1
|
Granja ADN, Lima ABR, Martins PVB, Salgado BJL, da Costa RMG, Brito HO, Salgado N. HPV and coronary diseases in menopausal women: an integrative review. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2024; 46:e-rbgo57. [PMID: 39176203 PMCID: PMC11341186 DOI: 10.61622/rbgo/2024rbgo57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/21/2024] [Indexed: 08/24/2024] Open
Abstract
High-risk human papillomavirus (HPV) infection is associated with cervical cancer while low-risk HPV strains mostly cause benign lesions. Multiple studies have also associated HPV with coronary artery (CAD) disease in women. Furthermore, the climacteric period in women, triggers chronic inflammation and has major implications for CAD and associated lipid disorders. The association of HPV with coronary artery disease in climacteric women has few studies, and the objective of this review is to gather and analyse scientific data on the subject. This is an integrative review performed on PubMed and Google Scholar using the keywords "HPV", "coronary heart disease" and "climacteric", among these keywords the boolean operator AND and the publication date filter. (2018 onwards). Five articles were found, whose main results show presence of high-risk vaginal HPV in climacteric women. Climacterium and HPV were associated with a three-fold increased risk of CAD, as well as with factors related to menopause that promote atheroma formation, lipid disorders and chronic inflammation. Thus, these results support the association between HPV infection and CAD in climacteric women, possibly via chronic inflammation, hormonal factors related to menopause and dyslipidemia.
Collapse
Affiliation(s)
- Andrea de Neiva Granja
- Universidade Federal do MaranhãoSão LuísMABrazilUniversidade Federal do Maranhão, São Luís, MA, Brazil.
| | - Andressa Bianca Reis Lima
- Universidade Federal do MaranhãoSão LuísMABrazilUniversidade Federal do Maranhão, São Luís, MA, Brazil.
| | | | | | - Rui Miguel Gil da Costa
- Universidade Federal do MaranhãoSão LuísMABrazilUniversidade Federal do Maranhão, São Luís, MA, Brazil.
| | - Haissa Oliveira Brito
- Universidade Federal do MaranhãoSão LuísMABrazilUniversidade Federal do Maranhão, São Luís, MA, Brazil.
| | - Natalino Salgado
- Universidade Federal do MaranhãoSão LuísMABrazilUniversidade Federal do Maranhão, São Luís, MA, Brazil.
| |
Collapse
|
2
|
Zupancic M, Kostopoulou ON, Holzhauser S, Lukoseviciute M, Jylhä C, Marklund L, Näsman A, Sivars L, Dalianis T. Human papillomavirus (HPV) load is higher in HPVDNA/p16 positive than in HPVDNA positive/p16 negative oropharyngeal squamous cell carcinoma but does not differ significantly between various subsites or correlate to survival. Oral Oncol 2024; 151:106749. [PMID: 38461771 DOI: 10.1016/j.oraloncology.2024.106749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Patients with human papillomavirus DNA positive (HPVDNA+) and p16ink4a overexpressing (p16+) oropharyngeal squamous cell carcinoma (OPSCC), especially those with cancer in the tonsillar and base of tongue subsites as compared to other OPSCC subsites have a better outcome than those with only HPVDNA+ or only p16+ cancer. Likewise having a high viral load has been suggested to be a positive prognostic factor. We therefore hypothesized, that HPV viral load could vary depending on OPSCC subsite, as well as with regard to whether the cancer was HPVDNA+ and p16+, or only HPVDNA+, or only p16+ and that this affected outcome. MATERIAL AND METHODS To address these issues HPV viral load was determined by HPV digital droplet (dd) PCR in tumor biopsies with previously known HPVDNA/p16 status from 270 OPSCC patients diagnosed 2000-2016 in Stockholm, Sweden. More specifically, of these patients 235 had HPVDNA+/p16+, 10 had HPVDNA+/p16-, 13 had HPVDNA-/p16+ and 12 had HPVDNA-/p16- cancer. RESULTS We found that HPVDNA+/p16+ OPSCC had a significantly higher viral load than HPVDNA+/p16- OPSCC. Moreover, there was a tendency for a higher viral load in the tonsillar and base of tongue OPSCC subsites compared to the other subsites and for a low viral load to correlate to a better clinical outcome but none of these tendencies reached statistical significance. CONCLUSION To conclude, the mean viral load in HPVDNA+/p16+ OPSCC was higher than in HPVDNA+/p16- OPSCC, but there was no statistically significant difference in viral load depending on OPSCC subsite or on clinical outcome.
Collapse
Affiliation(s)
- Mark Zupancic
- Dept. of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Medical Unit Head, Neck, Lung, and Skin Cancer, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | | | - Stefan Holzhauser
- Dept. of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Cecilia Jylhä
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Dept of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Linda Marklund
- Medical Unit Head, Neck, Lung, and Skin Cancer, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Sciences, Intervention and Technology, Division of ENT Diseases, Karolinska Institutet, Sweden; Department of Surgical Sciences, Section of Otolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Anders Näsman
- Dept. of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Dept of Clinical Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Sivars
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Tina Dalianis
- Dept. of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Medical Unit Head, Neck, Lung, and Skin Cancer, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
3
|
Atique M, Muniz I, Farshadi F, Hier M, Mlynarek A, Macarella M, Maschietto M, Nicolau B, Alaoui-Jamali MA, da Silva SD. Genetic Mutations Associated with Inflammatory Response Caused by HPV Integration in Oropharyngeal Squamous Cell Carcinoma. Biomedicines 2023; 12:24. [PMID: 38275384 PMCID: PMC10813733 DOI: 10.3390/biomedicines12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
(1) Background: Head and neck cancer (HNC) ranks as the sixth most prevalent cancer in the world. In addition to the traditional risk factors such as alcohol and tobacco consumption, the implication of the human papillomavirus (HPV) is becoming increasingly significant, particularly in oropharyngeal cancer (OPC). (2) Methods: This study is based on a review analysis of different articles and repositories investigating the mutation profile of HPV-related OPC and its impact on patient outcomes. (3) Results: By compiling data from 38 datasets involving 8311 patients from 12 countries, we identified 330 genes that were further analyzed. These genes were enriched for regulation of the inflammatory response (RB1, JAK2, FANCA, CYLD, SYK, ABCC1, SYK, BCL6, CEBPA, SRC, BAP1, FOXP1, FGR, BCR, LRRK2, RICTOR, IGF1, and ATM), among other biological processes. Hierarchical cluster analysis showed the most relevant biological processes were linked with the regulation of mast cell cytokine production, neutrophil activation and degranulation, and leukocyte activation (FDR < 0.001; p-value < 0.05), suggesting that neutrophils may be involved in the development and progression of HPV-related OPC. (4) Conclusions: The neutrophil infiltration and HPV status emerge as a potential prognostic factor for OPC. HPV-infected HNC cells could potentially lead to a decrease in neutrophil infiltration. By gaining a better molecular understanding of HPV-mediated neutrophil immunosuppression activity, it is possible to identify a meaningful target to boost antitumor immune response in HNC and hence to improve the survival of patients with HNC.
Collapse
Affiliation(s)
- Mai Atique
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
| | - Isis Muniz
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
- Graduate Program in Dentistry, Health Sciences Center, Federal University of Paraiba, Campus I, João Pessoa 58051-900, PB, Brazil;
| | - Fatemeh Farshadi
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
| | - Michael Hier
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
| | - Alex Mlynarek
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
| | - Marco Macarella
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
| | - Mariana Maschietto
- Department of Structural and Functional Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13084-225, SP, Brazil;
- Boldrini Children’s Center, Campinas 13084-225, SP, Brazil
| | - Belinda Nicolau
- Graduate Program in Dentistry, Health Sciences Center, Federal University of Paraiba, Campus I, João Pessoa 58051-900, PB, Brazil;
| | - Moulay A. Alaoui-Jamali
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
| | - Sabrina Daniela da Silva
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
| |
Collapse
|
4
|
Wang M, Liu J, Liao X, Yi Y, Xue Y, Yang L, Cheng H, Liu P. The SGK3-Catalase antioxidant signaling axis drives cervical cancer growth and therapy resistance. Redox Biol 2023; 67:102931. [PMID: 37866161 PMCID: PMC10623367 DOI: 10.1016/j.redox.2023.102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
Cancer cells frequently exhibit aberrant redox homeostasis and adaptation to oxidative stress. Hence abrogation of redox adaptation in cancer cells can be exploited for therapeutic benefit. Here we report SGK3 functions as an anti-oxidative factor to promote cell growth and drug resistance in cervical cancers harboring PIK3CA helical domain mutations. Mechanistically, SGK3 is activated upon oxidative stress and exerts anti-ROS activity by stabilizing and activating the antioxidant enzyme catalase. SGK3 interacts with and phosphorylates catalase, promoting its tetrameric state and activity. Meanwhile, SGK3 phosphorylates GSK3β and protects catalase from GSK3β-β-TrCP mediated ubiquitination and proteasomal degradation. Furthermore, SGK3 inhibition not only potentiates CDK4/6 inhibitor Palbociclib-mediated cytotoxicity, but also overcomes cisplatin resistance through ROS-mediated mechanisms. These data uncover the role of SGK3 in maintaining redox homeostasis and suggest that the SGK3-catalase antioxidant signaling axis may be therapeutically targeted to improve treatment efficacy for cervical cancers carrying PIK3CA helical domain mutations.
Collapse
Affiliation(s)
- Min Wang
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Dalian, China
| | - Jiannan Liu
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Dalian, China
| | - Xingming Liao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yasong Yi
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Dalian, China
| | - Yijue Xue
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Ling Yang
- School of Pharmacy, Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China.
| | - Hailing Cheng
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Dalian, China.
| | - Pixu Liu
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Dalian, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Assessment of the Mutation Profile of Tonsillar Squamous Cell Carcinomas Using Targeted Next-Generation Sequencing. Biomedicines 2023; 11:biomedicines11030851. [PMID: 36979829 PMCID: PMC10045642 DOI: 10.3390/biomedicines11030851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
Data regarding driver mutation profiles in tonsillar squamous cell carcinomas (TSCCs) remain scarce, limiting the understanding of its pathogenesis and unexpected behavior in the updated staging system. We investigated the incidence of clinically relevant mutations and their contribution in the prognosis of the condition, and their association with human papillomavirus (HPV) infection and adjuvant therapy. We subjected 43 surgically resected TSCC samples to targeted next-generation sequencing, determined their HPV status using polymerase chain reaction, and performed The Cancer Genomic Atlas and Gene Set Enrichment analyses. Thirty-five TSCC samples (81.4%) showed at least one oncogenic/likely oncogenic mutation among twenty-nine cancer-related genes. The top five mutated genes were TP53 (46.5%), PIK3CA (25.6%), PTEN (18.6%), EGFR (16.3%), and SMAD4 (14.0%). The EGFR pathway was the most frequently affected (51.2%), followed by the p53 (48.8%), PI3K (39.5%), and RTK (34.9%) pathways. The gene set enrichment analysis confirmed that the genes involved in signal transduction, such as growth factor receptors and second messengers, EGFR tyrosine kinase inhibitors, and PI3K signaling pathways, were mostly related with TSCCs. TP53 mutation was an independent prognostic factor predicting worse overall survival in the adjuvant therapy group. RTK mutations were related to survival in all patients and in the HPV-positive group, but multivariate analyses showed no significance. In conclusion, oncogenic/likely oncogenic mutations were relatively high in TSCCs, and TP53 and RTK mutations may be candidate predictors for poor prognosis in the adjuvant therapy and HPV-positive groups, respectively, under the updated staging system.
Collapse
|
6
|
DNA Damage Response Mechanisms in Head and Neck Cancer: Significant Implications for Therapy and Survival. Int J Mol Sci 2023; 24:ijms24032760. [PMID: 36769087 PMCID: PMC9917521 DOI: 10.3390/ijms24032760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Head and neck cancer (HNC) is a term collectively used to describe a heterogeneous group of tumors that arise in the oral cavity, larynx, nasopharynx, oropharynx, and hypopharynx, and represents the sixth most common type of malignancy worldwide. Despite advances in multimodality treatment, the disease has a recurrence rate of around 50%, and the prognosis of metastatic patients remains poor. HNCs are characterized by a high degree of genomic instability, which involves a vicious circle of accumulating DNA damage, defective DNA damage repair (DDR), and replication stress. Nonetheless, the damage that is induced on tumor cells by chemo and radiotherapy relies on defective DDR processes for a successful response to treatment, and may play an important role in the development of novel and more effective therapies. This review summarizes the current knowledge on the genes and proteins that appear to be deregulated in DDR pathways, their implication in HNC pathogenesis, and the rationale behind targeting these genes and pathways for the development of new therapies. We give particular emphasis on the therapeutic targets that have shown promising results at the pre-clinical stage and on those that have so far been associated with a therapeutic advantage in the clinical setting.
