1
|
Nervig CS, Rice M, Marelli M, Christie RJ, Owen SC. Modular Synthesis of Anti-HER2 Dual-Drug Antibody-Drug Conjugates Demonstrating Improved Toxicity. Bioconjug Chem 2025. [PMID: 39841105 DOI: 10.1021/acs.bioconjchem.4c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Antibodies have gained clinical success in the last two decades for the targeted delivery of highly toxic small molecule chemotherapeutics. Yet antibody-drug conjugates (ADCs) often fail in the clinic due to the development of resistance. The delivery of two mechanistically distinct small molecule drugs on one antibody is of increasing interest to overcome these challenges with single-drug ADCs. We have developed a modular synthetic strategy for the construction of a library of 19 dual-drug ADCs where drugs are conjugated through unnatural cyclopentadiene-containing amino acids and native cysteine residues on an anti-HER2 trastuzumab scaffold. Importantly, this strategy utilizes the same functional group on the linker-drug construct; this allows for the facile addition of drugs at either conjugation site and enables the evaluation of different drug-to-antibody ratios and combinations of drug pairs. We tested the library on high- and mid-HER2 expressing cell lines and observed increased toxicity in several dual-drug ADCs compared with single-drug constructs. The strategy developed herein provides a method for the facile synthesis, characterization, and evaluation of dual-payload ADCs. Simultaneous delivery of combinations of drugs with distinct mechanisms of action is critical for the next generation of targeted drug delivery.
Collapse
Affiliation(s)
- Christine S Nervig
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Megan Rice
- Biologics Engineering, AstraZeneca Oncology R&D, One MedImmune Way, Gaithersburg, Maryland 20878 United States
| | - Marcello Marelli
- Biologics Engineering, AstraZeneca Oncology R&D, One MedImmune Way, Gaithersburg, Maryland 20878 United States
| | - R James Christie
- Biologics Engineering, AstraZeneca Oncology R&D, One MedImmune Way, Gaithersburg, Maryland 20878 United States
| | - Shawn C Owen
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Biomedical Engineering, University of Utah Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Zhu Y, Song Y, Zhou X, Zhang W, Luo H. Antibody-drug conjugates in breast cancer. Carcinogenesis 2025; 46:bgae082. [PMID: 39742416 DOI: 10.1093/carcin/bgae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 01/03/2025] Open
Abstract
Antibody-drug conjugates (ADCs) have garnered significant attention as an innovative therapeutic strategy in cancer treatment. The mechanism of action for ADCs involves the targeted delivery of antibodies to specific receptors, followed by the release of cytotoxic payloads directly into tumor cells. In recent years, ADCs have made substantial progress in the treatment of breast cancer (BC), particularly demonstrating significant efficacy in the human epidermal growth factor receptor-2 (HER-2)-positive subgroup. Clinical evidence indicates that ADCs have notably improved treatment efficacy and survival outcomes for BC patients. However, challenges such as drug toxicities and the emergence of drug resistance necessitate further research and discussion. In this paper, we will summarize the advances in ADCs targeting various receptors in BC patients and explore the challenges and future directions in this field. We anticipate that the increasing availability of ADCs will lead to more effective and personalized treatment options for BC patients.
Collapse
Affiliation(s)
- Yinxing Zhu
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huai'an 223300, China
| | - Yaqi Song
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huai'an 223300, China
| | - Xilei Zhou
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huai'an 223300, China
| | - Wenwen Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Honglei Luo
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huai'an 223300, China
| |
Collapse
|
3
|
Metrangolo V, Blomquist MH, Dutta A, Gårdsvoll H, Krigslund O, Nørregaard KS, Jürgensen HJ, Ploug M, Flick MJ, Behrendt N, Engelholm LH. Targeting uPAR with an antibody-drug conjugate suppresses tumor growth and reshapes the immune landscape in pancreatic cancer models. SCIENCE ADVANCES 2025; 11:eadq0513. [PMID: 39823326 PMCID: PMC11740940 DOI: 10.1126/sciadv.adq0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Antibody-drug conjugates (ADCs) hold promise to advance targeted therapy of pancreatic ductal adenocarcinoma (PDAC), where the desmoplastic tumor stroma challenges effective treatment. Here, we explored the urokinase plasminogen activator receptor (uPAR) as a candidate ADC target in PDAC, harnessing its massive tumoral and stromal expression in this stroma-dense tumor. We generated a site-specific ADC offering high-affinity, cross-species reactivity, and efficient internalization of the anti-uPAR monoclonal antibody, FL1, carrying a potent anthracycline derivative (PNU-158692). In vitro, FL1-PNU exhibited potent and specific cytotoxicity against uPAR-expressing PDAC cell lines, stromal and immune cells, and bystander killing of uPAR-negative cells. In vivo, the ADC induced remission or sustained tumor regression and extended survival in xenograft models. In syngeneic orthotopic models, the antitumor effect promoted immunomodulation by enhancing infiltrating immune effectors and decreasing immunosuppressive cells. This study lays grounds for further exploring FL1-PNU as a putative clinical ADC candidate, potentially providing a promising therapeutic avenue for PDAC as a monotherapy or in combinatorial regimens.
Collapse
Affiliation(s)
- Virginia Metrangolo
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | - Ananya Dutta
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Henrik Gårdsvoll
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
| | - Oliver Krigslund
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
| | | | | | - Michael Ploug
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Matthew J. Flick
- Department of Medicine and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Niels Behrendt
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, GK-2200 Copenhagen, Denmark
| | - Lars H. Engelholm
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
4
|
Akram F, Ali AM, Akhtar MT, Fatima T, Shabbir I, Ul Haq I. The journey of antibody-drug conjugates for revolutionizing cancer therapy: A review. Bioorg Med Chem 2025; 117:118010. [PMID: 39586174 DOI: 10.1016/j.bmc.2024.118010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a powerful class of targeted cancer therapies that harness the specificity of monoclonal antibodies to deliver cytotoxic payloads directly to tumor cells, minimizing off-target effects. This review explores the advancements in ADC technologies, focusing on advancing next-generation ADCs with novel payloads, conjugation strategies, and enhanced pharmacokinetic profiles. In particular, we highlight innovative payloads, including microtubule inhibitors, spliceosome modulators, and RNA polymerase inhibitors, that offer new mechanisms of cytotoxicity beyond traditional apoptosis induction. Additionally, the introduction of sophisticated conjugation techniques, such as site-specific conjugation using engineered cysteines, enzymatic methods, and integration of non-natural amino acids, has greatly improved the homogeneity, efficacy, and safety of ADCs. Furthermore, the review delves into the mechanistic insights into ADC action, detailing the intracellular pathways that facilitate drug release and cell death, and discussing the significance of bioconjugation methods in optimizing drug-antibody ratios (DARs). The establishment of comprehensive databases like ADCdb, which catalog vital pharmacological and biological data for ADCs, is also explored as a critical resource for advancing ADC research and clinical application. Finally, the clinical landscape of ADCs is examined, with a focus on the evolution of FDA-approved ADCs, such as Gemtuzumab Ozogamicin and Trastuzumab Emtansine, as well as emerging candidates in ongoing trials. As ADCs continue to evolve, their potential to revolutionize cancer therapy remains immense, offering new hope for more effective and personalized treatment options. ADCs also offer a significant advancement in targeted cancer therapy by merging the specificity of monoclonal antibodies with cytotoxic potency of chemotherapeutic agents. Hence, this dual mechanism intensifies tumor selectivity while minimizing systemic toxicity, paving the way for more effective and safer cancer treatments.
Collapse
Affiliation(s)
- Fatima Akram
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Department of Biology, Saint Louis University, St. Louis, MO, USA.
| | - Amna Murrawat Ali
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Muhammad Tayyab Akhtar
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Taseer Fatima
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Ifrah Shabbir
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Ikram Ul Haq
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
5
|
Jiang X, Nik Nabil WN, Ze Y, Dai R, Xi Z, Xu H. Unlocking Natural Potential: Antibody-Drug Conjugates With Naturally Derived Payloads for Cancer Therapy. Phytother Res 2024. [PMID: 39688127 DOI: 10.1002/ptr.8407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Natural compound-derived chemotherapies remain central to cancer treatment, however, they often cause off-target side effects that negatively impact patients' quality of life. In contrast, antibody-drug conjugates (ADCs) combine cytotoxic payloads with antibodies to specifically target cancer cells. Most approved and clinically investigated ADCs utilize naturally derived payloads, while those with conventional synthetic molecular payloads remain limited. This review focuses on approved ADCs that enhance the efficacy of naturally derived payloads by linking them with antibodies. We provide an overview of the core components of ADCs, their working mechanisms, and FDA-approved ADCs featuring naturally derived payloads, such as calicheamicin, camptothecin, dolastatin 10, maytansine, pyrrolbenzodiazepine (PBD), and the immunotoxin Pseudomonas exotoxin A. This review also explores recent clinical advancements aimed at broadening the therapeutic potential of ADCs, their applicability in treating heterogeneously composed tumors and their potential use beyond oncology. Additionally, this review highlights naturally derived payloads that are currently being clinically investigated but have not yet received approval. By summarizing the current landscape, this review provides insights into promising avenues for exploration and contributes to the refinement of treatment protocols for improved patient outcomes.
