapy and TL32711 combinations in vitro and in vivo. CRC cells responded poorly to TL32711 monotherapy in vitro; however, co-treatment with 5-fluorouracil (5-FU) and oxaliplatin enhanced TL32711-induced apoptosis. Notably, cells from genetically identical populations responded highly heterogeneously, with caspases being activated both upstream and downstream of mitochondrial outer membrane permeabilisation (MOMP). These data, combined with quantities of key apoptosis regulators were sufficient to replicate in vitro cell death profiles by mathematical modelling. In vivo, apoptosis protein expression was significantly altered, and mathematical modelling for these conditions predicted higher apoptosis resistance that could nevertheless be overcome by combination of chemotherapy and TL32711. Subsequent experimental observations agreed with these predictions, and the observed effects on tumour growth inhibition correlated robustly with apoptosis competency. We therefore obtained insights into intracellular signal transduction kinetics and their population-based heterogeneities for chemotherapy/TL32711 combinations and provide proof-of-concept that mathematical modelling of apoptosis competency can simulate and predict responsiveness in vivo. Being able to predict response to IAP antagonist-based treatments on the background of cell-to-cell heterogeneities in the future might assist in improving treatment stratification approaches for these emerging apoptosis-targeting agents.
Collapse
Affiliation(s)
- Nyree Crawford
- Cell Death & Drug Resistance Group, Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, UK
| | - Manuela Salvucci
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Christian T Hellwig
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, D-70569, Stuttgart, Germany
| | - Frank A Lincoln
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Ruth E Mooney
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Carla L O'Connor
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen Hm Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Daniel B Longley
- Cell Death & Drug Resistance Group, Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, UK.
| | - Markus Rehm
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland. .,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland. .,Institute of Cell Biology and Immunology, University of Stuttgart, D-70569, Stuttgart, Germany. .,Stuttgart Research Center Systems Biology, University of Stuttgart, D-70569, Stuttgart, Germany.
| |
Collapse
|
37
|
Falkenhorst J, Grunewald S, Mühlenberg T, Marino-Enriquez A, Reis AC, Corless C, Heinrich M, Treckmann J, Podleska LE, Schuler M, Fletcher JA, Bauer S. Inhibitor of Apoptosis Proteins (IAPs) are commonly dysregulated in GIST and can be pharmacologically targeted to enhance the pro-apoptotic activity of imatinib. Oncotarget 2018; 7:41390-41403. [PMID: 27167336 PMCID: PMC5173067 DOI: 10.18632/oncotarget.9159] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 04/14/2016] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal stromal tumors (GIST) exhibit a strong oncogenic dependency on KIT and KIT inhibitors confer long lasting disease stabilization in the majority of patients. Nonetheless, KIT inhibition alone does not cure GIST as a subset of GIST cells evade apoptosis and eventually develop resistance. Inhibitors of Apoptosis Proteins (IAPs) may confer resistance to drug-induced apoptosis. We observed that the mRNA and protein of IAPs XIAP (BIRC4) and survivin (BIRC5) were highly expressed in primary GIST tumors and cell line models. Amplification of the respective gene loci (BIRC2, BIRC3, BIRC4, BIRC5) was detected in 47% of GIST studied by SNP arrays. Whole exome analyses revealed a mutation of SMAC(DIABLO) in a heavily pretreated patient. Both, survivin (rank 62-92/11.194 tested proteins) and XIAP (rank 106-557/11.194) were found to be essential proteins for survival in a synthetic lethality screen. Expression of XIAP and survivin decreased upon KIT inhibition and may play a role in KIT-regulated pro-survival signaling. SMAC-mimetic treatment with LCL161 and TL32711 reduced cIAP1 and XIAP expression. Survivin inhibitor YM155 lead to transcriptional repression of BIRC5/survivin (YM155) and induced apoptosis. Combinational treatment with KIT inhibitors (imatinib, regorafenib) enhanced the proapoptotic effect. These findings support the combination of KIT inhibition with IAP antagonists in GIST.