Collapse
|
7
|
Kang JJ, Ko A, Kil SH, Mallen-St Clair J, Shin DS, Wang MB, Srivatsan ES. EGFR pathway targeting drugs in head and neck cancer in the era of immunotherapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188827. [PMID: 36309124 DOI: 10.1016/j.bbcan.2022.188827] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 11/12/2022]
Abstract
Receptor tyrosine kinases (RTKs) are cell surface receptors that bind growth factor ligands and initiate cellular signaling. Of the 20 classes of RTKs, 7 classes, I-V, VIII, and X, are linked to head and neck cancers (HNCs). We focus on the first class of RTK, epidermal growth factor receptor (EGFR), as it is the most thoroughly studied class. EGFR overexpression is observed in 20% of tumors, and expression of EGFR variant III is seen in 15% of aggressive chemoradiotherapy resistant HNCs. Currently, the EGFR monoclonal antibody (mAb) cetuximab is the only FDA approved RTK-targeting drug for the treatment of HNCs. Clinical trials have also included EGFR mAbs, with tyrosine kinase inhibitors, and small molecule inhibitors targeting the EGFR, MAPK, and mTOR pathways. Additionally, Immunotherapy has been found to be effective in 15 to 20% of patients with recurrent or metastatic HNC as a monotherapy. Thus, attempts are underway for the combinatorial treatment of immunotherapy and EGFR mAbs to determine if the recruitment of immune cells in the tumor microenvironment can overcome EGFR resistance.
Collapse
Affiliation(s)
- James J Kang
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Albert Ko
- Department of Surgery, VA Greater Los Angeles Healthcare System/UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Sang Hoon Kil
- Department of Surgery, VA Greater Los Angeles Healthcare System/UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jon Mallen-St Clair
- Department of Otolaryngology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel Sanghoon Shin
- Department of Medicine, VA Greater Los Angeles Healthcare System/UCLA David Geffen School of Medicine, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Marilene B Wang
- Department of Surgery, VA Greater Los Angeles Healthcare System/UCLA David Geffen School of Medicine, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA; Department of Head and Neck Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Eri S Srivatsan
- Department of Surgery, VA Greater Los Angeles Healthcare System/UCLA David Geffen School of Medicine, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Bouyahya A, El Allam A, Aboulaghras S, Bakrim S, El Menyiy N, Alshahrani MM, Al Awadh AA, Benali T, Lee LH, El Omari N, Goh KW, Ming LC, Mubarak MS. Targeting mTOR as a Cancer Therapy: Recent Advances in Natural Bioactive Compounds and Immunotherapy. Cancers (Basel) 2022; 14:5520. [PMID: 36428613 PMCID: PMC9688668 DOI: 10.3390/cancers14225520] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine-protein kinase, which regulates many biological processes related to metabolism, cancer, immune function, and aging. It is an essential protein kinase that belongs to the phosphoinositide-3-kinase (PI3K) family and has two known signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Even though mTOR signaling plays a critical role in promoting mitochondria-related protein synthesis, suppressing the catabolic process of autophagy, contributing to lipid metabolism, engaging in ribosome formation, and acting as a critical regulator of mRNA translation, it remains one of the significant signaling systems involved in the tumor process, particularly in apoptosis, cell cycle, and cancer cell proliferation. Therefore, the mTOR signaling system could be suggested as a cancer biomarker, and its targeting is important in anti-tumor therapy research. Indeed, its dysregulation is involved in different types of cancers such as colon, neck, cervical, head, lung, breast, reproductive, and bone cancers, as well as nasopharyngeal carcinoma. Moreover, recent investigations showed that targeting mTOR could be considered as cancer therapy. Accordingly, this review presents an overview of recent developments associated with the mTOR signaling pathway and its molecular involvement in various human cancer types. It also summarizes the research progress of different mTOR inhibitors, including natural and synthetised compounds and their main mechanisms, as well as the rational combinations with immunotherapies.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Aicha El Allam
- Department of Immunology, Yale University School of Medicine, 333 Cedars Street, TAC S610, New Haven, CT 06519, USA
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | | |
Collapse
|
9
|
Schrank TP, Landess L, Stepp WH, Rehmani H, Weir WH, Lenze N, Lal A, Wu D, Kothari A, Hackman TG, Sheth S, Patel S, Jefferys SR, Issaeva N, Yarbrough WG. Comprehensive Viral Genotyping Reveals Prognostic Viral Phylogenetic Groups in HPV16-Associated Squamous Cell Carcinoma of the Oropharynx. Mol Cancer Res 2022; 20:1489-1501. [PMID: 35731223 PMCID: PMC11249119 DOI: 10.1158/1541-7786.mcr-21-0443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/05/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
Human papillomavirus-positive (HPV+) squamous cell carcinoma of the oropharynx (OPSCC) is the most prevalent HPV-associated malignancy in the United States and is primarily caused by HPV subtype 16 (HPV16). Favorable treatment outcomes have led to increasing interest in treatment deescalation to reduce treatment-related morbidity. Prognostic biomarkers are needed to identify appropriately low-risk patients for reduced treatment intensity. Targeted DNA sequencing including all HPV16 open reading frames was performed on tumors from 104 patients with HPV16+ OPSCC treated at a single center. Genotypes closely related to the HPV16-A1 reference were associated with increased numbers of somatic copy-number variants in the human genome and poor recurrence-free survival (RFS). Genotypes divergent from HPV16-A1 were associated with favorable RFS. These findings were independent of tobacco smoke exposure. Total RNA sequencing was performed on a second independent cohort of 89 HPV16+ OPSCC cases. HPV16 genotypes divergent from HPV16-A1 were again validated in this independent cohort, to be prognostic of improved RFS in patients with moderate (less than 30 pack-years) or low (no more than 10 pack-years) of tobacco smoke exposure. In summary, we show in two independent cohorts that viral sequence divergence from the HPV16-A1 reference is correlated with improved RFS in patients with moderate or low tobacco smoke exposure. IMPLICATIONS HPV16 genotype is a potential biomarker that could be easily adopted to guide therapeutic decision-making related to deescalation therapy.
Collapse
Affiliation(s)
- Travis P Schrank
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
- Linberger Comprehensive Cancer Center, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Lee Landess
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Wesley H Stepp
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Hina Rehmani
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - William H Weir
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Nicholas Lenze
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Asim Lal
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Di Wu
- Linberger Comprehensive Cancer Center, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Aditi Kothari
- Linberger Comprehensive Cancer Center, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Trevor G Hackman
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Siddharth Sheth
- Department of Medicne, Division of Oncology, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Shetal Patel
- Department of Medicne, Division of Oncology, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Stuart R Jefferys
- Linberger Comprehensive Cancer Center, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Natalia Issaeva
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
- Linberger Comprehensive Cancer Center, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
- Department of Pathology and Lab Medicine, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Wendell G Yarbrough
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
- Linberger Comprehensive Cancer Center, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
- Department of Pathology and Lab Medicine, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
10
|
PIK3CA Gene Mutations in HNSCC: Systematic Review and Correlations with HPV Status and Patient Survival. Cancers (Basel) 2022; 14:cancers14051286. [PMID: 35267596 PMCID: PMC8909011 DOI: 10.3390/cancers14051286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/24/2022] Open
Abstract
PIK3CA mutations are believed to contribute to the pathogenesis of human papillomavirus (HPV)-associated head and neck squamous cell carcinomas (HNSCC). This study aims to establish the frequency of PIK3CA mutations in a Portuguese HNSCC cohort and to determine their association with the HPV status and patient survival. A meta-analysis of scientific literature also revealed widely different mutation rates in cohorts from different world regions and a trend towards improved prognosis among patients with PIK3CA mutations. DNA samples were available from 95 patients diagnosed with HNSCC at the Portuguese Institute of Oncology in Lisbon between 2010 and 2019. HPV status was established based on viral DNA detected using real-time PCR. The evaluation of PIK3CA gene mutations was performed by real-time PCR for four mutations (H1047L; E542K, E545K, and E545D). Thirty-seven cases were found to harbour PIK3CA mutations (39%), with the E545D mutation (73%) more frequently detected. There were no significant associations between the mutational status and HPV status (74% WT and 68% MUT were HPV (+); p = 0.489) or overall survival (OS) (3-year OS: WT 54% and MUT 65%; p = 0.090). HPV status was the only factor significantly associated with both OS and disease-free survival (DFS), with HPV (+) patients having consistently better outcomes (3-year OS: HPV (+) 65% and HPV (-) 36%; p = 0.007; DFS HPV (+) 83% and HPV (-) 43%; p = 0.001). There was a statistically significant interaction effect between HPV status and PIK3CA mutation regarding DFS (Interaction test: p = 0.026). In HPV (+) patients, PIK3CA wild-type is associated with a significant 4.64 times increase in the hazard of recurrence or death (HR = 4.64; 95% CI 1.02-20.99; p = 0.047). Overall, PIK3CA gene mutations are present in a large number of patients and may help define patient subsets who can benefit from therapies targeting the PI3K pathway. The systematic assessment of PIK3CA gene mutations in HNSCC patients will require further methodological standardisation.
Collapse
|
11
|
Signore M, Manganelli V. Reverse Phase Protein Arrays in cancer stem cells. Methods Cell Biol 2022; 171:33-61. [DOI: 10.1016/bs.mcb.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Ährlund-Richter A, Holzhauser S, Dalianis T, Näsman A, Mints M. Whole-Exome Sequencing of HPV Positive Tonsillar and Base of Tongue Squamous Cell Carcinomas Reveals a Global Mutational Pattern along with Relapse-Specific Somatic Variants. Cancers (Basel) 2021; 14:cancers14010077. [PMID: 35008243 PMCID: PMC8750256 DOI: 10.3390/cancers14010077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary To better prevent/combat recurrence and identify predictive/targetable markers upon diagnosis, we performed whole-exome sequencing (WES) of primary tumours and relapses of human papillomavirus positive (HPV+) tonsillar and base of tongue cancer (TSCC/BOTSCC) on patients treated with curative intent, with and without relapse. A specific deletion in the CDC27 gene was observed only in the primaries of 5/17 patients that recurred but in none of the 18 patients without recurrence. Furthermore, three specific variants and 26 mutated genes enriched in mucins were identified in at least 30% of all primaries irrespective of recurrence. To conclude, a specific CDC27 deletion could be specific for recurrent HPV+ TSCC/BOTSCC, while BCLAF1, AQP7 and other globally mutated genes could be of significance for further investigation. Abstract To identify predictive/targetable markers in human papillomavirus positive (HPV+) tonsillar and base of tongue cancer (TSCC/BOTSCC), whole-exome sequencing (WES) of tumours of patients with/without recurrence was performed. Forty primary tumours and adjacent normal tissue were separated by micro-dissection from formalin-fixed paraffin-embedded tissue from patients treated with curative intent 2000–2014 at Karolinska University Hospital. Successful sequencing was obtained in primary tumours of 18 patients without and primaries of 17 with local or distant recurrence, as well as in 10 corresponding recurrences (i.e., five local relapses and five distant metastases) from these 17 patients. One variant—a high-impact deletion in the CDC27 gene—was observed only in primaries of 5/17 patients that had a recurrence after full treatment but in none of those without recurrence. In addition, 3 variants and 26 mutated genes, including CDC27, BCLAF1 and AQP7, were present in at least 30% of all primary tumours independent of prognosis. To conclude, a CDC27 deletion was specific and found in ~30% of samples from patients with a local relapse/distant metastasis and could, therefore, potentially be a prospective marker to predict prognosis. Commonly mutated genes, such as BCLAF1, should be further studied in the context of targeted therapy.
Collapse
Affiliation(s)
- Andreas Ährlund-Richter
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.Ä.-R.); (S.H.); (T.D.)
| | - Stefan Holzhauser
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.Ä.-R.); (S.H.); (T.D.)