Collapse
Affiliation(s)
- Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- National Pharmaceutical Regulatory Agency, Ministry of Health, Selangor, Malaysia
| | - Yufei Ze
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Michelon I, Dacoregio MI, Vilbert M, Priantti J, do Rego Castro CE, Vian L, Tarantino P, de Azambuja E, Cavalcante L. Antibody-drug conjugates in patients with advanced/metastatic HER2-low-expressing breast cancer: a systematic review and meta-analysis. Ther Adv Med Oncol 2024; 16:17588359241297079. [PMID: 39574495 PMCID: PMC11580099 DOI: 10.1177/17588359241297079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024] Open
Abstract
Background Until recently, targeted therapies have failed to benefit patients with human epidermal growth factor receptor 2 (HER2)-low-expressing breast cancer (BC). Nevertheless, antibody-drug conjugates (ADCs) have reshaped their prognosis. Objectives We performed a systematic review and meta-analysis to assess the effectiveness of ADCs in patients with HER2-low advanced/metastatic (a/m) BC. Design This study is a systematic review and meta-analysis. Data sources We searched PubMed, Embase, and Cochrane databases as well as the American Society of Clinical Oncology, European Society for Medical Oncology, and San Antonio Breast Cancer Symposium conference proceedings. Methods Studies evaluating ADCs (trastuzumab deruxtecan (T-DXd), sacituzumab govitecan (SG), MRG002, and RC48-ADC) in patients with HER2-low a/mBC were included. We used R software (v.4.2.2) and random effects models for all analyses. Heterogeneity was assessed using the I 2 test. Results Overall, 14 studies were included (five real-world studies and nine clinical trials (CTs)), with 2883 HER2-low a/mBC patients: 808 received treatment of physician's choice (TPC), and 2075 ADCs. Most were treated with T-DXd (n = 1691), followed by SG (n = 310), MRG002 (n = 56), and RC48-ADC (n = 18). Patients treated with T-DXd achieved a significantly higher objective response rate (ORR), disease control rate (DCR), and clinical benefit rate (CBR) than those receiving other ADCs. In the pooled analysis of four randomized CTs, ADCs statistically prolonged progression-free survival (n = 1828, hazard ratio (HR) 0.50, 95% confidence interval (CI) 0.36-0.68, I 2 = 82%, p < 0.001) and overall survival (n = 1546, HR 0.70, 95% CI 0.57-0.86, I 2 = 43%, p < 0.001) compared with TPC. Patients on ADCs also achieved a greater antitumor response than TPC, including better ORR (odds ratio (OR), 3.7, 95% CI 2.5-5.6, I 2 = 59%, p < 0.001), DCR (OR, 2.7, 95% CI 2.1-3.5, I 2 = 0%, p < 0.001), and CBR (OR, 3.6, 95% CI 2.6-5.2, I 2 = 56%, p < 0.01). Conclusion Our systematic review and meta-analysis confirms the efficacy of ADCs in HER2-low a/m BC patients over TPC. Future studies should focus on bringing ADCs into earlier lines of therapy in this population. Trial registration This study was registered in PROSPERO (CRD42024452962).
Collapse
Affiliation(s)
- Isabella Michelon
- Department of Medicine, Catholic University of Pelotas, 373 Gonçalves Chaves, Pelotas 96010-000, Brazil
| | | | - Maysa Vilbert
- Massachusetts General Hospital Cancer Center, Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan Priantti
- School of Medicine, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | | | - Lucas Vian
- Rede AMO de Campo Grande, Divisão de Oncologia, Departamento do Hospital CASSEMS de Campo Grande, Campo Grande, Mato Grosso do Sul, Brazil
| | - Paolo Tarantino
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Evandro de Azambuja
- Institut Jules Bordet, Hopital Universitaire de Bruxelles and l’Université Libre de Bruxelles, Brussels, Belgium
| | - Ludimila Cavalcante
- Department of Medical Oncology and Hematology, University of Virginia Comprehensive Cancer Center, Charlottesville, VA, USA
| |
Collapse
|
7
|
Wang K, Xu T, Wu J, Yuan Y, Guan X, Zhu C. Real-world application of disitamab vedotin (RC48-ADC) in patients with breast cancer with different HER2 expression levels: efficacy and safety analysis. Oncologist 2024:oyae304. [PMID: 39550213 DOI: 10.1093/oncolo/oyae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/09/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Disitamab vedotin (RC48-ADC), an antibody-drug conjugate (ADC), combines specific antibody disitamab with cytotoxicity monomethyl auristatin E to effectively target the human epidermal growth factor receptor 2 (HER2) protein on tumor cells for precise elimination. Recent studies have demonstrated that RC48-ADC offers therapeutic benefits for patients with HER2-positive and HER2-low-expression breast cancer (BC). However, a thorough exploration of its efficacy and safety in real-world settings for patients with metastatic breast cancer (mBC) is currently lacking. METHODS This retrospective, multicenter, real-world study included patients with mBC who received RC48-ADC from September 2021 to March 2024. These patients include HER2-positive BC and HER2-low-expression BC. The primary endpoint was progression-free survival (PFS). Secondary endpoints included overall survival (OS), restricted mean survival time, objective response rate (ORR), and disease control rate (DCR). Factors affecting efficacy and the occurrence of treatment-related adverse events (TRAE) were evaluated. RESULTS The study included a cohort of 89 patients with mBC, with 48 of those being identified as HER2-positive. As of March 2024, 22 deaths were recorded, with an immature median OS. Total PFS varied from 1.0 to 31.2 months, with a median of 5.5 months (95% CI, 4.368-6.632). HER2-positive patients exhibited prolonged PFS compared with HER2-low-expression patients (6.6 months vs 4.1 months, P = .023). The overall ORR stood at 25.8% (95% CI, 0.178-0.358), with higher rates observed in HER2-positive patients compared with HER2-low-expression patients (31.3% vs 19.5%). Similarly, the overall DCR was 78.7% (95% CI, 0.691-0.859), with HER2-positive patients demonstrating superior DCR compared with HER2-low-expression patients (83.3% vs 73.2%). Notably, HER2 expression emerged as the primary determinant of RC48-ADC efficacy. The most prevalent TRAE among all patients included leukopenia (21.3%) and alopecia (20.2%). CONCLUSION RC48-ADC showcases promising efficacy and manageable safety in patients with both HER2-positive and HER2-low-expression mBC.
Collapse
Affiliation(s)
- Ke Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, People's Republic of China
| | - Ting Xu
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, People's Republic of China
| | - Jing Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, People's Republic of China
| | - Yuan Yuan
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, People's Republic of China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Chengjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
8
|
Wang Y, Li G, Wang H, Qi Q, Wang X, Lu H. Targeted therapeutic strategies for Nectin-4 in breast cancer: Recent advances and future prospects. Breast 2024; 79:103838. [PMID: 39577073 PMCID: PMC11616553 DOI: 10.1016/j.breast.2024.103838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/31/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
Nectin-4 is a cell adhesion molecule which has gained more and more attention as a therapeutic target in cancer recently. Overexpression of Nectin-4 has been observed in various tumors, including breast cancer, and is associated with tumor progression. Enfortumab vedotin(EV)is an antibody-drug conjugate (ADC) targeting Nectin-4, which has been approved by FDA for the treatment of urothelial carcinoma. Notably, Nectin-4 was also investigated as a target for breast cancer in preclinical and clinical settings. Nectin-4-targeted approaches, such as ADCs, oncolytic viruses, photothermal therapy and immunotherapy, have shown promising results in early-phase clinical trials. These therapies offer novel strategies for delivering targeted treatments to Nectin-4-expressing cancer cells, enhancing treatment efficacy and minimizing off-target effects. In conclusion, this review aims to provide an overview of the latest advances in understanding the role of Nectin-4 in breast cancer and discuss the future development prospects of Nectin-4 targeted agents.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Guangliang Li
- Department of Medical Oncology (Breast Cancer), Zhejiang Cancer Hospital, Hangzhou, China
| | - Hanying Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Quan Qi
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| | - Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Zhang Y, Wang L, Cao X, Song R, Yin S, Cheng Z, Li W, Shen K, Zhao T, Xu J, Liu S, Xie Q, Wu Y, Gao B, Guo Q, Wu J, Qiu X, Wang B, Zhang W, Yang T, Lu W, Zhu S. Evaluation of Double Self-Immolative Linker-Based Antibody-Drug Conjugate FDA022-BB05 with Enhanced Therapeutic Potential. J Med Chem 2024; 67:19852-19873. [PMID: 39444220 DOI: 10.1021/acs.jmedchem.4c02243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Typical antibody-drug conjugates (ADCs) with valine-alanine linkage, often conjugated with the amino group in payloads, face challenges when interacting with hydroxyl group-containing payloads. Herein, we introduced a transformative Val-Ala-based double self-immolative linker-payload platform, reshaping ADCs by optimizing hydroxyl group-containing payload integration. Utilizing this platform, FDA022-BB05 was successfully conjugated with the hydroxyl group-containing payload DXd using trastuzumab (FDA022) as the monoclonal antibody (mAb). FDA022-BB05 demonstrated enhanced stability, effective cathepsin B sensitivity, reduced cell proliferation, increased bystander killing, and targeted delivery. Notably, acute toxicity evaluations in diverse preclinical models indicated favorable safety profiles and tolerability, with a broad therapeutic index in HER2-positive and -negative xenografts. Overall, these compelling findings support the promising therapeutic potential of FDA022-BB05, emphasizing the significance of diverse linker-payload platform strategies. This ADC is a valuable addition to targeted cancer therapy development, currently advancing through phase I clinical trials.
Collapse
Affiliation(s)
- Yifan Zhang
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Lei Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Xuemei Cao
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Ruiwen Song
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Sicheng Yin
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Zhiyang Cheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Weinan Li
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Keyu Shen
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Teng Zhao
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Jun Xu
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Shuangxi Liu
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Qian Xie
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Yinghan Wu
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Bei Gao
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Qingsong Guo
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Jingsong Wu
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Xuefei Qiu
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Baoxia Wang
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Wenbo Zhang
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Tong Yang
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Shulei Zhu
- Innovation Center for AI and Drug Discovery, School of Pharmacy, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| |
Collapse
|
10
|
Gong S, Liu B, Qiu J, Huang F, Thayumanavan S. Antibody-Directing Antibody Conjugates (ADACs) Enabled by Orthogonal Click Chemistry for Targeted Intracellular Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402874. [PMID: 39162119 PMCID: PMC11581923 DOI: 10.1002/smll.202402874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/03/2024] [Indexed: 08/21/2024]
Abstract
Using orthogonal click chemistries for efficient nanoscale self-assembly, a new antibody-directing antibody conjugate (ADAC) nanogel is generated. In this system, one of the antibodies is displayed on the nanogel surface to specifically recognize cell-surface epitopes while the other antibody is encapsulated inside the nanogel core. The system is programmed to release the latter antibody in its functional form in the cytosolic environment of a specific cell to engage intracellular targets. ADACs offer a potential solution to harness the advantages seen with antibody-drug conjugates (ADCs) to deliver therapeutic cargos to specific tissues, but with the added capability of carrying biologics as the cargo. In this manuscript, this potential is demonstrated through delivery of antibodies against intracellular targets in specific cells. This platform offers new avenues for precise therapeutic interventions and the potential to address previously "undruggable" cellular targets.
Collapse
Affiliation(s)
- Shuai Gong
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Bin Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Jingyi Qiu
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Fangying Huang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
11
|
Udofa E, Sankholkar D, Mitragotri S, Zhao Z. Antibody drug conjugates in the clinic. Bioeng Transl Med 2024; 9:e10677. [PMID: 39545074 PMCID: PMC11558205 DOI: 10.1002/btm2.10677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 11/17/2024] Open
Abstract
Antibody-drug conjugates (ADCs), chemotherapeutic agents conjugated to an antibody to enhance their targeted delivery to tumors, represent a significant advancement in cancer therapy. ADCs combine the precise targeting capabilities of antibodies and the potent cell-killing effects of chemotherapy, allowing for enhanced cytotoxicity to tumors while minimizing damage to healthy tissues. Here, we provide an overview of the current clinical landscape of ADCs, highlighting 11 U.S. Food and Drug Administration (FDA)-approved products and discussing over 500 active clinical trials investigating newer ADCs. We also discuss some key challenges associated with the clinical translation of ADCs and highlight emerging strategies to overcome these hurdles. Our discussions will provide useful guidelines for the future development of safer and more effective ADCs for a broader range of indications.