Collapse
Affiliation(s)
- Johanna Falkenhorst
- Sarcoma Center, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Susanne Grunewald
- Sarcoma Center, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thomas Mühlenberg
- Sarcoma Center, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Anna-Carina Reis
- Sarcoma Center, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Pathology and Neuropathology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christopher Corless
- Department of Pathology, Oregon Health and Science University Knight Cancer Institute, Portland, OR, USA
| | - Michael Heinrich
- Department of Medical Oncology, Oregon Health and Science University Knight Cancer Institute, Portland, OR, USA
| | - Jürgen Treckmann
- Sarcoma Center, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Surgery, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lars Erik Podleska
- Sarcoma Center, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Surgery, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Martin Schuler
- Sarcoma Center, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | | | - Sebastian Bauer
- Sarcoma Center, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
38
|
Jin XJ, Cai PS, Zhu SP, Wang LJ, Zhu H. Negative correlation between X-linked inhibitors of apoptosis and second mitochondria-derived activator of caspase expression levels in cervical carcinoma and cervical intraepithelial neoplasia. Oncol Lett 2017; 14:5340-5346. [PMID: 29113168 PMCID: PMC5661384 DOI: 10.3892/ol.2017.6878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/13/2017] [Indexed: 11/25/2022] Open
Abstract
X-linked inhibitors of apoptosis (XIAP) and second mitochondria-derived activator of caspase (Smac) have been widely reported to serve roles in the development of cervical carcinoma. The present study analyzed the associations between the expression levels of XIAP and Smac in normal cervical epithelium, cervical intraepithelial neoplasia (CIN) and cervical carcinoma. Immunohistochemistry staining of formalin-fixed, paraffin-embedded tissue sections was performed in order to analyze the expression levels of XIAP and Smac in 15 cases of normal cervical tissues, 69 cases of CIN and 76 cases of cervical carcinoma. All the tissue samples were confirmed by pathological diagnosis. The association of XIAP and Smac expression levels was analyzed using one-way analysis of variance, χ2 tests and Spearman's ρ for the nonparametric bi-variant correlation analysis. Overall survival was determined using the log-rank test and Kaplan-Meier survival curves. The expression level of XIAP was increased in CIN and cervical carcinoma tissues compared with normal cervical tissues, whereas Smac demonstrated a converse expression pattern to XIAP in these tissues. The positive staining level of XIAP protein was increased in grade 3 CIN compared with that in grade 1–2 CIN, and was significantly higher in the less-differentiated tissue of cervical carcinoma compared with the well- or medium-differentiated tissues (P<0.05). The staining level was also significantly increased in cervical carcinoma with stage 2b-3 compared with tissues from stage 1–2a carcinoma (P<0.05). The expression levels of Smac were in opposition to these results. XIAP was associated with pelvic lymph node metastasis, whereas no association was identified with Smac expression. The expression level of XIAP was significantly and negatively associated with cell survival time in cervical carcinoma, whereas the expression level of Smac was significantly and positively associated with cell survival time in cervical carcinoma. Therefore, XIAP and Smac may participate in the development of cervical cancer. The expression levels of XIAP and Smac were significantly and inversely associated. This may be useful in early diagnosis, evaluation of surgery and chemotherapy and the prognosis of cervical carcinoma.