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.Ä.-R.); (S.H.); (T.D.)
| | - Anders Näsman
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.Ä.-R.); (S.H.); (T.D.)
- Department of Clinical Pathology, CCK R8:02, Karolinska University Hospital, 171 64 Stockholm, Sweden
- Correspondence: (A.N.); (M.M.)
| | - Michael Mints
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.Ä.-R.); (S.H.); (T.D.)
- Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden
- Department of Surgical and Perioperative Science, Urology and Andrology, Umeå University, 907 36 Umeå, Sweden
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
- Correspondence: (A.N.); (M.M.)
| |
Collapse
|
13
|
Sud S, Weiner AA, Wang AZ, Gupta GP, Shen CJ. Prognostic and Predictive Clinical and Biological Factors in HPV Malignancies. Semin Radiat Oncol 2021; 31:309-323. [PMID: 34455986 DOI: 10.1016/j.semradonc.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Human papillomavirus (HPV) causes the majority of oropharyngeal, cervical, and anal cancers, among others. These HPV-associated cancers cause substantial morbidity and mortality despite ongoing vaccination efforts. Aside from the earliest stage tumors, chemoradiation is used to treat most HPV-associated cancers across disease sites. Response rates are variable, and opportunities to improve oncologic control and reduce toxicity remain. HPV malignancies share multiple commonalities in oncogenesis and tumor biology that may inform personalized methods of screening, diagnosis, treatment and surveillance. In this review we discuss the current literature and identify promising molecular targets, prognostic and predictive clinical factors and biomarkers in HPV-associated oropharyngeal, cervical and anal cancer.
Collapse
Affiliation(s)
- Shivani Sud
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Ashley A Weiner
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC
| | - Andrew Z Wang
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC
| | - Gaorav P Gupta
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC
| | - Colette J Shen
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC.
| |
Collapse
|
14
|
Spiotto MT, Taniguchi CM, Klopp AH, Colbert LE, Lin SH, Wang L, Frederick MJ, Osman AA, Pickering CR, Frank SJ. Biology of the Radio- and Chemo-Responsiveness in HPV Malignancies. Semin Radiat Oncol 2021; 31:274-285. [PMID: 34455983 DOI: 10.1016/j.semradonc.2021.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In multiple anatomic sites, patients with cancers associated with the Human Papillomavirus (HPV) experience better locoregional control and overall survival after radiotherapy and/or chemoradiotherapy than patients with HPV-negative cancers. These improved outcomes suggest that relatively unique biological features in HPV-positive cancers may increase sensitivity to DNA damaging agents as well as an impaired DNA damage response. This review will address potential biological mechanisms driving this increased sensitivity of HPV-positive cancer to radiation and/or chemotherapy. This review will discuss the clinical and preclinical observations that support the intrinsic radiosensitivity and/or chemosensitivity of HPV-positive cancers. Furthermore, this review will highlight the molecular mechanisms for increased radiation sensitivity using the classical "4 Rs" of radiobiology: repair, reassortment, repopulation, and reoxygenation. First, HPV-positive cancers have increased DNA damage due to increased oxidative stress and impaired DNA damage repair due to the altered activity TP53, p16, TIP60, and other repair proteins. Second, irradiated HPV-positive cancer cells display increased G2/M arrest leading to reassortment of cancer cells in more radiosensitive phases of the cell cycle. In addition, HPV-positive cancers have less radioresistant cancer stem cell subpopulations that may limit their repopulation during radiotherapy. Finally, HPV-positive cancers may also have less hypoxic tumor microenvironments that make these cancers more sensitive to radiation than HPV-negative cells. We will also discuss extrinsic immune and microenvironmental factors enriched in HPV-positive cancers that facilities responses to radiation. Therefore, these potential biological mechanisms may underpin the improved clinical outcomes often observed in these virally induced cancers.
Collapse
Affiliation(s)
- Michael T Spiotto
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX.
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Ann H Klopp
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Lauren E Colbert
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Li Wang
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | | | - Abdullah A Osman
- Department of Head and Neck Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
15
|
Chitsike L, Duerksen-Hughes PJ. Targeted Therapy as a Potential De-Escalation Strategy in Locally Advanced HPV-Associated Oropharyngeal Cancer: A Literature Review. Front Oncol 2021; 11:730412. [PMID: 34490123 PMCID: PMC8418093 DOI: 10.3389/fonc.2021.730412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
The treatment landscape of locally advanced HPV-oropharyngeal squamous cell carcinoma (OPSCC) is undergoing transformation. This is because the high cures rates observed in OPSCC are paired with severe treatment-related, long-term toxicities. These significant adverse effects have led some to conclude that the current standard of care is over-treating patients, and that de-intensifying the regimens may achieve comparable survival outcomes with lower toxicities. Consequently, several de-escalation approaches involving locally advanced OPSCC are underway. These include the reduction of dosage and volume of intensive cytotoxic regimens, as well as elimination of invasive surgical procedures. Such de-intensifying treatments have the potential to achieve efficacy and concurrently alleviate morbidity. Targeted therapies, given their overall safer toxicity profiles, also make excellent candidates for de-escalation, either alone or alongside standard treatments. However, their role in these endeavors is currently limited, because few targeted therapies are currently in clinical use for head and neck cancers. Unfortunately, cetuximab, the only FDA-approved targeted therapy, has shown inferior outcomes when paired with radiation as compared to cisplatin, the standard radio-sensitizer, in recent de-escalation trials. These findings indicate the need for a better understanding of OPSCC biology in the design of rational therapeutic strategies and the development of novel, OPSCC-targeted therapies that are safe and can improve the therapeutic index of standard therapies. In this review, we summarize ongoing research on mechanism-based inhibitors in OPSCC, beginning with the salient molecular features that modulate tumorigenic processes and response, then exploring pharmacological inhibition and pre-clinical validation studies of candidate targeted agents, and finally, summarizing the progression of those candidates in the clinic.
Collapse
|
16
|
Stern PL, Dalianis T. Oropharyngeal Squamous Cell Carcinoma Treatment in the Era of Immune Checkpoint Inhibitors. Viruses 2021; 13:1234. [PMID: 34202255 PMCID: PMC8310271 DOI: 10.3390/v13071234] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
While head and neck squamous cell carcinomas (HNSCC) are marginally decreasing due to the reduction in exposure to the major risk factors, tobacco and alcohol, the incidence of high-risk human papillomavirus (HPV)-positive oropharynx squamous cell carcinomas (OPSCC), especially those in the tonsil and base of tongue subsites, are increasing. Patients with the latter are younger, display a longer overall survival, and show a lower recurrence rate after standard-of-care treatment than those with HPV-negative OPSCC. This may reflect an important role for immune surveillance and control during the natural history of the virally driven tumour development. Immune deviation through acquisition of immune-suppressive factors in the tumour microenvironment (TME) is discussed in relation to treatment response. Understanding how the different immune factors are integrated in the TME battleground offers opportunities for identifying prognostic biomarkers as well as novel therapeutic strategies. OPSCC generally receive surgery or radiotherapy for early-stage tumour treatment, but many patients present with locoregionally advanced disease requiring multimodality therapies which can involve considerable complications. This review focuses on the utilization of newly emerged immune checkpoint inhibitors (PD-1/PD-L1 pathway) for treatment of HNSCC, in particular HPV-positive OPSCC, since they could be less toxic and more efficacious. PD-1/PD-L1 expression in the TME has been extensively investigated as a biomarker of patient response but is yet to provide a really effective means for stratification of treatment. Extensive testing of combinations of therapeutic approaches by types and sequencing will fuel the next evolution of treatment for OPSCC.
Collapse
Affiliation(s)
- Peter L. Stern
- Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, UK
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64 Stockholm, Sweden;
| |
Collapse
|
17
|
Molecular Tumor Subtypes of HPV-Positive Head and Neck Cancers: Biological Characteristics and Implications for Clinical Outcomes. Cancers (Basel) 2021; 13:cancers13112721. [PMID: 34072836 PMCID: PMC8198180 DOI: 10.3390/cancers13112721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/18/2023] Open
Abstract
Until recently, research on the molecular signatures of Human papillomavirus (HPV)-associated head and neck cancers mainly focused on their differences with respect to HPV-negative head and neck squamous cell carcinomas (HNSCCs). However, given the continuing high incidence level of HPV-related HNSCC, the time is ripe to characterize the heterogeneity that exists within these cancers. Here, we review research thus far on HPV-positive HNSCC molecular subtypes, and their relationship with clinical characteristics and HPV integration into the host genome. Different omics data including host transcriptomics and epigenomics, as well as HPV characteristics, can provide complementary viewpoints. Keratinization, mesenchymal differentiation, immune signatures, stromal cells and oxidoreductive processes all play important roles.
Collapse
|
18
|
CX-4945 and siRNA-Mediated Knockdown of CK2 Improves Cisplatin Response in HPV(+) and HPV(-) HNSCC Cell Lines. Biomedicines 2021; 9:biomedicines9050571. [PMID: 34070147 PMCID: PMC8158385 DOI: 10.3390/biomedicines9050571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) can be categorized into human papillomavirus (HPV) positive or negative disease. Elevated protein kinase CK2 level and activity have been historically observed in HNSCC cells. Previous studies on CK2 in HNSCC did not generally include consideration of HPV(+) and HPV(−) status. Here, we investigated the response of HPV(+) and HPV(−) HNSCC cells to CK2 targeting using CX-4945 or siRNA downregulation combined with cisplatin treatment. HNSCC cell lines were examined for CK2 expression levels and activity and response to CX-4945, with and without cisplatin. CK2 levels and NFκB p65-related activity were high in HPV(+) HNSCC cells relative to HPV(−) HNSCC cells. Treatment with CX-4945 decreased viability and cisplatin IC50 in all cell lines. Targeting of CK2 increased tumor suppressor protein levels for p21 and PDCD4 in most instances. Further study is needed to understand the role of CK2 in HPV(+) and HPV(−) HNSCC and to determine how incorporation of the CK2-targeted inhibitor CX-4945 could improve cisplatin response in HNSCC.
Collapse
|
19
|
Näsman A, Holzhauser S, Kostopoulou ON, Zupancic M, Ährlund-Richter A, Du J, Dalianis T. Prognostic Markers and Driver Genes and Options for Targeted Therapy in Human-Papillomavirus-Positive Tonsillar and Base-of-Tongue Squamous Cell Carcinoma. Viruses 2021; 13:v13050910. [PMID: 34069114 PMCID: PMC8156012 DOI: 10.3390/v13050910] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence of Human-papillomavirus-positive (HPV+) tonsillar and base-of-tongue squamous cell carcinoma (TSCC and BOTSCC, respectively) is increasing epidemically, but they have better prognosis than equivalent HPV-negative (HPV−) cancers, with roughly 80% vs. 50% 3-year disease-free survival, respectively. The majority of HPV+ TSCC and BOTSCC patients therefore most likely do not require the intensified chemoradiotherapy given today to head and neck cancer patients and would with de-escalated therapy avoid several severe side effects. Moreover, for those with poor prognosis, survival has not improved, so better-tailored alternatives are urgently needed. In line with refined personalized medicine, recent studies have focused on identifying predictive markers and driver cancer genes useful for better stratifying patient treatment as well as for targeted therapy. This review presents some of these endeavors and briefly describes some recent experimental progress and some clinical trials with targeted therapy.
Collapse
Affiliation(s)
- Anders Näsman
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.N.); (S.H.); (O.N.K.); (M.Z.); (A.Ä.-R.)
| | - Stefan Holzhauser
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.N.); (S.H.); (O.N.K.); (M.Z.); (A.Ä.-R.)
| | - Ourania N. Kostopoulou
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.N.); (S.H.); (O.N.K.); (M.Z.); (A.Ä.-R.)
| | - Mark Zupancic
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.N.); (S.H.); (O.N.K.); (M.Z.); (A.Ä.-R.)
| | - Andreas Ährlund-Richter
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.N.); (S.H.); (O.N.K.); (M.Z.); (A.Ä.-R.)
| | - Juan Du
- Department of Microbiology, Tumor Biology and Cellular Biology, Karolinska Institutet, Biomedicum, 171 77 Stockholm, Sweden;
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.N.); (S.H.); (O.N.K.); (M.Z.); (A.Ä.-R.)