Collapse
Affiliation(s)
- Edidiong Udofa
- Department of Pharmaceutical SciencesUniversity of Illinois ChicagoChicagoIllinoisUSA
| | | | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMassachusettsUSA
| | - Zongmin Zhao
- Department of Pharmaceutical SciencesUniversity of Illinois ChicagoChicagoIllinoisUSA
- University of Illinois Cancer CenterChicagoIllinoisUSA
| |
Collapse
|
12
|
Pincus SH, Cole FM, Ober K, Tokmina-Lukaszewska M, Marcotte T, Kovacs EW, Zhu T, Khasanov A, Copié V, Peters T. Conjugation of anti-HIV gp41 monoclonal antibody to a drug capable of targeting resting lymphocytes produces an effective cytotoxic anti-HIV immunoconjugate. J Virol 2024; 98:e0064724. [PMID: 39283123 PMCID: PMC11494876 DOI: 10.1128/jvi.00647-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/11/2024] [Indexed: 10/23/2024] Open
Abstract
HIV-infected cells persisting in the face of suppressive antiretroviral therapy are the barrier to curing infection. Cytotoxic immunoconjugates targeted to HIV antigens on the cell surface may clear these cells. We showed efficacy in mouse and macaque models using immunotoxins, but immunogenicity blunted the effect. As an alternative, we propose antibody drug conjugates (ADCs), as used in cancer immunotherapy. In cancer, the target is a dividing cell, whereas it may not be in HIV. We screened cytotoxic drugs on human primary cells and cell lines. An anthracycline derivative, PNU-159682 (PNU), was highly cytotoxic to both proliferating and resting cells. Human anti-gp41 mAb 7B2 was conjugated to ricin A chain or PNU. The conjugates were tested in vitro for cytotoxic efficacy and anti-viral effect, and in vivo for tolerability. The specificity of killing for both conjugates was demonstrated on Env+ and Env- cells. The toxin conjugate was more potent and killed more rapidly, but 7B2-PNU was effective at levels achievable in patients. The ricin conjugate was well tolerated in mice; 7B2-PNU was toxic when administered intraperitoneally but was tolerated intravenously. We have produced an ADC with potential to target the persistent HIV reservoir in both dividing and non-dividing cells while avoiding immunogenicity. Cytotoxic anti-HIV immunoconjugates may have greatest utility as part of an "activate and purge" regimen, involving viral activation in the reservoir. This is a unique comparison of an immunotoxin and ADC targeted by the same antibody and tested in the same systems.IMPORTANCEHIV infection can be controlled with anti-retroviral therapy, but it cannot be cured. Despite years of therapy that suppresses HIV, patients again become viremic shortly after discontinuing treatment. A long-lived population of memory T cells retain the genes encoding HIV, and these cells secrete infectious HIV when no longer suppressed by therapy. This is the persistent reservoir of HIV infection. The therapies described here use anti-HIV antibodies conjugated to poisons to kill the cells in this reservoir. These poisons may be of several types, including protein toxins (immunotoxins) or anti-cancer drugs (antibody drug conjugates, ADCs). We have previously shown that an anti-HIV immunotoxin had therapeutic effects in animal models, but it elicited an anti-drug immune response. Here, we have prepared an anti-HIV ADC, which would be less likely to provoke an immune response, and show its potential for use in eliminating the persistent reservoir of HIV infection.
Collapse
Affiliation(s)
- Seth H. Pincus
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Frances M. Cole
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Kelli Ober
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | | | - Tamera Marcotte
- Animal Resource Center, Montana State University, Bozeman, Montana, USA
| | | | - Tong Zhu
- Levena Biopharma, San Diego, California, USA
| | | | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Tami Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
13
|
Xi M, Zhu J, Zhang F, Shen H, Chen J, Xiao Z, Huangfu Y, Wu C, Sun H, Xia G. Antibody-drug conjugates for targeted cancer therapy: Recent advances in potential payloads. Eur J Med Chem 2024; 276:116709. [PMID: 39068862 DOI: 10.1016/j.ejmech.2024.116709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a promising cancer therapy modality which specifically delivers highly toxic payloads to cancer cells through antigen-specific monoclonal antibodies (mAbs). To date, 15 ADCs have been approved and more than 100 ADC candidates have advanced to clinical trials for the treatment of various cancers. Among these ADCs, microtubule-targeting and DNA-damaging agents are at the forefront of payload development. However, several challenges including toxicity and drug resistance limit the potential of this modality. To tackle these issues, multiple innovative payloads such as immunomodulators and proteolysis targeting chimeras (PROTACs) are incorporated into ADCs to enable multimodal cancer therapy. In this review, we describe the mechanism of ADCs, highlight the importance of ADC payloads and summarize recent progresses of conventional and unconventional ADC payloads, trying to provide an insight into payload diversification as a key step in future ADC development.
Collapse
Affiliation(s)
- Meiyang Xi
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jingjing Zhu
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| | - Fengxia Zhang
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| | - Hualiang Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jianhui Chen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Ziyan Xiao
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yanping Huangfu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Chunlei Wu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| | - Gang Xia
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| |
Collapse
|
14
|
Tabariès S, Robert A, Marcil A, Ling B, Acchione M, Lippens J, Pagé M, Fortin A, Meury L, Coutu M, Annis MG, Girondel C, Navarre J, Jaramillo M, Moraitis AN, Siegel PM. Anti-Claudin-2 Antibody-Drug Conjugates for the Treatment of Colorectal Cancer Liver Metastasis. Mol Cancer Ther 2024; 23:1459-1470. [PMID: 38902871 DOI: 10.1158/1535-7163.mct-23-0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/20/2023] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
We have previously demonstrated that Claudin-2 is required for colorectal cancer (CRC) liver metastasis. The expression of Claudin-2 in primary CRC is associated with poor survival and highly expressed in liver metastases. Claudin-2 also promotes breast cancer liver metastasis by enabling seeding and cancer cell survival. These observations support Claudin-2 as a potential therapeutic target for managing patients with liver metastases. Antibody-drug conjugates (ADC) are promising antitumor therapeutics, which combine the specific targeting ability of monoclonal antibodies with the potent cell killing activity of cytotoxic drugs. Herein, we report the generation of 28 anti-Claudin-2 antibodies for which the binding specificities, cross-reactivity with claudin family members, and cross-species reactivity were assessed by flow cytometry analysis. Multiple drug conjugates were tested, and PNU was selected for conjugation with anti-Claudin-2 antibodies binding either extracellular loop 1 or 2. Anti-Claudin-2 ADCs were efficiently internalized and were effective at killing Claudin-2-expressing CRC cancer cells in vitro. Importantly, PNU-conjugated-anti-Claudin-2 ADCs impaired the development of replacement-type CRC liver metastases in vivo, using established CRC cell lines and patient-derived xenograft (PDX) models of CRC liver metastases. Results suggest that the development of ADCs targeting Claudin-2 is a promising therapeutic strategy for managing patients with CRC liver-metastatic disease who present replacement-type liver metastases.
Collapse
Affiliation(s)
- Sébastien Tabariès
- Goodman Cancer Institute, McGill University, Montréal, Canada
- Department of Medicine, McGill University, Montréal, Canada
| | - Alma Robert
- National Research Council Canada, Montréal, Canada
| | - Anne Marcil
- National Research Council Canada, Montréal, Canada
| | - Binbing Ling
- National Research Council Canada, Ottawa, Canada
| | | | | | - Martine Pagé
- National Research Council Canada, Montréal, Canada
| | - Annie Fortin
- National Research Council Canada, Montréal, Canada
| | - Luc Meury
- National Research Council Canada, Montréal, Canada
| | | | - Matthew G Annis
- Goodman Cancer Institute, McGill University, Montréal, Canada
- Department of Medicine, McGill University, Montréal, Canada
| | - Charlotte Girondel
- Goodman Cancer Institute, McGill University, Montréal, Canada
- Department of Medicine, McGill University, Montréal, Canada
| | - Julie Navarre
- Goodman Cancer Institute, McGill University, Montréal, Canada
- Department of Medicine, McGill University, Montréal, Canada
| | | | | | - Peter M Siegel
- Goodman Cancer Institute, McGill University, Montréal, Canada
- Department of Medicine, McGill University, Montréal, Canada
- Department of Biochemistry, McGill University, Montréal, Canada
| |
Collapse
|
15
|
Dong W, Wang W, Cao C. The Evolution of Antibody-Drug Conjugates: Toward Accurate DAR and Multi-specificity. ChemMedChem 2024; 19:e202400109. [PMID: 38758596 DOI: 10.1002/cmdc.202400109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
Antibody-drug conjugates (ADCs) consist of antibodies, linkers and payloads. They offer targeted delivery of potent cytotoxic drugs to tumor cells, minimizing off-target effects. However, the therapeutic efficacy of ADCs is compromised by heterogeneity in the drug-to-antibody ratio (DAR), which impacts both cytotoxicity and pharmacokinetics (PK). Additionally, the emergence of drug resistance poses significant challenges to the clinical advancement of ADCs. To overcome these limitations, a variety of strategies have been developed, including the design of multi-specific drugs with accurate DAR. This review critically summarizes the current challenges faced by ADCs, categorizing key issues and evaluating various innovative solutions. We provide an in-depth analysis of the latest methodologies for achieving homogeneous DAR and explore design strategies for multi-specific drugs aimed at combating drug resistance. Our discussion offers a current perspective on the advancements made in refining ADC technologies, with an emphasis on enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Wenge Dong
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wanqi Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chan Cao
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
16
|
Ma Q, Durga P, Wang FXC, Yao HP, Wang MH. Pharmaceutical innovation and advanced biotechnology in the biotech-pharmaceutical industry for antibody-drug conjugate development. Drug Discov Today 2024; 29:104057. [PMID: 38844064 DOI: 10.1016/j.drudis.2024.104057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Antibody-drug conjugates (ADCs), from prototypes in the 1980s to first- and second-generation products in the 2000s, and now in their multiformats, have progressed tremendously to meet oncological challenges. Currently, 13 ADCs have been approved for medical practice, with over 200 candidates in clinical trials. Moreover, ADCs have evolved into different formats, including bispecific ADCs, probody-drug conjugates, pH-responsive ADCs, target-degrading ADCs, and immunostimulating ADCs. Technologies from biopharmaceutical industries have a crucial role in the clinical transition of these novel biotherapeutics. In this review, we highlight several features contributing to the prosperity of bioindustrial ADC development. Various proprietary technologies from biopharmaceutical companies are discussed. Such advances in biopharmaceutical industries are the backbone for the success of ADCs in development and clinical application.