Collapse
Affiliation(s)
- Xue-Jing Jin
- Departments of Obstetrics and Gynecology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, P.R. China
| | - Ping-Sheng Cai
- Departments of Obstetrics and Gynecology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, P.R. China
| | - Shu-Pin Zhu
- Departments of Obstetrics and Gynecology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, P.R. China
| | - Li-Jie Wang
- Departments of Obstetrics and Gynecology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, P.R. China
| | - Hua Zhu
- Departments of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
39
|
Gressot LV, Doucette T, Yang Y, Fuller GN, Manyam G, Rao A, Latha K, Rao G. Analysis of the inhibitors of apoptosis identifies BIRC3 as a facilitator of malignant progression in glioma. Oncotarget 2017; 8:12695-12704. [PMID: 27074575 PMCID: PMC5355046 DOI: 10.18632/oncotarget.8657] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/28/2016] [Indexed: 12/30/2022] Open
Abstract
Gliomas, the most common primary brain tumor in humans, include a spectrum of disease. High-grade gliomas (HGG), such as glioblastoma, may arise from low-grade gliomas (LGG) that have a more indolent course. The process of malignant transformation (MT) of LGG to HGG is poorly understood but likely involves the activation of signaling programs that suppress apoptosis. We previously showed that Survivin (BIRC5) plays a role in malignant progression of glioma. Here, we investigated the role of the remaining members of the Inhibitors of Apoptosis (IAP) family on promoting MT in glioma. Utilizing expression data from the cancer genome atlas (TCGA), we identified BIRC3 as a key facilitator of MT from LGG to HGG. TCGA HGGs with high expression of BIRC 3 demonstrated a survival disadvantage and expression levels of BIRC3 were also significantly higher in TCGA HGG compared to TCGA LGG cases. We validated our findings from TCGA by using matched human specimens to show that BIRC expression is increased in HGG compared to their precursor LGG lesions. Using a unique murine model of glioma, we show that overexpression of BIRC3 promotes higher grade glioma and significantly reduces tumor-free survival in mice.
Collapse
Affiliation(s)
- Loyola V Gressot
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Tiffany Doucette
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yuhui Yang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ganiraju Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Arvind Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Khatri Latha
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
40
|
Kim DS, Dastidar H, Zhang C, Zemp FJ, Lau K, Ernst M, Rakic A, Sikdar S, Rajwani J, Naumenko V, Balce DR, Ewanchuk BW, Tailor P, Yates RM, Jenne C, Gafuik C, Mahoney DJ. Smac mimetics and oncolytic viruses synergize in driving anticancer T-cell responses through complementary mechanisms. Nat Commun 2017; 8:344. [PMID: 28839138 PMCID: PMC5570934 DOI: 10.1038/s41467-017-00324-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
Second mitochondrial activator of caspase (Smac)-mimetic compounds and oncolytic viruses were developed to kill cancer cells directly. However, Smac-mimetic compound and oncolytic virus therapies also modulate host immune responses in ways we hypothesized would complement one another in promoting anticancer T-cell immunity. We show that Smac-mimetic compound and oncolytic virus therapies synergize in driving CD8+ T-cell responses toward tumors through distinct activities. Smac-mimetic compound treatment with LCL161 reinvigorates exhausted CD8+ T cells within immunosuppressed tumors by targeting tumor-associated macrophages for M1-like polarization. Oncolytic virus treatment with vesicular stomatitis virus (VSVΔM51) promotes CD8+ T-cell accumulation within tumors and CD8+ T-cell activation within the tumor-draining lymph node. When combined, LCL161 and VSVΔM51 therapy engenders CD8+ T-cell-mediated tumor control in several aggressive mouse models of cancer. Smac-mimetic compound and oncolytic virus therapies are both in clinical development and their combination therapy represents a promising approach for promoting anticancer T-cell immunity.Oncolytic viruses (OV) and second mitochondrial activator of caspase (Smac)-mimetic compounds (SMC) synergistically kill cancer cells directly. Here, the authors show that SMC and OV therapies combination also synergize in vivo by promoting anticancer immunity through an increase in CD8+ T-cell response.
Collapse
Affiliation(s)
- Dae-Sun Kim
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
- Department of Microbiology, Immunology and Infectious Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Himika Dastidar
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
- Department of Microbiology, Immunology and Infectious Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Chunfen Zhang
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
| | - Franz J Zemp
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
- Department of Microbiology, Immunology and Infectious Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Keith Lau
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
- Department of Microbiology, Immunology and Infectious Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
- Snyder Institute for Chronic Disease, Calgary, AB, Canada, T2N 4N1
| | - Matthias Ernst
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
| | - Andrea Rakic
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
- Department of Medical Sciences, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Saif Sikdar
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
- Department of Microbiology, Immunology and Infectious Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Jahanara Rajwani
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
| | - Victor Naumenko
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
- Department of Microbiology, Immunology and Infectious Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
- Snyder Institute for Chronic Disease, Calgary, AB, Canada, T2N 4N1
| | - Dale R Balce
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Ben W Ewanchuk
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Pankaj Tailor
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Robin M Yates
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Craig Jenne
- Department of Microbiology, Immunology and Infectious Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
- Snyder Institute for Chronic Disease, Calgary, AB, Canada, T2N 4N1
| | - Chris Gafuik
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
- Department of Microbiology, Immunology and Infectious Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Douglas J Mahoney
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1.
