1
|
Sirhan Z, Alojair R, Thyagarajan A, Sahu RP. Therapeutic Implications of PTEN in Non-Small Cell Lung Cancer. Pharmaceutics 2023; 15:2090. [PMID: 37631304 PMCID: PMC10458395 DOI: 10.3390/pharmaceutics15082090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Lung cancer remains one of the major human malignancies affecting both men and women worldwide, with non-small cell lung cancer (NSCLC) being the most prevalent type. Multiple mechanisms have been identified that favor tumor growth as well as impede the efficacy of therapeutic regimens in lung cancer patients. Among tumor suppressor genes that play critical roles in regulating cancer growth, the phosphatase and tensin homolog (PTEN) constitutes one of the important family members implicated in controlling various functional activities of tumor cells, including cell proliferation, apoptosis, angiogenesis, and metastasis. Notably, clinical studies have also documented that lung tumors having an impaired, mutated, or loss of PTEN are associated with low survival or high tumor recurrence rates. To that end, PTEN has been explored as a promising target for anti-cancer agents. Importantly, the ability of PTEN to crosstalk with several signaling pathways provides new approaches to devise effective treatment options for lung cancer treatment. The current review highlights the significance of PTEN and its implications in therapeutic approaches against NSCLC.
Collapse
Affiliation(s)
| | | | - Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (Z.S.); (R.A.)
| | - Ravi P. Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (Z.S.); (R.A.)
| |
Collapse
|
2
|
Lu L, Fang T, Pang T, Chen Z, Cheng L, Ma D, Xi Z. The potential application of branch-PCR assembled PTEN gene nanovector in lung cancer gene therapy. Chembiochem 2022; 23:e202200387. [PMID: 36073901 DOI: 10.1002/cbic.202200387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/08/2022] [Indexed: 11/12/2022]
Abstract
Gene therapy offers an alternative and promising avenue to lung cancer treatment. Here, we used dibenzocyclooctyne (DBCO)-branched primers to construct a kind of PTEN gene nanovector (NP-PTEN) through branch-PCR. NP-PTEN showed the nanoscale structure with the biocompatible size (84.7 ± 11.2 nm) and retained the improved serum stability compared to linear DNA. When transfected into NCI-H1299 cancer cells, NP-PTEN could overexpress PTEN protein to restore PTEN function through the deactivation of PI3K-AKT-mTOR signaling pathway to inhibit cell proliferation and induce cell apoptosis. The apoptosis rate of NCI-H1299 cancer cells could reach up to 54.5% ± 4.6% when the transfection concentration of NP-PTEN was 4.0 μg/mL. In mice bearing NCI-H1299 tumor xenograft intratumorally administrated with NP-PTEN, the average tumor volume and tumor weight was separately reduced by 61.7% and 63.9% compared with the PBS group on the 18 th day of administration. The anticancer efficacy of NP-PTEN in NCI-H1299 tumor xenograft suggested the promising therapeutic potential of this branch-PCR assembled PTEN gene nanovectors in lung cancer gene therapy and also provided more opportunities to introduce two or more tumor suppressor genes as the all-in-one gene nanovectors for multiple gene-based cancer gene therapy.
Collapse
Affiliation(s)
- Liqing Lu
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Tian Fang
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Tuo Pang
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Ziyi Chen
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Longhuai Cheng
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Dejun Ma
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Zhen Xi
- Nankai University, State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Bi, 94 weijin road, 300071, Tianjin, CHINA
| |
Collapse
|
3
|
Sonkar A, Kumar P, Gautam A, Maity B, Saha S. New Scope of Targeted Therapies in Lung Carcinoma. Mini Rev Med Chem 2021; 22:629-639. [PMID: 34353252 DOI: 10.2174/1389557521666210805104714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/30/2020] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
Lung cancer (LC) is the leading cause of cancer deaths worldwide. Recent research has also shown LC as a genomic disease, causing somatic mutations in patients. Tests related to mutational analysis and genome profiles have lately expanded significantly in the genetics/genomics field of LC. This review summarizes the current knowledge about different signalling pathways of LC based on the clinical impact of molecular targets. It describes the main molecular pathways and changes involved in the development, progression, and cellular breakdown of LC and the molecular changes. This review focuses on approved and targeted experimental therapies such as immunotherapy and clinical trials that examine the different targeted approaches to treating LC. We aimto clarify the differences in the extent of various genetic mutations in several areas for LC patients. Targeted molecular therapies for LC can be continued with advanced racial differences in genetic changes, which have a significant impact on the choice of drug treatment and our understanding of the profile of drug susceptibility/resistance. The most relevant genes described in this review are EGFR, KRAS, MET, BRAF, PIK3CA, STK11, ERBB3, PTEN, and RB1. Combined research efforts in this field are required to understand the genetic difference in LC outcomes in the future.
