1
|
Klein-Scory S, Baraniskin A, Schmiegel W, Mika T, Schroers R, Held S, Heinrich K, Tougeron D, Modest DP, Schwaner I, Eucker J, Pihusch R, Stauch M, Kaiser F, Kahl C, Karthaus M, Müller C, Burkart C, Stintzing S, Heinemann V. Evaluation of circulating tumor DNA as a prognostic and predictive biomarker in BRAF V600E mutated colorectal cancer-results from the FIRE-4.5 study. Mol Oncol 2024. [PMID: 39630848 DOI: 10.1002/1878-0261.13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/05/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
The randomized FIRE-4.5 (AIO KRK0116) trial compared first-line therapy with FOLFOXIRI (folinic acid, fluorouracil, oxaliplatin, and irinotecan) plus either cetuximab or bevacizumab in B-Raf proto-oncogene, serine/threonine kinase (BRAF) V600E-mutant metastatic colorectal cancer (mCRC) patients. This study was accompanied by a prospective translational project analyzing cell-free circulating tumor DNA (ctDNA) in plasma to test whether ctDNA analysis may help to guide clinical treatment decision making. FIRE-4.5 included mCRC patients with BRAF V600E mutation detected by tissue-based analyses. Liquid biopsies (LBs) were collected at baseline (pre-treatment) and during therapy. Digital droplet PCR (ddPCR) technology was applied for determination of BRAF mutations and the in vitro diagnostics (IVD)-certified ONCOBEAM RAS procedure for analysis of RAS mutations. The BRAF V600E variants in ctDNA were analyzable in 66 patients at start of the therapy, at baseline. No BRAF V600E mutations were detected in 26% (17/66) of patients and was associated with a significantly longer progression-free survival (PFS: 13.2 vs 6.5 months; HR 0.47; P = 0.014) and overall survival (OS: 36.8 vs 13.2 months; HR 0.35; P = 0.02) as compared to ctDNA mutant patients. Patients with detectable BRAF mutations showed a clear superiority of FOLFOXIRI plus bevacizumab with regard to PFS (10.4 vs 5.7 months; HR 0.4; P = 0.009) and OS (16.6 vs 11.6 months; HR 0.5; P = 0.15), while this was not the case for BRAF wild-type patients. Follow-up LBs were obtained from 51 patients. Patients converting from BRAF V600E mutant to a BRAF V600 wild-type status (36%, N = 18) had a superior PFS (8.6 vs 2.3 months; P = 0.0002) and OS (17.4 vs 5.1 months; P < 0.0001) compared to patients with stable or increased mutational allele frequency (12%, N = 6). Those patients also achieved a significantly greater disease control rate (89% vs 20%; P = 0.008). In conclusion, LB evaluating ctDNA is informative and may help to guide treatment in patients with BRAF V600E-mutated mCRC.
Collapse
Affiliation(s)
- Susanne Klein-Scory
- Department of Internal Medicine, Universitaetsklinikum Knappschaftskrankenhaus Bochum GmbH, Ruhr University Bochum, Germany
| | - Alexander Baraniskin
- Department of Internal Medicine, Universitaetsklinikum Knappschaftskrankenhaus Bochum GmbH, Ruhr University Bochum, Germany
- Department of Hematology, Oncology and Palliative Care, Evangelisches Krankenhaus Hamm gGmbH, Germany
| | - Wolff Schmiegel
- Department of Internal Medicine, Universitaetsklinikum Knappschaftskrankenhaus Bochum GmbH, Ruhr University Bochum, Germany
| | - Thomas Mika
- Department of Internal Medicine, Universitaetsklinikum Knappschaftskrankenhaus Bochum GmbH, Ruhr University Bochum, Germany
| | - Roland Schroers
- Department of Internal Medicine, Universitaetsklinikum Knappschaftskrankenhaus Bochum GmbH, Ruhr University Bochum, Germany
| | | | - Kathrin Heinrich
- Department of Oncology, LMU University Hospital, Munich, Germany
| | - David Tougeron
- Department of Hepato-Gastroenterology, Poitiers University Hospital and University of Poitiers, France
| | - Dominik P Modest
- Department of Hematology, Oncology, and Cancer Immunology (CCM), Charité-Universitaetsmedizin Berlin, Germany
| | - Ingo Schwaner
- Onkologische Schwerpunktpraxis Kurfürstendamm, Berlin, Germany
| | - Jan Eucker
- Department of Hematology, Oncology, and Cancer Immunology (CBF), Charité-Universitaetsmedizin Berlin, Germany
| | | | | | | | - Christoph Kahl
- Klinikum Magdeburg gGmbH, Department of Hematology, Oncology and Palliative Care Magdeburg, Germany
- Department of Internal Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Germany
| | - Meinolf Karthaus
- Department of Hematology, Oncology and Palliative Care, München Klinik Harlaching and Neuperlach, Germany
| | | | | | - Sebastian Stintzing
- Department of Hematology, Oncology, and Cancer Immunology (CCM), Charité-Universitaetsmedizin Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Site Berlin Heidelberg, Germany
| | - Volker Heinemann
- Department of Medicine III, LMU Klinikum, Comprehensive Cancer Center Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Site Munich Heidelberg, Germany
| |
Collapse
|
2
|
Trentin L, Basile D, Lazzari E, Fietta E, Rossi A, Graziani F, Cappetta A, Simionato F, D'Amore E, Perbellini O, Aprile G. Implementation of a MSRE ddPCR method for the detection of methylated WIF1 and NPY genes in colorectal cancer patients. TUMORI JOURNAL 2024; 110:375-385. [PMID: 39101541 DOI: 10.1177/03008916241261675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
BACKGROUND Colorectal cancer is a worldwide leading cause of death accounting for high-rate mortality. Mutations in the epidermal growth factor receptor and RAS/MAPK pathways, as well as altered methylation genes profiles, have been described as molecular mechanisms promoting and sustaining tumour development and progression. Aberrant methylation is a well-known epigenetic mechanism involved in gene regulation; particularly several genes were reported as hypermethylated in CRC. Recently, it was shown that epigenetic alterations in genes such as neuropeptide y, proenkephalin and Wnt inhibitory factor 1 can be used as promising disease biomarkers. Almost all methods developed for the DNA methylation analysis combined next generation sequencing, conventional qRT-PCR or ddPCR with the prior DNA modification with sodium bisulfite. METHODS AND RESULTS We implemented a ddPCR method to assess the methylation status of Wnt inhibitory factor 1 and neuropeptide y using the methylation sensitive restriction enzyme approach that does not impact on DNA quality and guarantees the discrimination of DNA methylation independent of bisulfite conversion. CONCLUSIONS We showed that this method is robust and sensitive also allowing the monitoring of CRC disease progression when applied to circulating free DNA samples from liquid biopsies, proving to be a fast and easy to implement assay to be used for the monitoring of the methylation pattern of clinically relevant target genes.
Collapse
Affiliation(s)
- Luca Trentin
- AULSS 8 Berica Ospedale San Bortolo, Laboratory of Haematology, Vicenza, Italy
- AULSS 2 Marca Trevigiana, Histocompatibility Laboratory, Treviso, Italy
| | - Debora Basile
- AULSS 8 Berica Ospedale San Bortolo, UOC Oncologia, Vicenza, Italy
- Unit of Medical Oncology, Ospedale San Giovanni di Dio, Crotone, Italy
| | - Elena Lazzari
- AULSS 8 Berica Ospedale San Bortolo, UOC Anatomia Patologica, Vicenza, Italy
| | - Elena Fietta
- AULSS 8 Berica Ospedale San Bortolo, Laboratory of Haematology, Vicenza, Italy
| | - Alice Rossi
- AULSS 8 Berica Ospedale San Bortolo, UOC Oncologia, Vicenza, Italy
| | | | | | | | - Emanuele D'Amore
- AULSS 8 Berica Ospedale San Bortolo, UOC Anatomia Patologica, Vicenza, Italy
| | - Omar Perbellini
- AULSS 8 Berica Ospedale San Bortolo, Laboratory of Haematology, Vicenza, Italy
| | - Giuseppe Aprile
- AULSS 8 Berica Ospedale San Bortolo, UOC Oncologia, Vicenza, Italy
| |
Collapse
|
3
|
Osumi H, Shinozaki E, Nakamura Y, Esaki T, Yasui H, Taniguchi H, Satake H, Sunakawa Y, Komatsu Y, Kagawa Y, Denda T, Shiozawa M, Satoh T, Nishina T, Goto M, Takahashi N, Kato T, Bando H, Yamaguchi K, Yoshino T. Clinical features associated with NeoRAS wild-type metastatic colorectal cancer A SCRUM-Japan GOZILA substudy. Nat Commun 2024; 15:5885. [PMID: 39003289 PMCID: PMC11246505 DOI: 10.1038/s41467-024-50026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/11/2024] [Indexed: 07/15/2024] Open
Abstract
"NeoRAS WT" refers to the loss of RAS mutations (MTs) following first-line treatment in metastatic colorectal cancer (mCRC). We evaluate the incidence and clinicopathological characteristics of NeoRAS WT mCRC using next-generation sequencing of plasma circulating tumor DNA. Patients with mCRC enrolled in the GOZILA study initially diagnosed with tissue RAS MT mCRC and received subsequent systemic therapy are eligible. NeoRAS WT is defined as the absence of detectable RAS MT in plasma and assessed in all eligible patients (Group A) and in a subgroup with at least one somatic alteration detected in plasma (Group B). Overall, 478 patients are included. NeoRAS WT prevalence is 19.0% (91/478) in Group A and 9.8% (42/429) in Group B. Absence of liver or lymph node metastasis and tissue RAS MTs other than KRAS exon 2 MTs are significantly associated with NeoRAS WT emergence. Overall, 1/6 and 2/6 patients with NeoRAS WT treated with anti-EGFR monoclonal antibodies (mAbs) show partial response and stable disease for ≥6 months, respectively. NeoRAS WT mCRC is observed at a meaningful prevalence, and anti-EGFR mAb-based therapy may be effective.
Collapse
Affiliation(s)
- Hiroki Osumi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Eiji Shinozaki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Taito Esaki
- Department of Gastrointestinal and Medical Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Hisateru Yasui
- Department of Medical Oncology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hiroya Taniguchi
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hironaga Satake
- Department of Medical Oncology, Kochi Medical School, Kochi, Japan
| | - Yu Sunakawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yoshito Komatsu
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Japan
| | - Yoshinori Kagawa
- Department of Gastroenterological Surgery, Osaka General Medical Center, Osaka, Japan
| | - Tadamichi Denda
- Division of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Manabu Shiozawa
- Department of Gastroenterological Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Taroh Satoh
- Palliative and Supportive Care Center, Osaka University Hospital, Suita, Japan
| | - Tomohiro Nishina
- Department of Gastrointestinal Medical Oncology, National Hospital Organization Shikoku Cancer Center, Ehime, Japan
| | - Masahiro Goto
- Department of Cancer Chemotherapy Center, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
| | - Naoki Takahashi
- Department of Gastroenterology, Saitama Cancer Center, Saitama, Japan
| | - Takeshi Kato
- Department of Surgery, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| |
Collapse
|
4
|
Harada K, Yuki S, Kawamoto Y, Nakamura T, Kaneko S, Ishida K, Sakamoto N, Komatsu Y. Anti-epidermal growth factor receptor treatment for patients with Neo RAS wild-type metastatic colorectal cancer: a case report of two cases. Ther Adv Med Oncol 2023; 15:17588359231216090. [PMID: 38033418 PMCID: PMC10685759 DOI: 10.1177/17588359231216090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
The NeoRAS phenomenon is defined as the conversion of tumor RAS status from mutant-type (MT) to wild-type (WT) after systemic chemotherapy in metastatic colorectal cancer (mCRC). Cetuximab, an anti-epidermal growth factor receptor (EGFR) antibody, is effective in patients with RAS WT mCRC but ineffective in those with RAS MT mCRC; however, its outcome in patients with NeoRAS WT mCRC is unclear. Herein, we report two cases of NeoRAS WT mCRC that responded clinically to anti-EGFR treatment. The first was a 40-year-old man with synchronous peritoneal metastatic rectosigmoid cancer. The first RAS testing on tumor tissue revealed a KRAS G12C mutation, which was converted to RAS WT after two lines of chemotherapy, as assessed by liquid biopsy. After initiating irinotecan plus cetuximab treatment, a computed tomography (CT) scan revealed that malignant ascites had resolved. The treatment was discontinued after 4 months because of disease progression. The second was a 68-year-old male patient with synchronous liver metastasis from sigmoid colon cancer. The KRAS G12D mutation, initially detected in tumor tissue, was not detected by liquid biopsy after six lines of chemotherapy. Cetuximab monotherapy was initiated, and the liver metastases shrank significantly. The patient continued cetuximab monotherapy for 8 months without disease progression. Our cases demonstrate the efficacy of anti-EGFR therapy for NeoRAS WT mCRC and highlight the importance of capturing the gene mutation profile throughout the clinical course for optimal treatment selection.
Collapse
Affiliation(s)
- Kazuaki Harada
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Satoshi Yuki
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Yasuyuki Kawamoto
- Division of Cancer Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Takeaki Nakamura
- Division of Cancer Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Shiho Kaneko
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Koichi Ishida
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Yoshito Komatsu
- Division of Cancer Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| |
Collapse
|
5
|
Ren J, Xu G, Liu H, He N, Zhao Z, Wang M, Gu P, Chen Z, Deng Y, Wu D, Li S. A Chamber-Based Digital PCR Based on a Microfluidic Chip for the Absolute Quantification and Analysis of KRAS Mutation. BIOSENSORS 2023; 13:778. [PMID: 37622864 PMCID: PMC10452697 DOI: 10.3390/bios13080778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023]
Abstract
The Kirsten rat sarcoma virus gene (KRAS) is the most common tumor in human cancer, and KRAS plays an important role in the growth of tumor cells. Normal KRAS inhibits tumor cell growth. When mutated, it will continuously stimulate cell growth, resulting in tumor development. There are currently few drugs that target the KRAS gene. Here, we developed a microfluidic chip. The chip design uses parallel fluid channels combined with cylindrical chamber arrays to generate 20,000 cylindrical microchambers. The microfluidic chip designed by us can be used for the microsegmentation of KRAS gene samples. The thermal cycling required for the PCR stage is performed on a flat-panel instrument and detected using a four-color fluorescence system. "Glass-PDMS-glass" sandwich structure effectively reduces reagent volatilization; in addition, a valve is installed at the sample inlet and outlet on the upper layer of the chip to facilitate automatic control. The liquid separation performance of the chip was verified by an automated platform. Finally, using the constructed KRAS gene mutation detection system, it is verified that the chip has good application potential for digital polymerase chain reaction (dPCR). The experimental results show that the chip has a stable performance and can achieve a dynamic detection range of four orders of magnitude and a gene mutation detection of 0.2%. In addition, the four-color fluorescence detection system developed based on the chip can distinguish three different KRAS gene mutation types simultaneously on a single chip.