Collapse
Affiliation(s)
- Qi Ma
- Translational Research Laboratory for Urological Diseases, First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, PR China; Comprehensive Genitourinary Cancer Center, First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, PR China.
| | - Puro Durga
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | | | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Center for Infectious Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| | - Ming-Hai Wang
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA.
| |
Collapse
|
17
|
Phuna ZX, Kumar PA, Haroun E, Dutta D, Lim SH. Antibody-drug conjugates: Principles and opportunities. Life Sci 2024; 347:122676. [PMID: 38688384 DOI: 10.1016/j.lfs.2024.122676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Antibody-drug conjugates (ADCs) are immunoconjugates that combine the specificity of monoclonal antibodies with a cytotoxic agent. The most appealing aspects of ADCs include their potential additive or synergistic effects of the innate backbone antibody and cytotoxic effects of the payload on tumors without the severe toxic side effects often associated with traditional chemotherapy. Recent advances in identifying new targets with tumor-specific expression, along with improved bioactive payloads and novel linkers, have significantly expanded the scope and optimism for ADCs in cancer therapeutics. In this paper, we will first provide a brief overview of antibody specificity and the structure of ADCs. Next, we will discuss the mechanisms of action and the development of resistance to ADCs. Finally, we will explore opportunities for enhancing ADC efficacy, overcoming drug resistance, and offer future perspectives on leveraging ADCs to improve the outcome of ADC therapy for cancer treatment.
Collapse
Affiliation(s)
- Zhi Xin Phuna
- Research and Development, Medicovestor, Inc, New York City, NY, United States of America
| | - Prashanth Ashok Kumar
- Division of Hematology and Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States of America
| | - Elio Haroun
- Division of Hematology and Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States of America
| | - Dibyendu Dutta
- Division of Hematology and Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States of America
| | - Seah H Lim
- Research and Development, Medicovestor, Inc, New York City, NY, United States of America; Division of Hematology and Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States of America.
| |
Collapse
|
18
|
Saleh K, Khoury R, Khalife N, Chahine C, Ibrahim R, Tikriti Z, Le Cesne A. Mechanisms of action and resistance to anti-HER2 antibody-drug conjugates in breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:22. [PMID: 39050884 PMCID: PMC11267152 DOI: 10.20517/cdr.2024.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 07/27/2024]
Abstract
Human epidermal growth factor 2 (HER2)-positive breast cancer (BC) represents nearly 20% of all breast tumors. Historically, these patients had a high rate of relapse and dismal prognosis. The advent of HER2-targeting monoclonal antibodies such as trastuzumab followed by pertuzumab had improved the prognosis of HER2-positive metastatic BC. More recently, antibody-drug conjugates (ADCs) are now reshaping the treatment paradigm of solid tumors, especially breast cancer. Tratsuzumab emtansine (T-DM1) was one of the first ADC developed in oncology and was approved for the management of HER2-positive metastatic BC. In a head-to-head comparison, trastuzumab deruxtecan (T-DXd) defeated T-DM1 as a second-line treatment. The efficacy of ADCs is counterbalanced by the appearance of acquired resistance to these agents. In this paper, we summarize the mechanisms of action and resistance of T-DM1 and T-DXd, as well as their clinical efficacy. Additionally, we also discuss potential strategies for addressing resistance to ADC.
Collapse
Affiliation(s)
- Khalil Saleh
- International Department, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Rita Khoury
- International Department, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Nadine Khalife
- Department of Head and Neck Oncology, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Claude Chahine
- International Department, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Rebecca Ibrahim
- International Department, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Zamzam Tikriti
- International Department, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Axel Le Cesne
- International Department, Gustave Roussy Cancer Campus, Villejuif 94800, France
| |
Collapse
|
19
|
Vaughan HJ, Est-Witte S, Dockery LT, Urello MA, Boyd J, Keyser BD, Zhuang L, Marelli M, Christie RJ. A high-throughput lysosome trafficking assay guides ligand selection and elucidates differences in CD22-targeted nanodelivery. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2351791. [PMID: 38817250 PMCID: PMC11138227 DOI: 10.1080/14686996.2024.2351791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Targeted nanoparticles offer potential to selectively deliver therapeutics to cells; however, their subcellular fate following endocytosis must be understood to properly design mechanisms of drug release. Here we describe a nanoparticle platform and associated cell-based assay to observe lysosome trafficking of targeted nanoparticles in live cells. The nanoparticle platform utilizes two fluorescent dyes loaded onto PEG-poly(glutamic acid) and PEG-poly(Lysine) block co-polymers that also comprise azide reactive handles on PEG termini to attach antibody-based targeting ligands. Fluorophores were selected to be pH-sensitive (pHrodo Red) or pH-insensitive (Alexafluor 488) to report when nanoparticles enter low pH lysosomes. Dye-labelled block co-polymers were further assembled into polyion complex micelle nanoparticles and crosslinked through amide bond formation to form stable nano-scaffolds for ligand attachment. Cell binding and lysosome trafficking was determined in live cells by fluorescence imaging in 96-well plates and quantification of red- and green-fluorescence signals over time. The platform and assay was validated for selection of optimal antibody-derived targeting ligands directed towards CD22 for nanoparticle delivery. Kinetic analysis of uptake and lysosome trafficking indicated differences between ligand types and the ligand with the highest lysosome trafficking efficiency translated into effective DNA delivery with nanoparticles bearing the optimal ligand.
Collapse
Affiliation(s)
- Hannah J. Vaughan
- Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Lance T. Dockery
- Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Morgan A. Urello
- Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Jonathan Boyd
- Discovery Sciences, BioPharma R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Li Zhuang
- Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Marcello Marelli
- Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - R. James Christie
- Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
20
|
Mason M, Bisbal Lopez L, Bashiri F, Herrero A, Baron A, Bucci R, Pignataro L, Gennari C, Dal Corso A. Amine-Carbamate Self-Immolative Spacers Counterintuitively Release 3° Alcohol at Much Faster Rates than 1° Alcohol Payloads. Chembiochem 2024; 25:e202400174. [PMID: 38415320 DOI: 10.1002/cbic.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 02/29/2024]
Abstract
Self-immolative (SI) spacers are degradable chemical connectors widely used in prodrugs and drug conjugates to release pharmaceutical ingredients in response to specific stimuli. Amine-carbamate SI spacers are particularly versatile, as they have been used to release different hydroxy cargos, ranging from 2° and 3° alcohols to phenols and oximes. In this work, we describe the ability of three amine-carbamate SI spacers to release three structurally similar imidazoquinoline payloads, bearing either a 1°, a 2° or a 3° alcohol as the leaving group. While the spacers showed comparable efficacy at releasing the 2° and 3° alcohols, the liberation of the 1° alcohol was much slower, unveiling a counterintuitive trend in nucleophilic acyl substitutions. The release of the 1° alcohol payload was only possible using a SI spacer bearing a pyrrolidine ring and a tertiary amine handle, which opens the way to future applications in drug delivery systems.
Collapse
Affiliation(s)
- Mattia Mason
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I, -20133, Milan, Italy
| | - Lydia Bisbal Lopez
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I, -20133, Milan, Italy
| | - Fazel Bashiri
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I, -20133, Milan, Italy
| | - Aurélie Herrero
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I, -20133, Milan, Italy
| | - Aurélien Baron
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I, -20133, Milan, Italy
| | - Raffaella Bucci
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Venezian 21, 20133, Milan, Italy
| | - Luca Pignataro
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I, -20133, Milan, Italy
| | - Cesare Gennari
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I, -20133, Milan, Italy
| | - Alberto Dal Corso
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I, -20133, Milan, Italy
| |
Collapse
|
21
|
Tsuchikama K, Anami Y, Ha SYY, Yamazaki CM. Exploring the next generation of antibody-drug conjugates. Nat Rev Clin Oncol 2024; 21:203-223. [PMID: 38191923 DOI: 10.1038/s41571-023-00850-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Antibody-drug conjugates (ADCs) are a promising cancer treatment modality that enables the selective delivery of highly cytotoxic payloads to tumours. However, realizing the full potential of this platform necessitates innovative molecular designs to tackle several clinical challenges such as drug resistance, tumour heterogeneity and treatment-related adverse effects. Several emerging ADC formats exist, including bispecific ADCs, conditionally active ADCs (also known as probody-drug conjugates), immune-stimulating ADCs, protein-degrader ADCs and dual-drug ADCs, and each offers unique capabilities for tackling these various challenges. For example, probody-drug conjugates can enhance tumour specificity, whereas bispecific ADCs and dual-drug ADCs can address resistance and heterogeneity with enhanced activity. The incorporation of immune-stimulating and protein-degrader ADCs, which have distinct mechanisms of action, into existing treatment strategies could enable multimodal cancer treatment. Despite the promising outlook, the importance of patient stratification and biomarker identification cannot be overstated for these emerging ADCs, as these factors are crucial to identify patients who are most likely to derive benefit. As we continue to deepen our understanding of tumour biology and refine ADC design, we will edge closer to developing truly effective and safe ADCs for patients with treatment-refractory cancers. In this Review, we highlight advances in each ADC component (the monoclonal antibody, payload, linker and conjugation chemistry) and provide more-detailed discussions on selected examples of emerging novel ADCs of each format, enabled by engineering of one or more of these components.