- Correspondence:
| |
Collapse
|
20
|
Beaty BT, Moon DH, Shen CJ, Amdur RJ, Weiss J, Grilley-Olson J, Patel S, Zanation A, Hackman TG, Thorp B, Blumberg JM, Patel SN, Weissler MC, Yarbrough WG, Sheets NC, Parker JS, Neil Hayes D, Weck KE, Ramkissoon LA, Mendenhall WM, Dagan R, Tan X, Gupta GP, Chera BS. PIK3CA Mutation in HPV-Associated OPSCC Patients Receiving Deintensified Chemoradiation. J Natl Cancer Inst 2021; 112:855-858. [PMID: 31747025 DOI: 10.1093/jnci/djz224] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/14/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022] Open
Abstract
PIK3CA is the most frequently mutated gene in human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC). Prognostic implications of such mutations remain unknown. We sought to elucidate the clinical significance of PIK3CA mutations in HPV-associated OPSCC patients treated with definitive chemoradiation (CRT). Seventy-seven patients with HPV-associated OPSCC were enrolled on two phase II clinical trials of deintensified CRT (60 Gy intensity-modulated radiotherapy with concurrent weekly cisplatin). Targeted next-generation sequencing was performed. Of the 77 patients, nine had disease recurrence (two regional, four distant, three regional and distant). Thirty-four patients had mutation(s) identified; 16 had PIK3CA mutations. Patients with wild-type-PIK3CA had statistically significantly higher 3-year disease-free survival than PIK3CA-mutant patients (93.4%, 95% confidence interval [CI] = 85.0% to 99.9% vs 68.8%, 95% CI = 26.7% to 89.8%; P = .004). On multivariate analysis, PIK3CA mutation was the only variable statistically significantly associated with disease recurrence (hazard ratio = 5.71, 95% CI = 1.53 to 21.3; P = .01). PIK3CA mutation is associated with worse disease-free survival in a prospective cohort of newly diagnosed HPV-associated OPSCC patients treated with deintensified CRT.
Collapse
Affiliation(s)
- Brian T Beaty
- Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, NC
| | - Dominic H Moon
- Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, NC.,University of North Carolina, Chapel Hill, NC.,Department of Medical Oncology, University of Tennessee, Memphis, TN
| | - Colette J Shen
- Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, NC
| | - Robert J Amdur
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL
| | | | | | | | | | | | - Brian Thorp
- Department of Otolaryngology/Head and Neck Surgery
| | | | | | | | | | - Nathan C Sheets
- Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, NC
| | | | | | | | | | - William M Mendenhall
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL
| | - Roi Dagan
- University of Florida Health Proton Therapy Institute, Jacksonville, FL
| | | | - Gaorav P Gupta
- Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, NC
| | - Bhishamjit S Chera
- Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, NC
| |
Collapse
|
21
|
Schrank TP, Lenze N, Landess LP, Hoyle A, Parker J, Lal A, Sheth S, Chera BS, Patel SN, Hackman TG, Major MB, Issaeva N, Yarbrough WG. Genomic heterogeneity and copy number variant burden are associated with poor recurrence-free survival and 11q loss in human papillomavirus-positive squamous cell carcinoma of the oropharynx. Cancer 2021; 127:2788-2800. [PMID: 33819343 DOI: 10.1002/cncr.33504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Human papillomavirus-positive (HPV+) squamous cell carcinoma of the oropharynx (OPSCC) is the most prevalent HPV-associated malignancy in the United States. Favorable treatment outcomes have led to increased interest in treatment de-escalation to reduce treatment morbidity as well as the development of prognostic markers to identify appropriately low-risk patients. Intratumoral genomic heterogeneity and copy number alteration burden have been demonstrated to be predictive of poor outcomes in many other cancers; therefore, we sought to determine whether intratumor heterogeneity and genomic instability are associated with poor outcomes in HPV+ OPSCC. METHODS Tumor heterogeneity estimates were made based on targeted exome sequencing of 45 patients with HPV+ OPSCC tumors. Analysis of an additional cohort of HPV+ OPSCC tumors lacking matched normal sequencing allowed copy number analysis of 99 patient tumors. RESULTS High intratumorally genomic heterogeneity and high numbers of copy number alterations were strongly associated with worse recurrence-free survival. Tumors with higher heterogeneity and frequent copy number alterations were associated with loss of distal 11q, which encodes key genes related to double-strand break repair, including ATM and MRE11A. CONCLUSIONS Both intratumor genomic heterogeneity and high-burden copy number alterations are strongly associated with poor recurrence-free survival in patients with HPV+ OPSCC. The drivers of genomic instability and heterogeneity in these tumors remains to be elucidated. However, 11q loss and defective DNA double-strand break repair have been associated with genomic instability in other solid tumors. Copy number alteration burden and intratumoral heterogeneity represent promising avenues for risk stratification of patients with HPV+OPSCC.
Collapse
Affiliation(s)
- Travis P Schrank
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Linberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nicholas Lenze
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lee P Landess
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alan Hoyle
- Linberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joel Parker
- Linberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Asim Lal
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Siddharth Sheth
- Division of Hematology and Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Bhishamjit S Chera
- Department of Radiation Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Samip N Patel
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Trevor G Hackman
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - M Ben Major
- Linberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri.,Institute for Informatics, School of Medicine, Washington University in St. Louis, St. Louis, Missouri.,Department of Otolaryngology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Natalia Issaeva
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Linberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Pathology and Lab Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Wendell G Yarbrough
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Linberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Pathology and Lab Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
22
|
Moura ACD, Assad DX, Amorim Dos Santos J, Porto de Toledo I, Barra GB, Castilho RM, Squarize CH, Guerra ENS. Worldwide prevalence of PI3K-AKT-mTOR pathway mutations in head and neck cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2021; 160:103284. [PMID: 33675910 DOI: 10.1016/j.critrevonc.2021.103284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/03/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023] Open
Abstract
A systematic review (SR) and meta-analysis were conducted to determine the prevalence of PI3K-AKT-mTOR signaling pathway mutations in patients with head and neck cancer (HNC). Overall, 105 studies comprising 8630 patients and 1306 mutations were selected. The estimated mutations prevalence was 13 % for PIK3CA (95 % confidence interval [CI] = 11-14; I2 = 82 %; p < 0.0001), 4% for PTEN (95 % CI = 3-5; I2 = 55 %; p < 0.0001), 3% for MTOR (95 % CI = 2-4; I2 = 5%; p = 0.40), and 2% for AKT (95 % CI = 1-2; I2 = 50 %; p = 0.0001). We further stratified the available data of the participants according to risk factors and tumor characteristics, including HPV infection, tobacco use, alcohol exposure, TNM stage, and histological tumor differentiation, and performed subgroup analysis. We identified significant associations between PI3K-AKT-mTOR pathway-associated mutations and advanced TNM stage (odds ratio [OR] = 0.20; 95 % CI = 0.09-0.44; I² = 71 %; p = 0.0001) and oropharyngeal HPV-positive tumors and PIK3CA mutations (OR = 17.48; 95 % CI = 4.20-72.76; I² = 69 %; p < 0.0002). No associations were found between alcohol and tobacco exposure, and tumor differentiation grade. This SR demonstrated that the PI3K-AKT-mTOR pathway emerges as a potential prognostic factor and could offer a molecular basis for future studies on therapeutic targeting in HNC patients.
Collapse
Affiliation(s)
- Adriana Castelo de Moura
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil; Hospital Universitário de Brasília (HUB-UnB/Ebserh), Brasília, DF, Brazil; Hospital Santa Lúcia, Brasília, DF, Brazil
| | - Daniele Xavier Assad
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil; Medical Oncology Department, Hospital Sírio-Libanês, Brasília, DF, Brazil
| | - Juliana Amorim Dos Santos
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Isabela Porto de Toledo
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Gustavo Barcelos Barra
- Sabin Medicina Diagnóstica, SAAN Quadra 03 Lotes 145/185, Brasília, 70632-340, DF, Brazil
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, Division of Oral Pathology, Radiology and Medicine, University of Michigan School of Dentistry. Ann Arbor, 48109-1078, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Cristiane Helena Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, Division of Oral Pathology, Radiology and Medicine, University of Michigan School of Dentistry. Ann Arbor, 48109-1078, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil; Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, Division of Oral Pathology, Radiology and Medicine, University of Michigan School of Dentistry. Ann Arbor, 48109-1078, MI, USA.
| |
Collapse
|
23
|
Raudenská M, Balvan J, Masařík M. Cell death in head and neck cancer pathogenesis and treatment. Cell Death Dis 2021; 12:192. [PMID: 33602906 PMCID: PMC7893032 DOI: 10.1038/s41419-021-03474-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Many cancer therapies aim to trigger apoptosis in cancer cells. Nevertheless, the presence of oncogenic alterations in these cells and distorted composition of tumour microenvironment largely limit the clinical efficacy of this type of therapy. Luckily, scientific consensus describes about 10 different cell death subroutines with different regulatory pathways and cancer cells are probably not able to avoid all of cell death types at once. Therefore, a focused and individualised therapy is needed to address the specific advantages and disadvantages of individual tumours. Although much is known about apoptosis, therapeutic opportunities of other cell death pathways are often neglected. Molecular heterogeneity of head and neck squamous cell carcinomas (HNSCC) causing unpredictability of the clinical response represents a grave challenge for oncologists and seems to be a critical component of treatment response. The large proportion of this clinical heterogeneity probably lies in alterations of cell death pathways. How exactly cells die is very important because the predominant type of cell death can have multiple impacts on the therapeutic response as cell death itself acts as a second messenger. In this review, we discuss the different types of programmed cell death (PCD), their connection with HNSCC pathogenesis and possible therapeutic windows that result from specific sensitivity to some form of PCD in some clinically relevant subgroups of HNSCC.
Collapse
Affiliation(s)
- Martina Raudenská
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masařík
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic. .,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic. .,Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic. .,BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50, Vestec, Czech Republic.
| |
Collapse
|
24
|
Akbari Dilmaghani N, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, Bashash D. The PI3K/Akt/mTORC signaling axis in head and neck squamous cell carcinoma: Possibilities for therapeutic interventions either as single agents or in combination with conventional therapies. IUBMB Life 2021; 73:618-642. [PMID: 33476088 DOI: 10.1002/iub.2446] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/24/2020] [Indexed: 01/08/2023]
Abstract
The latest advances in the sequencing methods in head and neck squamous cell carcinoma (HNSCC) tissues have revolutionized our understanding of the disease by taking off the veil from the most frequent genetic alterations in the components of the oncogenic pathways. Among all the identified alterations, aberrancies in the genes attributed to the phosphoinositide 3-kinases (PI3K) axis have attracted special attention as they were altered in more than 90% of the tissues isolated from HNSCC patients. In fact, the association between these aberrancies and the increased risk of cancer metastasis suggested this axis as an "Achilles Heel" of HNSCC, which may be therapeutically targeted. The results of the clinical trials investigating the therapeutic potential of the inhibitors targeting the components of the PI3K axis in the treatment of HNSCC patients, either alone or in a combined-modal strategy, opened a new chapter in the treatment strategy of this malignancy. The present study aimed to review the importance of the PI3K axis in the pathogenesis of HNSCC and also provide a piece of information about the breakthroughs and challenges of PI3K inhibitors in the therapeutic strategies of the disease.
Collapse
Affiliation(s)
- Nader Akbari Dilmaghani
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Otolaryngology, Head and Neck Surgery, Loghman Hakim Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Global Genome Demethylation Causes Transcription-Associated DNA Double Strand Breaks in HPV-Associated Head and Neck Cancer Cells. Cancers (Basel) 2020; 13:cancers13010021. [PMID: 33374558 PMCID: PMC7793113 DOI: 10.3390/cancers13010021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
High levels of DNA methylation at CpG loci are associated with transcriptional repression of tumor suppressor genes and dysregulation of DNA repair genes. Human papilloma virus (HPV)-associated head and neck squamous cell carcinomas (HNSCC) have high levels of DNA methylation and methylation has been associated with dampening of an innate immune response in virally infected cells. We have been exploring demethylation as a potential treatment in HPV+ HNSCC and recently reported results of a window clinical trial showing that HNSCCs are particularly sensitive to demethylating agent 5-azacytidine (5-aza). Mechanistically, sensitivity is partially due to downregulation of HPV genes expression and restoration of tumor suppressors p53 and Rb. Here, for the first time, we show that 5-azaC treatment of HPV+ HNSCC induces replication and transcription-associated DNA double strand breaks (DSBs) that occur preferentially at demethylated genomic DNA. Blocking replication or transcription prevented formation of DNA DSBs and reduced sensitivity of HPV-positive head and neck cancer cells to 5-azaC, demonstrating that both replication and active transcription are required for formation of DSBs associated with 5-azaC.