Collapse
Affiliation(s)
- Jie Ren
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Gangwei Xu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
- Hunan Shengzhou Biotechnology Company Limited, Shanghai 200439, China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Zhehao Zhao
- Hunan Shengzhou Biotechnology Company Limited, Shanghai 200439, China
| | - Meiling Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Peipei Gu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Dongping Wu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
- Hunan Shengzhou Biotechnology Company Limited, Shanghai 200439, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
- Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
6
|
Ros J, Matito J, Villacampa G, Comas R, Garcia A, Martini G, Baraibar I, Saoudi N, Salvà F, Martin Á, Antista M, Toledo R, Martinelli E, Pietrantonio F, Boccaccino A, Cremolini C, Dientsmann R, Tabernero J, Vivancos A, Elez E. Plasmatic BRAF-V600E allele fraction as a prognostic factor in metastatic colorectal cancer treated with BRAF combinatorial treatments. Ann Oncol 2023; 34:543-552. [PMID: 36921693 DOI: 10.1016/j.annonc.2023.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Combination of a BRAF inhibitor (BRAFi) and an anti-epidermal growth factor receptor (EGFR), with or without a MEK inhibitor (MEKi), improves survival in BRAF-V600E-mutant metastatic colorectal cancer (mCRC) over standard chemotherapy. However, responses are heterogeneous and there are no available biomarkers to assess patient prognosis or guide doublet- or triplet-based regimens. In order to better characterize the clinical heterogeneity observed, we assessed the prognostic and predictive role of the plasmatic BRAF allele fraction (AF) for these combinations. PATIENTS AND METHODS A prospective discovery cohort including 47 BRAF-V600E-mutant patients treated with BRAFi-anti-EGFR ± MEKi in clinical trials and real-world practice was evaluated. Results were validated in an independent multicenter cohort (n= 29). Plasmatic BRAF-V600E AF cut-off at baseline was defined in the discovery cohort with droplet digital PCR (ddPCR). All patients had tissue-confirmed BRAF-V600E mutations. RESULTS Patients with high AF have major frequency of liver metastases and more metastatic sites. In the discovery cohort, median progression-free survival (PFS) and overall survival (OS) were 4.4 and 10.1 months, respectively. Patients with high BRAF AF (≥2%, n = 23) showed worse PFS [hazard ratio (HR) 2.97, 95% confidence interval (CI) 1.55-5.69; P = 0.001] and worse OS (HR 3.28, 95% CI 1.58-6.81; P = 0.001) than low-BRAF AF patients (<2%, n = 24). In the multivariable analysis, BRAF AF levels maintained independent significance. In the validation cohort, high BRAF AF was associated with worse PFS (HR 3.83, 95% CI 1.60-9.17; P = 0.002) and a trend toward worse OS was observed (HR 1.86, 95% CI 0.80-4.34; P = 0.15). An exploratory analysis of predictive value showed that high-BRAF AF patients (n = 35) benefited more from triplet therapy than low-BRAF AF patients (n = 41; PFS and OS interaction tests, P < 0.01). CONCLUSIONS Plasmatic BRAF AF determined by ddPCR is a reliable surrogate of tumor burden and aggressiveness in BRAF-V600E-mutant mCRC treated with a BRAFi plus an anti-EGFR with or without a MEKi and identifies patients who may benefit from treatment intensification. Our results warrant further validation of plasmatic BRAF AF to refine clinical stratification and guide treatment strategies.
Collapse
Affiliation(s)
- J Ros
- Medical Oncology Department, Vall d'Hebron Hospital Campus, Barcelona, Spain; Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy; Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - J Matito
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - G Villacampa
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; The Institute of Cancer Research, London, UK
| | - R Comas
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - A Garcia
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - G Martini
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - I Baraibar
- Medical Oncology Department, Vall d'Hebron Hospital Campus, Barcelona, Spain; Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - N Saoudi
- Medical Oncology Department, Vall d'Hebron Hospital Campus, Barcelona, Spain; Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - F Salvà
- Medical Oncology Department, Vall d'Hebron Hospital Campus, Barcelona, Spain; Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Á Martin
- Medical Oncology Department, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - M Antista
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan
| | - R Toledo
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - E Martinelli
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - F Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan
| | - A Boccaccino
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - C Cremolini
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - R Dientsmann
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - J Tabernero
- Medical Oncology Department, Vall d'Hebron Hospital Campus, Barcelona, Spain; Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - A Vivancos
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - E Elez
- Medical Oncology Department, Vall d'Hebron Hospital Campus, Barcelona, Spain; Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| |
Collapse
|
7
|
Eluri M, Kopetz S, Parseghian CM. Truncal Dynamics May Trump: Serial ctDNA to Predict Early Therapeutic Response. Clin Cancer Res 2023; 29:302-304. [PMID: 36378102 PMCID: PMC9852066 DOI: 10.1158/1078-0432.ccr-22-2793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
SUMMARY Promising utility of using serial ctDNA in metastatic colorectal cancer to both refine patient selection, reduce toxicity due to chemotherapy, and to evaluate emerging resistance mechanisms may lead the way to novel therapeutic strategies. However, important questions remain in validating its use as a predictive biomarker of treatment response. See related article by Vidal et al., p. 379.
Collapse
Affiliation(s)
- Madhulika Eluri
- Department of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine M. Parseghian
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Functional Investigation of the Tumoural Heterogeneity of Intrahepatic Cholangiocarcinoma by In Vivo PET-CT Navigation: A Proof-of-Concept Study. J Clin Med 2022; 11:jcm11185451. [PMID: 36143097 PMCID: PMC9501620 DOI: 10.3390/jcm11185451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Intra-tumoural heterogeneity (IH) is a major determinant of resistance to therapy and outcomes but remains poorly translated into clinical practice. Intrahepatic cholangiocarcinoma (ICC) often presents as large heterogeneous masses at imaging. The present study proposed an innovative in vivo technique to functionally assess the IH of ICC. Preoperative 18F-FDG PET-CT and intraoperative ultrasonography were merged to perform the intraoperative navigation of functional tumour heterogeneity. The tumour areas with the highest and the lowest metabolism (SUV) at PET-CT were selected, identified during surgery, and sampled. Three consecutive patients underwent the procedure. The areas with the highest uptake at PET-CT had higher proliferation index (KI67) values and higher immune infiltration compared to areas with the lowest uptake. One of the patients showed a heterogeneous presence of FGFR2 translocation within the samples. Tumour heterogeneity at PET-CT may drive biopsy to sample the most informative ICC areas. Even more relevant, these preliminary data show the possibility of achieving a non-invasive evaluation of IH in ICC, paving the way for an imaging-based precision-medicine approach.
Collapse
|
9
|
Hot-Spot-Specific Probe (HSSP) for Rapid and Accurate Detection of KRAS Mutations in Colorectal Cancer. BIOSENSORS 2022; 12:bios12080597. [PMID: 36004993 PMCID: PMC9406089 DOI: 10.3390/bios12080597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022]
Abstract
Detection of oncogene mutations has significance for early diagnosis, customized treatment, treatment progression, and drug resistance monitoring. Here, we introduce a rapid, sensitive, and specific mutation detection assay based on the hot-spot-specific probe (HSSP), with improved clinical utility compared to conventional technologies. We designed HSSP to recognize KRAS mutations in the DNA of colorectal cancer tissues (HSSP-G12D (GGT→GAT) and HSSP-G13D (GGC→GAC)) by integration with real-time PCR. During the PCR analysis, HSSP attaches to the target mutation sequence for interference with the amplification. Then, we determine the mutation detection efficiency by calculating the difference in the cycle threshold (Ct) values between HSSP-G12D and HSSP-G13D. The limit of detection to detect KRAS mutations (G12D and G13D) was 5–10% of the mutant allele in wild-type populations. This is superior to the conventional methods (≥30% mutant allele). In addition, this technology takes a short time (less than 1.5 h), and the cost of one sample is as low as USD 2. We verified clinical utility using 69 tissue samples from colorectal cancer patients. The clinical sensitivity and specificity of the HSSP assay were higher (84% for G12D and 92% for G13D) compared to the direct sequencing assay (80%). Therefore, HSSP, in combination with real-time PCR, provides a rapid, highly sensitive, specific, and low-cost assay for detecting cancer-related mutations. Compared to the gold standard methods such as NGS, this technique shows the possibility of the field application of rapid mutation detection and may be useful in a variety of applications, such as customized treatment and cancer monitoring.
Collapse
|
10
|
Chan HT, Chin YM, Low SK. Circulating Tumor DNA-Based Genomic Profiling Assays in Adult Solid Tumors for Precision Oncology: Recent Advancements and Future Challenges. Cancers (Basel) 2022; 14:3275. [PMID: 35805046 PMCID: PMC9265547 DOI: 10.3390/cancers14133275] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 12/04/2022] Open
Abstract
Genomic profiling using tumor biopsies remains the standard approach for the selection of approved molecular targeted therapies. However, this is often limited by its invasiveness, feasibility, and poor sample quality. Liquid biopsies provide a less invasive approach while capturing a contemporaneous and comprehensive tumor genomic profile. Recent advancements in the detection of circulating tumor DNA (ctDNA) from plasma samples at satisfactory sensitivity, specificity, and detection concordance to tumor tissues have facilitated the approval of ctDNA-based genomic profiling to be integrated into regular clinical practice. The recent approval of both single-gene and multigene assays to detect genetic biomarkers from plasma cell-free DNA (cfDNA) as companion diagnostic tools for molecular targeted therapies has transformed the therapeutic decision-making procedure for advanced solid tumors. Despite the increasing use of cfDNA-based molecular profiling, there is an ongoing debate about a 'plasma first' or 'tissue first' approach toward genomic testing for advanced solid malignancies. Both approaches present possible advantages and disadvantages, and these factors should be carefully considered to personalize and select the most appropriate genomic assay. This review focuses on the recent advancements of cfDNA-based genomic profiling assays in advanced solid tumors while highlighting the major challenges that should be tackled to formulate evidence-based guidelines in recommending the 'right assay for the right patient at the right time'.
Collapse
Affiliation(s)
- Hiu Ting Chan
- Project for Development of Liquid Biopsy Diagnosis, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (Y.M.C.); (S.-K.L.)
| | - Yoon Ming Chin
- Project for Development of Liquid Biopsy Diagnosis, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (Y.M.C.); (S.-K.L.)
- Cancer Precision Medicine, Inc., Kawasaki 213-0012, Japan
| | - Siew-Kee Low
- Project for Development of Liquid Biopsy Diagnosis, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (Y.M.C.); (S.-K.L.)
| |
Collapse
|
11
|
Zhang Y, Zhao Y, Cole T, Zheng J, Bayinqiaoge, Guo J, Tang SY. Microfluidic flow cytometry for blood-based biomarker analysis. Analyst 2022; 147:2895-2917. [PMID: 35611964 DOI: 10.1039/d2an00283c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Flow cytometry has proven its capability for rapid and quantitative analysis of individual cells and the separation of targeted biological samples from others. The emerging microfluidics technology makes it possible to develop portable microfluidic diagnostic devices for point-of-care testing (POCT) applications. Microfluidic flow cytometry (MFCM), where flow cytometry and microfluidics are combined to achieve similar or even superior functionalities on microfluidic chips, provides a powerful single-cell characterisation and sorting tool for various biological samples. In recent years, researchers have made great progress in the development of the MFCM including focusing, detecting, and sorting subsystems, and its unique capabilities have been demonstrated in various biological applications. Moreover, liquid biopsy using blood can provide various physiological and pathological information. Thus, biomarkers from blood are regarded as meaningful circulating transporters of signal molecules or particles and have great potential to be used as non (or minimally)-invasive diagnostic tools. In this review, we summarise the recent progress of the key subsystems for MFCM and its achievements in blood-based biomarker analysis. Finally, foresight is offered to highlight the research challenges faced by MFCM in expanding into blood-based POCT applications, potentially yielding commercialisation opportunities.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Ying Zhao
- National Chengdu Centre of Safety Evaluation of Drugs, West China Hospital of Sichuan University, Chengdu, China
| | - Tim Cole
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Jiahao Zheng
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Bayinqiaoge
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Jinhong Guo
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
12
|
Long S. In pursuit of sensitivity: Lessons learned from viral nucleic acid detection and quantification on the Raindance ddPCR platform. Methods 2022; 201:82-95. [PMID: 33839286 PMCID: PMC8501152 DOI: 10.1016/j.ymeth.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Sensitive PCR detection of viral nucleic acids plays a critical role in infectious disease research, diagnosis and monitoring. In the context of SARS-CoV-2 detection, recent reports indicate that digital PCR-based tests are significantly more sensitive than traditional qPCR tests. Numerous factors can influence digital PCR reaction sensitivity. In this review, using a model for human HIV infection and the Raindance ddPCR platform as an example, we describe technical aspects that contribute to sensitive viral signal detection in DNA and RNA from tissue samples, which often harbor viral reservoirs and serve as better predictors of disease outcome and indicators of treatment efficacy.
Collapse
Affiliation(s)
- Samuel Long
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States.
| |
Collapse
|
13
|
Yang W, Zou J, Li Y, Liu R, Yan Z, Chen S, Zhao X, Guo W, Huang M, Li W, Zhu X, Chen Z. Longitudinal Circulating Tumor DNA Profiling in Metastatic Colorectal Cancer During Anti-EGFR Therapy. Front Oncol 2022; 12:830816. [PMID: 35280779 PMCID: PMC8908369 DOI: 10.3389/fonc.2022.830816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMetastatic colorectal cancer (mCRC) is a heterogenous disease with limited precision medicine and targeted therapy options. Monoclonal antibodies against epidermal growth factor receptor (EGFR) have been a crucial treatment option for mCRC. However, proper biomarkers for predicting therapeutic response remain unknown. As a non-invasive test, circulating tumor DNA (ctDNA) is appropriately positioned to reveal tumor heterogeneity and evolution, as it can be used in real-time genomic profiling. To evaluate the significance of ctDNA in monitoring the dynamic therapeutic response and prognosis of mCRC, we detected the baseline and dynamic changes of ctDNA in mCRC patients receiving anti-EGFR therapies.MethodsA single-center study was conducted retrospectively. Plasma samples from mCRC patients who received anti-EGFR therapies were collected at baseline and continuous treatment points. The ctDNA was extracted and sequenced with a target panel of tumor-related genes via next-generation sequencing (NGS). Clinical information was also collected and analyzed.ResultsWe conducted dynamic sampling of 22 mCRC patients, analyzed 130 plasma samples, obtained a baseline genomic mutation profile of the patients. In total, 54 variations were detected in 22 plasma samples, with a positive rate of 77.3% (17/22). TP53 was the most mutated gene (59.1%, 13/22), followed by APC (18.2%, 4/22). There was a high concordance rate of genomic characteristics between the tumor tissue test by polymerase chain reaction and ctDNA test by NGS. The mutation discrepancy increased with an extended course of treatment. During remission TP53 and APC were the most frequently decreased clonal mutations and KRAS, NRAS, ERBB2 and PIK3CA were the most decreased subclonal mutations. Both mutation types were increased during progression. The ctDNA decreased earlier than did the responses of computed tomography and traditional tumor markers (carbohydrate antigen 19-9 and carcinoembryonic antigen [CEA]). Lactate dehydrogenase level (P = 0.041), CEA level (P = 0.038), and primary lesion site (P = 0.038) were independent risk factors that influenced overall survival. Moreover, patients with RAS mutations tended to have a worse prognosis (P = 0.072).ConclusionsThis study demonstrates that ctDNA is a promising biomarker for monitoring the dynamic response to treatment and determining the prognosis of mCRC.