Collapse
Affiliation(s)
- Archana Sonkar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025. India
| | - Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025. India
| | - Anurag Gautam
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025. India
| | - Biswanath Maity
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh. India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025. India
| |
Collapse
|
4
|
Ji X, Lin L, Shen S, Dong X, Chen C, Li Y, Zhu Y, Huang H, Chen J, Chen X, Wei L, He J, Duan W, Su L, Jiang Y, Fan J, Guan J, You D, Shafer A, Bjaanaes MM, Karlsson A, Planck M, Staaf J, Helland Å, Esteller M, Wei Y, Zhang R, Chen F, Christiani DC. Epigenetic-smoking interaction reveals histologically heterogeneous effects of TRIM27 DNA methylation on overall survival among early-stage NSCLC patients. Mol Oncol 2020; 14:2759-2774. [PMID: 33448640 PMCID: PMC7607178 DOI: 10.1002/1878-0261.12785] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 01/09/2023] Open
Abstract
Tripartite motif containing 27 (TRIM27) is highly expressed in lung cancer, including non-small-cell lung cancer (NSCLC). Here, we profiled DNA methylation of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) tumours from 613 early-stage NSCLC patients and evaluated associations between CpG methylation of TRIM27 and overall survival. Significant CpG probes were confirmed in 617 samples from The Cancer Genome Atlas. The methylation of the CpG probe cg05293407TRIM27 was significantly associated with overall survival in patients with LUSC (HR = 1.65, 95% CI: 1.30-2.09, P = 4.52 × 10-5), but not in patients with LUAD (HR = 1.08, 95% CI: 0.87-1.33, P = 0.493). As incidence of LUSC is associated with higher smoking intensity compared to LUAD, we investigated whether smoking intensity impacted on the prognostic effect of cg05293407TRIM27 methylation in NSCLC. LUSC patients had a higher average pack-year of smoking (37.49LUAD vs 54.79LUSC, P = 1.03 × 10-19) and included a higher proportion of current smokers than LUAD patients (28.24%LUAD vs 34.09%LUSC, P = 0.037). cg05293407TRIM27 was significantly associated with overall survival only in NSCLC patients with medium-high pack-year of smoking (HR = 1.58, 95% CI: 1.26-1.96, P = 5.25 × 10-5). We conclude that cg05293407TRIM27 methylation is a potential predictor of LUSC prognosis, and smoking intensity may impact on its prognostic value across the various types of NSCLC.
Collapse
Affiliation(s)
- Xinyu Ji
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lijuan Lin
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sipeng Shen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Xuesi Dong
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Chao Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yi Li
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Ying Zhu
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hui Huang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiajin Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xin Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Liangmin Wei
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jieyu He
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weiwei Duan
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yue Jiang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Juanjuan Fan
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jinxing Guan
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongfang You
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrea Shafer
- Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Moksnes Bjaanaes
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anna Karlsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Maria Planck
- Division of Oncology and Pathology, Department of Clinical Sciences Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Johan Staaf
- Division of Oncology and Pathology, Department of Clinical Sciences Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain.,Centro de Investigacion Biomedica en Red Cancer, Madrid, Spain.,Institucio Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Yongyue Wei
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Ruyang Zhang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Gkountakos A, Sartori G, Falcone I, Piro G, Ciuffreda L, Carbone C, Tortora G, Scarpa A, Bria E, Milella M, Rosell R, Corbo V, Pilotto S. PTEN in Lung Cancer: Dealing with the Problem, Building on New Knowledge and Turning the Game Around. Cancers (Basel) 2019; 11:cancers11081141. [PMID: 31404976 PMCID: PMC6721522 DOI: 10.3390/cancers11081141] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the most common malignancy and cause of cancer deaths worldwide, owing to the dismal prognosis for most affected patients. Phosphatase and tensin homolog deleted in chromosome 10 (PTEN) acts as a powerful tumor suppressor gene and even partial reduction of its levels increases cancer susceptibility. While the most validated anti-oncogenic duty of PTEN is the negative regulation of the PI3K/mTOR/Akt oncogenic signaling pathway, further tumor suppressor functions, such as chromosomal integrity and DNA repair have been reported. PTEN protein loss is a frequent event in lung cancer, but genetic alterations are not equally detected. It has been demonstrated that its expression is regulated at multiple genetic and epigenetic levels and deeper delineation of these mechanisms might provide fertile ground for upgrading lung cancer therapeutics. Today, PTEN expression is usually determined by immunohistochemistry and low protein levels have been associated with decreased survival in lung cancer. Moreover, available data involve PTEN mutations and loss of activity with resistance to targeted treatments and immunotherapy. This review discusses the current knowledge about PTEN status in lung cancer, highlighting the prevalence of its alterations in the disease, the regulatory mechanisms and the implications of PTEN on available treatment options.
Collapse
Affiliation(s)
- Anastasios Gkountakos
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy
| | - Giulia Sartori
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, 37134 Verona, Italy
| | - Italia Falcone
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Geny Piro
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Ludovica Ciuffreda
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carmine Carbone
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Giampaolo Tortora
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy
- Center for Applied Research on Cancer (ARC-NET), University of Verona, 37134 Verona, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Michele Milella
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, 37134 Verona, Italy
| | - Rafael Rosell
- Germans Trias i Pujol, Health Sciences Institute and Hospital, Campus Can Ruti, 08916 Badalona, Spain
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy.