Collapse
Affiliation(s)
- Kyoji Tsuchikama
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Yasuaki Anami
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Summer Y Y Ha
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chisato M Yamazaki
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
22
|
Postupalenko V, Marx L, Pantin M, Viertl D, Gsponer N, Giudice G, Gasilova N, Schottelius M, Lévy F, Garrouste P, Segura JM, Nyanguile O. Site-selective template-directed synthesis of antibody Fc conjugates with concomitant ligand release. Chem Sci 2024; 15:1324-1337. [PMID: 38274063 PMCID: PMC10806771 DOI: 10.1039/d3sc04324j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Template-directed methods are emerging as some of the most effective means to conjugate payloads at selective sites of monoclonal antibodies (mAbs). We have previously reported a method based on an engineered Fc-III reactive peptide to conjugate a radionuclide chelator to K317 of antibodies with the concomitant release of the Fc-III peptide ligand. Here, our method was redesigned to target two lysines proximal to the Fc-III binding site, K248 and K439. Using energy minimization predictions and a semi-combinatorial synthesis approach, we sampled multiple Fc-III amino acid substituents of A3, H5, L6 and E8, which were then converted into Fc-III reactive conjugates. Middle-down MS/MS subunit analysis of the resulting trastuzumab conjugates revealed that K248 and K439 can be selectively targeted using the Fc-III reactive variants L6Dap, L6Orn, L6Y and A3K or A3hK, respectively. Across all variants tested, L6Orn-carbonate appeared to be the best candidate, yielding a degree and yield of conjugation of almost 2 and 100% for a broad array of payloads including radionuclide chelators, fluorescent dyes, click-chemistry reagents, pre-targeted imaging reagents, and some cytotoxic small molecules. Furthermore, L6Orn carbonate appeared to yield similar conjugation results across multiple IgG subtypes. In vivo proof of concept was achieved by conjugation of NODAGA to the PD1/PD-L1 immune checkpoint inhibitor antibody atezolizumab, followed by PET imaging of PD-L1 expression in mice bearing PD-L1 expressing tumor xenograft using radiolabeled [64Cu]Cu-atezolizumab.
Collapse
Affiliation(s)
- Viktoriia Postupalenko
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Léo Marx
- Debiopharm Research & Manufacturing SA Campus "après-demain", Rue du Levant 146 1920 Martigny Switzerland
| | - Mathilde Pantin
- Debiopharm Research & Manufacturing SA Campus "après-demain", Rue du Levant 146 1920 Martigny Switzerland
| | - David Viertl
- Translational Radiopharmaceutical Sciences, Departments of Nuclear Medicine and of Oncology, CHUV/UNIL 1011 Lausanne Switzerland
- In Vivo Imaging Facility, Department of Research and Training, University of Lausanne CH-1011 Lausanne
| | - Nadège Gsponer
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Gaëlle Giudice
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Natalia Gasilova
- EPFL Valais Wallis, MSEAP, ISIC-GE-VS rue de l'Industrie 17 1951 Sion Switzerland
| | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Departments of Nuclear Medicine and of Oncology, CHUV/UNIL 1011 Lausanne Switzerland
- Agora, pôle de recherche sur le cancer 1011 Lausanne Switzerland
| | - Frédéric Lévy
- Debiopharm International SA Forum "après-demain", Chemin Messidor 5-7, Case postale 5911 1002 Lausanne Switzerland
| | - Patrick Garrouste
- Debiopharm Research & Manufacturing SA Campus "après-demain", Rue du Levant 146 1920 Martigny Switzerland
| | - Jean-Manuel Segura
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Origène Nyanguile
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| |
Collapse
|
23
|
Bisbal Lopez L, Ravazza D, Bocci M, Zana A, Principi L, Dakhel Plaza S, Galbiati A, Gilardoni E, Scheuermann J, Neri D, Pignataro L, Gennari C, Cazzamalli S, Dal Corso A. Ex vivo mass spectrometry-based biodistribution analysis of an antibody-Resiquimod conjugate bearing a protease-cleavable and acid-labile linker. Front Pharmacol 2023; 14:1320524. [PMID: 38125888 PMCID: PMC10731371 DOI: 10.3389/fphar.2023.1320524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Immune-stimulating antibody conjugates (ISACs) equipped with imidazoquinoline (IMD) payloads can stimulate endogenous immune cells to kill cancer cells, ultimately inducing long-lasting anticancer effects. A novel ISAC was designed, featuring the IMD Resiquimod (R848), a tumor-targeting antibody specific for Carbonic Anhydrase IX (CAIX) and the protease-cleavable Val-Cit-PABC linker. In vitro stability analysis showed not only R848 release in the presence of the protease Cathepsin B but also under acidic conditions. The ex vivo mass spectrometry-based biodistribution data confirmed the low stability of the linker-drug connection while highlighting the selective accumulation of the IgG in tumors and its long circulatory half-life.
Collapse
Affiliation(s)
| | | | - Matilde Bocci
- R&D Department, Philochem AG, Otelfingen, Switzerland
| | | | | | | | | | | | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Dario Neri
- R&D Department, Philochem AG, Otelfingen, Switzerland
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
- Philogen S.p.A, Siena, Italy
| | - Luca Pignataro
- Chemistry Department, Università degli Studi di Milano, Milano, Italy
| | - Cesare Gennari
- Chemistry Department, Università degli Studi di Milano, Milano, Italy
| | | | - Alberto Dal Corso
- Chemistry Department, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
24
|
Kawasaki N, Tomita M, Yamashita-Kashima Y, Yoshimura Y, Yoshiura S. Efficacy of retreatment with polatuzumab vedotin in combination with rituximab in polatuzumab vedotin-resistant DLBCL models. Leuk Lymphoma 2023; 64:1938-1948. [PMID: 37548343 DOI: 10.1080/10428194.2023.2243531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
Polatuzumab vedotin (Pola) was approved for first-line and relapsed/refractory (r/r) diffuse large B-cell lymphoma (DLBCL) in many countries. This means that retreatment with Pola for r/r DLBCL could be considered after first-line Pola treatment; however, there is currently no evidence on the effectiveness of Pola-retreatment. To address this, we established two Pola-resistant cells from DLBCL cells (SU-DHL-4 and STR-428) and evaluated the combination efficacy of Pola plus rituximab (Rit), the key component of DLBCL therapy. MDR1 overexpression and decreased Bim expression were suggested to be the resistant mechanisms to Pola in Pola-resistant SU-DHL-4 and Pola-resistant STR-428, respectively. In these cells, Pola significantly increased Rit-induced CDC sensitivity either with increased MAC formation or reduced Mcl-1 expression. Additionally, treatment with Pola + Rit significantly enhanced antitumor activity in Pola-resistant STR-428 xenograft mouse models. Based on these results, Pola + Rit retreatment could have preserved efficacy because of the effect of Pola on sensitizing cells to Rit.
Collapse
Affiliation(s)
- Natsumi Kawasaki
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Mayu Tomita
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | | | - Yasushi Yoshimura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Shigeki Yoshiura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| |
Collapse
|
25
|
Sasso J, Tenchov R, Bird R, Iyer KA, Ralhan K, Rodriguez Y, Zhou QA. The Evolving Landscape of Antibody-Drug Conjugates: In Depth Analysis of Recent Research Progress. Bioconjug Chem 2023; 34:1951-2000. [PMID: 37821099 PMCID: PMC10655051 DOI: 10.1021/acs.bioconjchem.3c00374] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Antibody-drug conjugates (ADCs) are targeted immunoconjugate constructs that integrate the potency of cytotoxic drugs with the selectivity of monoclonal antibodies, minimizing damage to healthy cells and reducing systemic toxicity. Their design allows for higher doses of the cytotoxic drug to be administered, potentially increasing efficacy. They are currently among the most promising drug classes in oncology, with efforts to expand their application for nononcological indications and in combination therapies. Here we provide a detailed overview of the recent advances in ADC research and consider future directions and challenges in promoting this promising platform to widespread therapeutic use. We examine data from the CAS Content Collection, the largest human-curated collection of published scientific information, and analyze the publication landscape of recent research to reveal the exploration trends in published documents and to provide insights into the scientific advances in the area. We also discuss the evolution of the key concepts in the field, the major technologies, and their development pipelines with company research focuses, disease targets, development stages, and publication and investment trends. A comprehensive concept map has been created based on the documents in the CAS Content Collection. We hope that this report can serve as a useful resource for understanding the current state of knowledge in the field of ADCs and the remaining challenges to fulfill their potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
26
|
Xu J, Luo W, Li C, Mei H. Targeting CD22 for B-cell hematologic malignancies. Exp Hematol Oncol 2023; 12:90. [PMID: 37821931 PMCID: PMC10566133 DOI: 10.1186/s40164-023-00454-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
CD19-targeted chimeric receptor antigen (CAR)-T cell therapy has shown remarkable clinical efficacy in the treatment of relapsed or refractory (R/R) B-cell malignancies. However, 30%-60% of patients eventually relapsed, with the CD19-negative relapse being an important hurdle to sustained remission. CD22 expression is independent of CD19 expression in malignant B cells. Consequently, CD22 is a potential alternative target for CD19 CAR-T cell-resistant patients. CD22-targeted therapies, mainly including the antibody-drug conjugates (ADCs) and CAR-T cells, have come into wide clinical use with acceptable toxicities and promising efficacy. In this review, we explore the molecular and physiological characteristics of CD22, development of CD22 ADCs and CAR-T cells, and the available clinical data on CD22 ADCs and CAR-T cell therapies. Furthermore, we propose some perspectives for overcoming tumor escape and enhancing the efficacy of CD22-targeted therapies.
Collapse
Affiliation(s)
- Jia Xu
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Wenjing Luo
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Chenggong Li
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| | - Heng Mei
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
27
|
Yu S, Xiao H, Ma L, Zhang J, Zhang J. Reinforcing the immunogenic cell death to enhance cancer immunotherapy efficacy. Biochim Biophys Acta Rev Cancer 2023; 1878:188946. [PMID: 37385565 DOI: 10.1016/j.bbcan.2023.188946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Immunogenic cell death (ICD) has been a revolutionary modality in cancer treatment since it kills primary tumors and prevents recurrent malignancy simultaneously. ICD represents a particular form of cancer cell death accompanied by production of damage-associated molecular patterns (DAMPs) that can be recognized by pattern recognition receptors (PRRs), which enhances infiltration of effector T cells and potentiates antitumor immune responses. Various treatment methods can elicit ICD involving chemo- and radio-therapy, phototherapy and nanotechnology to efficiently convert dead cancer cells into vaccines and trigger the antigen-specific immune responses. Nevertheless, the efficacy of ICD-induced therapies is restrained due to low accumulation in the tumor sites and damage of normal tissues. Thus, researchers have been devoted to overcoming these problems with novel materials and strategies. In this review, current knowledge on different ICD modalities, various ICD inducers, development and application of novel ICD-inducing strategies are summarized. Moreover, the prospects and challenges are briefly outlined to provide reference for future design of novel immunotherapy based on ICD effect.