Collapse
Affiliation(s)
- Wentao Yang
- Department of Gastrointestinal Medical Oncology Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianling Zou
- Department of Gastrointestinal Medical Oncology Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Rujiao Liu
- Department of Gastrointestinal Medical Oncology Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengqing Yan
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Shiqing Chen
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Xiaoying Zhao
- Department of Gastrointestinal Medical Oncology Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weijian Guo
- Department of Gastrointestinal Medical Oncology Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingzhu Huang
- Department of Gastrointestinal Medical Oncology Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhua Li
- Department of Gastrointestinal Medical Oncology Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaodong Zhu
- Department of Gastrointestinal Medical Oncology Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiyu Chen
- Department of Gastrointestinal Medical Oncology Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Zhiyu Chen,
| |
Collapse
|
14
|
Naidoo M, Piercey O, Tie J. Circulating Tumour DNA and Colorectal Cancer: the Next Revolutionary Biomarker? Curr Oncol Rep 2021; 23:140. [PMID: 34735665 DOI: 10.1007/s11912-021-01137-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Improving outcomes for patients with colorectal cancer in both the adjuvant and metastatic setting has been challenging. Here, we review the current and future directions for using ctDNA in clinical practice. RECENT FINDINGS Circulating tumour DNA (ctDNA) with its ability to detect minimal residual disease is beginning to refine the way we assess recurrence risk in the adjuvant setting. We can potentially tailor treatments to reduce recurrence risk and minimize treatment toxicity. In the metastatic setting, ctDNA can provide a less invasive method of detecting clinically important genetic changes to guide molecularly targeted treatment and to identify mechanisms of molecular resistance. ctDNA can be a surrogate marker for treatment response and help guide the timing of anti-EGFR rechallenge. We await the results of the randomized clinical trials assessing clinical utility of ctDNA in both the adjuvant and metastatic setting before incorporating ctDNA into clinical practice.
Collapse
Affiliation(s)
- Mahendra Naidoo
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Parkville Melbourne, VIC 3000, Australia.
| | - Oliver Piercey
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Parkville Melbourne, VIC 3000, Australia
| | - Jeanne Tie
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Parkville Melbourne, VIC 3000, Australia.,Division of Personalised Oncology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.,Department of Medical Oncology, Western Health, Melbourne, VIC, 3021, Australia.,Sir Peter MacCallum, Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
15
|
Teo MYM, Fong JY, Lim WM, In LLA. Current Advances and Trends in KRAS Targeted Therapies for Colorectal Cancer. Mol Cancer Res 2021; 20:30-44. [PMID: 34462329 DOI: 10.1158/1541-7786.mcr-21-0248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/25/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
Kirsten Rat Sarcoma (KRAS) gene somatic point mutations is one of the most prominently mutated proto-oncogenes known to date, and accounts for approximately 60% of all colorectal cancer cases. One of the most exciting drug development areas against colorectal cancer is the targeting of undruggable kinases and kinase-substrate molecules, although whether and how they can be integrated with other therapies remains a question. Current clinical trial data have provided supporting evidence on the use of combination treatment involving MEK inhibitors and either one of the PI3K inhibitors for patients with metastatic colorectal cancer to avoid the development of resistance and provide effective therapeutic outcome rather than using a single agent alone. Many clinical trials are also ongoing to evaluate different combinations of these pathway inhibitors in combination with immunotherapy for patients with colorectal cancer whose current palliative treatment options are limited. Nevertheless, continued assessment of these targeted cancer therapies will eventually allow patients with colorectal cancer to be treated using a personalized medicine approach. In this review, the most recent scientific approaches and clinical trials targeting KRAS mutations directly or indirectly for the management of colorectal cancer are discussed.
Collapse
Affiliation(s)
- Michelle Yee Mun Teo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Jung Yin Fong
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Wan Ming Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia.
| |
Collapse
|
16
|
Nakamura Y, Shitara K. Development of circulating tumour DNA analysis for gastrointestinal cancers. ESMO Open 2021; 5:e000600. [PMID: 32830648 PMCID: PMC7003376 DOI: 10.1136/esmoopen-2019-000600] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/24/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022] Open
Abstract
Comprehensive genomic profiling using next-generation sequencing (NGS) enables the identification of multiple genomic biomarkers established in advanced gastrointestinal (GI) cancers. However, tissue-based NGS has limitations, such as long turnaround time and failure to detect tumour heterogeneity. Recently, the analysis of circulating tumour DNA (ctDNA) using polymerase chain reaction-based or NGS-based methods has demonstrated the capability to detect genomic alterations with high accuracy compared with tumour tissue analysis with short turnaround time and identify heterogeneous resistance mechanisms. Furthermore, ctDNA analysis can be repeatedly performed on disease progression to clarify resistant clones. Clinical trials that test the outcome of a selected targeted therapy based on a ctDNA result are ongoing to prospectively evaluate the clinical utility of ctDNA analysis. Furthermore, the improvement of ctDNA analysis beyond current technical limits of mutation-based ctDNA detection methods has expanded the potential for detecting the presence of tumours in patients with no clinically evident disease, such as minimal residual disease and early cancer. Although a careful understanding of the advantages and limitations are required and further prospective studies are needed, the ctDNA analysis has the potential to overcome several challenges in the treatment of various types of cancers at all stages, including GI cancers.
Collapse
Affiliation(s)
- Yoshiaki Nakamura
- Biobank Translational Research Support Section, Translational Research Management Division, Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Chiba, Japan; Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
| |
Collapse
|
17
|
Jia N, Chang L, Gao X, Shi X, Dou X, Guan M, Shao Y, Li N, Cheng Y, Ying H, Sun Z, Zhou Y, Zhao L, Zhou J, Bai C. Association of emergence of new mutations in circulating tumuor DNA during chemotherapy with clinical outcome in metastatic colorectal cancer. BMC Cancer 2021; 21:845. [PMID: 34294055 PMCID: PMC8296534 DOI: 10.1186/s12885-021-08309-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/06/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The understanding of molecular changes in mCRC during treatment could be used to personalise therapeutic strategies. The aim of our study was to explore the association of circulating tumour DNA (ctDNA) with clinical outcome in metastatic colorectal cancer (mCRC). METHODS Sequential patients with mCRC receiving standard first-line chemotherapy were included prospectively. Both plasma ctDNA and serum CEA were assessed in samples obtained before treatment and after 4 cycles of chemotherapy (C4). Computed tomography (CT) scans were carried out at baseline and post-C4 (8-10 weeks) and were assessed using Response Evaluation Criteria In Solid Tumours version 1.1 (RECIST v1.1). Target-capture deep sequencing with a panel covering 1021 genes was performed to detected somatic mutations in ctDNA. RESULTS A total of 20 patients were prospectively included and treated with either leucovorin, fluorouracil, and oxaliplatin (FOLFOX) (15/20) or leucovorin, fluorouracil, and irinotecan (FOLFIRI) (5/20). Median follow-up was 6.9 months (range 1.6-26.6). Somatic mutations for baseline ctDNA analysis were identified in 85% (17/20) of the patients. Mutation variations of ctDNA after chemotherapy were tested in 16/20 (80.0%) of the patients. In multivariate analyses, a high baseline molecular tumour burden index (mTBI) in ctDNA was associated with a higher risk of disease progression, as well as emergence of new mutations in ctDNA during chemotherapy. Patients with newly detected mutations had shorter progression-free survival (PFS) compared to those without (median 3.0 versus 7.3 months; hazard ratio (HR), 5.97; 95% confidence interval (CI), 0.70-50.69; P = 0.0003). Fold changes in mTBI from baseline to post-C4 were obtained in 80.0% (16/20) of the patients, which were also related to PFS. Patients with fold reduction in mTBI above 0.8-fold had longer PFS compared to those below (median 9.3 versus 4.1 months; HR, 4.51; 95% CI, 1.29-15.70; P = 0.0008). CONCLUSIONS Newly detected mutations in ctDNA during treatment might potentially be associated with clinical outcome in mCRC and may provide important clinical information.
Collapse
Affiliation(s)
- Ning Jia
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | | | - Xin Gao
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohua Shi
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuelin Dou
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Mei Guan
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yajuan Shao
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Ningning Li
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yuejuan Cheng
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Hongyan Ying
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Zhao Sun
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yanping Zhou
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Lin Zhao
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Jianfeng Zhou
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Chunmei Bai
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
18
|
Xu G, Si H, Jing F, Sun P, Wu D. A Self-Priming Microfluidic Chip with Cushion Chambers for Easy Digital PCR. BIOSENSORS-BASEL 2021; 11:bios11050158. [PMID: 34069758 PMCID: PMC8155915 DOI: 10.3390/bios11050158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/17/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
A polydimethylsiloxane (PDMS)-based self-priming microfluidic chip with cushion chambers is presented in this study for robust and easy-operation digital polymerase chain reaction (dPCR). The chip has only one inlet and can partition samples autonomously through negative pressure, provided by a de-gassed PDMS layer with a multi-level vertical branching microchannel design. Meanwhile, cushion chambers make the chip capable of very robust use for sample partitioning. Finally, the proposed microfluidic chip showed excellent performance in the absolute quantification of a target gene by performing quantitative detection of a 10-fold serial dilution DNA template. Owing to its characteristics of easy operation, low cost, and high robustness, the proposed dPCR chip is expected to further promote the extensive application of digital PCR, especially in resource-limited settings.
Collapse
Affiliation(s)
- Gangwei Xu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China; (G.X.); (H.S.); (P.S.)
| | - Huaqing Si
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China; (G.X.); (H.S.); (P.S.)
| | - Fengxiang Jing
- Shanghai Turtle Technology Company Limited, Shanghai 200439, China;
| | - Peng Sun
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China; (G.X.); (H.S.); (P.S.)
| | - Dongping Wu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China; (G.X.); (H.S.); (P.S.)
- Correspondence:
| |
Collapse
|
19
|
Baviskar T, Momin M, Liu J, Guo B, Bhatt L. Target Genetic Abnormalities for the Treatment of Colon Cancer and Its Progression to Metastasis. Curr Drug Targets 2021; 22:722-733. [PMID: 33213339 DOI: 10.2174/1389450121666201119141015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/09/2022]
Abstract
Colorectal carcinogenesis involves various processes from the accumulation of genetic alterations to genetic and epigenetic modulations and chromosomal abnormalities. It also involves mutations in oncogenes and tumour suppressor genes. Genomic instability plays a vital role in CRC. Advances in modern biological techniques and molecular level studies have identified various genes involved in colorectal cancer (CRC). KRAS, BRAF, PI3K, and p53 genes play a significant role in different phases of CRC. Alteration of these genes leads to development or progression and metastasis colon cancer. This review focuses on the role of KRAS, BRAF, PI3KCA, and TP53 genes in carcinogenesis and their significance in various stages of CRC. It also provides insights on specific modulators acting on these genes. Further, this review discusses the mechanism of the pathways involving these genes in carcinogenesis and current molecules and treatment options under various stages of clinical evaluation.
Collapse
Affiliation(s)
- Tushar Baviskar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Munira Momin
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Jingwen Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Bin Guo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Lokesh Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| |
Collapse
|
20
|
Limited Clinical and Diagnostic Utility of Circulating Tumor DNA Detection in Patients with Early-Stage Well-Differentiated Thyroid Cancer: Comparison with Benign Thyroid Nodules and Healthy Individuals. Healthcare (Basel) 2021; 9:healthcare9040386. [PMID: 33915745 PMCID: PMC8065614 DOI: 10.3390/healthcare9040386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/10/2023] Open
Abstract
Limited data are available on the diagnostic utility of circulating tumor DNA (ctDNA) in early-stage thyroid cancers for BRAF, KRAS, NRAS, and TERT promoter mutations, which are known detectable markers for thyroid cancers. Here, we analyzed the above driver mutations in ctDNA and matched neoplastic tissues from patients with early-stage thyroid cancers in order to investigate diagnostic utility of circulating markers in distinguishing from other mimicking thyroid lesions and healthy individuals. In total, 73 matched neoplastic tissue and plasma samples [thyroid cancers (n = 62), benign thyroid disorders (n = 8), and parathyroid lesions (n = 3)] and 54 plasma samples from healthy individuals (as controls) were analyzed for BRAF, KRAS, NRAS, and TERT promoter mutations using peptide nucleic acid clamp real-time PCR. Although only one patient with an indeterminate lesion on thyroid cytology showed KRAS mutation (codon 146) in the preoperative plasma, that KRAS mutation was not identified in the stage I papillary thyroid carcinoma tissue. In the remaining 72 plasma samples, no other mutations were identified in BRAF, NRAS, and TERT promoter genes. The concordance rates of mutational results between the plasma and tumor tissue or metastatic lymph node were very low. One (1.9%) of the 54 healthy individuals harbored a KRAS mutation in the plasma samples. The ctDNA results did not represent the mutational profile of primary or metastatic thyroid cancers, warranting a caution for interpretation. The clinical utility of BRAF, KRAS, NRAS, and TERT promoter mutation analysis on ctDNA appears to be limited to early-stage thyroid cancers.
Collapse
|
21
|
Camus V, Jardin F. Cell-Free DNA for the Management of Classical Hodgkin Lymphoma. Pharmaceuticals (Basel) 2021; 14:ph14030207. [PMID: 33801462 PMCID: PMC7998645 DOI: 10.3390/ph14030207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cell-free DNA (cfDNA) testing, is an emerging “liquid biopsy” tool for noninvasive lymphoma detection, and an increased amount of data are now available to use this technique with accuracy, especially in classical Hodgkin lymphoma (cHL). The advantages of cfDNA include simplicity of repeated blood sample acquisition over time; dynamic, noninvasive, and quantitative analysis; fast turnover time; reasonable cost; and established consistency with results from tumor genomic DNA. cfDNA analysis offers an easy method for genotyping the overall molecular landscape of pediatric and adult cHL and may help in cases of diagnostic difficulties between cHL and other lymphomas. cfDNA levels are correlated with clinical, prognostic, and metabolic features, and may serve as a therapeutic response evaluation tool and as a minimal residual disease (MRD) biomarker in complement to positron emission tomography (PET). Indeed, cfDNA real-time monitoring by fast high-throughput techniques enables the prompt detection of refractory disease or may help to address PET residual hypermetabolic situations during or at the end of treatment. The major recent works presented and described here demonstrated the clinically meaningful applicability of cfDNA testing in diagnostic and theranostic settings, but also in disease risk assessment, therapeutic molecular response, and monitoring of cHL treatments.
Collapse
Affiliation(s)
- Vincent Camus
- Correspondence: ; Tel.: +33(0)-2-32-08-29-47; Fax: +33-(0)-2-32-08-22-83
| | | |
Collapse
|
22
|
Implementing anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer: challenges and future perspectives. Ann Oncol 2021; 31:30-40. [PMID: 31912793 DOI: 10.1016/j.annonc.2019.10.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) inhibitors are valuable therapeutics in metastatic colorectal cancer (mCRC). Anti-EGFR monoclonal antibodies (MoAbs), such as cetuximab or panitumumab, in combination with chemotherapy are effective treatment options for patients with RAS and BRAF wild-type mCRC. Nevertheless, several issues are still open concerning the optimal use of anti-EGFR drugs in the continuum of care of mCRC. Novel approaches for increasing the efficacy of anti-EGFR therapies include better molecular selection of EGFR-dependent mCRC, intensification of chemotherapy, combination of anti-EGFR MoAbs and immune checkpoint inhibitors, and reintroduction of EGFR blockade or 'rechallenge' in selected patients who have previously responded to anti-EGFR MoAb therapy. An extensive translational research program was conducted in the Cetuximab After Progression in KRAS wIld-type colorectal cancer patients-Gruppo Oncologico dell' Italia Meridionale (CAPRI-GOIM) study with the aims of determining which subgroups of patients could benefit from the continuous inhibition of EGFR, from evaluating the role of liquid biopsy-based and its concordance with tissue-based molecular testing, and from investigating novel potential mechanisms of resistance to anti-EGFR therapies. In this review, we summarize the translational and clinical findings of the CAPRI-GOIM program in the context of the current knowledge of therapeutic strategies and of ongoing research on more appropriate uses of anti-EGFR therapies in RAS and BRAF wild-type mCRC patients.