- Center for Applied Research on Cancer (ARC-NET), University of Verona, 37134 Verona, Italy.
| | - Sara Pilotto
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
6
|
Pang X, Zhou Z, Yu Z, Han L, Lin Z, Ao X, Liu C, He Y, Ponnusamy M, Li P, Wang J. Foxo3a-dependent miR-633 regulates chemotherapeutic sensitivity in gastric cancer by targeting Fas-associated death domain. RNA Biol 2019; 16:233-248. [PMID: 30628514 DOI: 10.1080/15476286.2019.1565665] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The development of chemotherapeutic drugs resistance such as doxorubicin (DOX) and cisplatin (DDP) is the major barrier in gastric cancer therapy. Emerging evidences reveal that microRNAs (miRNAs) contribute to chemosensitivity. In this study, we investigated the role of miR-633, an oncogenic miRNA, in gastric cancer chemoresistance. In gastric cancer tissue and cell lines, miR-633 expression was highly increased and correlated with down regulation of Fas-associated protein with death domain (FADD). Inhibition of miR-633 significantly increased FADD protein level and enhanced DOX/DDP induced apoptosis in vitro. MiR-633 antagomir administration remarkably decreased tumor growth in combination with DOX in vivo, suggesting that miR-633 targets FADD to block gastric cancer cell death. We found that the promoter region of miR-633 contained putative binding sites for forkhead box O 3 (Foxo3a), which can directly repress miR-633 transcription. In addition, we observed that DOX-induced nuclear accumulation of Foxo3a leaded to the suppression of miR-633 transcription. Together, our study revealed that miR-633/FADD axis played a significant role in the chemoresistance and Foxo3a regulated this pathway in gastric cancer. Thus, miR-633 antagomir resensitized gastric cancer cells to chemotherapy drug and had potentially therapeutic implication.
Collapse
Affiliation(s)
- Xin Pang
- a Center for Regenerative Medicine, Institute for Translational Medicine , Qingdao University , Qingdao , Shandong Province , China
| | - Zhixia Zhou
- a Center for Regenerative Medicine, Institute for Translational Medicine , Qingdao University , Qingdao , Shandong Province , China
| | - Zhuang Yu
- b Department of Oncology , Affiliated Hospital of Qingdao University , Qingdao , Shandong Province , China
| | - Lichun Han
- b Department of Oncology , Affiliated Hospital of Qingdao University , Qingdao , Shandong Province , China
| | - Zhijuan Lin
- a Center for Regenerative Medicine, Institute for Translational Medicine , Qingdao University , Qingdao , Shandong Province , China.,c Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine , Weifang Medical University , Weifang , Shandong Province , China
| | - Xiang Ao
- a Center for Regenerative Medicine, Institute for Translational Medicine , Qingdao University , Qingdao , Shandong Province , China
| | - Chang Liu
- d Department of Oncology , PLA Army General Hospital , Beijin , China
| | - Yuqi He
- e Department of Gastroenterology , PLA Army General Hospital , Beijin , China
| | - Murugavel Ponnusamy
- a Center for Regenerative Medicine, Institute for Translational Medicine , Qingdao University , Qingdao , Shandong Province , China
| | - Peifeng Li
- a Center for Regenerative Medicine, Institute for Translational Medicine , Qingdao University , Qingdao , Shandong Province , China
| | - Jianxun Wang
- a Center for Regenerative Medicine, Institute for Translational Medicine , Qingdao University , Qingdao , Shandong Province , China
| |
Collapse
|
7
|
Ma T, Wang Y, Jia L, Shu J, Yu H, Du H, Yang J, Liang Y, Chen M, Li Z. Increased expression of core-fucosylated glycans in human lung squamous cell carcinoma. RSC Adv 2019; 9:22064-22073. [PMID: 35518855 PMCID: PMC9066710 DOI: 10.1039/c9ra04341a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most frequent cancer and the leading cause of cancer around the world. As one of the major types of lung cancer, lung squamous cell carcinoma (LUSC) is closely associated with smoking and shows poor sensitivity to therapy and prognosis. Although alteration of glycopatterns are reliable indicators of cancer, little is known about the alterations of protein glycosylation related to LUSC. In this study, we compared the differential expression levels of glycopatterns in seven pairs of LUSC tissues and normal pericarcinomatous tissues (PCTs) using lectin microarrays. Fluorescence-based lectin histochemistry and lectin blotting were utilized to validate and assess the expression and distribution of certain glycans in LUSC tissues and PCTs. And we further analyzed their total N-linked glycans using MALDI-TOF/TOF-MS to provide more information about the aberrant glycopatterns. The results showed that the expression level of the core fucosylation recognized by Pisum sativum agglutinin (PSA) and Lens culinaris agglutinin (LCA) was significantly increased in LUSC tissues compared with PCTs. There were 10 and 15 fucosylated N-linked glycans that were detected in PCTs and LUSC tissues respectively, 10 fucosylated N-glycans were common, while five fucosylated N-glycans were unique to LUSC tissues. And the abundance of the fucosylated N-glycans was increased from 40.9% (PCTs) to 48.3% (LUSC). These finding is helpful to elucidate the molecular mechanisms underlying the lung diseases and develop new treatment strategies. The expression level of fucosylated and core fucosylated N-linked glycans increased in lung squamous cell carcinoma tissues.![]()
Collapse
|
8
|
Hlaing AM, Furusato B, Udo E, Kitamura Y, Souda M, Masutani M, Fukuoka J. Expression of phosphatase and tensin homolog and programmed cell death ligand 1 in adenosquamous carcinoma of the lung. Biochem Biophys Res Commun 2018; 503:2764-2769. [PMID: 30100056 DOI: 10.1016/j.bbrc.2018.08.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/04/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Lung adenosquamous carcinoma (ASC) is a rare variant of non-small cell lung cancer (NSCLC) with poor prognosis. Certain biological differences may exist between these tumors and other common histological types of NSCLC, including adenocarcinoma (ADC) and squamous cell carcinoma (SCC). The phosphoinositide 3-kinase (PI3K) pathway, which links oncogenes and multiple receptor classes to essential cellular functions, is activated by phosphatase and tensin homolog (PTEN) loss. The PTEN loss has been suggested to induce programmed cell death ligand 1 (PD-L1) expression in various cancer types. OBJECTIVE Here, we sought to determine the relationships between the expression of PTEN and PD-L1 in each component of ASC with ADC and SCC, and clinical parameters. MATERIAL AND METHODS Tissue microarrays of 148 cases of surgically resected lung ADC and 102 cases of SCC, as well as full sections from 28 ASC cases, were analyzed immunohistochemically for the expression of PTEN and PD-L1. RESULTS PD-L1 expression was similar between the adenocarcinoma component of ASC vs. lung ADC and between the squamous component of ASC vs. lung SCC. PTEN loss was higher in lung ADC than in the adenocarcinoma component of ASC and significantly higher in lung SCC than in the squamous component of ASC. PD-L1 expression was higher in the squamous component than in the glandular component of the 28 ASC cases, but PTEN loss was similar. Overall, PTEN loss was higher in lung SCC than in lung ADC and both components of ASC. In lung SCC and glandular portions of ASC, PD-L1 expression levels were significantly associated with those of PTEN. The loss of PTEN correlated with smoking status in patients with lung ADC. CONCLUSIONS Our results implied that both squamous and glandular components of ASC may share the same oncogenic driver pathway for carcinogenesis. However, the squamous cell components of ASC likely escape the immune surveillance better than the glandular components due to higher PD-L1 expression.