Collapse
|
26
|
An Immunocompetent Mouse Model of HPV16(+) Head and Neck Squamous Cell Carcinoma. Cell Rep 2020; 29:1660-1674.e7. [PMID: 31693903 PMCID: PMC6870917 DOI: 10.1016/j.celrep.2019.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/03/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022] Open
Abstract
The incidence of human papilloma virus (HPV)-associated head and neck squamous cell carcinoma (HNSCC) is increasing and implicated in more than 60% of all oropharyngeal carcinomas (OPSCCs). Although whole-genome, transcriptome, and proteome analyses have identified altered signaling pathways in HPV-induced HNSCCs, additional tools are needed to investigate the unique pathobiology of OPSCC. Herein, bioinformatics analyses of human HPV(+) HNSCCs revealed that all tumors express full-length E6 and identified molecular subtypes based on relative E6 and E7 expression levels. To recapitulate the levels, stoichiometric ratios, and anatomic location of E6/E7 expression, we generated a genetically engineered mouse model whereby balanced expression of E6/E7 is directed to the oropharyngeal epithelium. The addition of a mutant PIK3CAE545K allele leads to the rapid development of pre-malignant lesions marked by immune cell accumulation, and a subset of these lesions progress to OPSCC. This mouse provides a faithful immunocompetent model for testing treatments and investigating mechanisms of immuno- suppression. Carper et al. present the ‘‘iKHP’’ mouse, in which HPV16 oncogenes are inducibly activated in vivo in a tissue-specific and temporal manner. Oropharyngeal- specific expression of E6/E7 with PIK3CAE545K in these mice promotes the development of premalignant lesions marked by immune cell infiltration, but only a subset spontaneously convert to OPSCC.
Collapse
|
27
|
García-Carracedo D, Cai Y, Qiu W, Saeki K, Friedman RA, Lee A, Li Y, Goldberg EM, Stratikopoulos EE, Parsons R, Lu C, Efstratiadis A, Philipone EM, Yoon AJ, Su GH. PIK3CA and p53 Mutations Promote 4NQO-Initated Head and Neck Tumor Progression and Metastasis in Mice. Mol Cancer Res 2020; 18:822-834. [PMID: 32152233 PMCID: PMC7272268 DOI: 10.1158/1541-7786.mcr-19-0549] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/21/2020] [Accepted: 03/04/2020] [Indexed: 12/30/2022]
Abstract
The PI3K signaling pathway is frequently mutated in head and neck squamous cell carcinoma (HNSCC), often via gain-of-function (GOF) mutations in the PIK3CA gene. Here, we present novel genetically engineered mouse models (GEMM) carrying a GOF allele Loxp-STOP-Loxp(LSL)-PIK3CAH1047R (E20) alone or in combination with heterozygous LSL-p53+/R172H (p53) mutation with tissue-specific expression to interrogate the role of oncogenic PIK3CA in transformation of upper aerodigestive track epithelium. We demonstrated that the GOF PIK3CA mutation promoted progression of 4-nitroquinoline 1-oxide-induced oral squamous cell carcinoma (OSCC) in both E20 single mutant and E20/p53 double mutant mice, with frequent distal metastasis detected only in E20/p53 GEMM. Similar to in human OSCC, loss of p16 was associated with progression of OSCC in these mice. RNA-seq analyses revealed that among the common genes differentially expressed in primary OSCC cell lines derived from E20, p53, and E20/p53 GEMMs compared with those from the wild-type mice, genes associated with proliferation and cell cycle were predominantly represented, which is consistent with the progressive loss of p16 detected in these GEMMs. Importantly, all of these OSCC primary cell lines exhibited enhanced sensitivity to BYL719 and cisplatin combination treatment in comparison with cisplatin alone in vitro and in vivo, regardless of p53 and/or p16 status. Given the prevalence of mutations in p53 and the PI3K pathways in HNSCC in conjunction with loss of p16 genetically or epigenetically, this universal increased sensitivity to cisplatin and BYL719 combination therapy in cancer cells with PIK3CA mutation represents an opportunity to a subset of patients with HNSCC. IMPLICATIONS: Our results suggest that combination therapy of cisplatin and PI3K inhibitor may be worthy of consideration in patients with HNSCC with PIK3CA mutation.
Collapse
Affiliation(s)
- Darío García-Carracedo
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Irving Medical Center, New York, New York
| | - Yi Cai
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Irving Medical Center, New York, New York
| | - Wanglong Qiu
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Kiyoshi Saeki
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Richard A Friedman
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Biomedical Informatics, Columbia University Medical Center, New York, New York
| | - Andrew Lee
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Irving Medical Center, New York, New York
| | - Yinglu Li
- Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | - Elizabeth M Goldberg
- Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | - Elias E Stratikopoulos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ramon Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chao Lu
- Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | | | - Elizabeth M Philipone
- Division of Oral and Maxillofacial Pathology, Columbia University College of Dental Medicine, New York, New York
| | - Angela J Yoon
- Division of Oral and Maxillofacial Pathology, Columbia University College of Dental Medicine, New York, New York
| | - Gloria H Su
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York.
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Irving Medical Center, New York, New York
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
28
|
Näsman A, Du J, Dalianis T. A global epidemic increase of an HPV-induced tonsil and tongue base cancer - potential benefit from a pan-gender use of HPV vaccine. J Intern Med 2020; 287:134-152. [PMID: 31733108 DOI: 10.1111/joim.13010] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 12/28/2022]
Abstract
In 2007, human papillomavirus (HPV) type 16 was finally recognized as a risk factor, besides smoking and alcohol, for oropharyngeal squamous cell carcinoma (OPSCC), including tonsillar squamous cell carcinoma (TSCC), by the International Agency for Research against Cancer. Just before, in 2006, the Food and Drug Administration had approved Gardasil, the first vaccine against HPV16, 18, 6 and 11, for preventive vaccination women against cervical cancer. Concurrently, some Western countries, where smoking was decreasing, disclosed an epidemic increase in the incidence of OPSCC, especially of TSCC and base of tongue cancer (BOTSCC), together accounting for 80-90% of all OPSCCs, and mainly affecting men. The epidemic was later revealed to be due to a rise in HPV-positive cases, and scientists in the field suggested HPV vaccination also of boys. Globally, there are roughly 96 000 incident OPSCC cases/year of which 20-24% are caused by HPV, thereby accounting for around 22 000 OPSCC cases annually. Of these cases, 80-90% are due to HPV16 infection and would be prevented with the presently registered HPV vaccines. In Western countries, such as Sweden (with almost 400 TSCC and BOTSCC cases per year) and the United States, HPV prevalence in OPSCC is higher and around 70%. HPV vaccination of girls has been initiated in many countries, and the vaccines have been efficient and their side effects limited. HPV vaccination of boys has, however, been the exception, but should definitely not be delayed any further. It would benefit both girls and boys directly, and result in better and more robust herd immunity. Today, we have the possibility to eliminate several high-risk HPV types in the younger generations and avoid more than 600 000 cancer cases annually worldwide, and this possibility should be embraced by offering global pan-gender HPV vaccination.
Collapse
Affiliation(s)
- A Näsman
- From the, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - J Du
- Department of Microbiology, Tumor Biology and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - T Dalianis
- From the, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Gougis P, Moreau Bachelard C, Kamal M, Gan HK, Borcoman E, Torossian N, Bièche I, Le Tourneau C. Clinical Development of Molecular Targeted Therapy in Head and Neck Squamous Cell Carcinoma. JNCI Cancer Spectr 2019; 3:pkz055. [PMID: 32337482 PMCID: PMC7049986 DOI: 10.1093/jncics/pkz055] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/12/2019] [Accepted: 07/26/2019] [Indexed: 12/26/2022] Open
Abstract
A better understanding of cancer biology has led to the development of molecular targeted therapy, which has dramatically improved the outcome of some cancer patients, especially when a biomarker of efficacy has been used for patients' selection. In head and neck oncology, cetuximab that targets epidermal growth factor receptor is the only targeted therapy that demonstrated a survival benefit, both in the recurrent and in the locally advanced settings, yet without prior patients' selection. We herein review the clinical development of targeted therapy in head and neck squamous cell carcinoma in light of the molecular landscape and give insights in on how innovative clinical trial designs may speed up biomarker discovery and deployment of new molecular targeted therapies. Given the recent approval of immune checkpoint inhibitors targeting programmed cell death-1 in head and neck squamous cell carcinoma, it remains to be determined how targeted therapy will be incorporated into a global drug development strategy that will inevitably incorporate immunotherapy.
Collapse
Affiliation(s)
- Paul Gougis
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris & Saint-Cloud, France
- AP-HP, Pitié-Salpêtrière Hospital, Department of Pharmacology, CIC-1421, CLIP Galilée, Paris, France
| | - Camille Moreau Bachelard
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris & Saint-Cloud, France
| | - Maud Kamal
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris & Saint-Cloud, France
| | - Hui K Gan
- Cancer Clinical Trial Centre, Austin Hospital, Heidelberg, Melbourne, Australia
| | - Edith Borcoman
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris & Saint-Cloud, France
| | - Nouritza Torossian
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris & Saint-Cloud, France
| | - Ivan Bièche
- Pharmacogenomics Unit, Institut Curie, Paris, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris & Saint-Cloud, France
- INSERM U900 Research Unit, Saint-Cloud, France
- Paris-Saclay University, Paris, France
| |
Collapse
|
30
|
Suzuki M, Muroi A, Nojima M, Numata A, Takasaki H, Sakai R, Yokose T, Miyagi Y, Koshikawa N. Utility of a Reverse Phase Protein Array to Evaluate Multiple Biomarkers in Diffuse Large B-Cell Lymphoma. Proteomics Clin Appl 2019; 14:e1900091. [PMID: 31721454 PMCID: PMC7003765 DOI: 10.1002/prca.201900091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/24/2019] [Indexed: 12/16/2022]
Abstract
Purpose Diffuse large B‐cell lymphoma (DLBCL), the most common non‐Hodgkin lymphoma, is a heterogeneous lymphoma with different clinical manifestations and molecular alterations, and several markers are currently being measured routinely for its diagnosis, subtyping, or prognostication by immunohistochemistry (IHC). Here, the utility of a reverse‐phase‐protein‐array (RPPA) as a novel supportive tool to measure multiple biomarkers for DLBCL diagnosis is validated. Experimental design The expression of seven markers (CD5, CD10, BCL2, BCL6, MUM1, Ki‐67, and C‐MYC) is analyzed by RPPA and IHC using 37 DLBCL tissues, and the correlation between the two methods is determined. To normalize tumor content ratio in the tissues, the raw RPPA values of each marker are adjusted by that of CD20 or PAX‐5. Results The CD20‐adjusted data for CD5, MUM1, BCL2, Ki‐67, and C‐MYC has better correlation with IHC results than PAX‐5‐adjusted data. Receiver operating characteristic (ROC) analysis reveals that CD5, MUM1, BCL2, and C‐MYC exhibit a better sensitivity and specificity >0.750. Furthermore, the CD20‐adjusted C‐MYC value strongly correlates with that of IHC, and has a particularly high specificity (0.882). Conclusions and clinical relevance Although further investigation using a large number of DLBCL specimens needs to be conducted, these results suggest that RPPA could be applicable as a supportive tool for determining lymphoma prognosis.