Collapse
|
23
|
Liu Y, Li L, Tian Y, Zhu X, Sun A, Sun Y, Qiao Y, Qi X, Wang T. Analysis of KRAS mutations in circulating tumor DNA and colorectal cancer tissue. Biotech Histochem 2020; 96:376-383. [PMID: 32876508 DOI: 10.1080/10520295.2020.1810775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mutation status of KRAS is important for anti-EGFR therapy in colorectal cancer (CRC) patients; however, detection of KRAS mutations in circulating tumor DNA (ctDNA) is problematic. We investigated tissue and plasma assays for KRAS mutations in CRC patients. The KRAS status of 407 CRC patients was evaluated using integration of amplification refractory mutation system polymerase chain reaction (PCR), melting curves and wild type DNA blocking (IAMB) in tissue and plasma samples. Disparate cases were re-evaluated by Sanger sequencing of tissue samples. General characteristics and tumor biomarkers including CEA, CA19-9 and CA125 were characterized. The prevalence of KRAS mutations was 40.8% in plasma and 49.1% in tissue. The overall percent agreement, positive percent agreement and negative percent agreement were 82.3, 76.3 and 90.8%, respectively. Older patients and higher TNM stage exhibited increased sensitivity for detecting KRAS mutations in plasma. We found 54.1% of patients with KRAS mutations using parallel analysis of tissue and plasma; only 36.4% of patients were detected by series analysis. We found that plasma based KRAS detection with IAMB technology is an alternative to tissue based KRAS testing. KRAS mutations can be identified more easily when both assays are used together.
Collapse
Affiliation(s)
- Yankui Liu
- Department of Pathology, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Longhai Li
- Department of Epidemiology and Biostatistics, Jiangnan University School of Medicine, Wuxi, China
| | - Yu Tian
- Department of Epidemiology and Biostatistics, Jiangnan University School of Medicine, Wuxi, China
| | - Xiao Zhu
- Department of Good Clinical Practice, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Aijuan Sun
- Key Laboratory of PreMed Precision Medicine, Soochow University, Suzhou, China
| | - Yulong Sun
- Key Laboratory of PreMed Precision Medicine, Soochow University, Suzhou, China
| | - Yan Qiao
- Key Laboratory of PreMed Precision Medicine, Soochow University, Suzhou, China
| | - Xiaowei Qi
- Department of Pathology, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Tao Wang
- Key Laboratory of PreMed Precision Medicine, Soochow University, Suzhou, China
| |
Collapse
|
24
|
Quantitative Detection of Beef and Beef Meat Products Adulteration by the Addition of Duck Meat Using Micro Drop Digital Polymerase Chain Reaction. J FOOD QUALITY 2020. [DOI: 10.1155/2020/2843056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A single-copy specific primer was designed based on beef and duck samples and through drop digital polymerase chain reaction (ddPCR) for the quantitative analysis. Results revealed that the primers had no specific amplification with sheep, chicken, pork, or other species. Both the relationships between meat weight and DNA weight and between DNA weight and DNA copy number (C) were nearly linear within the dynamic range. To calculate the original meat weight from the DNA copy number, the DNA weight was used as the intermediate value to establish the following formulae: Mbeef = 0.058C − 1.86; Mduck = 0.0268C − 7.78. To achieve a good quantitative analysis, all species used in the experiment were made of lean meat. The accuracy of the method was verified by artificial adulteration of different proportions. Testing of the commercial samples indicated that adulteration is present in the market. The established digital PCR method provided an effective tool for monitoring the adulterated meat products and reducing the adulteration in the market.
Collapse
|
25
|
Marmorino F, Boccaccino A, Germani MM, Falcone A, Cremolini C. Immune Checkpoint Inhibitors in pMMR Metastatic Colorectal Cancer: A Tough Challenge. Cancers (Basel) 2020; 12:E2317. [PMID: 32824490 PMCID: PMC7465130 DOI: 10.3390/cancers12082317] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
The introduction of checkpoint inhibitors provided remarkable achievements in several solid tumors but only 5% of metastatic colorectal cancer (mCRC) patients, i.e., those with bearing microsatellite instable (MSI-high)/deficient DNA mismatch repair (dMMR) tumors, benefit from this approach. The favorable effect of immunotherapy in these patients has been postulated to be due to an increase in neoantigens due to their higher somatic mutational load, also associated with an abundant infiltration of immune cells in tumor microenvironment (TME). While in patients with dMMR tumors checkpoint inhibitors allow achieving durable response with dramatic survival improvement, current results in patients with microsatellite stable (MSS or MSI-low)/proficient DNA mismatch repair (pMMR) tumors are disappointing. These tumors show low mutational load and absence of "immune-competent" TME, and are intrinsically resistant to immune checkpoint inhibitors. Modifying the interplay among cancer cells, TME and host immune system is the aim of multiple lines of research in order to enhance the immunogenicity of pMMR mCRC, and exploit immunotherapy also in this field. Here, we focus on the rationale behind ongoing clinical trials aiming at extending the efficacy of immunotherapy beyond the MSI-high/dMMR subgroup with particular regard to academic no-profit studies.
Collapse
Affiliation(s)
- Federica Marmorino
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Risorgimento 36, 56126 Pisa, Italy; (F.M.); (A.B.); (M.M.G.); (A.F.)
- Unit of Medical Oncology, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| | - Alessandra Boccaccino
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Risorgimento 36, 56126 Pisa, Italy; (F.M.); (A.B.); (M.M.G.); (A.F.)
- Unit of Medical Oncology, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| | - Marco Maria Germani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Risorgimento 36, 56126 Pisa, Italy; (F.M.); (A.B.); (M.M.G.); (A.F.)
- Unit of Medical Oncology, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| | - Alfredo Falcone
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Risorgimento 36, 56126 Pisa, Italy; (F.M.); (A.B.); (M.M.G.); (A.F.)
- Unit of Medical Oncology, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Risorgimento 36, 56126 Pisa, Italy; (F.M.); (A.B.); (M.M.G.); (A.F.)
- Unit of Medical Oncology, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| |
Collapse
|
26
|
Martini G, Dienstmann R, Ros J, Baraibar I, Cuadra-Urteaga JL, Salva F, Ciardiello D, Mulet N, Argiles G, Tabernero J, Elez E. Molecular subtypes and the evolution of treatment management in metastatic colorectal cancer. Ther Adv Med Oncol 2020; 12:1758835920936089. [PMID: 32782486 PMCID: PMC7383645 DOI: 10.1177/1758835920936089] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease representing a therapeutic challenge, which is further complicated by the common occurrence of several molecular alterations that confer resistance to standard chemotherapy and targeted agents. Mechanisms of resistance have been identified at multiple levels in the epidermal growth factor receptor (EGFR) pathway, including mutations in KRAS, NRAS, and BRAF V600E, and in the HER2 and MET receptors. These alterations represent oncogenic drivers that may co-exist in the same tumor with other primary and acquired alterations via a clonal selection process. Other molecular alterations include DNA damage repair mechanisms and rare kinase fusions, potentially offering a rationale for new therapeutic strategies. In recent years, genomic analysis has been expanded by a more complex study of epigenomic, transcriptomic, and microenvironment features. The Consensus Molecular Subtype (CMS) classification describes four CRC subtypes with distinct biological characteristics that show prognostic and potential predictive value in the clinical setting. Here, we review the panorama of actionable targets in CRC, and the developments in more recent molecular tests, such as liquid biopsy analysis, which are increasingly offering clinicians a means of ensuring optimal tailored treatments for patients with metastatic CRC according to their evolving molecular profile and treatment history.
Collapse
Affiliation(s)
- Giulia Martini
- Università della Campania L. Vanvitelli, Naples
- Vall d’Hebron Institute of Oncology, P/ Vall D’Hebron 119-121, Barcelona, 08035, Spain
| | | | - Javier Ros
- Vall d’Hebron Hospital, Barcelona, Catalunya, Spain
| | | | | | | | - Davide Ciardiello
- Università della Campania L. Vanvitelli, Naples
- Vall d’Hebron Hospital, Barcelona, Catalunya, Spain
| | - Nuria Mulet
- Vall d’Hebron Hospital, Barcelona, Catalunya, Spain
| | | | | | - Elena Elez
- Vall D’Hebron Institute of Oncology P/Vall D’Hebron 119-121, Barcelona, 08035 Spain
| |
Collapse
|
27
|
Lee KH, Lee TH, Choi MK, Kwon IS, Bae GE, Yeo MK. Identification of a Clinical Cutoff Value for Multiplex KRAS G12/G13 Mutation Detection in Colorectal Adenocarcinoma Patients Using Digital Droplet PCR, and Comparison with Sanger Sequencing and PNA Clamping Assay. J Clin Med 2020; 9:jcm9072283. [PMID: 32708359 PMCID: PMC7409004 DOI: 10.3390/jcm9072283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
KRAS (Kirsten rat sarcoma 2 viral oncogene homolog) is a major predictive marker for anti-epidermal growth factor receptor treatment, and determination of KRAS mutational status is crucial for successful management of colorectal adenocarcinoma. More standardized and accurate methods for testing KRAS mutation, which is vital for therapeutic decision-making, are required. Digital droplet polymerase chain reaction (ddPCR) is an advanced digital PCR technology developed to provide absolute quantitation of target DNA. In this study, we validated the clinical performance of ddPCR in determination of KRAS mutational status, and compared ddPCR results with those obtained by Sanger sequencing and peptide nucleic acid-clamping. Of 81 colorectal adenocarcinoma tissue samples, three repeated sets of KRASG12/G13 mutation were measured by ddPCR, yielding high consistency (ICC = 0.956). Receiver operating characteristic (ROC) curves were constructed to determine KRASG12/G13 mutational status based on mutant allele frequency generated by ddPCR. Using the best threshold cutoff (mutant allele frequency of 7.9%), ddPCR had superior diagnostic sensitivity (100%) and specificity (100%) relative to the two other techniques. Thus, ddPCR is effective for detecting the KRASG12/G13 mutation in colorectal adenocarcinoma tissue samples. By allowing definition of the optimal cutoff, ddPCR represents a potentially useful diagnostic tool that could improve diagnostic sensitivity and specificity.
Collapse
Affiliation(s)
- Kyung Ha Lee
- Department of Surgery, Chungnam National University Hospital, Daejeon 282, Korea;
| | - Tae Hee Lee
- The Biobank of Chungnam National University Hospital, Daejeon 282, Korea;
| | - Min Kyung Choi
- Department of Pathology, Chungnam National University School of Medicine, Daejeon 266, Korea; (M.K.C.); (G.E.B.)
| | - In Sun Kwon
- Clinical Trials Center of Chungnam National University Hospital, Daejeon 282, Korea;
| | - Go Eun Bae
- Department of Pathology, Chungnam National University School of Medicine, Daejeon 266, Korea; (M.K.C.); (G.E.B.)
| | - Min-Kyung Yeo
- Department of Pathology, Chungnam National University School of Medicine, Daejeon 266, Korea; (M.K.C.); (G.E.B.)
- Correspondence: ; Tel.: +82-42-280-7196; Fax: +82-42-580-8231
| |
Collapse
|
28
|
Klein-Scory S, Wahner I, Maslova M, Al-Sewaidi Y, Pohl M, Mika T, Ladigan S, Schroers R, Baraniskin A. Evolution of RAS Mutational Status in Liquid Biopsies During First-Line Chemotherapy for Metastatic Colorectal Cancer. Front Oncol 2020; 10:1115. [PMID: 32766143 PMCID: PMC7378792 DOI: 10.3389/fonc.2020.01115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Treatment options for patients with metastatic colorectal cancer (mCRC) are limited. This particularly affects the largest group of patients with RAS mutations, who are considered ineligible for therapy with antiEGFR antibodies. In this liquid biopsy-based study, we performed the first in-depth analysis of the RAS mutational status in initially RAS-mutated patients during first-line therapy. RAS status of twelve patients with initially RAS-mutated mCRC was monitored longitudinally in 69 liquid biopsy samples. We focused on patients with stable disease (SD) or partial remission (PR) during first-line therapy (11 patients). Detection of fragmented RAS-mutated circulating cell-free tumor DNA (ctDNA) in plasma was performed by digital-droplet PCR (ddPCR) and BEAMing. Patients' total tumor masses were determined by measuring the tumor volumes using CT scan data. All patients with PR or SD at first follow-up showed a significant decrease of RAS mutational load. In ten patients (91%), the ctDNA-based RAS mutational status converted to wild-type in ddPCR and BEAMing. Remarkably, conversions were observed early after the first cycle of chemotherapy. Plasma concentration of ctDNA was controlled by determination of methylated WIF1-promotor ctDNA burden as a second tumor marker for mCRC. Persistent presence of methylated WIF1-promotor fragments confirmed the ongoing release of ctDNA during treatment. In patients with initially RAS-mutated mCRC, RAS mutations rapidly disappeared during first-line therapy in liquid biopsy, independent of type and intensity of chemotherapy and irrespective of anti-VEGF treatments. Following our results demonstrating conversion of RAS-mutational status, potential effectiveness of anti-EGFR antibodies in selected patients becomes an attractive hypothesis for future studies.
Collapse
Affiliation(s)
- Susanne Klein-Scory
- IMBL Medical Clinic, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Ingo Wahner
- IMBL Medical Clinic, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Marina Maslova
- Department of Radiology, University Hospital Knappschaftskrankenhaus Bochum GmbH, Ruhr University Bochum, Bochum, Germany
| | - Yosef Al-Sewaidi
- Department of Radiology, University Hospital Knappschaftskrankenhaus Bochum GmbH, Ruhr University Bochum, Bochum, Germany
| | - Michael Pohl
- Department of Medicine, University Hospital Knappschaftskrankenhaus Bochum GmbH, Ruhr University Bochum, Bochum, Germany
| | - Thomas Mika
- Department of Medicine, University Hospital Knappschaftskrankenhaus Bochum GmbH, Ruhr University Bochum, Bochum, Germany
| | - Swetlana Ladigan
- Department of Medicine, University Hospital Knappschaftskrankenhaus Bochum GmbH, Ruhr University Bochum, Bochum, Germany
| | - Roland Schroers
- Department of Medicine, University Hospital Knappschaftskrankenhaus Bochum GmbH, Ruhr University Bochum, Bochum, Germany
| | - Alexander Baraniskin
- IMBL Medical Clinic, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
- Department of Medicine, University Hospital Knappschaftskrankenhaus Bochum GmbH, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
29
|
Hussung S, Follo M, Klar RF, Michalczyk S, Fritsch K, Nollmann F, Hipp J, Duyster J, Scherer F, von Bubnoff N, Boerries M, Wittel U, Fritsch RM. Development and Clinical Validation of Discriminatory Multitarget Digital Droplet PCR Assays for the Detection of Hot Spot KRAS and NRAS Mutations in Cell-Free DNA. J Mol Diagn 2020; 22:943-956. [DOI: 10.1016/j.jmoldx.2020.04.206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/21/2020] [Accepted: 04/13/2020] [Indexed: 12/22/2022] Open
|
30
|
Li Y, Monzo M, Moreno I, Martinez-Rodenas F, Hernandez R, Castellano JJ, Canals J, Han B, Muñoz C, Navarro A. KRAS mutations by digital PCR in circulating tumor cells isolated from the mesenteric vein are associated with residual disease and overall survival in resected colorectal cancer patients. Int J Colorectal Dis 2020; 35:805-813. [PMID: 32088737 DOI: 10.1007/s00384-020-03538-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2020] [Indexed: 02/04/2023]
Abstract
PURPOSE In colorectal cancer (CRC), circulating tumor cells (CTCs) are released into the mesenteric veins (MV). We chose to determine whether KRAS mutations detected in CTCs from blood obtained at the time of surgery could be a marker of survival. METHODS From 52 surgically resected CRC patients who later relapsed, samples of tumor tissue, normal tissue, and blood from the peripheral vein (PV) and MV were obtained from each patient at the time of surgery. KRAS mutations were assessed by Sanger sequencing and digital PCR (DGPCR) in tissue samples and by DGPCR in CTCs. Mutant KRAS copy number was assessed in CTCs. Results were correlated with overall survival (OS). RESULTS Sanger sequencing detected KRAS mutations in ten tumor samples (19.2%), while DGPCR detected mutations in 30 (58%). Mutations were detected in CTCs in 21 MV samples (40.4%) and 18 PV samples (34.6%). Patients with G13D mutations in CTCs from the MV had shorter OS than those with G12D mutations (28.1 vs 54.6 months; p = 0.025). Patients with a high mutant KRAS copy number in CTCs had shorter OS than those with a low mutant KRAS copy number (MV: 20.5 vs 43.7 months; p = 0.002; PV: 15.1 vs 38.2 months; p = 0.027). CONCLUSION DGPCR is more efficient than Sanger sequencing for detecting KRAS mutations. KRAS G13D mutations and high mutant KRAS copy number are associated with shorter OS. The analysis of KRAS mutations in CTCs from blood obtained at the time of surgery can identify patients with a higher risk of relapse.