Collapse
Affiliation(s)
- Aung Myo Hlaing
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan
| | - Bungo Furusato
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan; Division of Cancer Genomics, Genomic Medical Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan.
| | - Emiko Udo
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan; Division of Cancer Genomics, Genomic Medical Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan
| | - Yuka Kitamura
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan
| | - Masakazu Souda
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan
| | - Mitsuko Masutani
- Department of Frontier Life Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Junya Fukuoka
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan
| |
Collapse
|
9
|
Xiong Y, Qu L, Li D, Wang Y, Li T. [Clinical Significance and Mechanism of PI3K p110β Overexpression
in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 20:808-816. [PMID: 29277178 PMCID: PMC5973384 DOI: 10.3779/j.issn.1009-3419.2017.12.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Phosphatidylinositide 3-kinases (PI3K) pathway is one of the most important pathway in cells, which plays an important role in proliferation, growth, differentiation and mobility of cells. The aberrant activation of PI3K pathway was exsited in 50%-70% cases of non-small cell lung cancer (NSCLC). As the key point in PI3K pathway, expression of PI3K plays a critical role in activity of the pathway, which is closely related with the initiation and development of NSCLC, furthermore with the response of tumor to target treatment. Our study is to analyze the clinical significance and mechanism of PI3K p110β overexpression in NSCLC. METHODS Expression of p110β and other proteins in PI3K pathway were detected by immunohistochemistry in 170 cases of NSCLC. Correlation between expression of p110β and clinicopathological characteristics of patients as well as expression of other proteins in PI3K pathway was analyzed. RESULTS In 170 NSCLC, overexpression of p110β was found in 41.8% of cases. Correlation between overexpression of p110β and Ki 67 index was significant (P=0.040). No significant difference of p110 expression were observed among different cohorts of gender, age, smoking status, classification, grade and stage (P>0.05). Correlation between expression of p110β and other proteins in PI3K pathway was various, positively correlated with PTEN loss (P<0.001) and negatively correlated with mutant EGFR (P=0.022), while not correlated with P-Akt (Ser473), HER2, ALK, ROS1 and wild type EGFR (P>0.05). CONCLUSIONS Overexpression of p110β is frequently detected in NSCLC. It is closely related with PTEN loss NSCLC, which shows that it plays an important role in maintaining and developing of tumors driven by PTEN loss. It initiates the proliferation of tumor cells in NSCLC without phosphorylating Akt. PIK3CB mutation is not the major cause of overexpression of p110β. Dysregulation of receptor tyrosine kinases (RTKs) doesn't show potential of increasing p110β level in cancer tissue, furthermore the expression of p110β in tumors with EGFR mutation is lower than in tumors without EGFR mutation.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| | - Linlin Qu
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| | - Dong Li
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| | - Ying Wang
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| | - Ting Li
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
10
|
Abstract
The identification of certain genomic alterations (EGFR, ALK, ROS1, BRAF) or immunological markers (PD-L1) in tissues or cells has led to targeted treatment for patients presenting with late stage or metastatic lung cancer. These biomarkers can be detected by immunohistochemistry (IHC) and/or by molecular biology (MB) techniques. These approaches are often complementary but depending on, the quantity and quality of the biological material, the urgency to get the results, the access to technological platforms, the financial resources and the expertise of the team, the choice of the approach can be questioned. The possibility of detecting simultaneously several molecular targets, and of analyzing the degree of tumor mutation burden and of the micro-satellite instability, as well as the recent requirement to quantify the expression of PD-L1 in tumor cells, has led to case by case development of algorithms and international recommendations, which depend on the quality and quantity of biological samples. This review will highlight the different predictive biomarkers detected by IHC for treatment of lung cancer as well as the present advantages and limitations of this approach. A number of perspectives will be considered.