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1.
- Department of Microbiology, Immunology and Infectious Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1.
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1.
| |
Collapse
|
41
|
Chadha N, Silakari O. Indoles as therapeutics of interest in medicinal chemistry: Bird's eye view. Eur J Med Chem 2017; 134:159-184. [DOI: 10.1016/j.ejmech.2017.04.003] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/09/2017] [Accepted: 04/02/2017] [Indexed: 01/01/2023]
|
42
|
Selective replication of oncolytic virus M1 results in a bystander killing effect that is potentiated by Smac mimetics. Proc Natl Acad Sci U S A 2017; 114:6812-6817. [PMID: 28607091 DOI: 10.1073/pnas.1701002114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oncolytic virotherapy is a treatment modality that uses native or genetically modified viruses that selectively replicate in and kill tumor cells. Viruses represent a type of pathogen-associated molecular pattern and thereby induce the up-regulation of dozens of cytokines via activating the host innate immune system. Second mitochondria-derived activator of caspases (Smac) mimetic compounds (SMCs), which antagonize the function of inhibitor of apoptosis proteins (IAPs) and induce apoptosis, sensitize tumor cells to multiple cytokines. Therefore, we sought to determine whether SMCs sensitize tumor cells to cytokines induced by the oncolytic M1 virus, thus enhancing a bystander killing effect. Here, we report that SMCs potentiate the oncolytic effect of M1 in vitro, in vivo, and ex vivo. This strengthened oncolytic efficacy resulted from the enhanced bystander killing effect caused by the M1 virus via cytokine induction. Through a microarray analysis and subsequent validation using recombinant cytokines, we identified IL-8, IL-1A, and TRAIL as the key cytokines in the bystander killing effect. Furthermore, SMCs increased the replication of M1, and the accumulation of virus protein induced irreversible endoplasmic reticulum stress- and c-Jun N-terminal kinase-mediated apoptosis. Nevertheless, the combined treatment with M1 and SMCs had little effect on normal and human primary cells. Because SMCs selectively and significantly enhance the bystander killing effect and the replication of oncolytic virus M1 specifically in cancer cells, this combined treatment may represent a promising therapeutic strategy.
Collapse
|
43
|
Liu H, Liao R, He K, Zhu X, Li P, Gong J. The SMAC mimetic birinapant attenuates lipopolysaccharide-induced liver injury by inhibiting the tumor necrosis factor receptor–associated factor 3 degradation in Kupffer cells. Immunol Lett 2017; 185:79-83. [DOI: 10.1016/j.imlet.2017.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/22/2023]
|
44
|
Vetma V, Rožanc J, Charles EM, Hellwig CT, Alexopoulos LG, Rehm M. Examining the In Vitro Efficacy of the IAP Antagonist Birinapant as a Single Agent or in Combination With Dacarbazine to Induce Melanoma Cell Death. Oncol Res 2017; 25:1489-1494. [PMID: 28337955 PMCID: PMC7841063 DOI: 10.3727/096504017x14897145996933] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Antagonists of inhibitors of apoptosis proteins (IAPs), alone or in combination with genotoxic therapeutics, have been shown to efficiently induce cell death in various solid tumors. The IAP antagonist birinapant is currently being tested in phase II clinical trials. We herein aimed to investigate the antitumor efficacy of dacarbazine in vitro, both as a single agent and in combination with birinapant, in melanoma cell lines. Covering clinically relevant drug concentration ranges, we conducted a total of 5,400 measurements in a panel of 12 human melanoma cell lines representing different stages of disease progression. Surprisingly, functionally relevant synergies or response potentiation in combination treatments was not observed, and only one cell line modestly responded to birinapant single treatment (approximately 16% cell death). Although we did not study the underlying resistance mechanisms or more complex in vivo scenarios in which dacarbazine/birinapant response synergies may still possibly manifest, our findings are nevertheless noteworthy because IAP antagonists were demonstrated to strongly enhance responses to DNA-damaging agents in cell lines of other cancer types under comparable experimental conditions in vitro.