Collapse
Affiliation(s)
- Yan Li
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Mariano Monzo
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Isabel Moreno
- Department of Medical Oncology and Surgery, Hospital Municipal de Badalona, Badalona, Spain
| | - Francisco Martinez-Rodenas
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
- Department of Medical Oncology and Surgery, Hospital Municipal de Badalona, Badalona, Spain
| | - Raquel Hernandez
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
- Department of Medical Oncology and Surgery, Hospital Municipal de Badalona, Badalona, Spain
| | - Joan J Castellano
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Jordi Canals
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Bing Han
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Carmen Muñoz
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Alfons Navarro
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain.
- Faculty of Medicine and Health Sciences-Hospital Clinic, University of Barcelona, Casanova 143, ES-08036, Barcelona, Spain.
| |
Collapse
|
31
|
Zhou J, Liu Y, Zhang Y, Li Q, Cao Y. Modeling Tumor Evolutionary Dynamics to Predict Clinical Outcomes for Patients with Metastatic Colorectal Cancer: A Retrospective Analysis. Cancer Res 2020; 80:591-601. [PMID: 31676575 PMCID: PMC7002273 DOI: 10.1158/0008-5472.can-19-1940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/05/2019] [Accepted: 10/28/2019] [Indexed: 01/22/2023]
Abstract
Over 50% of colorectal cancer patients develop resistance after a transient response to therapy. Understanding tumor resistance from an evolutionary perspective leads to better predictions of treatment outcomes. The objectives of this study were to develop a computational framework to analyze tumor longitudinal measurements and recapitulate the individual evolutionary dynamics in metastatic colorectal cancer (mCRC) patients. A stochastic modeling framework was developed to depict the whole spectrum of tumor evolution prior to diagnosis and during and after therapy. The evolutionary model was optimized using a nonlinear mixed effect (NLME) method based on the longitudinal measurements of liver metastatic lesions from 599 mCRC patients. The deterministic limits in the NLME model were applied to optimize the stochastic model for each patient. Cox proportional hazards models coupled with the least absolute shrinkage and selection operator (LASSO) algorithm were applied to predict patients' progression-free survival (PFS) and overall survival (OS). The stochastic evolutionary model well described the longitudinal profiles of tumor sizes. The evolutionary parameters optimized for each patient indicated substantial interpatient variability. The number of resistant subclones at diagnosis was found to be a significant predictor to survival, and the hazard ratios with 95% CI were 1.09 (0.79-1.49) and 1.54 (1.01-2.34) for patients with three or more resistant subclones. Coupled with several patient characteristics, evolutionary parameters strongly predict patients' PFS and OS. A stochastic computational framework was successfully developed to recapitulate individual patient evolutionary dynamics, which could predict clinical survival outcomes in mCRC patients. SIGNIFICANCE: A data analysis framework depicts the individual evolutionary dynamics of mCRC patients and can be generalized to project patient survival outcomes.
Collapse
Affiliation(s)
- Jiawei Zhou
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yutong Liu
- School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yubo Zhang
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Quefeng Li
- School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
32
|
Brunsell TH, Sveen A, Bjørnbeth BA, Røsok BI, Danielsen SA, Brudvik KW, Berg KCG, Johannessen B, Cengija V, Abildgaard A, Guren MG, Nesbakken A, Lothe RA. High Concordance and Negative Prognostic Impact of RAS/BRAF/PIK3CA Mutations in Multiple Resected Colorectal Liver Metastases. Clin Colorectal Cancer 2019; 19:e26-e47. [PMID: 31982351 DOI: 10.1016/j.clcc.2019.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 07/11/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The prevalence and clinical implications of genetic heterogeneity in patients with multiple colorectal liver metastases remain largely unknown. In a prospective series of patients undergoing resection of colorectal liver metastases, the aim was to investigate the inter-metastatic and primary-to-metastatic heterogeneity of mutations in KRAS, NRAS, BRAF, and PIK3CA and their prognostic impact. PATIENTS AND METHODS We analyzed the mutation status among 372 liver metastases and 78 primary tumors from 106 patients by methods used in clinical routine testing, by Sanger sequencing, by next-generation sequencing (NGS), and/or by droplet digital polymerase chain reaction. The 3-year cancer-specific survival (CSS) was analyzed using the Kaplan-Meier method. RESULTS Although Sanger sequencing indicated inter-metastatic mutation heterogeneity in 14 of 97 patients (14%), almost all cases were refuted by high-sensitive NGS. Also, heterogeneity among metastatic deposits was concluded only for PIK3CA in 2 patients. Similarly, primary-to-metastatic heterogeneity was indicated in 8 of 78 patients (10%) using Sanger sequencing but for only 2 patients after NGS, showing the emergence of 1 KRAS and 1 PIK3CA mutation in the metastatic lesions. KRAS mutations were present in 53 of 106 patients (50%) and were associated with poorer 3-year CSS after liver resection (37% vs. 61% for KRAS wild-type; P = .004). Poor prognostic associations were found also for the combination of KRAS/NRAS/BRAF mutations compared with triple wild-type (P = .002). CONCLUSION Intra-patient mutation heterogeneity was virtually undetected, both between the primary tumor and the liver metastases and among the metastatic deposits. KRAS mutations separately, and KRAS/NRAS/BRAF mutations combined, were associated with poor patient survival after partial liver resection.
Collapse
Affiliation(s)
- Tuva Høst Brunsell
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anita Sveen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bjørn Atle Bjørnbeth
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; Department of Gastrointestinal Surgery, Oslo University Hospital, Oslo, Norway
| | - Bård I Røsok
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; Department of Gastrointestinal Surgery, Oslo University Hospital, Oslo, Norway
| | - Stine Aske Danielsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Kristoffer Watten Brudvik
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; Department of Gastrointestinal Surgery, Oslo University Hospital, Oslo, Norway
| | - Kaja C G Berg
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bjarne Johannessen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vanja Cengija
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Andreas Abildgaard
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Marianne Grønlie Guren
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Arild Nesbakken
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; Institute for Clinical Medicine, University of Oslo, Oslo, Norway; Department of Gastrointestinal Surgery, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
33
|
Vitiello PP, De Falco V, Giunta EF, Ciardiello D, Cardone C, Vitale P, Zanaletti N, Borrelli C, Poliero L, Terminiello M, Arrichiello G, Caputo V, Famiglietti V, Mattera Iacono V, Marrone F, Di Liello A, Martini G, Napolitano S, Caraglia M, Lombardi A, Franco R, De Vita F, Morgillo F, Troiani T, Ciardiello F, Martinelli E. Clinical Practice Use of Liquid Biopsy to Identify RAS/BRAF Mutations in Patients with Metastatic Colorectal Cancer (mCRC): A Single Institution Experience. Cancers (Basel) 2019; 11:E1504. [PMID: 31597339 PMCID: PMC6827157 DOI: 10.3390/cancers11101504] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/21/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022] Open
Abstract
Tumor heterogeneity represents a possible cause of error in detecting predictive genetic alterations on tumor tissue and can be overcome by testing alterations in circulating tumor DNA (ctDNA) using liquid biopsy. We assessed 72 consecutive patients with a diagnosis of metastatic colorectal cancer (mCRC) using Idylla™ Biocartis, a fully automated platform that evaluates the most frequent mutations of KRAS, NRAS and BRAF genes. We correlated the results of liquid biopsy and standard tissue-based next generation sequencing (NGS) analyses to patient clinical features. The overall agreement was 81.94%. Concordance was 85.71% and 96.15% in treatment-naïve patients and in the patient subgroup with liver metastases, respectively. In liver metastases positive, treatment-naïve patients, sensitivity, specificity and positive predictive value (PPV) were 92.31%, 100% and 100%, respectively. Circulating mutational fraction (CMF) was significantly higher in patients with liver metastases and high carcinoembryonic antigen (CEA) levels. In a subgroup of patients pre-treated with anti-Epidermal Growth Factor Receptor (EGFR) agents, emerging KRAS mutations were evidenced in 33% of cases. Testing RAS/BRAF mutations on plasma using the Idylla™ Biocartis platform is feasible and reliable in mCRC patients in clinical practice.
Collapse
Affiliation(s)
- Pietro Paolo Vitiello
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
| | - Vincenzo De Falco
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
| | - Emilio Francesco Giunta
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
| | - Davide Ciardiello
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
| | - Claudia Cardone
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
| | - Pasquale Vitale
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
| | - Nicoletta Zanaletti
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
| | - Carola Borrelli
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
| | - Luca Poliero
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
| | - Marinella Terminiello
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
| | - Gianluca Arrichiello
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
| | - Vincenza Caputo
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
| | - Vincenzo Famiglietti
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
| | - Valentina Mattera Iacono
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
| | - Francesca Marrone
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
| | - Alessandra Di Liello
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
| | - Giulia Martini
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
- Centro Cellex, Vall D'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain.
| | - Stefania Napolitano
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
- Department of Gastrointestinal Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Michele Caraglia
- Department of Experimental Medicine, Università della Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
| | - Angela Lombardi
- Department of Experimental Medicine, Università della Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
| | - Renato Franco
- Department of Mental and Physical Health and Preventive Medicine, Pathology Unit, Università della Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
| | - Ferdinando De Vita
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
| | - Floriana Morgillo
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
| | - Teresa Troiani
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
| | - Fortunato Ciardiello
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy
| | - Erika Martinelli
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", 80131 Napoli, Italy.
| |
Collapse
|
34
|
Aleksakhina SN, Kashyap A, Imyanitov EN. Mechanisms of acquired tumor drug resistance. Biochim Biophys Acta Rev Cancer 2019; 1872:188310. [PMID: 31442474 DOI: 10.1016/j.bbcan.2019.188310] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022]
Abstract
Systemic therapy often results in the reduction of tumor size but rarely succeeds in eradicating all cancer cells. Drug efflux, persistence of cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT) and down-regulation of apoptosis are the most known general causes of therapy failure. Tumor escape from targeted compounds often involves pathway-specific mechanisms, which result in the restoration of the affected signaling cascade. The acquisition of drug resistance is mediated by mutations, changes in gene expression, alternative splicing, post-translational protein modifications, etc. Development of resistance to therapy may not necessary involve the emergence of new tumor clones: multiple studies demonstrate that even chemonaive neoplasms already have a small population of cells, which are capable of surviving therapeutic pressure and facilitating the disease progression. Use of combinations of cancer drugs, sequential therapy, adaptive therapy and topical ablation of drug-resistant malignant lumps may help to prolong the time to treatment failure. Many studies on mechanisms of drug resistance rely on the use of cell cultures and animal models. The development of approaches that allow efficient monitoring of the evolution of tumor phenotype in clinical setting presents a challenge.
Collapse
Affiliation(s)
- Svetlana N Aleksakhina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
| | - Aniruddh Kashyap
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
| | - Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia; Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg 195067, Russia.
| |
Collapse
|
35
|
Elez E, Chianese C, Sanz-García E, Martinelli E, Noguerido A, Mancuso FM, Caratù G, Matito J, Grasselli J, Cardone C, Esposito Abate R, Martini G, Santos C, Macarulla T, Argilés G, Capdevila J, Garcia A, Mulet N, Maiello E, Normanno N, Jones F, Tabernero J, Ciardello F, Salazar R, Vivancos A. Impact of circulating tumor DNA mutant allele fraction on prognosis in RAS-mutant metastatic colorectal cancer. Mol Oncol 2019; 13:1827-1835. [PMID: 31322322 PMCID: PMC6717744 DOI: 10.1002/1878-0261.12547] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 05/11/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Despite major advances in the treatment of metastatic colorectal cancer (mCRC), the survival rate remains very poor. This study aims at exploring the prognostic value of RAS-mutant allele fraction (MAF) in plasma in mCRC. Forty-seven plasma samples from 37 RAS-mutated patients with nonresectable metastases were tested for RAS in circulating tumor DNA using BEAMing before first- and/or second-line treatment. RAS MAF was correlated with several clinical parameters (number of metastatic sites, hepatic volume, carcinoembryonic antigen, CA19-9 levels, primary site location, and treatment line) and clinical outcome [progression-free survival (PFS) and overall survival (OS)]. An independent cohort of 32 patients from the CAPRI-GOIM trial was assessed for clinical outcome based on plasma baseline MAF. RAS MAF analysis at baseline revealed a significant correlation with longer OS [Hazard ratios (HR) = 3.514; P = 0.00066]. Patients with lower MAF also showed a tendency to longer PFS, although not statistically significant. Multivariate analysis showed RAS MAFs as an independent prognostic factor in both OS (HR = 2.73; P = 0.006) and first-line PFS (HR = 3.74; P = 0.049). Tumor response to treatment in patients with higher MAF was progression disease (P = 0.007). Patients with low MAFs at baseline in the CAPRI-GOIM group also showed better OS [HR = 3.84; 95% confidence intervals (CI) 1.5-9.6; P = 0.004] and better PFS (HR = 2.5; 95% CI: 1.07-5.62; P = 0.033). This minimally invasive test may help in adding an independent factor to better estimate outcomes before initiating treatment. Further prospective studies using MAF as a stratification factor could further validate its utility in clinical practice.