Collapse
|
11
|
Tang F, He Z, Lei H, Chen Y, Lu Z, Zeng G, Wang H. Identification of differentially expressed genes and biological pathways in bladder cancer. Mol Med Rep 2018. [PMID: 29532898 PMCID: PMC5928619 DOI: 10.3892/mmr.2018.8711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The purpose of the present study was to identify key genes and investigate the related molecular mechanisms of bladder cancer (BC) progression. From the Gene Expression Omnibus database, the gene expression dataset GSE7476 was downloaded, which contained 43 BC samples and 12 normal bladder tissues. GSE7476 was analyzed to screen the differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed for the DEGs using the DAVID database, and a protein-protein interaction (PPI) network was then constructed using Cytoscape software. The results of the GO analysis showed that the upregulated DEGs were significantly enriched in cell division, nucleoplasm and protein binding, while the downregulated DEGs were significantly enriched in ‘extracellular matrix organization’, ‘proteinaceous extracellular matrix’ and ‘heparin binding’. The results of the KEGG pathway analysis showed that the upregulated DEGs were significantly enriched in the ‘cell cycle’, whereas the downregulated DEGs were significantly enriched in ‘complement and coagulation cascades’. JUN, cyclin-dependent kinase 1, FOS, PCNA, TOP2A, CCND1 and CDH1 were found to be hub genes in the PPI network. Sub-networks revealed that these gene were enriched in significant pathways, including the ‘cell cycle’ signaling pathway and ‘PI3K-Akt signaling pathway’. In summary, the present study identified DEGs and key target genes in the progression of BC, providing potential molecular targets and diagnostic biomarkers for the treatment of BC.
Collapse
Affiliation(s)
- Fucai Tang
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510230, P.R. China
| | - Zhaohui He
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510230, P.R. China
| | - Hanqi Lei
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510230, P.R. China
| | - Yuehan Chen
- Nanshan College of Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Zechao Lu
- The First Clinical College of Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Guohua Zeng
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510230, P.R. China
| | - Hangtao Wang
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510230, P.R. China
| |
Collapse
|
12
|
Benzaquen J, Marquette CH, Glaichenhaus N, Leroy S, Hofman P, Ilié M. [The biological rationale for immunotherapy in cancer]. Rev Mal Respir 2018; 35:206-222. [PMID: 29428191 DOI: 10.1016/j.rmr.2017.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Immunotherapy aims to promote the immune system's activity against malignant cells by stimulating the response to several tumor antigens. STATE OF THE ART Immunosurveillance may adjust the immunogenicity of tumors. To be effective, immunity must induce the specific activation of CD4+ and CD8+ T lymphocytes, as well as activation of innate immunity. Activator and inhibitory costimulatory molecules regulate T lymphocyte activation at immunity checkpoints such as PD-1/PD-L1 and CTLA-4. Adaptive immune resistance confers tumour resistance to immunosurveillance through these immune checkpoints. PERSPECTIVES Approaches involving the combination of several immunotherapies with each other or with chemotherapy and radiotherapy and antibodies against other molecules of costimulation are under development. The development of biomarkers, which can select a targeted population and predict therapeutic response, represents a major challenge. Tumour high-throughput sequencing could refine "immunoscore". Intratumoral T cell receptor seems to represent a promising biomarker. CONCLUSIONS Numerous challenges still remain in developing research approaches for the development of immunotherapies.
Collapse
Affiliation(s)
- J Benzaquen
- Department of Pulmonary Medicine and Oncology, CHU de Nice, FHU OncoAge, 06100 Nice, France
| | - C-H Marquette
- Department of Pulmonary Medicine and Oncology, CHU de Nice, FHU OncoAge, 06100 Nice, France.
| | - N Glaichenhaus
- Université Côte-d'Azur, CNRS, Inserm, institut de pharmacologie moleculaire et cellulaire, FHU-OncoAge, 06560 Valbonne, France
| | - S Leroy
- Department of Pulmonary Medicine and Oncology, CHU de Nice, FHU OncoAge, 06100 Nice, France
| | - P Hofman
- Laboratory of Clinical and Experimental Pathology and Hospital-related Biobank (BB-0033-00025), IRCAN, FHU OncoAge, 06100 Nice, France
| | - M Ilié
- Laboratory of Clinical and Experimental Pathology and Hospital-related Biobank (BB-0033-00025), IRCAN, FHU OncoAge, 06100 Nice, France
| |
Collapse
|
13
|
Alfieri R, Giovannetti E, Bonelli M, Cavazzoni A. New Treatment Opportunities in Phosphatase and Tensin Homolog (PTEN)-Deficient Tumors: Focus on PTEN/Focal Adhesion Kinase Pathway. Front Oncol 2017; 7:170. [PMID: 28848709 PMCID: PMC5552661 DOI: 10.3389/fonc.2017.00170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/26/2017] [Indexed: 01/04/2023] Open
Abstract
Deep genetic studies revealed that phosphatase and tensin homolog (PTEN) mutations or loss of expression are not early events in cancer development but characterize tumor progression and invasion. Loss of PTEN function causes a full activation of the prosurvival phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway, but the treatment with specific inhibitors of PI3K/AKT/mTOR did not produce the expected results. One of the alternative targets of PTEN is the focal adhesion kinase (FAK) kinase, mainly involved in the control of cancer cell spread. The connection between PTEN and FAK has been demonstrated in different tumor types, with reduced PTEN activity often correlated with increased expression and phosphorylation of FAK. FAK inhibition may thus represent a promising strategy, and some clinical trials are testing FAK inhibitors alone or combined with other agents in a number of solid tumors. However, only few preclinical and clinical data described the effects of the combination of PI3K/AKT/mTOR and FAK inhibitors. Increasing knowledge on the PTEN/FAK connection could confirm PTEN as a good prognostic marker for a combination strategy based on concomitant inhibition of PI3K/AKT and FAK signaling, in advanced metastatic malignancies with altered or reduced PTEN expression.