Collapse
|
45
|
Perimenis P, Galaris A, Voulgari A, Prassa M, Pintzas A. IAP antagonists Birinapant and AT-406 efficiently synergise with either TRAIL, BRAF, or BCL-2 inhibitors to sensitise BRAFV600E colorectal tumour cells to apoptosis. BMC Cancer 2016; 16:624. [PMID: 27520705 PMCID: PMC4982265 DOI: 10.1186/s12885-016-2606-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/22/2016] [Indexed: 12/12/2022] Open
Abstract
Background High expression levels of Inhibitors of Apoptosis Proteins (IAPs) have been correlated with poor cancer prognosis and block the cell death pathway by interfering with caspase activation. SMAC-mimetics are small-molecule inhibitors of IAPs that mimic the endogenous SMAC and promote the induction of cell death by neutralizing IAPs. Methods In this study, anti-tumour activity of new SMAC-mimetics Birinapant and AT-406 is evaluated against colorectal adenocarcinoma cells and IAP cross-talk with either oncogenic BRAF or BCL-2, or with the TRAIL are further exploited towards rational combined protocols. Results It is shown that pre-treatment of SMAC-mimetics followed by their combined treatment with BRAF inhibitors can decrease cell viability, migration and can very efficiently sensitize colorectal tumour cells to apoptosis. Moreover, co-treatment of TRAIL with SMAC-mimetics can efficiently sensitize resistant tumour cells to apoptosis synergistically, as shown by median effect analysis. Finally, Birinapant and AT-406 can synergise with BCL-2 inhibitor ABT-199 to reduce viability of adenocarcinoma cells with high BCL-2 expression. Conclusions Proposed synergistic rational anticancer combined protocols of IAP antagonists Birinapant and AT-406 in 2D and 3D cultures can be later further exploited in vivo, from precision tumour biology to precision medical oncology. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2606-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philippos Perimenis
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Apostolos Galaris
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Alexandra Voulgari
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Margarita Prassa
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Alexander Pintzas
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece.
| |
Collapse
|
46
|
A novel Smac mimetic APG-1387 demonstrates potent antitumor activity in nasopharyngeal carcinoma cells by inducing apoptosis. Cancer Lett 2016; 381:14-22. [PMID: 27424523 DOI: 10.1016/j.canlet.2016.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/18/2016] [Accepted: 07/11/2016] [Indexed: 12/22/2022]
Abstract
Despite advances in the development of radiation against nasopharyngeal carcinoma (NPC), the management of advanced NPC remains a challenge. Smac mimetics are designed to neutralize inhibitor of apoptosis (IAP) proteins, thus reactivating the apoptotic program in cancer cells. In this study, we investigated the effect of a novel bivalent Smac mimetic APG-1387 in NPC. In vitro, APG-1387 in combination with TNF-α potently decreased NPC cell viability by inducing apoptosis in majority of NPC cell lines. The in vitro antitumor effect was RIPK1-dependent, whereas it was independent on IAPs, USP11, or EBV. Of note, the inhibition of NF-κB or AKT pathway rendered resistant NPC cells responsive to the treatment of APG-1387/TNF-α. In vivo, APG-1387 displayed antitumor activity as a single agent at well-tolerated doses, even in an in vitro resistant cell line. In summary, our results demonstrate that APG-1387 exerts a potent antitumor effect on NPC. These findings support clinical evaluation of APG-1387 as a potential treatment for advanced NPC.