Collapse
Affiliation(s)
- Masaki Suzuki
- Department of Pathology, Kanagawa Cancer Center, Yokohama, 241-8515, Japan
| | - Atsushi Muroi
- Division of Cancer Cell Research, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515, Japan
| | - Masanori Nojima
- Center for Translational Research, The Institute of Medical Science Hospital, University of Tokyo, Tokyo, 108-8639, Japan
| | - Ayumi Numata
- Department of Hematology/Medical Oncology, Kanagawa Cancer Center, Yokohama, 241-8515, Japan
| | - Hirotaka Takasaki
- Department of Hematology/Medical Oncology, Kanagawa Cancer Center, Yokohama, 241-8515, Japan
| | - Rika Sakai
- Department of Hematology/Medical Oncology, Kanagawa Cancer Center, Yokohama, 241-8515, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, 241-8515, Japan
| | - Yohei Miyagi
- Department of Molecular Pathology and Genetics, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515, Japan
| | - Naohiko Koshikawa
- Division of Cancer Cell Research, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515, Japan
| |
Collapse
|
31
|
E6 Oncoproteins from High-Risk Human Papillomavirus Induce Mitochondrial Metabolism in a Head and Neck Squamous Cell Carcinoma Model. Biomolecules 2019; 9:biom9080351. [PMID: 31398842 PMCID: PMC6722992 DOI: 10.3390/biom9080351] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) cells that are positive for human papillomavirus (HPV+) favor mitochondrial metabolism rather than glucose metabolism. However, the involvement of mitochondrial metabolism in HNSCC HPV+ cells is still unknown. The aim of this work was to evaluate the role of E6 oncoproteins from HPV16 and HPV18 in the mitochondrial metabolism in an HNSCC model. We found that E6 from both viral types abates the phosphorylation of protein kinase B-serine 473 (pAkt), which is associated with a shift in mitochondrial metabolism. E6 oncoproteins increased the levels of protein subunits of mitochondrial complexes (I to IV), as well as the ATP synthase and the protein levels of the voltage dependent anion channel (VDAC). Although E6 proteins increased the basal and leak respiration, the ATP-linked respiration was not affected, which resulted in mitochondrial decoupling. This increase in leak respiration was associated to the induction of oxidative stress (OS) in cells expressing E6, as it was observed by the fall in the glutathione/glutathione disulfide (GSH/GSSG) rate and the increase in reactive oxygen species (ROS), carbonylated proteins, and DNA damage. Taken together, our results suggest that E6 oncoproteins from HPV16 and HPV18 are inducers of mitochondrial metabolism.
Collapse
|
32
|
Tsai FJ, Lai MT, Cheng J, Chao SCC, Korla PK, Chen HJ, Lin CM, Tsai MH, Hua CH, Jan CI, Jinawath N, Wu CC, Chen CM, Kuo BYT, Chen LW, Yang J, Hwang T, Sheu JJC. Novel K6-K14 keratin fusion enhances cancer stemness and aggressiveness in oral squamous cell carcinoma. Oncogene 2019; 38:5113-5126. [PMID: 30867567 DOI: 10.1038/s41388-019-0781-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Keratin intermediate filament (IF) is one component of cellular architectures, which provides necessary mechanical support to conquer environmental stresses. Recent findings reveal its involvement in mechano-transduction and the associated stem cell reprogramming, suggesting the possible roles in cancer development. Here, we report t(12;17)(q13.13;q21.2) chromosomal rearrangement as the most common fusion event in OSCC, resulting in a variety of inter-keratin fusions. Junction site mapping verified 9 in-frame K6-K14 variants, three of which were correlated with lymph node invasion, late tumor stages (T3/T4) and shorter disease-free survival times. When expressed in OSCC cells, those fusion variants disturbed wild-type K14 organization through direct interaction or aggregate formation, leading to perinuclear structure loss and nuclear deformation. Protein array analyses showed the ability of K6-K14 variant 7 (K6-K14/V7) to upregulate TGF-β and G-CSF signaling, which contributed to cell stemness, drug tolerance, and cell aggressiveness. Notably, K6-K14/V7-expressing cells easily adapted to a soft 3-D culture condition in vitro and formed larger, less differentiated tumors in vivo. In addition to the anti-mechanical-stress activity, our data uncover oncogenic functionality of novel keratin filaments caused by gene fusions during OSCC development.
Collapse
Affiliation(s)
- Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung, 40447, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Ming-Tsung Lai
- Department of Pathology, Taichung Hospital, Ministry of Health and Welfare, Taichung, 40343, Taiwan
| | - Jack Cheng
- Human Genetic Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Stev Chun-Chin Chao
- Human Genetic Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Praveen Kumar Korla
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 80424, Taiwan
| | - Hui-Jye Chen
- School of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chung-Ming Lin
- Department of Biotechnology, Ming Chuan University, Taoyuan, 33348, Taiwan
| | - Ming-Hsui Tsai
- Department of Otolaryngology, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Chun-Hung Hua
- Department of Otolaryngology, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Chia-Ing Jan
- Department of Pathology, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Natini Jinawath
- Program in Translation Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Chia-Chen Wu
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 80424, Taiwan
| | - Chih-Mei Chen
- Human Genetic Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Brian Yu-Ting Kuo
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 80424, Taiwan
| | - Li-Wen Chen
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 80424, Taiwan
| | - Jacky Yang
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 80424, Taiwan
| | - Tritium Hwang
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 80424, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Human Genetic Center, China Medical University Hospital, Taichung, 40447, Taiwan. .,School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan. .,Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 80424, Taiwan. .,Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
33
|
Lee JW, Parameswaran J, Sandoval-Schaefer T, Eoh KJ, Yang DH, Zhu F, Mehra R, Sharma R, Gaffney SG, Perry EB, Townsend JP, Serebriiskii IG, Golemis EA, Issaeva N, Yarbrough WG, Koo JS, Burtness B. Combined Aurora Kinase A (AURKA) and WEE1 Inhibition Demonstrates Synergistic Antitumor Effect in Squamous Cell Carcinoma of the Head and Neck. Clin Cancer Res 2019; 25:3430-3442. [PMID: 30755439 DOI: 10.1158/1078-0432.ccr-18-0440] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 01/17/2019] [Accepted: 02/07/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Human papillomavirus (HPV)-negative head and neck squamous cell carcinomas (HNSCC) commonly bear disruptive mutations in TP53, resulting in treatment resistance. In these patients, direct targeting of p53 has not been successful, but synthetic lethal approaches have promise. Although Aurora A kinase (AURKA) is overexpressed and an oncogenic driver, its inhibition has only modest clinical effects in HPV-negative HNSCC. We explored a novel combination of AURKA and WEE1 inhibition to overcome intrinsic resistance to AURKA inhibition.Experimental Design: AURKA protein expression was determined by fluorescence-based automated quantitative analysis of patient specimens and correlated with survival. We evaluated treatment with the AURKA inhibitor alisertib (MLN8237) and the WEE1 inhibitor adavosertib (AZD1775), alone or in combination, using in vitro and in vivo HNSCC models. RESULTS Elevated nuclear AURKA correlated with worse survival among patients with p16(-) HNSCC. Alisertib caused spindle defects, G2-M arrest and inhibitory CDK1 phosphorylation, and cytostasis in TP53 mutant HNSCC FaDu and UNC7 cells. Addition of adavosertib to alisertib instead triggered mitotic entry and mitotic catastrophe. Moreover, in FaDu and Detroit 562 xenografts, this combination demonstrated synergistic effects on tumor growth and extended overall survival compared with either vehicle or single-agent treatment. CONCLUSIONS Combinatorial treatment with adavosertib and alisertib leads to synergistic antitumor effects in in vitro and in vivo HNSCC models. These findings suggest a novel rational combination, providing a promising therapeutic avenue for TP53-mutated cancers.
Collapse
Affiliation(s)
- Jong Woo Lee
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Janaki Parameswaran
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Teresa Sandoval-Schaefer
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Kyung Jin Eoh
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Dong-Hua Yang
- Biosample Repository, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Fang Zhu
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Ranee Mehra
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Roshan Sharma
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Stephen G Gaffney
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Elizabeth B Perry
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Ilya G Serebriiskii
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Natalia Issaeva
- Section of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Wendell G Yarbrough
- Section of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Ja Seok Koo
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Barbara Burtness
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
34
|
Jiang X, Ye J, Dong Z, Hu S, Xiao M. Novel genetic alterations and their impact on target therapy response in head and neck squamous cell carcinoma. Cancer Manag Res 2019; 11:1321-1336. [PMID: 30799957 PMCID: PMC6371928 DOI: 10.2147/cmar.s187780] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is highly variable by tumor site, histologic type, molecular characteristics, and clinical outcome. During recent years, emerging targeted therapies have been focused on driver genes. HNSCC involves several genetic alterations, such as co-occurrence, multiple feedback loops, and cross-talk communications. These different kinds of genetic alterations interact with each other and mediate targeted therapy response. In the current review, it is emphasized that future treatment strategy in HNSCC will not solely be based on "synthetic lethality" approaches directed against overactivated genes. More importantly, biologic, genetic, and epigenetic alterations of HNSCC will be taken into consideration to guide the therapy. The emerging genetic alterations in HNSCC and its effect on targeted therapy response are discussed in detail. Hopefully, novel combination regimens for the treatment of HNSCC can be developed.
Collapse
Affiliation(s)
- Xiaohua Jiang
- Department of Otolaryngology Head and Neck Surgery, Sir Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,
| | - Jing Ye
- Department of Otolaryngology Head and Neck Surgery, Sir Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,
| | - Zhihuai Dong
- Department of Otolaryngology Head and Neck Surgery, Sir Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,
| | - Sunhong Hu
- Department of Otolaryngology Head and Neck Surgery, Sir Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,
| | - Mang Xiao
- Department of Otolaryngology Head and Neck Surgery, Sir Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,
| |
Collapse
|
35
|
Pan C, Issaeva N, Yarbrough WG. HPV-driven oropharyngeal cancer: current knowledge of molecular biology and mechanisms of carcinogenesis. CANCERS OF THE HEAD & NECK 2018; 3:12. [PMID: 31093365 PMCID: PMC6460765 DOI: 10.1186/s41199-018-0039-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/09/2018] [Indexed: 12/21/2022]
Abstract
Understanding of oropharyngeal squamous cell carcinoma has significantly progressed over the last decades, and the concept that this disease can be subdivided into two distinct entities based on human papilloma virus (HPV) status has gained acceptance. To combat the constantly growing epidemic of HPV+ oropharyngeal cancer, further investigation and characterization the unique features of the disease, along with the development and implementation of new, targeted therapies, is crucial. In this review, we summarize the etiology, pathogenesis, diagnosis, treatment, and molecular characteristics of HPV-associated oropharyngeal squamous cell carcinoma.
Collapse
Affiliation(s)
- Cassie Pan
- 1Department of Surgery, Division of Otolaryngology, Yale University, New Haven, CT USA
| | - Natalia Issaeva
- 2Department of Otolaryngology/Head and Neck Surgery; Lineberger Cancer Center, University of North Carolina at Chapel Hill, 170 Manning Drive, Campus Box 7070, Chapel Hill, NC 27599 USA
| | - Wendell G Yarbrough
- 2Department of Otolaryngology/Head and Neck Surgery; Lineberger Cancer Center, University of North Carolina at Chapel Hill, 170 Manning Drive, Campus Box 7070, Chapel Hill, NC 27599 USA
| |
Collapse
|
36
|
Morse E, Judson B, Husain Z, Burtness B, Yarbrough WG, Sasaki C, Cheraghlou S, Mehra S. Treatment Delays in Primarily Resected Oropharyngeal Squamous Cell Carcinoma: National Benchmarks and Survival Associations. Otolaryngol Head Neck Surg 2018; 159:987-997. [PMID: 30060700 DOI: 10.1177/0194599818779052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To characterize treatment delays in surgically treated oropharyngeal cancer, identify factors associated with delays, and associate delays with survival. STUDY DESIGN Retrospective cross-sectional analysis. SETTING Commission on Cancer-accredited institutions. SUBJECTS AND METHODS We identified patients in the National Cancer Database with surgically treated oropharyngeal cancer. We characterized the durations of diagnosis-to-treatment initiation, surgery-to-radiation treatment, radiation treatment duration, total treatment package, and diagnosis-to-treatment end intervals as medians. We associated delays with patient, tumor, and treatment factors via multivariable logistic regression analysis and with overall survival by Cox proportional hazards regression. RESULTS In total, 3708 patients met inclusion criteria. Median durations of diagnosis-to-treatment initiation, surgery-to-radiation treatment, radiation treatment duration, total treatment package, and diagnosis-to-treatment end intervals were 27, 42, 47, 90, and 106 days, respectively. Medicaid and human papillomavirus (HPV) negativity were associated with delays. Delayed total treatment package and diagnosis-to-treatment end intervals were associated with decreased survival (hazard ratio [HR] = 1.81 [1.29-2.54], P = .001 and HR = 1.97 [1.39-2.78], P < .001, respectively); this was maintained following HPV stratification. Delays in the surgery-to-radiation treatment interval were associated with decreased overall survival in HPV-negative but not HPV-positive patients (HR = 2.05 [1.19-3.52], P = .010 and HR = 1.15 [0.74-1.80], P = .535, respectively). Diagnosis-to-treatment initiation and radiation treatment duration were not associated with overall survival in the overall cohort (HR = 1.21 [0.86-1.72], P = .280 and HR = 1.40 [0.99-1.99], P = .061, respectively); however, following stratification, delayed radiation treatment duration approached significance in HPV-negative but not HPV-positive patients (HR = 1.60 [0.96-2.68], P = .072 and HR = 1.35 [0.84-2.18], P = .220). CONCLUSION Treatment durations identified here can serve as national benchmarks and for institutions to compare quality to their peers. Distinct benchmarks should be applied to HPV-negative and HPV-positive patients.