Collapse
Affiliation(s)
- Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands.,Cancer Pharmacology Laboratory, AIRC Start Up Unit, University of Pisa, Pisa, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
14
|
Enhanced efficacy of AKT and FAK kinase combined inhibition in squamous cell lung carcinomas with stable reduction in PTEN. Oncotarget 2017; 8:53068-53083. [PMID: 28881794 PMCID: PMC5581093 DOI: 10.18632/oncotarget.18087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/12/2017] [Indexed: 01/05/2023] Open
Abstract
Squamous cell lung carcinoma (SCC) accounts for 30% of patients with NSCLC and to date, no molecular targeted agents are approved for this type of tumor. However, recent studies have revealed several oncogenic mutations in SCC patients, including an alteration of the PI3K/AKT pathway, i.e. PI3K point mutations and amplification, AKT mutations and loss or reduced PTEN expression. Prompted by our observation of a correlation between PTEN loss and FAK phosphorylation in a cohort of patients with stage IV SCC, we evaluated the relevance of PTEN loss in cancer progression as well as the efficacy of a new combined treatment with the pan PI3K inhibitor buparlisip and the FAK inhibitor defactinib. An increase in AKT and FAK phosphorylation, associated with increased proliferation and invasiveness, paralleled by the acquisition of mesenchymal markers, and overexpression of the oncomir miR-21 were observed in SKMES-1-derived cell clones with a stable reduction of PTEN. Notably, the combined treatment induced a synergistic inhibition of cell proliferation, and a significant reduction in cell migration and invasion only in cells with reduced PTEN. The molecular mechanisms underlying these findings were unraveled using a specific RTK array that showed a reduction in phosphorylation of key kinases such as JNK, GSK-3 α/β, and AMPK-α2, due to the concomitant decrease in AKT and FAK activation. In conclusion, the combination of buparlisib and defactinib was effective against cells with reduced PTEN and warrants further studies as a novel therapeutic strategy for stage IV SCC patients with loss of PTEN expression.
Collapse
|
15
|
Song H, Li L, Zhong L, Yang R, Jiang K, Yang X, Liu B. NLS‑RARα modulates acute promyelocytic leukemia NB4 cell proliferation and differentiation via the PI3K/AKT pathway. Mol Med Rep 2016; 14:5495-5500. [PMID: 27840989 PMCID: PMC5355661 DOI: 10.3892/mmr.2016.5932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/18/2016] [Indexed: 01/10/2023] Open
Abstract
In patients with acute promyelocytic leukemia (APL), ~98% express the promyelocytic leukemia (PML)‑retinoic acid receptor α (RARα) fusion protein. Previous studies have shown that, in primary leukemia cells of patients with APL, the cleavage of PML‑RARα by neutrophil elastase is important for its ability to initiate APL. This cleavage separates the nuclear localization signal (NLS) from PML, leading to the formation of a novel protein, NLS‑RARα, although its underlying mechanism in APL remains to be fully elucidated. In the present study, the role of NLS‑RARα on the proliferation and differentiation of APL NB4 cells was investigated. Lentiviral vectors were constructed and transfected NLS‑RARα in NB4 cells, puromycin was used to select the stable transfected cell lines. Cell Counting Kit‑8 and flow cytometry analysis revealed that the efficient overexpression of NLS‑RARα significantly promoted NB4 cell proliferation and inhibited all‑trans retinoic acid‑induced cell differentiation. Furthermore, the NLS‑RARα protein promoted a significant increase in AKT and glycogen synthase kinase 3β (GSK‑3β) phosphorylation. The protein levels of phosphorylated (p) AKT and pGSK‑3β were decreased following pretreatment with the phosphatidylinositol 3‑kinase (PI3K) inhibitor, LY294002. These findings suggested that NLS‑RARα was an important molecule associated with the occurrence of APL via the PI3K‑AKT signaling pathway, and indicated that the NLS‑RARα protein may be a novel target for the treatment of APL.