Collapse
Affiliation(s)
- Sihui Yu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongyang Xiao
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Li Ma
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Jiarong Zhang
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
28
|
Petersen ME, Brant MG, Lasalle M, Fung VKC, Rojas AH, Wong J, Das S, Barnscher SD, Rich JR, Winters GC. Structure-Activity Relationships of Bis-Intercalating Peptides and Their Application as Antibody-Drug Conjugate Payloads. J Med Chem 2023. [PMID: 37307297 DOI: 10.1021/acs.jmedchem.3c00760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthetic analogs based on the DNA bis-intercalating natural product peptides sandramycin and quinaldopeptin were investigated as antibody drug conjugate (ADC) payloads. Synthesis, biophysical characterization, and in vitro potency of 34 new analogs are described. Conjugation of an initial drug-linker derived from a novel bis-intercalating peptide produced an ADC that was hydrophobic and prone to aggregation. Two strategies were employed to improve ADC physiochemical properties: addition of a solubilizing group in the linker and the use of an enzymatically cleavable hydrophilic mask on the payload itself. All ADCs showed potent in vitro cytotoxicity in high antigen expressing cells; however, masked ADCs were less potent than payload matched unmasked ADCs in lower antigen expressing cell lines. Two pilot in vivo studies were conducted using stochastically conjugated DAR4 anti-FRα ADCs, which showed toxicity even at low doses, and site-specific conjugated (THIOMAB) DAR2 anti-cMet ADCs that were well tolerated and highly efficacious.
Collapse
Affiliation(s)
- Mark E Petersen
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Michael G Brant
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Manuel Lasalle
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Vincent K C Fung
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | | | - Jodi Wong
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Samir Das
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Stuart D Barnscher
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Jamie R Rich
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Geoffrey C Winters
- Technical and Manufacturing Operations, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| |
Collapse
|
29
|
Khoury R, Saleh K, Khalife N, Saleh M, Chahine C, Ibrahim R, Lecesne A. Mechanisms of Resistance to Antibody-Drug Conjugates. Int J Mol Sci 2023; 24:ijms24119674. [PMID: 37298631 DOI: 10.3390/ijms24119674] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The treatment of cancer patients has dramatically changed over the past decades with the advent of monoclonal antibodies, immune-checkpoint inhibitors, bispecific antibodies, and innovative T-cell therapy. Antibody-drug conjugates (ADCs) have also revolutionized the treatment of cancer. Several ADCs have already been approved in hematology and clinical oncology, such as trastuzumab emtansine (T-DM1), trastuzumab deruxtecan (T-DXd), and sacituzumab govitecan (SG) for the treatment of metastatic breast cancer, and enfortumab vedotin (EV) for the treatment of urothelial carcinoma. The efficacy of ADCs is limited by the emergence of resistance due to different mechanisms, such as antigen-related resistance, failure of internalization, impaired lysosomal function, and other mechanisms. In this review, we summarize the clinical data that contributed to the approval of T-DM1, T-DXd, SG, and EV. We also discuss the different mechanisms of resistance to ADCs, as well as the ways to overcome this resistance, such as bispecific ADCs and the combination of ADCs with immune-checkpoint inhibitors or tyrosine-kinase inhibitors.
Collapse
Affiliation(s)
- Rita Khoury
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Khalil Saleh
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Nadine Khalife
- Department of Head and Neck Oncology, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Mohamad Saleh
- Department of Hematology and Oncology, Lebanese American University Medical Center-Rizk Hopsital, Beirut 1100, Lebanon
| | - Claude Chahine
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Rebecca Ibrahim
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Axel Lecesne
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| |
Collapse
|
30
|
Chen Y, Xu Y, Shao Z, Yu K. Resistance to antibody-drug conjugates in breast cancer: mechanisms and solutions. Cancer Commun (Lond) 2023; 43:297-337. [PMID: 36357174 PMCID: PMC10009672 DOI: 10.1002/cac2.12387] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a rapidly developing therapeutic approach in cancer treatment that has shown remarkable activity in breast cancer. Currently, there are two ADCs approved for the treatment of human epidermal growth factor receptor 2-positive breast cancer, one for triple-negative breast cancer, and multiple investigational ADCs in clinical trials. However, drug resistance has been noticed in clinical use, especially in trastuzumab emtansine. Here, the mechanisms of ADC resistance are summarized into four categories: antibody-mediated resistance, impaired drug trafficking, disrupted lysosomal function, and payload-related resistance. To overcome or prevent resistance to ADCs, innovative development strategies and combination therapy options are being investigated. Analyzing predictive biomarkers for optimal therapy selection may also help to prevent drug resistance.
Collapse
Affiliation(s)
- Yu‐Fei Chen
- Department of Breast SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Shanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Ying‐ying Xu
- Department of Breast SurgeryFirst Affiliated Hospital of China Medical UniversityShenyangLiaoning110001P. R. China
| | - Zhi‐Ming Shao
- Department of Breast SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Shanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Ke‐Da Yu
- Department of Breast SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Shanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| |
Collapse
|
31
|
Abelman RO, Wu B, Spring LM, Ellisen LW, Bardia A. Mechanisms of Resistance to Antibody-Drug Conjugates. Cancers (Basel) 2023; 15:1278. [PMID: 36831621 PMCID: PMC9954407 DOI: 10.3390/cancers15041278] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Antibody-drug conjugates (ADCs), with antibodies targeted against specific antigens linked to cytotoxic payloads, offer the opportunity for a more specific delivery of chemotherapy and other bioactive payloads to minimize side effects. First approved in the setting of HER2+ breast cancer, more recent ADCs have been developed for triple-negative breast cancer (TNBC) and, most recently, hormone receptor-positive (HR+) breast cancer. While antibody-drug conjugates have compared favorably against traditional chemotherapy in some settings, patients eventually progress on these therapies and require a change in treatment. Mechanisms to explain the resistance to ADCs are highly sought after, in hopes of developing next-line treatment options and expanding the therapeutic windows of existing therapies. These resistance mechanisms are categorized as follows: change in antigen expression, change in ADC processing and resistance, and efflux of the ADC payload. This paper reviews the recently published literature on these mechanisms as well as potential options to overcome these barriers.
Collapse
Affiliation(s)
| | | | | | | | - Aditya Bardia
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
32
|
Evans RJ, Perkins DW, Selfe J, Kelsey A, Birch GP, Shipley JM, Schipper K, Isacke CM. Endo180 (MRC2) Antibody-Drug Conjugate for the Treatment of Sarcoma. Mol Cancer Ther 2023; 22:240-253. [PMID: 36399638 PMCID: PMC9890142 DOI: 10.1158/1535-7163.mct-22-0312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022]
Abstract
Although the 5-year survival rates for sarcoma patients have improved, the proportion of patients relapsing after first-line treatment remains high, and the survival of patients with metastatic disease is dismal. Moreover, the extensive molecular heterogeneity of the multiple different sarcoma subtypes poses a substantial challenge to developing more personalized treatment strategies. From the IHC staining of a large set of 625 human soft-tissue sarcomas, we demonstrate strong tumor cell staining of the Endo180 (MRC2) receptor in a high proportion of samples, findings echoed in gene-expression data sets showing a significantly increased expression in both soft-tissue and bone sarcomas compared with normal tissue. Endo180 is a constitutively recycling transmembrane receptor and therefore an ideal target for an antibody-drug conjugate (ADC). An anti-Endo180 monoclonal antibody conjugated to the antimitotic agent, MMAE via a cleavable linker, is rapidly internalized into target cells and trafficked to the lysosome for degradation, causing cell death specifically in Endo180-expressing sarcoma cell lines. In a sarcoma tumor xenograft model, the Endo180-vc-MMAE ADC, but not an isotype-vc-MMAE control or the unconjugated Endo180 antibody, drives on-target cytotoxicity resulting in tumor regression and a significant impairment of metastatic colonization of the lungs, liver and lymph nodes. These data, together with the lack of a phenotype in mice with an Mrc2 genetic deletion, provide preclinical proof-of-principle evidence for the future development of an Endo180-ADC as a therapeutic strategy in a broad range of sarcoma subtypes and, importantly, with potential impact both on the primary tumor and in metastatic disease.
Collapse
Affiliation(s)
- Rachel J. Evans
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Douglas W. Perkins
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Joanna Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Anna Kelsey
- Department of Paediatric Pathology, University of Manchester Foundation Trust, Manchester, UK
| | - Gavin P. Birch
- Abzena (Cambridge) Ltd., Babraham Research Campus, Babraham, Cambridge, UK
| | - Janet M. Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Koen Schipper
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Clare M. Isacke
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- Corresponding Author: Clare M. Isacke, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK. Phone: 4420-7153-5510; E-mail
| |
Collapse
|
33
|
Payload diversification: a key step in the development of antibody-drug conjugates. J Hematol Oncol 2023; 16:3. [PMID: 36650546 PMCID: PMC9847035 DOI: 10.1186/s13045-022-01397-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Antibody-drug conjugates (ADCs) is a fast moving class of targeted biotherapeutics that currently combines the selectivity of monoclonal antibodies with the potency of a payload consisting of cytotoxic agents. For many years microtubule targeting and DNA-intercalating agents were at the forefront of ADC development. The recent approval and clinical success of trastuzumab deruxtecan (Enhertu®) and sacituzumab govitecan (Trodelvy®), two topoisomerase 1 inhibitor-based ADCs, has shown the potential of conjugating unconventional payloads with differentiated mechanisms of action. Among future developments in the ADC field, payload diversification is expected to play a key role as illustrated by a growing number of preclinical and clinical stage unconventional payload-conjugated ADCs. This review presents a comprehensive overview of validated, forgotten and newly developed payloads with different mechanisms of action.
Collapse
|
34
|
Nicolaides NC, Kline JB, Grasso L. NAV-001, a high-efficacy antibody-drug conjugate targeting mesothelin with improved delivery of a potent payload by counteracting MUC16/CA125 inhibitory effects. PLoS One 2023; 18:e0285161. [PMID: 37195923 DOI: 10.1371/journal.pone.0285161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Subsets of tumor-produced cell surface and secreted proteins can bind to IgG1 type antibodies and suppress their immune-effector activities. As they affect antibody and complement-mediated immunity, we call these proteins humoral immuno-oncology (HIO) factors. Antibody-drug conjugates (ADCs) use antibody targeting to bind cell surface antigens, internalize into the cell, then kill target cells upon liberation of the cytotoxic payload. Binding of the ADC antibody component by a HIO factor may potentially hamper ADC efficacy due to reduced internalization. To determine the potential effects of HIO factor ADC suppression, we evaluated the efficacy of a HIO-refractory, mesothelin-directed ADC (NAV-001) and a HIO-bound, mesothelin-directed ADC (SS1). The HIO factor MUC16/CA125 binding to SS1 ADC was shown to have a negative effect on internalization and tumor cell killing. The MUC16/CA125 refractory NAV-001 ADC was shown to have robust killing of MUC16/CA125 expressing and non-expressing tumor cells in vitro and in vivo at single, sub-mg/kg dosing. Moreover, NAV-001-PNU, which contains the PNU-159682 topoisomerase II inhibitor, demonstrated good stability in vitro and in vivo as well as robust bystander activity of resident cells while maintaining a tolerable safety profile in vivo. Single-dose NAV-001-PNU demonstrated robust tumor regression of a number of patient-derived xenografts from different tumor types regardless of MUC16/CA125 expression. These findings suggest that identification of HIO-refractory antibodies to be used in ADC format may improve therapeutic efficacy as observed by NAV-001 and warrants NAV-001-PNU's advancement to human clinical trials as a monotherapy to treat mesothelin-positive cancers.