Collapse
Affiliation(s)
- Elliot Morse
- Department of Surgery, Division of Otolaryngology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Benjamin Judson
- Department of Surgery, Division of Otolaryngology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zain Husain
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Barbara Burtness
- Department of Medical Oncology, Yale University School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - Wendell G Yarbrough
- Department of Surgery, Division of Otolaryngology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Clarence Sasaki
- Department of Surgery, Division of Otolaryngology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shayan Cheraghlou
- Department of Surgery, Division of Otolaryngology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Saral Mehra
- Department of Surgery, Division of Otolaryngology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
37
|
Cheraghlou S, Torabi SJ, Husain ZA, Otremba MD, Osborn HA, Mehra S, Yarbrough WG, Burtness BA, Judson BL. HPV status in unknown primary head and neck cancer: Prognosis and treatment outcomes. Laryngoscope 2018; 129:684-691. [DOI: 10.1002/lary.27475] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Shayan Cheraghlou
- Division of Otolaryngology, Department of Surgery; New Haven Connecticut U.S.A
| | - Sina J. Torabi
- Division of Otolaryngology, Department of Surgery; New Haven Connecticut U.S.A
| | - Zain A. Husain
- Department of Therapeutic Radiology; New Haven Connecticut U.S.A
- Yale Cancer Center; New Haven Connecticut U.S.A
| | - Michael D. Otremba
- Division of Otolaryngology, Department of Surgery; New Haven Connecticut U.S.A
| | - Heather A. Osborn
- Division of Otolaryngology, Department of Surgery; New Haven Connecticut U.S.A
- Department of Medicine; Yale School of Medicine; New Haven Connecticut U.S.A
| | - Saral Mehra
- Division of Otolaryngology, Department of Surgery; New Haven Connecticut U.S.A
- Yale Cancer Center; New Haven Connecticut U.S.A
| | - Wendell G. Yarbrough
- Division of Otolaryngology, Department of Surgery; New Haven Connecticut U.S.A
- Department of Pathology; New Haven Connecticut U.S.A
- Yale Cancer Center; New Haven Connecticut U.S.A
| | - Barbara A. Burtness
- Department of Medicine; Yale School of Medicine; New Haven Connecticut U.S.A
- Yale Cancer Center; New Haven Connecticut U.S.A
| | - Benjamin L. Judson
- Division of Otolaryngology, Department of Surgery; New Haven Connecticut U.S.A
- Yale Cancer Center; New Haven Connecticut U.S.A
| |
Collapse
|
38
|
Zhang Y, Zhao C, Li L, Hsu CC, Zhu JK, Iliuk A, Tao WA. High-Throughput Phosphorylation Screening and Validation through Ti(IV)-Nanopolymer Functionalized Reverse Phase Phosphoprotein Array. Anal Chem 2018; 90:10263-10270. [PMID: 30103608 DOI: 10.1021/acs.analchem.8b01843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Protein phosphorylation is one of the most important and widespread molecular regulatory mechanisms that controls almost all aspects of cellular functions in animals and plants. Here, we introduce a novel chemically functionalized reverse phase phosphoprotein array (RP3A) to capture and measure phosphoproteomes. RP3A uses polyamidoamine (PAMAM) dendrimer immobilized with Ti(IV) ions to functionalize nitrocellulose membrane, facilitating specific chelation of phosphoproteins from complex protein samples on the array. Globular, water-soluble Ti(IV)-dendrimer allows the RP3A surface to be highly accessible to phosphoproteins multidimensionally, and the captured phosphoproteins were subsequently detected using the same validated antibodies as in regular reverse-phase protein arrays. The novel chemical strategy demonstrated superior specificity (1:10 000), high sensitivity (fg level), and good quantitative nature ( R2 = 0.99) for measuring phosphoproteins. We further applied quantitative phosphoproteomics followed by RP3A to validate the phosphorylation status of a panel of phosphoproteins in response to environmental stresses in Arabidopsis.
Collapse
Affiliation(s)
- Ying Zhang
- Shanghai Minhang Hospital and Institutes of Biomedical Sciences , Fudan University , Shanghai 200032 , P. R. China
| | - Chunzhao Zhao
- Department of Horticulture and Landscape Architecture , Purdue University , West Lafayette , Indiana 47907 , United States.,Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences , Chinese Academy of Sciences , Shanghai 200032 , China
| | - Li Li
- Tymora Analytical Operations , West Lafayette , Indiana 47906 , United States
| | - Chuan-Chih Hsu
- Department of Biochemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture , Purdue University , West Lafayette , Indiana 47907 , United States.,Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences , Chinese Academy of Sciences , Shanghai 200032 , China
| | - Anton Iliuk
- Tymora Analytical Operations , West Lafayette , Indiana 47906 , United States
| | - W Andy Tao
- Department of Biochemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
39
|
Kiessling SY, Broglie MA, Soltermann A, Huber GF, Stoeckli SJ. Comparison of PI3K Pathway in HPV-Associated Oropharyngeal Cancer With and Without Tobacco Exposure. Laryngoscope Investig Otolaryngol 2018; 3:283-289. [PMID: 30186959 PMCID: PMC6119789 DOI: 10.1002/lio2.175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/23/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Objectives The aim of the study was to evaluate whether HPV associated OPSCC with tobacco exposure follows a different carcinogenic pathway compared to HPV associated OPSCC without tobacco exposure and to investigate its prognostic significance. The question was addressed with focus on components of the PI3K pathway. Methods 184 patients with newly diagnosed OPSCC treated with curative intent were consecutively enrolled. The expression level of p16, p53, PI3K, mTOR, and PTEN was assessed by immunohistochemistry and analyzed in relation to the risk factors HPV status and tobacco exposure. Results 94 of 184 (51%) patients were p16 positive, p53 overexpression was detected in 48 of 184 (26%) cases. PI3K overexpression with 70 of 184 (38%) cases was significantly higher in p16 positive tumors. mTOR overexpression was present in 90 of 184 (49%) cases and significantly higher in p16 negative tumors. PTEN loss was found in 42 of 184 (23%) cases without association to p16 expression. p16 positive OPSCC showed lower rates of p53 expression and mTOR expression as well as higher rates of PI3K expression irrespective of tobacco exposure. Survival analysis showed a distinct intermediate survival rate of p16 positive smokers. The markers PI3K, mTOR, and PTEN did not have a significant impact on survival. Conclusion HPV associated OPSCC with tobacco exposure follows the same expression level of the PI3K pathway as HPV associated OPSCC without tobacco exposure. The impaired survival rate of the intermediate risk group cannot be explained by different expression patterns of PI3K, mTOR, and PTEN. Level of Evidence 2b
Collapse
Affiliation(s)
- Si-Young Kiessling
- Department of Otorhinolaryngology, Head and Neck Surgery Cantonal Hospital of St. Gallen St. Gallen Switzerland
| | - Martina Anja Broglie
- Department of Otorhinolaryngology, Head and Neck Surgery Cantonal Hospital of St. Gallen St. Gallen Switzerland
| | - Alex Soltermann
- Institute of Pathology and Molecular Pathology University Hospital of Zurich Zurich Switzerland
| | - Gerhard Frank Huber
- Department of Otorhinolaryngology, Head and Neck Surgery University Hospital of Zurich Zurich Switzerland.,University of Zurich Zurich Switzerland
| | - Sandro Johannes Stoeckli
- Department of Otorhinolaryngology, Head and Neck Surgery Cantonal Hospital of St. Gallen St. Gallen Switzerland
| |
Collapse
|
40
|
Morse E, Judson B, Husain Z, Burtness B, Yarbrough W, Sasaki C, Cheraghlou S, Mehra S. National treatment times in oropharyngeal cancer treated with primary radiation or chemoradiation. Oral Oncol 2018; 82:122-130. [DOI: 10.1016/j.oraloncology.2018.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/24/2018] [Accepted: 02/11/2018] [Indexed: 10/16/2022]
|
41
|
Jung K, Kang H, Mehra R. Targeting phosphoinositide 3-kinase (PI3K) in head and neck squamous cell carcinoma (HNSCC). CANCERS OF THE HEAD & NECK 2018; 3:3. [PMID: 31093356 PMCID: PMC6460806 DOI: 10.1186/s41199-018-0030-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/09/2018] [Indexed: 12/15/2022]
Abstract
The landscape of head and neck squamous cell carcinoma (HNSCC) has been changing rapidly due to growing proportion of HPV-related disease and development of new therapeutic agents. At the same time, there has been a constant need for individually tailored treatment based on genetic biomarkers in order to optimize patient survival and alleviate treatment-related toxicities. In this regard, aberrations of PI3K pathway have important clinical implications in the treatment of HNSCC. They frequently constitute ‘gain of function’ mutations which trigger oncogenesis, and PI3K mutations can also lead to emergence of drug resistance after treatment with EGFR inhibitors. In this article, we review PI3K pathway as a target of treatment for HNSCC and summarize PI3K/mTOR inhibitors that are currently under clinical trials. In light of recent advancement of immune checkpoint inhibitors, consideration of PI3K inhibitors as potential immune modulators is also suggested.
Collapse
Affiliation(s)
- Kyungsuk Jung
- 1Department of Medicine, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA USA
| | - Hyunseok Kang
- 2Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 201 N Broadway, Baltimore, MD USA
| | - Ranee Mehra
- 2Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 201 N Broadway, Baltimore, MD USA
| |
Collapse
|
42
|
Abstract
Head and neck squamous cell carcinomas (HNSCCs) arise in the mucosal linings of the upper aerodigestive tract and are unexpectedly heterogeneous in nature. Classical risk factors are smoking and excessive alcohol consumption, and in recent years, the role of human papillomavirus (HPV) has emerged, particularly in oropharyngeal tumours. HPV-induced oropharyngeal tumours are considered a separate disease entity, which recently has manifested in an adapted prognostic staging system while the results of de-intensified treatment trials are awaited. Carcinogenesis caused by HPV in the mucosal linings of the upper aerodigestive tract remains an enigma, but with some recent observations, a model can be proposed. In 2015, The Cancer Genome Atlas (TCGA) consortium published a comprehensive molecular catalogue on HNSCC. Frequent mutations of novel druggable oncogenes were not demonstrated, but the existence of a subgroup of genetically distinct HPV-negative head and neck tumours with favourable prognoses was confirmed. Tumours can be further subclassified based on genomic profiling. However, the amount of molecular data is currently overwhelming and requires detailed biological interpretation. It also became apparent that HNSCC is a disease characterized by frequent mutations that create neoantigens, indicating that immunotherapies might be effective. In 2016, the first results of immunotherapy trials with immune checkpoint inhibitors were published, and these may be considered as a paradigm shift in head and neck oncology.