Collapse
Affiliation(s)
- Elena Elez
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Department of Medical Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Spain
| | - Chiara Chianese
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Enrique Sanz-García
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Department of Medical Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Spain
| | - Erica Martinelli
- Medical Oncology, Department of Clinical and Experimental Medicine 'F. Magrassi', Università della Campania 'L. Vanvitelli', Napoli, Italy
| | - Alba Noguerido
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Department of Medical Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Spain
| | | | - Ginevra Caratù
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Judit Matito
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Julieta Grasselli
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Department of Medical Oncology, Catalan Institute of Oncology, Universitat de Barcelona, L'Hospitalet, Spain
| | - Claudia Cardone
- Medical Oncology, Department of Clinical and Experimental Medicine 'F. Magrassi', Università della Campania 'L. Vanvitelli', Napoli, Italy
| | - Riziero Esposito Abate
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori 'Fondazione Giovanni Pascale' IRCCS, Napoli, Italy
| | - Giulia Martini
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Department of Medical Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Spain
| | - Cristina Santos
- Department of Medical Oncology, Catalan Institute of Oncology, Universitat de Barcelona, L'Hospitalet, Spain
| | - Teresa Macarulla
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Department of Medical Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Spain
| | - Guillem Argilés
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Department of Medical Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Spain
| | - Jaume Capdevila
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Department of Medical Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Spain
| | - Ariadna Garcia
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Department of Medical Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Spain
| | - Nuria Mulet
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Department of Medical Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Spain.,Department of Medical Oncology, Catalan Institute of Oncology, Universitat de Barcelona, L'Hospitalet, Spain
| | - Evaristo Maiello
- Medical Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (Foggia), Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori 'Fondazione Giovanni Pascale' IRCCS, Napoli, Italy
| | | | - Josep Tabernero
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Department of Medical Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Spain
| | - Fortunato Ciardello
- Medical Oncology, Department of Clinical and Experimental Medicine 'F. Magrassi', Università della Campania 'L. Vanvitelli', Napoli, Italy
| | - Ramon Salazar
- Department of Medical Oncology, Catalan Institute of Oncology, Universitat de Barcelona, L'Hospitalet, Spain
| | - Ana Vivancos
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| |
Collapse
|
36
|
BRAF Mutation Status in Circulating Tumor DNA from Patients with Metastatic Colorectal Cancer: Extended Mutation Analysis from the AGEO RASANC Study. Cancers (Basel) 2019; 11:cancers11070998. [PMID: 31319569 PMCID: PMC6679157 DOI: 10.3390/cancers11070998] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 01/25/2023] Open
Abstract
In patients with metastatic colorectal cancer (mCRC), RAS and BRAF mutations are currently determined by tumor sample analysis. Here, we report BRAF mutation status analysis in paired tumor tissue and plasma samples of mCRC patients included in the AGEO RASANC prospective cohort study. Four hundred and twenty-five patients were enrolled. Plasma samples were analyzed by next-generation sequencing (NGS). When no mutation was identified, we used two methylated specific biomarkers (digital droplet PCR) to determine the presence or absence of circulating tumor DNA (ctDNA). Patients with conclusive ctDNA results were defined as those with at least one mutation or one methylated biomarker. The kappa coefficient and accuracy were 0.79 (95% CI: 0.67–0.91) and 97.3% (95% CI: 95.2–98.6%) between the BRAF status in plasma and tissue for patients with available paired samples (n = 405), and 0.89 (95% CI: 0.80–0.99) and 98.5% (95% CI: 96.4–99.5%) for those with conclusive ctDNA (n = 323). The absence of liver metastasis was the main factor associated to inconclusive ctDNA results. In patients with liver metastasis, the kappa coefficient was 0.91 (95% CI, 0.81–1.00) and accuracy was 98.6% (95% CI, 96.5–99.6%). We demonstrate satisfying concordance between tissue and plasma BRAF mutation detection, especially in patients with liver metastasis, arguing for plasma ctDNA testing for routine BRAF mutation analysis in these patients.
Collapse
|
37
|
Gilson P, Franczak C, Dubouis L, Husson M, Rouyer M, Demange J, Perceau M, Leroux A, Merlin JL, Harlé A. Evaluation of KRAS, NRAS and BRAF hotspot mutations detection for patients with metastatic colorectal cancer using direct DNA pipetting in a fully-automated platform and Next-Generation Sequencing for laboratory workflow optimisation. PLoS One 2019; 14:e0219204. [PMID: 31265477 PMCID: PMC6605656 DOI: 10.1371/journal.pone.0219204] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022] Open
Abstract
Background Assessment of KRAS, NRAS (RAS) and BRAF mutations is a standard in the management of patients with metastatic colorectal cancer (mCRC). Mutations could be assessed using next-generation sequencing (NGS) or real-time PCR-based assays. Times to results are 1 to 2 weeks for NGS and 1 to 3 days for real-time PCR-based assays. Using NGS can delay first-line treatment commencement and using PCR-based assays is limited by the number of possible analysed targets. The Idylla system is a real-time PCR cartridge-based assay, able to analyse hotspots mutations using one section of FFPE tumour tissue sample. To combine short delays and analysis of a large gene-panel, we propose here a laboratory workflow combining the Idylla system and NGS and compatible with FFPE samples with low tissue quantity. In this study we evaluated and validated the Idylla system for the analysis of RAS and BRAF mutations by pipetting directly DNA in the cartridge instead of FFPE section as recommended by the manufacturer. Materials and methods DNA extracted from 29 FFPE samples from mCRC patients with NGS-characterized RAS and BRAF mutations were tested with the Idylla KRAS and the Idylla NRAS-BRAF mutation tests to assess sensitivity, specificity, reproducibility and limit of detection of each test. Results A 100% concordance was found between NGS and Idylla results for the determination of KRAS (12/12), NRAS (12/12) and BRAF (11/11) mutations with a sensitivity and a specificity of 100%. The system showed a good reproducibility with CV inferior to 3%. LOD was reached with 2.5 ng of DNA for KRAS and NRAS mutations and 5 ng of DNA for BRAF mutations. Conclusions The analysis of RAS and BRAF mutations using DNA pipetted directly in the cartridge of the Idylla system showed a good sensitivity, specificity, reproducibility and LOD, and can be integrated in a laboratory workflow for samples with few tissue without compromising a further complete tumour characterization using NGS.
Collapse
Affiliation(s)
- Pauline Gilson
- Université de Lorraine, CNRS UMR 7039 CRAN, Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandœuvre-lès-Nancy, France
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandœuvre-lès-Nancy, France
| | - Claire Franczak
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandœuvre-lès-Nancy, France
| | - Ludovic Dubouis
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandœuvre-lès-Nancy, France
| | - Marie Husson
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandœuvre-lès-Nancy, France
| | - Marie Rouyer
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandœuvre-lès-Nancy, France
| | - Jessica Demange
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandœuvre-lès-Nancy, France
| | - Marie Perceau
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandœuvre-lès-Nancy, France
| | - Agnès Leroux
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandœuvre-lès-Nancy, France
| | - Jean-Louis Merlin
- Université de Lorraine, CNRS UMR 7039 CRAN, Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandœuvre-lès-Nancy, France
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandœuvre-lès-Nancy, France
| | - Alexandre Harlé
- Université de Lorraine, CNRS UMR 7039 CRAN, Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandœuvre-lès-Nancy, France
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandœuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|
38
|
Rachiglio AM, Lambiase M, Fenizia F, Roma C, Cardone C, Iannaccone A, De Luca A, Carotenuto M, Frezzetti D, Martinelli E, Maiello E, Ciardiello F, Normanno N. Genomic Profiling of KRAS/NRAS/BRAF/PIK3CA Wild-Type Metastatic Colorectal Cancer Patients Reveals Novel Mutations in Genes Potentially Associated with Resistance to Anti-EGFR Agents. Cancers (Basel) 2019; 11:E859. [PMID: 31226844 PMCID: PMC6627713 DOI: 10.3390/cancers11060859] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023] Open
Abstract
Previous findings suggest that metastatic colorectal carcinoma (mCRC) patients with KRAS/NRAS/BRAF/PIK3CA wild-type (quadruple-wt) tumors are highly sensitive to anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (MoAbs). However, additional molecular alterations might be involved in the de novo resistance to these drugs. We performed a comprehensive molecular profiling of 21 quadruple-wt tumors from mCRC patients enrolled in the "Cetuximab After Progression in KRAS wild-type colorectal cancer patients" (CAPRI-GOIM) trial of first line FOLFIRI plus cetuximab. Tumor samples were analyzed with a targeted sequencing panel covering single nucleotide variants (SNVs), insertions/deletions (Indels), copy number variations (CNVs), and gene fusions in 143 cancer-related genes. The analysis revealed in all 21 patients the presence of at least one SNV/Indel and in 10/21 cases (48%) the presence of at least one CNV. Furthermore, 17/21 (81%) patients had co-existing SNVs/Indels in different genes. Quadruple-wt mCRC from patients with the shorter progression free survival (PFS) were enriched with peculiar genetic alterations in KRAS, FBXW7, MAP2K1, and NF1 genes as compared with patients with longer PFS. These data suggest that a wide genetic profiling of quadruple-wt mCRC patients might help to identify novel markers of de novo resistance to anti-EGFR MoAbs.
Collapse
Affiliation(s)
- Anna Maria Rachiglio
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
| | - Matilde Lambiase
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
| | - Francesca Fenizia
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
| | - Cristin Roma
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
| | - Claudia Cardone
- Department of Precision Medicine, Università degli Studi della Campania L Vanvitelli, 80131 Naples, Italy.
| | - Alessia Iannaccone
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
- Department of food and feed control, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici (NA), Italy.
| | - Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
| | - Marianeve Carotenuto
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
| | - Daniela Frezzetti
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
| | - Erika Martinelli
- Department of Precision Medicine, Università degli Studi della Campania L Vanvitelli, 80131 Naples, Italy.
| | - Evaristo Maiello
- Department of Oncology, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| | - Fortunato Ciardiello
- Department of Precision Medicine, Università degli Studi della Campania L Vanvitelli, 80131 Naples, Italy.
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
| |
Collapse
|
39
|
Franczak C, Kandathil SM, Gilson P, Husson M, Rouyer M, Demange J, Leroux A, Merlin JL, Harlé A. Uncommon mutational profiles of metastatic colorectal cancer detected during routine genotyping using next generation sequencing. Sci Rep 2019; 9:7083. [PMID: 31068650 PMCID: PMC6506598 DOI: 10.1038/s41598-019-43646-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/27/2019] [Indexed: 12/14/2022] Open
Abstract
RAS genotyping is mandatory to predict anti-EGFR monoclonal antibodies (mAbs) therapy resistance and BRAF genotyping is a relevant prognosis marker in patients with metastatic colorectal cancer. Although the role of hotspot mutations is well defined, the impact of uncommon mutations is still unknown. In this study, we aimed to discuss the potential utility of detecting uncommon RAS and BRAF mutation profiles with next-generation sequencing. A total of 779 FFPE samples from patients with metastatic colorectal cancer with valid NGS results were screened and 22 uncommon mutational profiles of KRAS, NRAS and BRAF genes were selected. In silico prediction of mutation impact was then assessed by 2 predictive scores and a structural protein modelling. Three samples carry a single KRAS non-hotspot mutation, one a single NRAS non-hotspot mutation, four a single BRAF non-hotspot mutation and fourteen carry several mutations. This in silico study shows that some non-hotspot RAS mutations seem to behave like hotspot mutations and warrant further examination to assess whether they should confer a resistance to anti-EGFR mAbs therapy for patients bearing these non-hotspot RAS mutations. For BRAF gene, non-V600E mutations may characterise a novel subtype of mCRC with better prognosis, potentially implying a modification of therapeutic strategy.
Collapse
Affiliation(s)
- Claire Franczak
- Institut de Cancérologie de Lorraine, Service de Biopathologie, 54519, Vandoeuvre les Nancy, France
| | - Shaun M Kandathil
- Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, United Kingdom.,The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Pauline Gilson
- Université de Lorraine, CNRS UMR 7039 CRAN, Institut de Cancérologie de Lorraine, Service de Biopathologie, 6 avenue de Bourgogne CS 30519, 54519, Vandoeuvre-lès-Nancy Cedex, France
| | - Marie Husson
- Institut de Cancérologie de Lorraine, Service de Biopathologie, 54519, Vandoeuvre les Nancy, France
| | - Marie Rouyer
- Institut de Cancérologie de Lorraine, Service de Biopathologie, 54519, Vandoeuvre les Nancy, France
| | - Jessica Demange
- Institut de Cancérologie de Lorraine, Service de Biopathologie, 54519, Vandoeuvre les Nancy, France
| | - Agnès Leroux
- Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Jean-Louis Merlin
- Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Alexandre Harlé
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom. .,Université de Lorraine, CNRS UMR 7039 CRAN, Institut de Cancérologie de Lorraine, Service de Biopathologie, 6 avenue de Bourgogne CS 30519, 54519, Vandoeuvre-lès-Nancy Cedex, France.
| |
Collapse
|
40
|
Santos C, Azuara D, Viéitez JM, Páez D, Falcó E, Élez E, López-López C, Valladares M, Robles-Díaz L, García-Alfonso P, Bugés C, Durán G, Salud A, Navarro V, Capellá G, Aranda E, Salazar R. Phase II study of high-sensitivity genotyping of KRAS, NRAS, BRAF and PIK3CA to ultra-select metastatic colorectal cancer patients for panitumumab plus FOLFIRI: the ULTRA trial. Ann Oncol 2019; 30:796-803. [PMID: 30840064 DOI: 10.1093/annonc/mdz082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Several studies show the importance of accurately quantifying not only KRAS and other low-abundant mutations because benefits of anti-EGFR therapies may depend on certain sensitivity thresholds. We assessed whether ultra-selection of patients using a high-sensitive digital PCR (dPCR) to determine KRAS, NRAS, BRAF and PIK3CA status can improve clinical outcomes of panitumumab plus FOLFIRI. PATIENTS AND METHODS This was a single-arm phase II trial that analysed 38 KRAS, NRAS, BRAF and PIK3CA hotspots in tumour tissues of irinotecan-resistant metastatic colorectal cancer patients who received panitumumab plus FOLFIRI until disease progression or early withdrawal. Mutation profiles were identified by nanofluidic dPCR and correlated with clinical outcomes (ORR, overall response rate; PFS, progression-free survival; OS, overall survival) using cut-offs from 0% to 5%. A quantitative PCR (qPCR) analysis was also performed. RESULTS Seventy-two evaluable patients were enrolled. RAS (KRAS/NRAS) mutations were detected in 23 (32%) patients and RAS/BRAF mutations in 25 (35%) by dPCR, while they were detected in 7 (10%) and 11 (15%) patients, respectively, by qPCR. PIK3CA mutations were not considered in the analyses as they were only detected in 2 (3%) patients by dPCR and in 1 (1%) patient by qPCR. The use of different dPCR cut-offs for RAS (KRAS/NRAS) and RAS/BRAF analyses translated into differential clinical outcomes. The highest ORR, PFS and OS in wild-type patients with their lowest values in patients with mutations were achieved with a 5% cut-off. We observed similar outcomes in RAS/BRAF wild-type and mutant patients defined by qPCR. CONCLUSIONS High-sensitive dPCR accurately identified patients with KRAS, NRAS, BRAF and PIK3CA mutations. The optimal RAS/BRAF mutational cut-off for outcome prediction is 5%, which explains that the predictive performance of qPCR was not improved by dPCR. The biological and clinical implications of low-frequent mutated alleles warrant further investigations. CLINICALTRIALS.GOV NUMBER NCT01704703. EUDRACT NUMBER 2012-001955-38.