Collapse
MESH Headings
- Cell Cycle/genetics
- Cell Differentiation/genetics
- Cell Line, Tumor
- Cell Proliferation/genetics
- Gene Expression
- Genetic Vectors/genetics
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Nuclear Localization Signals/genetics
- Oncogene Proteins, Fusion/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Retinoic Acid Receptor alpha/genetics
- Signal Transduction
- Transduction, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Hao Song
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
- Department of Laboratory Medicine, The Key Laboratory of Diagnostics Medicine Designated by The Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Liu Li
- Department of Laboratory Medicine, The Key Laboratory of Diagnostics Medicine Designated by The Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Liang Zhong
- Department of Laboratory Medicine, The Key Laboratory of Diagnostics Medicine Designated by The Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Rong Yang
- Department of Laboratory Medicine, The Key Laboratory of Diagnostics Medicine Designated by The Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Kailing Jiang
- Department of Laboratory Medicine, The Key Laboratory of Diagnostics Medicine Designated by The Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaoqun Yang
- Department of Laboratory Medicine, The Key Laboratory of Diagnostics Medicine Designated by The Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Beizhong Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
- Department of Laboratory Medicine, The Key Laboratory of Diagnostics Medicine Designated by The Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
16
|
Yang Z, Zhuan B, Yan Y, Jiang S, Wang T. Integrated analyses of copy number variations and gene differential expression in lung squamous-cell carcinoma. Biol Res 2015; 48:47. [PMID: 26297502 PMCID: PMC4546326 DOI: 10.1186/s40659-015-0038-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/12/2015] [Indexed: 12/30/2022] Open
Abstract
Background Although numerous efforts have been made, the pathogenesis underlying lung squamous-cell carcinoma (SCC) remains unclear. This study aimed to identify the CNV-driven genes by an integrated analysis of both the gene differential expression and copy number variation (CNV). Results A higher burden of the CNVs was found in 10–50 kb length. The 16 CNV-driven genes mainly located in chr 1 and chr 3 were enriched in immune response [e.g. complement factor H (CFH) and Fc fragment of IgG, low affinity IIIa, receptor (FCGR3A)], starch and sucrose metabolism [e.g. amylase alpha 2A (AMY2A)]. Furthermore, 38 TFs were screened for the 9 CNV-driven genes and then the regulatory network was constructed, in which the GATA-binding factor 1, 2, and 3 (GATA1, GATA2, GATA3) jointly regulated the expression of TP63. Conclusions The above CNV-driven genes might be potential contributors to the development of lung SCC.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Department of Respiratory and Critical Care Medicine, Ningxia People's Hospital, Yinchuan, 750011, China.
| | - Bing Zhuan
- Department of Respiratory and Critical Care Medicine, Ningxia People's Hospital, Yinchuan, 750011, China.
| | - Ying Yan
- Department of Respiratory and Critical Care Medicine, Ningxia People's Hospital, Yinchuan, 750011, China.
| | - Simin Jiang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
17
|
Dorr C, Janik C, Weg M, Been RA, Bader J, Kang R, Ng B, Foran L, Landman SR, O'Sullivan MG, Steinbach M, Sarver AL, Silverstein KAT, Largaespada DA, Starr TK. Transposon Mutagenesis Screen Identifies Potential Lung Cancer Drivers and CUL3 as a Tumor Suppressor. Mol Cancer Res 2015; 13:1238-47. [PMID: 25995385 PMCID: PMC4543426 DOI: 10.1158/1541-7786.mcr-14-0674-t] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/30/2015] [Indexed: 02/06/2023]
Abstract
UNLABELLED Non-small cell lung cancers (NSCLC) harbor thousands of passenger events that hide genetic drivers. Even highly recurrent events in NSCLC, such as mutations in PTEN, EGFR, KRAS, and ALK, are detected, at most, in only 30% of patients. Thus, many unidentified low-penetrant events are causing a significant portion of lung cancers. To detect low-penetrance drivers of NSCLC, a forward genetic screen was performed in mice using the Sleeping Beauty (SB) DNA transposon as a random mutagen to generate lung tumors in a Pten-deficient background. SB mutations coupled with Pten deficiency were sufficient to produce lung tumors in 29% of mice. Pten deficiency alone, without SB mutations, resulted in lung tumors in 11% of mice, whereas the rate in control mice was approximately 3%. In addition, thyroid cancer and other carcinomas, as well as the presence of bronchiolar and alveolar epithelialization, in mice deficient for Pten were also identified. Analysis of common transposon insertion sites identified 76 candidate cancer driver genes. These genes are frequently dysregulated in human lung cancers and implicate several signaling pathways. Cullin3 (Cul3), a member of a ubiquitin ligase complex that plays a role in the oxidative stress response pathway, was identified in the screen and evidence demonstrates that Cul3 functions as a tumor suppressor. IMPLICATIONS This study identifies many novel candidate genetic drivers of lung cancer and demonstrates that CUL3 acts as a tumor suppressor by regulating oxidative stress.
Collapse
Affiliation(s)
- Casey Dorr
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota. Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota. Minneapolis Medical Research Foundation, Minneapolis, Minnesota
| | - Callie Janik
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Madison Weg
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Raha A Been
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota. Department of Comparative and Molecular Biosciences, University of Minnesota, St. Paul, Minnesota
| | - Justin Bader
- Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ryan Kang
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Brandon Ng
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Lindsey Foran
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Sean R Landman
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota
| | - M Gerard O'Sullivan
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota. Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Michael Steinbach
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Aaron L Sarver
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | | | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota. Department of Genetic, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Timothy K Starr
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota. Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota. Department of Genetic, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
18
|
Ritprajak P, Azuma M. Intrinsic and extrinsic control of expression of the immunoregulatory molecule PD-L1 in epithelial cells and squamous cell carcinoma. Oral Oncol 2014; 51:221-8. [PMID: 25500094 DOI: 10.1016/j.oraloncology.2014.11.014] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 11/13/2014] [Accepted: 11/20/2014] [Indexed: 01/01/2023]
Abstract
Recent clinical results for PD-1 blockade therapy have demonstrated durable tumor control with minimal immune-related adverse effects. PD-L1 is induced in non-lymphoid tissue cells and tumor cells, in addition to tissue-recruiting immune cells, under inflammatory conditions triggered by several cytokines, especially IFN-γ, and exogenous stimuli delivered by pathogen-associated molecular patterns. Receptor-mediated signaling molecules that affect the cell cycle, proliferation, apoptosis, and survival (including NF-κB, MAPK, PI3K, mTOR, and JAK/STAT) are involved in PD-L1 induction. PD-L1 expression in tumor cells is also triggered by the signals described above, but in some instances, intrinsic cell alteration associated with carcinogenesis contributes to PD-L1 induction. The tumor suppressor genes PTEN and Lkb1 and epithelial-mesenchymal transition-related molecules are also involved in the regulation of PD-L1 expression. Notably, squamous cell carcinoma of the head and neck (SCCHN) often exhibits both host immunosuppression and cytogenetic alternations of tumor cells. Precise understanding of how PD-L1 expression is controlled will allow the development of effective approaches to PD-1 blockade therapy for patients with SCCHN.