Collapse
Affiliation(s)
- C René Leemans
- Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center
| | - Peter J F Snijders
- Department of Pathology, VU University Medical Center, Amsterdam, Netherlands
| | - Ruud H Brakenhoff
- Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center
| |
Collapse
|
43
|
Pan C, Yarbrough WG, Issaeva N. Advances in biomarkers and treatment strategies for HPV-associated head and neck cancer. Oncoscience 2018; 5:140-141. [PMID: 30035167 PMCID: PMC6049307 DOI: 10.18632/oncoscience.425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Cassie Pan
- Department of Surgery, Division of Otolaryngology, Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Wendell G Yarbrough
- Department of Surgery, Division of Otolaryngology, Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Natalia Issaeva
- Department of Surgery, Division of Otolaryngology, Yale Cancer Center, Yale University, New Haven, CT, USA
| |
Collapse
|
44
|
Upfront surgery versus definitive chemoradiotherapy in patients with human Papillomavirus-associated oropharyngeal squamous cell cancer. Oral Oncol 2018; 79:64-70. [DOI: 10.1016/j.oraloncology.2018.02.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/12/2018] [Accepted: 02/21/2018] [Indexed: 11/22/2022]
|
45
|
Protein Expression in Tonsillar and Base of Tongue Cancer and in Relation to Human Papillomavirus (HPV) and Clinical Outcome. Int J Mol Sci 2018; 19:ijms19040978. [PMID: 29587383 PMCID: PMC5979357 DOI: 10.3390/ijms19040978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 01/07/2023] Open
Abstract
Human papillomavirus (HPV) is a major etiological factor for tonsillar and the base of tongue cancer (TSCC/BOTSCC). HPV-positive and HPV-negative TSCC/BOTSCC present major differences in mutations, mRNA expression and clinical outcome. Earlier protein studies on TSCC/BOTSCC have mainly analyzed individual proteins. Here, the aim was to compare a larger set of cancer and immune related proteins in HPV-positive and HPV-negative TSCC/BOTSCC in relation to normal tissue, presence of HPV, and clinical outcome. Fresh frozen tissue from 42 HPV-positive and 17 HPV-negative TSCC/BOTSCC, and corresponding normal samples, were analyzed for expression of 167 proteins using two Olink multiplex immunoassays. Major differences in protein expression between TSCC/BOTSCC and normal tissue were identified, especially in chemo- and cytokines. Moreover, 34 proteins, mainly immunoregulatory proteins and chemokines, were differently expressed in HPV-positive vs HPV-negative TSCC/BOTSCC. Several proteins were potentially related to clinical outcome for HPV-positive or HPV-negative tumors. For HPV-positive tumors, these were mostly related to angiogenesis and hypoxia. Correlation with clinical outcome of one of these, VEGFA, was validated by immunohistochemistry. Differences in immune related proteins between HPV-positive and HPV-negative TSCC/BOTSCC reflect the stronger activity of the immune defense in the former. Angiogenesis related proteins might serve as potential targets for therapy in HPV-positive TSCC/BOTSCC.
Collapse
|
46
|
Metastatic model of HPV+ oropharyngeal squamous cell carcinoma demonstrates heterogeneity in tumor metastasis. Oncotarget 2018; 7:24194-207. [PMID: 27013584 PMCID: PMC5029694 DOI: 10.18632/oncotarget.8254] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/06/2016] [Indexed: 11/25/2022] Open
Abstract
Human papillomavirus induced (HPV+) cancer incidence is rapidly rising, comprising 60–80% of oropharyngeal squamous cell carcinomas (OPSCCs); while rare, recurrent/metastatic disease accounts for nearly all related deaths. An in vivo pre-clinical model for these invasive cancers is necessary for testing new therapies. We characterize an immune competent recurrent/metastatic HPV+ murine model of OPSSC which consists of four lung metastatic (MLM) cell lines isolated from an animal with HPV+ OPSCC that failed cisplatin/radiation treatment. These individual metastatic clonal cell lines were tested to verify their origin (parental transgene expression and define their physiological properties: proliferation, metastatic potential, heterogeneity and sensitivity/resistance to cisplatin and radiation. All MLMs retain expression of parental HPV16 E6 and E7 and degrade P53 yet are heterogeneous from one another and from the parental cell line as defined by Illumina expression microarray. Consistent with this, reverse phase protein array defines differences in protein expression/activation between MLMs as well as the parental line. While in vitro growth rates of MLMs are slower than the parental line, in vivo growth of MLM clones is greatly enhanced. Moreover, in vivo resistance to standard therapies is dramatically increased in 3 of the 4 MLMs. Lymphatic and/or lung metastasis occurs 100% of the time in one MLM line. This recurrent/metastatic model of HPV+ OPSCC retains the characteristics evident in refractory human disease (heterogeneity, resistance to therapy, metastasis in lymph nodes/lungs) thus serving as an ideal translational system to test novel therapeutics. Moreover, this system may provide insights into the molecular mechanisms of metastasis.
Collapse
|
47
|
García-Carracedo D, Villaronga MÁ, Álvarez-Teijeiro S, Hermida-Prado F, Santamaría I, Allonca E, Suárez-Fernández L, Gonzalez MV, Balbín M, Astudillo A, Martínez-Camblor P, Su GH, Rodrigo JP, García-Pedrero JM. Impact of PI3K/AKT/mTOR pathway activation on the prognosis of patients with head and neck squamous cell carcinomas. Oncotarget 2018; 7:29780-93. [PMID: 27119232 PMCID: PMC5045433 DOI: 10.18632/oncotarget.8957] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
The PI3K/AKT/mTOR signaling pathway has emerged as one of the most frequently deregulated in head and neck squamous cell carcinomas (HNSCC). Numerous alterations of various upstream and downstream components have been described; however, their prognostic significance and impact on HNSCC patient survival remains to be established. This was addressed using an unbiased cohort of 93 consecutive and homogeneous surgically treated HNSCC patients and results confirmed in 432 HNSCC patients. Our findings reveal the high prevalence of S6 phosphorylation, a surrogate marker of mTORC1 activation, in HNSCC specimens (>70%) and, more importantly, demonstrate its relevance on clinical outcome. Phosphorylation of ribosomal protein S6 on either Ser235/236 or Ser240/244 was consistently and significantly correlated with favorable prognosis, although with differences depending on the tumor site. Thus, p-S6 expression was significantly correlated with better disease-specific survival specifically in the subgroup of laryngeal carcinoma patients (P< 0.001). In addition, multivariate regression models revealed p-S6 to be an inverse and independent predictor of lymph-node metastasis (P= 0.004) and distant metastasis (P= 0.006). Taken together, this study unveils an unprecedented correlation of mTOR activation with improved clinical outcome in patients with laryngeal carcinomas and uncovers the potential of p-S6 expression as a good prognostic biomarker and an inverse predictor of lymph node and distant metastases. These results should be of broad interest as immunohistochemical detection of p-S6 may help to stratify patients and guide treatment decisions.
Collapse
Affiliation(s)
- Darío García-Carracedo
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Maria Ángeles Villaronga
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Iñigo Santamaría
- Department of Molecular Oncology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Eva Allonca
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Laura Suárez-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Maria Victoria Gonzalez
- Department of Pathology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Milagros Balbín
- Department of Molecular Oncology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Aurora Astudillo
- Department of Pathology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | | | - Gloria H Su
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.,Departments of Pathology, Columbia University Medical Center, New York, NY, USA.,Departments of Otolaryngology/Head and Neck Surgery, Columbia University Medical Center, New York, NY, USA
| | - Juan Pablo Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Juana María García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
48
|
Cho J, Johnson DE, Grandis JR. Therapeutic Implications of the Genetic Landscape of Head and Neck Cancer. Semin Radiat Oncol 2018; 28:2-11. [PMID: 29173752 PMCID: PMC6293987 DOI: 10.1016/j.semradonc.2017.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Large-scale sequencing studies of head and neck squamous cell carcinoma (HNSCC) have elucidated the genetic changes that characterize HNSCC. These findings have supported the development of therapeutic strategies that target key components of aberrant signaling pathways and immune dysregulation. Cumulative evidence suggests that these agents in combination with radiotherapy may have synergistic effects. This review highlights the predictive biomarkers that have been identified from HNSCC genomic studies and implications on the development of molecular-targeting agents that may effectively treat patients with HNSCC, especially when used in combination with radiation.
Collapse
Affiliation(s)
- Janice Cho
- Wake Forest School of Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Daniel E Johnson
- Department of Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA
| | - Jennifer R Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA.
| |
Collapse
|
49
|
Liu Y, Duan L, Tian J, Song D, Zhang M, Zhao S, Yin Z, Xiang X, Li X. Role of the Akt/mTOR signaling pathway in human papillomavirus-associated nasal and sinonasal inverted papilloma. Acta Biochim Biophys Sin (Shanghai) 2017; 49:1067-1074. [PMID: 29040365 DOI: 10.1093/abbs/gmx108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Indexed: 11/12/2022] Open
Abstract
Nasal and sinonasal inverted papilloma (NSIP) is a benign tumor in which surface epithelial cells grow downward into the underlying supportive tissue with varying degrees of metaplasia. Human papillomavirus (HPV) has been proposed as the causal agent in the pathogenesis of this disease. Many studies have shown that HPV can activate the Akt/mechanistic target of rapamycin (mTOR) signaling pathway, but the role of this pathway in HPV-associated NSIP is largely unknown. In this study, we enrolled 40 control tissue samples and 80 NSIP tissue samples. HPV genotyping showed that 47 of the 80 examined cases of NSIP were HPV-positive (58.8%), and the most common subtype was HPV11 (20/53, 37.7%). The immunohistochemistry showed statistically significant differences in phosphorylated Akt and phosphorylated S6 ribosomal protein staining among control samples, HPV-positive NSIP and HPV-negative NSIP. The HPV11 L1-L2 plasmid increased the proliferation of normal human nasopharyngeal epithelial NP69-SV40T cells and human nasopharyngeal cancer CNE1 cells. Meanwhile, rapamycin, an mTOR inhibitor, reversed the increased cell proliferation induced by the HPV11 L1-L2 plasmid. Western blot analysis showed that Akt/mTOR/S6 were overexpressed in NP69-SV40T cells and CNE1 cells infected with the HPV11 L1-L2 plasmid. These data demonstrate that HPV promotes cell proliferation through the Akt/mTOR signaling pathway in NSIP.
Collapse
Affiliation(s)
- Yongliang Liu
- Department of Otolaryngolgogy, Qilu Hospital of Shandong University, Jinan, China
- Department of Otolaryngolgogy, Zibo Central Hospital affiliated to Shandong University, Zibo, China
| | - Lihua Duan
- Department of Otolaryngolgogy, Zibo Central Hospital affiliated to Shandong University, Zibo, China
| | - Jie Tian
- Department of Otolaryngolgogy, Zibo Central Hospital affiliated to Shandong University, Zibo, China
| | - Daoliang Song
- Department of Otolaryngolgogy, Zibo Central Hospital affiliated to Shandong University, Zibo, China
| | - Min Zhang
- Department of Otolaryngolgogy, Zibo Central Hospital affiliated to Shandong University, Zibo, China
| | - Shenlin Zhao
- Department of Otolaryngolgogy, Zibo Central Hospital affiliated to Shandong University, Zibo, China
| | - Zhaofu Yin
- Department of Otolaryngolgogy, Zibo Central Hospital affiliated to Shandong University, Zibo, China
| | - Xinxin Xiang
- Central of Translation Medicine, Zibo Central Hospital affiliated to Shandong University, Zibo, China
| | - Xuezhong Li
- Department of Otolaryngolgogy, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
50
|
Horn D, Freudlsperger C, Holzinger D, Kunzmann K, Plinkert P, Dyckhoff G, Hoffmann J, Freier K, Hess J. Upregulation of pAKT(Ser473) expression in progression of HPV-positive oropharyngeal squamous cell carcinoma. Head Neck 2017; 39:2397-2405. [DOI: 10.1002/hed.24910] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 06/06/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Dominik Horn
- Department of Oral and Cranio-Maxillofacial Surgery; Heidelberg University Hospital; Heidelberg Germany
| | - Christian Freudlsperger
- Department of Oral and Cranio-Maxillofacial Surgery; Heidelberg University Hospital; Heidelberg Germany
| | - Dana Holzinger
- Molecular Diagnostics of Oncogenic Infections; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Kevin Kunzmann
- Institute for Medical Biometry and Informatics; Heidelberg University Hospital; Heidelberg Germany
| | - Peter Plinkert
- Department of Otorhinolaryngology, Head and Neck Surgery; Heidelberg University Hospital; Heidelberg Germany
| | - Gerhard Dyckhoff
- Department of Otorhinolaryngology, Head and Neck Surgery; Heidelberg University Hospital; Heidelberg Germany
| | - Jürgen Hoffmann
- Department of Oral and Cranio-Maxillofacial Surgery; Heidelberg University Hospital; Heidelberg Germany
| | - Kolja Freier
- Department of Oral and Cranio-Maxillofacial Surgery; Heidelberg University Hospital; Heidelberg Germany
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery; Heidelberg University Hospital; Heidelberg Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors; German Cancer Research Center (DKFZ); Heidelberg Germany
| |
Collapse
|