Collapse
Affiliation(s)
- C Santos
- Translational Research Laboratory, Institut Català d'Oncologia Oncobell Program-IDIBELL, L'Hospitalet de Llobregat; Department of Medical Oncology, Institut Català d'Oncologia Oncobell Program-IDIBELL, CIBERONC, L'Hospitalet de Llobregat
| | - D Azuara
- Translational Research Laboratory, Institut Català d'Oncologia Oncobell Program-IDIBELL, L'Hospitalet de Llobregat
| | - J M Viéitez
- Department of Medical Oncology, Hospital Universitario Central de Asturias, Oviedo
| | - D Páez
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona
| | - E Falcó
- Department of Medical Oncology, Hospital Son Llàtzer, Palma de Mallorca
| | - E Élez
- Department of Medical Oncology, Hospital Vall d'Hebrón, Barcelona
| | - C López-López
- Department of Medical Oncology, Hospital Universitario Marqués de Valdecilla, Santander
| | - M Valladares
- Department of Medical Oncology, Hospital Universitario de A Coruña, A Coruña
| | - L Robles-Díaz
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid
| | - P García-Alfonso
- Department of Medical Oncology, Hospital General Universitario Gregorio Marañón, Madrid
| | - C Bugés
- Department of Medical Oncology, Institut Català d'Oncologia-Hospital Germans Trias i Pujol, Badalona, Institut Català d'Oncologia-Hospital Germans Trias i Pujol
| | - G Durán
- Department of Medical Oncology, Hospital Universitario Virgen de la Victoria, Málaga
| | - A Salud
- Department of Medical Oncology, Hospital Universitari Arnau de Vilanova, Lleida
| | - V Navarro
- Clinical Research Unit, Institut Català d'Oncologia, L'Hospitalet de Llobregat
| | - G Capellá
- Translational Research Laboratory, Institut Català d'Oncologia Oncobell Program-IDIBELL, L'Hospitalet de Llobregat
| | - E Aranda
- Department of Medical Oncology, IMIBIC, Hospital Universitario Reina Sofía, Universidad de Córdoba, CIBERONC, Córdoba, Spain
| | - R Salazar
- Translational Research Laboratory, Institut Català d'Oncologia Oncobell Program-IDIBELL, L'Hospitalet de Llobregat; Department of Medical Oncology, Institut Català d'Oncologia Oncobell Program-IDIBELL, CIBERONC, L'Hospitalet de Llobregat.
| |
Collapse
|
41
|
Beau-Faller M, Texier M, Blons H, Richard N, Escande F, Melaabi S, Lizard S, De Fraipont F, Longchampt E, Morin F, Zalcman G, Pignon JP, Cadranel J. Clinical Relevance of EGFR- or KRAS-mutated Subclones in Patients With Advanced Non–small-cell Lung Cancer Receiving Erlotinib in a French Prospective Cohort (IFCT ERMETIC2 Cohort - Part 2). Clin Lung Cancer 2019; 20:222-230. [DOI: 10.1016/j.cllc.2018.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 11/25/2022]
|
42
|
Rodriguez-Freixinos V, Ruiz-Pace F, Fariñas-Madrid L, Garrido-Castro AC, Villacampa G, Nuciforo P, Vivancos A, Dienstmann R, Oaknin A. Genomic heterogeneity and efficacy of PI3K pathway inhibitors in patients with gynaecological cancer. ESMO Open 2019. [PMID: 30962959 DOI: 10.1136/esmoopen-2018-000444] [] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objectives Aberrant PI3K/AKT/mTOR activation is common in gynaecological malignancies. However, predictive biomarkers of response to PI3K pathway inhibitors (PAMi) have yet to be identified. Methods We analysed the outcomes of patients with advanced gynaecological cancer with available genomic data, treated with PAMi as single agents or in combination in phase I clinical trials. Clinical relevance of the PIK3CA mutant allele fraction (MAF) was investigated. MAF of each variant was normalised for tumour purity in the sample (adjMAFs) to infer clonality of PIK3CA mutations, defined as clonal (≥0.4) or subclonal (<0.4). Results A total of 50 patients with gynaecological cancer (24 ovarian; 15 endometrial; 11 cervical) with available targeted mutation profiling were selected. PAMi therapy was matched to PIK3CA/PTEN mutation in 30 patients (60%). The overall response rate, median time to progression (mTTP) and clinical benefit rate (CBR) of the entire population were 10% (N=5), 3.57 months (2.57-4.4) and 40% (N=18), respectively. Genotype-matched therapy did not lead to a favourable CBR (OR 0.91, p=1 (0.2-3.7)) or mTTP (3.57 months (2.6-4.4) vs 3.73 months (1.9-13.2); HR 1.41; p=0.29). We did not detect differences in mTTP according to therapy or PIK3CA codon mutation (HR 1.71, p=0.24). Overall, 41% of patients had a TTP ratio (TTP PAMi/TTP on immediately prior or subsequent palliative chemotherapy) ≥1.3, without statistically significant differences according to tumour type (p=0.39), molecular alteration status (p=0.13) or therapy (p=0.54). In univariate analysis, genotype-matched therapy in patients with PIK3CA clonal events was associated with improved mTTP (HR 3.6; p=0.03). Conclusions Our study demonstrates that patients with advanced gynaecological cancer, refractory to standard therapies, achieved meaningful clinical benefit from PAMi. The impact of PI3KCA clonality on response to selected PAMi in patients with gynaecological cancer deserves further investigation.
Collapse
Affiliation(s)
- Victor Rodriguez-Freixinos
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Fiorella Ruiz-Pace
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Lorena Fariñas-Madrid
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Christina Garrido-Castro
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Guillermo Villacampa
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Rodrigo Dienstmann
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Oaknin
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
43
|
Rodriguez-Freixinos V, Ruiz-Pace F, Fariñas-Madrid L, Garrido-Castro AC, Villacampa G, Nuciforo P, Vivancos A, Dienstmann R, Oaknin A. Genomic heterogeneity and efficacy of PI3K pathway inhibitors in patients with gynaecological cancer. ESMO Open 2019. [PMID: 30962959 DOI: 10.1136/esmoopen-2018-000444]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES Aberrant PI3K/AKT/mTOR activation is common in gynaecological malignancies. However, predictive biomarkers of response to PI3K pathway inhibitors (PAMi) have yet to be identified. METHODS We analysed the outcomes of patients with advanced gynaecological cancer with available genomic data, treated with PAMi as single agents or in combination in phase I clinical trials. Clinical relevance of the PIK3CA mutant allele fraction (MAF) was investigated. MAF of each variant was normalised for tumour purity in the sample (adjMAFs) to infer clonality of PIK3CA mutations, defined as clonal (≥0.4) or subclonal (<0.4). RESULTS A total of 50 patients with gynaecological cancer (24 ovarian; 15 endometrial; 11 cervical) with available targeted mutation profiling were selected. PAMi therapy was matched to PIK3CA/PTEN mutation in 30 patients (60%). The overall response rate, median time to progression (mTTP) and clinical benefit rate (CBR) of the entire population were 10% (N=5), 3.57 months (2.57-4.4) and 40% (N=18), respectively. Genotype-matched therapy did not lead to a favourable CBR (OR 0.91, p=1 (0.2-3.7)) or mTTP (3.57 months (2.6-4.4) vs 3.73 months (1.9-13.2); HR 1.41; p=0.29). We did not detect differences in mTTP according to therapy or PIK3CA codon mutation (HR 1.71, p=0.24). Overall, 41% of patients had a TTP ratio (TTP PAMi/TTP on immediately prior or subsequent palliative chemotherapy) ≥1.3, without statistically significant differences according to tumour type (p=0.39), molecular alteration status (p=0.13) or therapy (p=0.54). In univariate analysis, genotype-matched therapy in patients with PIK3CA clonal events was associated with improved mTTP (HR 3.6; p=0.03). CONCLUSIONS Our study demonstrates that patients with advanced gynaecological cancer, refractory to standard therapies, achieved meaningful clinical benefit from PAMi. The impact of PI3KCA clonality on response to selected PAMi in patients with gynaecological cancer deserves further investigation.
Collapse
Affiliation(s)
- Victor Rodriguez-Freixinos
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Fiorella Ruiz-Pace
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Lorena Fariñas-Madrid
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Christina Garrido-Castro
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Guillermo Villacampa
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Rodrigo Dienstmann
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Oaknin
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
44
|
Su N, Wei K, Zhao N, Wang L, Duan GJ, Ren XD, Qu XM, Huang Q. Sensitive and selective detections of codon 12 and 13 KRAS mutations in a single tube using modified wild-type blocker. Clin Chim Acta 2019; 494:123-131. [PMID: 30902586 DOI: 10.1016/j.cca.2019.03.1618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
Abstract
It was hypothesized that in the WTB-PCR system, the greater number of cycles, associated with the thermodynamic driving force of DNA polymerase resulted in artificial introduction of mutant nucleotides in amplicons. In the current study, universal WTB-PCR was developed to overcome these limitations, in which two strategies were used: phosphorothioate modifications were made at the 5'-termini bases of the WTB oligonucleotides, and amplification of referenced internal positive controller (RIPC) fragments was performed. The results showed that universal WTB-PCR could detect single-copy KRAS mutant alleles with higher selectivity (i.e., 0.01%), and with greater ability to eliminate non-specific amplification of KRAS wild-type alleles in amounts up to 200 ng. Moreover, the introduction of referenced internal positive controller (RIPC) fragments prevented false-negative results caused by inadequate amounts of input sample DNA, and allowed for quantitative analysis of the mutation levels in each FFPE sample. In clinical application in 50 samples of FFPE tissue sections from mCRC patients, 70% (35/50) showed various mutations at codons 12 and 13 of KRAS genes; 30% (15/50) could be detected by traditional PCR without WTB oligonucleotides. In conclusion, universal WTB-PCR is a rapid, simple and low-cost method for detection of low-abundance KRAS mutations in mCRC patients.
Collapse
Affiliation(s)
- Ning Su
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.; Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Kun Wei
- Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Na Zhao
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Liu Wang
- Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Guang-Jie Duan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiao-Dong Ren
- Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Xue-Mei Qu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.; Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Qing Huang
- Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China.; Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.; Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
45
|
Normanno N, Esposito Abate R, Lambiase M, Forgione L, Cardone C, Iannaccone A, Sacco A, Rachiglio AM, Martinelli E, Rizzi D, Pisconti S, Biglietto M, Bordonaro R, Troiani T, Latiano TP, Giuliani F, Leo S, Rinaldi A, Maiello E, Ciardiello F. RAS testing of liquid biopsy correlates with the outcome of metastatic colorectal cancer patients treated with first-line FOLFIRI plus cetuximab in the CAPRI-GOIM trial. Ann Oncol 2019; 29:112-118. [PMID: 28950295 DOI: 10.1093/annonc/mdx417] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Liquid biopsy is an alternative to tissue for RAS testing in metastatic colorectal carcinoma (mCRC) patients. Little information is available on the predictive role of liquid biopsy RAS testing in patients treated with first-line anti-EGFR monoclonal antibody-based therapy. Patients and methods In the CAPRI-GOIM trial, 340 KRAS exon-2 wild-type mCRC patients received first-line cetuximab plus FOLFIRI. Tumor samples were retrospectively assessed by next generation sequencing (NGS). Baseline plasma samples were analyzed for KRAS and NRAS mutations using beads, emulsion, amplification, and magnetics digital PCR (BEAMing). Discordant cases were solved by droplet digital PCR (ddPCR) or deep-sequencing. Results A subgroup of 92 patients with available both NGS data on tumor samples and baseline plasma samples were included in this study. Both NGS analysis of tumor tissue and plasma testing with BEAMing identified RAS mutations in 33/92 patients (35.9%). However, 10 cases were RAS tissue mutant and plasma wild-type, and additional 10 cases were tissue wild-type and plasma mutant, resulting in a concordance rate of 78.3%. Analysis of plasma samples with ddPCR detected RAS mutations in 2/10 tissue mutant, plasma wild-type patients. In contrast, in all tissue wild-type and plasma mutant cases, ddPCR or deep-sequencing analysis of tumor tissue confirmed the presence of RAS mutations at allelic frequencies ranging between 0.15% and 1.15%. The median progression-free survival of RAS mutant and wild-type patients according to tissue (7.9 versus 12.6 months; P = 0.004) and liquid biopsy testing (7.8 versus 13.8 moths; P < 0.001) were comparable. Similar findings were observed for the median overall survival of RAS mutant and wild-type patients based on tissue (22.1 versus 35.8 months; P = 0.016) and plasma (19.9 versus 35.8 months; P = 0.013) analysis. Conclusion This study indicates that RAS testing of liquid biopsy results in a similar outcome when compared with tissue testing in mCRC patients receiving first-line anti-EGFR monoclonal antibodies.
Collapse
Affiliation(s)
- N Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione Giovanni Pascale" IRCCS, Napoli, Italy
| | - R Esposito Abate
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione Giovanni Pascale" IRCCS, Napoli, Italy
| | - M Lambiase
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione Giovanni Pascale" IRCCS, Napoli, Italy
| | - L Forgione
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione Giovanni Pascale" IRCCS, Napoli, Italy
| | - C Cardone
- Medical Oncology, Department of Clinical and Experimental Medicine "F. Magrassi," Università della Campania "L. Vanvitelli," Napoli, Italy
| | - A Iannaccone
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione Giovanni Pascale" IRCCS, Napoli, Italy
| | - A Sacco
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione Giovanni Pascale" IRCCS, Napoli, Italy
| | - A M Rachiglio
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione Giovanni Pascale" IRCCS, Napoli, Italy
| | - E Martinelli
- Medical Oncology, Department of Clinical and Experimental Medicine "F. Magrassi," Università della Campania "L. Vanvitelli," Napoli, Italy
| | - D Rizzi
- Gruppo Oncologico dell'Italia Meridionale (GOIM), Bari, Italy
| | - S Pisconti
- Medical Oncology, Hospital SS. Annunziata, Taranto, Italy
| | - M Biglietto
- Medical Oncology, Hospital "A. Cardarelli," Napoli, Italy
| | - R Bordonaro
- Medical Oncology, Hospital Garibaldi-Nesima, Catania, Italy
| | - T Troiani
- Medical Oncology, Department of Clinical and Experimental Medicine "F. Magrassi," Università della Campania "L. Vanvitelli," Napoli, Italy
| | - T P Latiano
- Medical Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - F Giuliani
- Medical Oncology, National Cancer Institute Giovanni Paolo II, Bari, Italy
| | - S Leo
- Medical Oncology, Hospital Vito Fazzi, Lecce, Italy
| | - A Rinaldi
- Medical Oncology, Presidio Ospedaliero Polo Occidentale, Castellaneta, Bari, Italy
| | - E Maiello
- Medical Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - F Ciardiello
- Medical Oncology, Department of Clinical and Experimental Medicine "F. Magrassi," Università della Campania "L. Vanvitelli," Napoli, Italy
| | | |
Collapse
|
46
|
Rodriguez-Freixinos V, Ruiz-Pace F, Fariñas-Madrid L, Garrido-Castro AC, Villacampa G, Nuciforo P, Vivancos A, Dienstmann R, Oaknin A. Genomic heterogeneity and efficacy of PI3K pathway inhibitors in patients with gynaecological cancer. ESMO Open 2019; 4:e000444. [PMID: 30962959 PMCID: PMC6435251 DOI: 10.1136/esmoopen-2018-000444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Aberrant PI3K/AKT/mTOR activation is common in gynaecological malignancies. However, predictive biomarkers of response to PI3K pathway inhibitors (PAMi) have yet to be identified. METHODS We analysed the outcomes of patients with advanced gynaecological cancer with available genomic data, treated with PAMi as single agents or in combination in phase I clinical trials. Clinical relevance of the PIK3CA mutant allele fraction (MAF) was investigated. MAF of each variant was normalised for tumour purity in the sample (adjMAFs) to infer clonality of PIK3CA mutations, defined as clonal (≥0.4) or subclonal (<0.4). RESULTS A total of 50 patients with gynaecological cancer (24 ovarian; 15 endometrial; 11 cervical) with available targeted mutation profiling were selected. PAMi therapy was matched to PIK3CA/PTEN mutation in 30 patients (60%). The overall response rate, median time to progression (mTTP) and clinical benefit rate (CBR) of the entire population were 10% (N=5), 3.57 months (2.57-4.4) and 40% (N=18), respectively. Genotype-matched therapy did not lead to a favourable CBR (OR 0.91, p=1 (0.2-3.7)) or mTTP (3.57 months (2.6-4.4) vs 3.73 months (1.9-13.2); HR 1.41; p=0.29). We did not detect differences in mTTP according to therapy or PIK3CA codon mutation (HR 1.71, p=0.24). Overall, 41% of patients had a TTP ratio (TTP PAMi/TTP on immediately prior or subsequent palliative chemotherapy) ≥1.3, without statistically significant differences according to tumour type (p=0.39), molecular alteration status (p=0.13) or therapy (p=0.54). In univariate analysis, genotype-matched therapy in patients with PIK3CA clonal events was associated with improved mTTP (HR 3.6; p=0.03). CONCLUSIONS Our study demonstrates that patients with advanced gynaecological cancer, refractory to standard therapies, achieved meaningful clinical benefit from PAMi. The impact of PI3KCA clonality on response to selected PAMi in patients with gynaecological cancer deserves further investigation.