Collapse
Affiliation(s)
- Patcharee Ritprajak
- Department of Microbiology and Immunology and DRU of Oral Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Miyuki Azuma
- Department of Molecular Immunology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
19
|
Hancox U, Cosulich S, Hanson L, Trigwell C, Lenaghan C, Ellston R, Dry H, Crafter C, Barlaam B, Fitzek M, Smith PD, Ogilvie D, D'Cruz C, Castriotta L, Wedge SR, Ward L, Powell S, Lawson M, Davies BR, Harrington EA, Foster E, Cumberbatch M, Green S, Barry ST. Inhibition of PI3Kβ signaling with AZD8186 inhibits growth of PTEN-deficient breast and prostate tumors alone and in combination with docetaxel. Mol Cancer Ther 2014; 14:48-58. [PMID: 25398829 DOI: 10.1158/1535-7163.mct-14-0406] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Loss of PTEN protein results in upregulation of the PI3K/AKT pathway, which appears dependent on the PI3Kβ isoform. Inhibitors of PI3Kβ have potential to reduce growth of tumors in which loss of PTEN drives tumor progression. We have developed a small-molecule inhibitor of PI3Kβ and PI3Kδ (AZD8186) and assessed its antitumor activity across a panel of cell lines. We have then explored the antitumor effects as single agent and in combination with docetaxel in triple-negative breast (TNBC) and prostate cancer models. In vitro, AZD8186 inhibited growth of a range of cell lines. Sensitivity was associated with inhibition of the AKT pathway. Cells sensitive to AZD8186 (GI50 < 1 μmol/L) are enriched for, but not exclusively associated with, PTEN deficiency. In vivo, AZD8186 inhibits PI3K pathway biomarkers in prostate and TNBC tumors. Scheduling treatment with AZD8186 shows antitumor activity required only intermittent exposure, and that increased tumor control is achieved when AZD8186 is used in combination with docetaxel. AZD8186 is a potent inhibitor of PI3Kβ with activity against PI3Kδ signaling, and has potential to reduce growth of tumors dependent on dysregulated PTEN for growth. Moreover, AZD8186 can be combined with docetaxel, a chemotherapy commonly used to treat advanced TBNC and prostate tumors. The ability to schedule AZD8186 and maintain efficacy offers opportunity to combine AZD8186 more effectively with other drugs.
Collapse
Affiliation(s)
- Urs Hancox
- Oncology Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Sabina Cosulich
- Oncology Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Lyndsey Hanson
- Oncology Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Cath Trigwell
- Oncology Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Carol Lenaghan
- Oncology Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Rebecca Ellston
- Oncology Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Hannah Dry
- Oncology iMED Gatehouse Park, Waltham, Massachusetts
| | - Claire Crafter
- Oncology Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Bernard Barlaam
- Oncology Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Martina Fitzek
- Discovery Sciences AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Paul D Smith
- Oncology Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Donald Ogilvie
- Oncology Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Celina D'Cruz
- Oncology iMED Gatehouse Park, Waltham, Massachusetts
| | | | - Stephen R Wedge
- Oncology Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Lara Ward
- Oncology Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Steve Powell
- Oncology Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Mandy Lawson
- Oncology Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Barry R Davies
- Oncology Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Elizabeth A Harrington
- Oncology Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Emily Foster
- Oncology Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Marie Cumberbatch
- Oncology Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Stephen Green
- Oncology Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Simon T Barry
- Oncology Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom.
| |
Collapse
|
20
|
Fumarola C, Bonelli MA, Petronini PG, Alfieri RR. Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer. Biochem Pharmacol 2014; 90:197-207. [DOI: 10.1016/j.bcp.2014.05.011] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 01/08/2023]
|
21
|
Shtivelman E, Hensing T, Simon GR, Dennis PA, Otterson GA, Bueno R, Salgia R. Molecular pathways and therapeutic targets in lung cancer. Oncotarget 2014; 5:1392-433. [PMID: 24722523 PMCID: PMC4039220 DOI: 10.18632/oncotarget.1891] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is still the leading cause of cancer death worldwide. Both histologically and molecularly lung cancer is heterogeneous. This review summarizes the current knowledge of the pathways involved in the various types of lung cancer with an emphasis on the clinical implications of the increasing number of actionable molecular targets. It describes the major pathways and molecular alterations implicated in the development and progression of non-small cell lung cancer (adenocarcinoma and squamous cancer), and of small cell carcinoma, emphasizing the molecular alterations comprising the specific blueprints in each group. The approved and investigational targeted therapies as well as the immune therapies, and clinical trials exploring the variety of targeted approaches to treatment of lung cancer are the main focus of this review.
Collapse
|