Collapse
Affiliation(s)
| | | | - Luigi Grasso
- Navrogen Inc., Cheyney, PA, United States of America
| |
Collapse
|
35
|
Hosseini R, Asef-Kabiri L, Sarvnaz H, Ghanavatinejad A, Rezayat F, Eskandari N, Akbari ME. Blockade of exosome release alters HER2 trafficking to the plasma membrane and gives a boost to Trastuzumab. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:185-198. [PMID: 36018441 DOI: 10.1007/s12094-022-02925-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE(S) Exosomal HER2 has been evidenced to interfere with antibody-induced anti-tumor effects. However, whether the blockade of HER2+ exosomes release would affect antibody-mediated tumor inhibition has yet to be investigated. METHODS Exosomes derived from BT-474, SK-BR3 and SK-OV3 (HER2-overexpressing tumor cells) and MDA-MB-231 cells (HER2 negative) were purified and characterized by bicinchoninic acid (BCA) assay, western blotting and Transmission electron microscopy (TEM). Inhibition of exosome release was achieved by neutral sphingomyelinase-2 (nSMase-2) inhibitor, GW4869. The effects of exosome blockade on the anti-proliferative effects, apoptosis induction, and antibody-mediated cellular cytotoxicity (ADCC) activity of Trastuzumab were examined using MTT, flow cytometry, and LDH release assays. Also, the effects of exosome inhibition on the surface expression and endocytosis/internalization of HER2 were studied by flow cytometry. RESULTS Purified exosomes derived from HER2 overexpressing cancer cells were positive for HER2 protein. Blockade of exosome release was able to significantly improve apoptosis induction, anti-proliferative and ADCC responses of Trastuzumab dose dependently. The pretreatment of Trastuzumab/purified NK cells, but not PBMCs, with HER2+ exosomes could also decrease the ADCC effects of Trastuzumab. Exosome inhibition also remarkably downregulated surface HER2 levels in a time-dependent manner, but does not affect its endocytosis/internalization. CONCLUSION Based on our findings, HER2+ exosomes may benefit tumor progression by dually suppressing Trastuzumab-induced tumor growth inhibition and cytotoxicity of NK cells. It seems that concomitant blocking of exosome release might be an effective approach for improving the therapeutic effects of Trastuzumab, and potentially other HER2-directed mAbs. In addition, the exosome secretion pathway possibly contributes to the HER2 trafficking to plasma membrane, since the blockade of exosome secretion decreased surface HER2 levels.
Collapse
Affiliation(s)
- Reza Hosseini
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Asef-Kabiri
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamzeh Sarvnaz
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ghanavatinejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Rezayat
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | |
Collapse
|
36
|
Maecker H, Jonnalagadda V, Bhakta S, Jammalamadaka V, Junutula JR. Exploration of the antibody-drug conjugate clinical landscape. MAbs 2023; 15:2229101. [PMID: 37639687 PMCID: PMC10464553 DOI: 10.1080/19420862.2023.2229101] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 08/31/2023] Open
Abstract
The antibody-drug conjugate (ADC) field has undergone a renaissance, with substantial recent developmental investment and subsequent drug approvals over the past 6 y. In November 2022, ElahereTM became the latest ADC to be approved by the US Food and Drug Administration (FDA). To date, over 260 ADCs have been tested in the clinic against various oncology indications. Here, we review the clinical landscape of ADCs that are currently FDA approved (11), agents currently in clinical trials but not yet approved (164), and candidates discontinued following clinical testing (92). These clinically tested ADCs are further analyzed by their targeting tumor antigen(s), linker, payload choices, and highest clinical stage achieved, highlighting limitations associated with the discontinued drug candidates. Lastly, we discuss biologic engineering modifications preclinically demonstrated to improve the therapeutic index that if incorporated may increase the proportion of molecules that successfully transition to regulatory approval.
Collapse
|
37
|
Barreca M, Lang N, Tarantelli C, Spriano F, Barraja P, Bertoni F. Antibody-drug conjugates for lymphoma patients: preclinical and clinical evidences. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:763-794. [PMID: 36654819 PMCID: PMC9834635 DOI: 10.37349/etat.2022.00112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/08/2022] [Indexed: 12/28/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a recent, revolutionary approach for malignancies treatment, designed to provide superior efficacy and specific targeting of tumor cells, compared to systemic cytotoxic chemotherapy. Their structure combines highly potent anti-cancer drugs (payloads or warheads) and monoclonal antibodies (Abs), specific for a tumor-associated antigen, via a chemical linker. Because the sensitive targeting capabilities of monoclonal Abs allow the direct delivery of cytotoxic payloads to tumor cells, these agents leave healthy cells unharmed, reducing toxicity. Different ADCs have been approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of a wide range of malignant conditions, both as monotherapy and in combination with chemotherapy, including for lymphoma patients. Over 100 ADCs are under preclinical and clinical investigation worldwide. This paper it provides an overview of approved and promising ADCs in clinical development for the treatment of lymphoma. Each component of the ADC design, their mechanism of action, and the highlights of their clinical development progress are discussed.
Collapse
Affiliation(s)
- Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy
| | - Noémie Lang
- Division of Oncology, Department of Oncology, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| |
Collapse
|
38
|
Kawasaki N, Nishito Y, Yoshimura Y, Yoshiura S. The molecular rationale for the combination of polatuzumab vedotin plus rituximab in diffuse large B-cell lymphoma. Br J Haematol 2022; 199:245-255. [PMID: 35764309 PMCID: PMC9796291 DOI: 10.1111/bjh.18341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/01/2023]
Abstract
Polatuzumab vedotin (Pola) is an antibody-drug conjugate that targets the B-cell antigen CD79b and delivers monomethyl auristatin E (MMAE). It is approved in combination with bendamustine and rituximab (Rit) for relapsed/refractory diffuse large B-cell lymphoma (r/r DLBCL). Understanding the molecular basis of Pola combination therapy with Rit, the key component for the treatment of DLBCL, is important to establish the effective treatment strategies against r/r DLBCL. Here, we examined the rationale for the combination of Pola with Rit using Pola-refractory cells. We found that treatment with Pola increased CD20 expression and sensitivity to Rit-induced complement-dependent cytotoxicity (CDC) in several Pola-refractory cells. Pola treatment increased phosphorylation of AKT and ERK and both AKT- and MEK-specific inhibitors attenuated the Pola-induced increase of CD20 and CDC sensitivity, suggesting that these phosphorylation events were required for this combination efficacy. It was revealed that anti-CD79b antibody increased the phosphorylation of AKT but inhibited the phosphorylation of ERK. In contrast, MMAE potentiated phosphorylation of ERK but slightly attenuated the phosphorylation of AKT. Pola also increased CD20 expression on Pola-refractory xenografted tumours and significantly enhanced antitumour activity in combination with Rit. In conclusion, these results could provide a novel rationale for the combination of Pola plus Rit.
Collapse
Affiliation(s)
- Natsumi Kawasaki
- Product Research DepartmentChugai Pharmaceutical Co., Ltd.KamakuraKanagawaJapan
| | - Yukari Nishito
- Discovery Technology DepartmentChugai Pharmaceutical Co., Ltd.KamakuraKanagawaJapan
| | - Yasushi Yoshimura
- Product Research DepartmentChugai Pharmaceutical Co., Ltd.KamakuraKanagawaJapan
| | - Shigeki Yoshiura
- Product Research DepartmentChugai Pharmaceutical Co., Ltd.KamakuraKanagawaJapan
| |
Collapse
|
39
|
Caballero AC, Escribà-Garcia L, Alvarez-Fernández C, Briones J. CAR T-Cell Therapy Predictive Response Markers in Diffuse Large B-Cell Lymphoma and Therapeutic Options After CART19 Failure. Front Immunol 2022; 13:904497. [PMID: 35874685 PMCID: PMC9299440 DOI: 10.3389/fimmu.2022.904497] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Immunotherapy with T cells genetically modified with chimeric antigen receptors (CARs) has shown significant clinical efficacy in patients with relapsed/refractory B-cell lymphoma. Nevertheless, more than 50% of treated patients do not benefit from such therapy due to either absence of response or further relapse. Elucidation of clinical and biological features that would predict clinical response to CART19 therapy is of paramount importance and eventually may allow for selection of those patients with greater chances of response. In the last 5 years, significant clinical experience has been obtained in the treatment of diffuse large B-cell lymphoma (DLBCL) patients with CAR19 T cells, and major advances have been made on the understanding of CART19 efficacy mechanisms. In this review, we discuss clinical and tumor features associated with response to CART19 in DLBCL patients as well as the impact of biological features of the infusion CART19 product on the clinical response. Prognosis of DLBCL patients that fail CART19 is poor and therapeutic approaches with new drugs are also discussed.
Collapse
Affiliation(s)
- Ana Carolina Caballero
- Hematology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Laboratory of Experimental Hematology-IIB, Institut Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Campus Sant Pau, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
| | - Laura Escribà-Garcia
- Hematology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Laboratory of Experimental Hematology-IIB, Institut Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Campus Sant Pau, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Carmen Alvarez-Fernández
- Hematology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Laboratory of Experimental Hematology-IIB, Institut Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Campus Sant Pau, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Javier Briones
- Hematology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Laboratory of Experimental Hematology-IIB, Institut Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Campus Sant Pau, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Collyer SE, Stack GD, Walsh JJ. Selective delivery of clinically approved tubulin binding agents through covalent conjugation to an active targeting moiety. Curr Med Chem 2022; 29:5179-5211. [DOI: 10.2174/0929867329666220401105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
The efficacy and tolerability of tubulin binding agents are hampered by their low specificity for cancer cells, like most clinically used anticancer agents. To improve specificity, tubulin binding agents have been covalently conjugated to agents which target cancer cells to give actively targeted drug conjugates. These conjugates are designed to increase uptake of the drug by cancer cells, while having limited uptake by normal cells thereby improving efficacy and tolerability.
Approaches used include attachment to small molecules, polysaccharides, peptides, proteins and antibodies that exploit the overexpression of receptors for these substances. Antibody targeted strategies have been the most successful to date with six such examples having gained clinical approval. Many other conjugate types, especially those targeting the folate receptor, have shown promising efficacy and toxicity profiles in pre-clinical models and in early-stage clinical studies. Presented herein is a discussion of the success or otherwise of the recent strategies used to form these actively targeted conjugates.