Collapse
|
47
|
Ke B, Tian M, Li J, Liu B, He G. Targeting Programmed Cell Death Using Small-Molecule Compounds to Improve Potential Cancer Therapy. Med Res Rev 2016; 36:983-1035. [PMID: 27357603 DOI: 10.1002/med.21398] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 05/04/2016] [Accepted: 05/28/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Bowen Ke
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Mao Tian
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Jingjing Li
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Bo Liu
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Gu He
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| |
Collapse
|
48
|
Richmond J, Robbins A, Evans K, Beck D, Kurmasheva RT, Billups CA, Carol H, Heatley S, Sutton R, Marshall GM, White D, Pimanda J, Houghton PJ, Smith MA, Lock RB. Acute Sensitivity of Ph-like Acute Lymphoblastic Leukemia to the SMAC-Mimetic Birinapant. Cancer Res 2016; 76:4579-91. [PMID: 27302164 DOI: 10.1158/0008-5472.can-16-0523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/12/2016] [Indexed: 12/17/2022]
Abstract
Ph-like acute lymphoblastic leukemia (ALL) is a genetically defined high-risk ALL subtype with a generally poor prognosis. In this study, we evaluated the efficacy of birinapant, a small-molecule mimetic of the apoptotic regulator SMAC, against a diverse set of ALL subtypes. Birinapant exhibited potent and selective cytotoxicity against B-cell precursor ALL (BCP-ALL) cells that were cultured ex vivo or in vivo as patient-derived tumor xenografts (PDX). Cytotoxicity was consistently most acute in Ph-like BCP-ALL. Unbiased gene expression analysis of BCP-ALL PDX specimens identified a 68-gene signature associated with birinapant sensitivity, including an enrichment for genes involved in inflammatory response, hematopoiesis, and cell death pathways. All Ph-like PDXs analyzed clustered within this 68-gene classifier. Mechanistically, birinapant sensitivity was associated with expression of TNF receptor TNFR1 and was abrogated by interfering with the TNFα/TNFR1 interaction. In combination therapy, birinapant enhanced the in vivo efficacy of an induction-type regimen of vincristine, dexamethasone, and L-asparaginase against Ph-like ALL xenografts, offering a preclinical rationale to further evaluate this SMAC mimetic for BCP-ALL treatment. Cancer Res; 76(15); 4579-91. ©2016 AACR.
Collapse
Affiliation(s)
- Jennifer Richmond
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Australia, Sydney, Australia
| | - Alissa Robbins
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Australia, Sydney, Australia
| | - Kathryn Evans
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Australia, Sydney, Australia
| | - Dominik Beck
- Lowy Cancer Research Centre, University of New South Wales Australia, Sydney, Australia
| | - Raushan T Kurmasheva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Catherine A Billups
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Hernan Carol
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Australia, Sydney, Australia
| | - Sue Heatley
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Rosemary Sutton
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Australia, Sydney, Australia
| | - Glenn M Marshall
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia
| | - Deborah White
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - John Pimanda
- Lowy Cancer Research Centre, University of New South Wales Australia, Sydney, Australia
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | | | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Australia, Sydney, Australia.
| |
Collapse
|
49
|
APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood 2016; 127:3225-36. [PMID: 27127303 DOI: 10.1182/blood-2016-01-691162] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/13/2016] [Indexed: 01/01/2023] Open
Abstract
Here we show that overexpression or activation of B-cell maturation antigen (BCMA) by its ligand, a proliferation-inducing ligand (APRIL), promotes human multiple myeloma (MM) progression in vivo. BCMA downregulation strongly decreases viability and MM colony formation; conversely, BCMA overexpression augments MM cell growth and survival via induction of protein kinase B (AKT), MAPK, and nuclear factor (NF)-κB signaling cascades. Importantly, BCMA promotes in vivo growth of xenografted MM cells harboring p53 mutation in mice. BCMA-overexpressing tumors exhibit significantly increased CD31/microvessel density and vascular endothelial growth factor compared with paired control tumors. These tumors also express increased transcripts crucial for osteoclast activation, adhesion, and angiogenesis/metastasis, as well as genes mediating immune inhibition including programmed death ligand 1, transforming growth factor β, and interleukin 10. These target genes are consistently induced by paracrine APRIL binding to BCMA on MM cells, which is blocked by an antagonistic anti-APRIL monoclonal antibody hAPRIL01A (01A). 01A is cytotoxic against MM cells even in the presence of protective bone marrow (BM) myeloid cells including osteoclasts, macrophages, and plasmacytoid dendritic cells. 01A further decreases APRIL-induced adhesion and migration of MM cells via blockade of canonical and noncanonical NF-κB pathways. Moreover, 01A prevents in vivo MM cell growth within implanted human bone chips in SCID mice. Finally, the effect of 01A on MM cell viability is enhanced by lenalidomide and bortezomib. Taken together, these data delineate new molecular mechanisms of in vivo MM growth and immunosuppression critically dependent on BCMA and APRIL in the BM microenvironment, further supporting targeting this prominent pathway in MM.