Collapse
Affiliation(s)
- Victor Rodriguez-Freixinos
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Fiorella Ruiz-Pace
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Lorena Fariñas-Madrid
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Christina Garrido-Castro
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Guillermo Villacampa
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Rodrigo Dienstmann
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Oaknin
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
47
|
Vidal J, Bellosillo B, Santos Vivas C, García-Alfonso P, Carrato A, Cano MT, García-Carbonero R, Élez E, Losa F, Massutí B, Valladares-Ayerbes M, Viéitez JM, Manzano JL, Azuara D, Gallego J, Pairet S, Capellá G, Salazar R, Tabernero J, Aranda E, Montagut C. Ultra-selection of metastatic colorectal cancer patients using next-generation sequencing to improve clinical efficacy of anti-EGFR therapy. Ann Oncol 2019; 30:439-446. [PMID: 30689692 DOI: 10.1093/annonc/mdz005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Extended RAS analysis is mandatory in metastatic colorectal cancer (mCRC) patients. The optimal threshold of RAS mutated subclones to identify patients most likely to benefit from antiepidermal growth factor receptor (EGFR) therapy is controversial. Our aim was to assess the clinical impact of detecting mutations in RAS, BRAF, PIK3CA and EGFRS492R in basal tissue tumour samples by using a highly sensitive next-generation sequencing (NGS) technology in mCRC patients treated with chemotherapy plus anti-EGFR or anti-vascular endothelial growth factor. PATIENTS AND METHODS Five hundred and eighty-one tumour samples from untreated mCRC patients from 7 clinical studies were collected. Mutational analysis was carried out by standard-of-care (therascreen pyro) with a sensitivity detection of 5% mutant allele fraction (MAF), and compared with NGS technology using 454GS Junior platform (Roche Applied Science, Germany) with a sensitivity of 1%. Molecular results were correlated with clinical outcomes. RESULTS After quality assessment, 380 samples were evaluable for molecular analysis. Standard-of-care mutational analysis detected RAS, BRAFV600E or PIK3CA mutations in 56.05% of samples compared with 69.21% by NGS (P = 0.00018). NGS identified coexistence of multiple low-frequency mutant alleles in 96 of the 263 mutated cases (36.5%; range 2-7). Response rate (RR), progression-free survival (PFS) and overall survival (OS) were increasingly improved in patients with RAS wild-type, RAS/BRAF wild-type or quadruple (KRAS/NRAS/BRAF/PIK3CA) wild-type tumours treated with anti-EGFR, assessed by standard-of-care. No additional benefit in RR, PFS or OS was observed by increasing the detection threshold to 1% by NGS. An inverse correlation between the MAF of the most prevalent mutation detected by NGS and anti-EGFR response was observed (P = 0.039). EGFRS492Rmutation was not detected in untreated samples. CONCLUSIONS No improvement in the selection of patients for anti-EGFR therapy was obtained by adjusting the mutation detection threshold in tissue samples from 5% to 1% MAF. Response to anti-EGFR was significantly better in patients with quadruple wild-type tumours.
Collapse
Affiliation(s)
- J Vidal
- Medical Oncology Department, Hospital del Mar-IMIM, CIBERONC Instituto de Salud Carlos III, Barcelona
| | - B Bellosillo
- Pathology Department, Hospital del Mar, Barcelona
| | - C Santos Vivas
- Translational Research Laboratory, Medical Oncology Department, Catalan Institute of Oncology (ICO), ICO-Bellvitge Biomedical Research Institute (IDIBELL)-CIBERONC Instituto de Salud Carlos III, L'Hospitalet de Llobregat, Barcelona
| | | | - A Carrato
- Medical Oncology Department, Hospital Ramón y Cajal, IRYCIS, CIBERONC Instituto de Salud Carlos III, Alcala University, Madrid
| | - M T Cano
- Medical Oncology Department, IMIBIC, Reina Sofía Hospital, University of Cordoba, CIBERONC Instituto de Salud Carlos III
| | - R García-Carbonero
- Oncology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre, (imas12), UCM, CNIO, CIBERONC Instituto de Salud Carlos III, Madrid
| | - E Élez
- Medical Oncology Department, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), CIBERONC Instituto de Salud Carlos III, Universitat Autònoma de Barcelona, Barcelona
| | - F Losa
- Medical Oncology Department, Hospital Sant Joan Despí - Moisés Broggi, Barcelona
| | - B Massutí
- Medical Oncology Department, Hospital General Universitario, Alicante
| | - M Valladares-Ayerbes
- Medical Oncology Department, Complejo Hospitalario Universitario de A Coruña, A Coruña
| | - J M Viéitez
- Medical Oncology Department, Hospital Universitario Central de Asturias, Oviedo
| | - J L Manzano
- Medical Oncology Department, ICO, Badalona, Barcelona
| | - D Azuara
- Translational Research Laboratory, Medical Oncology Department, Catalan Institute of Oncology (ICO), ICO-Bellvitge Biomedical Research Institute (IDIBELL)-CIBERONC Instituto de Salud Carlos III, L'Hospitalet de Llobregat, Barcelona
| | - J Gallego
- Medical Oncology Department, Hospital General Universitario de Elche, Alicante
| | - S Pairet
- Pathology Department, Hospital del Mar, Barcelona
| | - G Capellá
- Faculty of Medicine, Department of Clinical Sciences, Translational Research Laboratory, ICO-IDIBELL, L'Hospitalet de Llobregat, University of Barcelona, CIBERONC Instituto de Salud Carlos III, Barcelona, Spain
| | - R Salazar
- Translational Research Laboratory, Medical Oncology Department, Catalan Institute of Oncology (ICO), ICO-Bellvitge Biomedical Research Institute (IDIBELL)-CIBERONC Instituto de Salud Carlos III, L'Hospitalet de Llobregat, Barcelona
| | - J Tabernero
- Medical Oncology Department, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), CIBERONC Instituto de Salud Carlos III, Universitat Autònoma de Barcelona, Barcelona
| | - E Aranda
- Medical Oncology Department, IMIBIC, Reina Sofía Hospital, University of Cordoba, CIBERONC Instituto de Salud Carlos III
| | - C Montagut
- Medical Oncology Department, Hospital del Mar-IMIM, CIBERONC Instituto de Salud Carlos III, Barcelona.
| |
Collapse
|
48
|
Droplet digital PCR revealed high concordance between primary tumors and lymph node metastases in multiplex screening of KRAS mutations in colorectal cancer. Clin Exp Med 2019; 19:219-224. [PMID: 30661213 DOI: 10.1007/s10238-019-00545-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
Abstract
The proto-oncogene KRAS belongs among the most frequently mutated genes in all types of cancer and is also very important oncogene related to colorectal tumors. The detection of mutations in this gene in primary tumor is a predictive biomarker for the anti-EGFR therapy in metastatic CRC (mCRC); however, the patients with wild-type KRAS can also show resistance to the personalized medicine. The droplet-based digital PCR technology has improved the analytical sensitivity of the mutations detection, which led us to the idea about the optimization of this approach for KRAS testing. In this study, we report the application of ddPCR technology in order to analyze the presence of KRAS mutations in primary tumor and matched metastasis in lymph nodes (LNs) from patients with mCRC and address the question, whether the improvement in the detection method can lower the discrepancies of KRAS mutations detection between the primary tumor and regional LNs. Genomic DNA with wtKRAS and commercial DNA with mtKRAS (G12D) were used to set up the ddPCR reaction. Formalin-fixed paraffin-embedded tissues from primary tumor and positive lymph node from 31 patients with mCRC were analyzed using ddPCR and Sanger sequencing. KRAS status of primary tumors was known; however, the mutation status of lymph nodes was not detected previously. From 31 samples of primary tumors, our results corresponded to results from IVD kit in 30 cases. For one patient, ddPCR detected KRAS mutation in comparison with negative result of the IVD kit. In the samples of metastatic infiltrated LNs, ddPCR detected 16 samples as a WT KRAS and 15 lymph nodes showed positivity for KRAS mutation, whereby Sanger sequencing found KRAS mutations in 8 cases only. We also found two cases where genetic conditions of KRAS gene differed between primary tumor and infiltrated lymph node, both "low-grade" adenocarcinoma. Our study approved that ddPCR method is adequate technique with high sensitivity and in the future may be used as a diagnostic tool for evaluation of KRAS mutations, especially in infiltrated LNs of patients with mCRC.
Collapse
|
49
|
Raimondi C, Nicolazzo C, Belardinilli F, Loreni F, Gradilone A, Mahdavian Y, Gelibter A, Giannini G, Cortesi E, Gazzaniga P. Transient Disappearance of RAS Mutant Clones in Plasma: A Counterintuitive Clinical Use of EGFR Inhibitors in RAS Mutant Metastatic Colorectal Cancer. Cancers (Basel) 2019; 11:E42. [PMID: 30621206 PMCID: PMC6357143 DOI: 10.3390/cancers11010042] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 01/20/2023] Open
Abstract
Genomic studies performed through liquid biopsies widely elucidated the evolutionary trajectory of RAS mutant clones under the selective pressure of EGFR inhibitors in patients with wild type RAS primary colorectal tumors. Similarly, the disappearance of RAS mutant clones in plasma has been more recently reported in some patients with primary RAS mutant cancers, supporting for the first time an unexpected negative selection of RAS mutations during the clonal evolution of mCRC. To date, the extent of conversion to RAS wild type disease at the time of progression has not been clarified yet. As a proof of concept, we prospectively enrolled mCRC patients progressing under anti-VEGF based treatments. Idylla™ system was used to screen RAS mutations in plasma and the wild type status of RAS was further confirmed through IT-PGM (Ion Torrent Personal Genome Machine) sequencing. RAS was found mutant in 55% of cases, retaining the same plasma mutation as in the primary tumor at diagnosis, while it was found wild-type in 45%. Four patients testing negative for RAS mutations in plasma at the time of progression of disease (PD) were considered eligible for treatment with EGFR inhibitors and treated accordingly, achieving a clinical benefit. We here propose a hypothetical algorithm that accounts for the transient disappearance of RAS mutant clones over time, which might extend the continuum of care of mutant RAS colorectal cancer patients through the delivery of a further line of therapy.
Collapse
Affiliation(s)
- Cristina Raimondi
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, V.le Regina Elena 324, 00161 Rome, Italy.
| | - Chiara Nicolazzo
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 324, 00161 Rome, Italy.
| | - Francesca Belardinilli
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 324, 00161 Rome, Italy.
| | - Flavia Loreni
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 324, 00161 Rome, Italy.
| | - Angela Gradilone
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 324, 00161 Rome, Italy.
| | - Yasaman Mahdavian
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 324, 00161 Rome, Italy.
| | - Alain Gelibter
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, V.le Regina Elena 324, 00161 Rome, Italy.
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 324, 00161 Rome, Italy.
- Institut Pasteur-Cenci Bolognetti Foundation, V.le Regina Elena 291, 00161 Rome, Italy.
| | - Enrico Cortesi
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, V.le Regina Elena 324, 00161 Rome, Italy.
| | - Paola Gazzaniga
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
50
|
Dienstmann R, Salazar R, Tabernero J. Molecular Subtypes and the Evolution of Treatment Decisions in Metastatic Colorectal Cancer. Am Soc Clin Oncol Educ Book 2018; 38:231-238. [PMID: 30231342 DOI: 10.1200/edbk_200929] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Colorectal cancer (CRC) has clinically relevant molecular heterogeneity at multiple levels: genomics, epigenomics, transcriptomics, and microenvironment features. Genomic events acquired during carcinogenesis remain drivers of cancer progression in the metastatic setting. For example, KRAS and NRAS mutations define a population refractory to epidermal growth factor receptor monoclonal antibodies, BRAFV600E mutations associate with poor outcomes under standard therapies and response to targeted inhibitors in combinations, and HER2 amplifications confer unique sensitivity to double HER2 blockade. Multiple rare gene alterations driving resistance to epidermal growth factor receptor monoclonal antibodies have been described, with substantial overlap in primary and acquired mechanisms, in line with a clonal selection process. In this context, sequential analysis of circulating tumor DNA has the potential to guide drug development in a treatment-refractory setting. Rare kinase fusion events and complex alterations in genes involved in DNA damage repair have been described, with emerging evidence for targetability. On the other hand, transcriptomic subtypes and pathway activation signatures have also shown prognostic and potential predictive value in metastatic CRC. These markers reflect stromal and immune microenvironment interactions with cancer cells. For example, the microsatellite instable or POLE ultramutant CRC population is particularly sensitive to immune checkpoint inhibitors, whereas tumors with a mesenchymal phenotype are characterized by activation of immunosuppressive molecules that mandate stratified development of novel immunotherapy combinations. Here, we review the expanding landscape of targetable oncogenic alterations and signatures in metastatic CRC and discuss the clinical implementation of novel molecular diagnostic tests.
Collapse
Affiliation(s)
- Rodrigo Dienstmann
- From the Oncology Data Science Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain; Sage Bionetworks, Fred Hutchinson Cancer Research Center, Seattle, WA; Department of Medical Oncology, Catalan Institute of Oncology, Oncobell Program, L'Hospitalet de Llobregat, CIBERONC, Barcelona, Spain; Medical Oncology Department, Vall d'Hebron University Hospital and Institute of Oncology, Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| | - Ramon Salazar
- From the Oncology Data Science Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain; Sage Bionetworks, Fred Hutchinson Cancer Research Center, Seattle, WA; Department of Medical Oncology, Catalan Institute of Oncology, Oncobell Program, L'Hospitalet de Llobregat, CIBERONC, Barcelona, Spain; Medical Oncology Department, Vall d'Hebron University Hospital and Institute of Oncology, Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| | - Josep Tabernero
- From the Oncology Data Science Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain; Sage Bionetworks, Fred Hutchinson Cancer Research Center, Seattle, WA; Department of Medical Oncology, Catalan Institute of Oncology, Oncobell Program, L'Hospitalet de Llobregat, CIBERONC, Barcelona, Spain; Medical Oncology Department, Vall d'Hebron University Hospital and Institute of Oncology, Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| |
Collapse
|