Collapse
|
50
|
Yang Y, Kelly P, Shaffer AL, Schmitz R, Yoo HM, Liu X, Huang DW, Webster D, Young RM, Nakagawa M, Ceribelli M, Wright GW, Yang Y, Zhao H, Yu X, Xu W, Chan WC, Jaffe ES, Gascoyne RD, Campo E, Rosenwald A, Ott G, Delabie J, Rimsza L, Staudt LM. Targeting Non-proteolytic Protein Ubiquitination for the Treatment of Diffuse Large B Cell Lymphoma. Cancer Cell 2016; 29:494-507. [PMID: 27070702 PMCID: PMC6026033 DOI: 10.1016/j.ccell.2016.03.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/27/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
Chronic active B cell receptor (BCR) signaling, a hallmark of the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), engages the CARD11-MALT1-BCL10 (CBM) adapter complex to activate IκB kinase (IKK) and the classical NF-κB pathway. Here we show that the CBM complex includes the E3 ubiquitin ligases cIAP1 and cIAP2, which are essential mediators of BCR-dependent NF-κB activity in ABC DLBCL. cIAP1/2 attach K63-linked polyubiquitin chains on themselves and on BCL10, resulting in the recruitment of IKK and the linear ubiquitin chain ligase LUBAC, which is essential for IKK activation. SMAC mimetics target cIAP1/2 for destruction, and consequently suppress NF-κB and selectively kill BCR-dependent ABC DLBCL lines, supporting their clinical evaluation in patients with ABC DLBCL.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis Regulatory Proteins
- B-Cell CLL-Lymphoma 10 Protein
- B-Lymphocytes/drug effects
- B-Lymphocytes/metabolism
- Baculoviral IAP Repeat-Containing 3 Protein
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- CARD Signaling Adaptor Proteins/metabolism
- CRISPR-Cas Systems
- Caspases/metabolism
- Cell Line, Tumor
- Dipeptides/pharmacology
- Dipeptides/therapeutic use
- Enzyme Activation
- Gene Dosage
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Guanylate Cyclase/metabolism
- Humans
- I-kappa B Kinase/metabolism
- Indoles/pharmacology
- Indoles/therapeutic use
- Inhibitor of Apoptosis Proteins/antagonists & inhibitors
- Inhibitor of Apoptosis Proteins/genetics
- Inhibitor of Apoptosis Proteins/physiology
- Intracellular Signaling Peptides and Proteins/chemistry
- Lymphoma, Large B-Cell, Diffuse/classification
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mitochondrial Proteins/chemistry
- Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein
- Multiprotein Complexes/metabolism
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/physiology
- Protein Processing, Post-Translational/drug effects
- Receptors, Antigen, B-Cell/metabolism
- Triazoles/pharmacology
- Triazoles/therapeutic use
- Ubiquitin-Protein Ligases/antagonists & inhibitors
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/physiology
- Ubiquitination/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yibin Yang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Priscilla Kelly
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Arthur L Shaffer
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Roland Schmitz
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Hee Min Yoo
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Xinyue Liu
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Daniel Webster
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Ryan M Young
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Masao Nakagawa
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Michele Ceribelli
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Xin Yu
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Elaine S Jaffe
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Elias Campo
- Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Andreas Rosenwald
- Department of Pathology, University of Würzburg, 97080 Würzburg, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Jan Delabie
- Department of Pathology, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Lisa Rimsza
- Department of Pathology, University of Arizona, Tucson, AZ 85724, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 4N115, Bethesda, MD 20892, USA.
| |
Collapse
|