Collapse
Affiliation(s)
- Samuel E. Collyer
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Gary D. Stack
- Department of Nursing and Healthcare, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland
| | - John J. Walsh
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
41
|
Teicher BA, Morris J. Antibody-Drug Conjugate Targets, Drugs and Linkers. Curr Cancer Drug Targets 2022; 22:463-529. [PMID: 35209819 DOI: 10.2174/1568009622666220224110538] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Antibody-drug conjugates offer the possibility of directing powerful cytotoxic agents to a malignant tumor while sparing normal tissue. The challenge is to select an antibody target expressed exclusively or at highly elevated levels on the surface of tumor cells and either not all or at low levels on normal cells. The current review explores 78 targets that have been explored as antibody-drug conjugate targets. Some of these targets have been abandoned, 9 or more are the targets of FDA-approved drugs, and most remain active clinical interest. Antibody-drug conjugates require potent cytotoxic drug payloads, several of these small molecules are discussed, as are the linkers between the protein component and small molecule components of the conjugates. Finally, conclusions regarding the elements for the successful antibody-drug conjugate are discussed.
Collapse
Affiliation(s)
- Beverly A Teicher
- Developmental Therapeutics Program, DCTD, National Cancer Institute, Bethesda, MD 20892,United States
| | - Joel Morris
- Developmental Therapeutics Program, DCTD, National Cancer Institute, Bethesda, MD 20892,United States
| |
Collapse
|
42
|
Advances with antibody-drug conjugates in breast cancer treatment. Eur J Pharm Biopharm 2021; 169:241-255. [PMID: 34748933 DOI: 10.1016/j.ejpb.2021.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/21/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022]
Abstract
Antibody-drug conjugate-based therapy for treatment of cancer has attracted much attention because of its enhanced efficacy against numerous cancer types. Commonly, an ADC includes a mAb linked to a therapeutic payload. Antibody, linker and payload are the three main components of ADCs. The high specificity of antibodies is integrated with the strong potency of payloads in ADCs. ADCs with potential cytotoxic small molecules as payloads, generate antibody-mediated cancer therapy. Recently, ADCs with DNA-damaging agents have shown favor over microtubule-targeting agents as payloads. Although ADC resistance can be a barrier to effectiveness, several ADC therapies have been either approved or are in clinical trials for cancer treatment. The ADC-based treatments of breast cancers, particularly TNBC, MDR and metastatic breast cancers, have shown promise in recent years. This review discusses ADC drug designs, and developed for different types of breast cancer including TNBC, MDR and metastatic breast cancer.
Collapse
|
43
|
Kambhampati S, Song JY, Herrera AF, Chan WC. Barriers to achieving a cure in lymphoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:965-983. [PMID: 35582375 PMCID: PMC8992454 DOI: 10.20517/cdr.2021.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/08/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022]
Abstract
Lymphoma is a diverse disease with a variety of different subtypes, each characterized by unique pathophysiology, tumor microenvironment, and underlying signaling pathways leading to oncogenesis. With our increasing understanding of the molecular biology of lymphoma, there have been a number of novel targeted therapies and immunotherapy approaches that have been developed for the treatment of this complex disease. Despite rapid progress in the field, however, many patients still relapse largely due to the development of drug resistance to these therapies. A better understanding of the mechanisms underlying resistance is needed to develop more novel treatment strategies that circumvent these mechanisms and design better treatment algorithms that personalize therapies to patients and sequence these therapies in the most optimal manner. This review focuses on the recent advances in therapies in lymphoma, including targeted therapies, monoclonal antibodies, antibody-drug conjugates, cellular therapy, bispecific antibodies, and checkpoint inhibitors. We discuss the genetic and cellular principles of drug resistance that span across all the therapies, as well as some of the unique mechanisms of resistance that are specific to these individual classes of therapies and the strategies that have been developed to address these modes of resistance.
Collapse
Affiliation(s)
- Swetha Kambhampati
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Joo Y. Song
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Alex F. Herrera
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Wing C. Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
44
|
Singh D, Dheer D, Samykutty A, Shankar R. Antibody drug conjugates in gastrointestinal cancer: From lab to clinical development. J Control Release 2021; 340:1-34. [PMID: 34673122 DOI: 10.1016/j.jconrel.2021.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022]
Abstract
The antibody-drug conjugates (ADCs) are one the fastest growing biotherapeutics in oncology and are still in their infancy in gastrointestinal (GI) cancer for clinical applications to improve patient survival. The ADC based approach is developed with tumor specific antigen, antibody carrying cytotoxic agents to precisely target and deliver chemotherapeutics at the tumor site. To date, 11 ADCs have been approved by US-FDA, and more than 80 are in the clinical development phase for different oncological indications. However, The ADCs based therapies in GI cancers are still far from having high-efficient clinical outcomes. The limited success of these ADCs and lessons learned from the past are now being used to develop a newer generation of ADC against GI cancers. In this review, we did a comprehensive assessment of the key components of ADCs, including tumor marker, antibody, cytotoxic payload, and linkage strategy, with a focus on technical improvement and some future trends in the pipeline for clinical translation. The various preclinical and clinical ADCs used in gastrointestinal malignancies, their target, composition and bioconjugation, along with preclinical and clinical outcomes, are discussed. The emphasis is also given to new generation ADCs employing novel mAb, payload, linker, and bioconjugation methods are also included.
Collapse
Affiliation(s)
- Davinder Singh
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Dheer
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhilash Samykutty
- Stephenson Comprehensive Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA.
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
45
|
Gandullo-Sánchez L, Ocaña A, Pandiella A. Generation of Antibody-Drug Conjugate Resistant Models. Cancers (Basel) 2021; 13:cancers13184631. [PMID: 34572858 PMCID: PMC8466899 DOI: 10.3390/cancers13184631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Antibody-drug conjugates (ADCs) constitute new and effective therapies in cancer. However, resistance is frequently observed in treated patients after a given period of time. That resistance may be present from the beginning of the treatment (primary or de novo resistance) or raise after an initial response to the ADC (secondary resistance). Knowing the causes of those resistances is a necessity in the field as it may help in designing strategies to overcome them. Because of that, it is necessary to develop models that allow the identification of mechanisms of resistance. In this review, we present different approaches that have been used to model ADC resistance in the preclinical setting, and that include the use of established cell lines, patient-derived ex vivo cultures and xenografts primarily or secondarily resistant to the ADC. Abstract In the last 20 years, antibody-drug conjugates (ADCs) have been incorporated into the oncology clinic as treatments for several types of cancer. So far, the Food and Drug Administration (FDA) has approved 11 ADCs and other ADCs are in the late stages of clinical development. Despite the efficacy of this type of drug, the tumors of some patients may result in resistance to ADCs. Due to this, it is essential not only to comprehend resistance mechanisms but also to develop strategies to overcome resistance to ADCs. To reach these goals, the generation and use of preclinical models to study those mechanisms of resistance are critical. Some cells or patient tumors may result in primary resistance to the action of an ADC, even if they express the antigen against which the ADC is directed. Isolated primary tumoral cells, cell lines, or patient explants (patient-derived xenografts) with these characteristics can be used to study primary resistance. The most common method to generate models of secondary resistance is to treat cancer cell lines or tumors with an ADC. Two strategies, either continuous treatment with the ADC or intermittent treatment, have successfully been used to develop those resistance models.
Collapse
Affiliation(s)
- Lucía Gandullo-Sánchez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, 37007 Salamanca, Spain;
| | - Alberto Ocaña
- Hospital Clínico San Carlos, 28040 Madrid, Spain;
- Symphogen, DK-2750 Ballerup, Denmark
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, 37007 Salamanca, Spain;
- Correspondence: ; Tel.: +34-923-294-815
| |
Collapse
|
46
|
Barok M, Puhka M, Yazdi N, Joensuu H. Extracellular vesicles as modifiers of antibody-drug conjugate efficacy. J Extracell Vesicles 2021; 10:e12070. [PMID: 33613875 PMCID: PMC7881363 DOI: 10.1002/jev2.12070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a new class of anti-cancer drugs that consist of a monoclonal antibody, a highly potent small-molecule cytotoxic drug, and a chemical linker between the two. ADCs can selectively deliver cytotoxic drugs to cancer cells leading to a reduced systemic exposure and a wider therapeutic window. To date, nine ADCs have received marketing approval, and over 100 are being investigated in nearly 600 clinical trials. The target antigens of at least eight out of the nine approved anti-cancer ADCs and of 69 investigational ADCs are present on extracellular vesicles (EVs) (tiny particles produced by almost all types of cells) that may carry their contents into local and distant cells. Therefore, the EVs have a potential to mediate both the anti-cancer effects and the adverse effects of ADCs. In this overview, we discuss the mechanisms of action of ADCs and the resistance mechanisms to them, the EV-mediated resistance mechanisms to small molecule anti-cancer drugs and anti-cancer monoclonal antibodies, and the EVs as modifiers of ADC efficacy and safety.
Collapse
Affiliation(s)
- Mark Barok
- Helsinki University Hospital and University of HelsinkiHelsinkiFinland
- Laboratory of Molecular OncologyUniversity of HelsinkiBiomedicumHelsinkiFinland
| | - Maija Puhka
- Institute for Molecular Medicine FIMMEV and HiPrep CoreUniversity of HelsinkiHelsinkiFinland
| | - Narjes Yazdi
- Helsinki University Hospital and University of HelsinkiHelsinkiFinland
- Laboratory of Molecular OncologyUniversity of HelsinkiBiomedicumHelsinkiFinland
| | - Heikki Joensuu
- Helsinki University Hospital and University of HelsinkiHelsinkiFinland
- Laboratory of Molecular OncologyUniversity of HelsinkiBiomedicumHelsinkiFinland
| |
Collapse
|
47
|
Yu SF, Lee DW, Zheng B, Del Rosario G, Leipold D, Booler H, Zhong F, Carrasco-Triguero M, Hong K, Yan P, Rowntree RK, Schutten MM, Pillow T, Sadowsky JD, Dragovich PS, Polson AG. An Anti-CD22- seco-CBI-Dimer Antibody-Drug Conjugate (ADC) for the Treatment of Non-Hodgkin Lymphoma That Provides a Longer Duration of Response than Auristatin-Based ADCs in Preclinical Models. Mol Cancer Ther 2020; 20:340-346. [PMID: 33273056 DOI: 10.1158/1535-7163.mct-20-0046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/07/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
We are interested in developing a second generation of antibody-drug conjugates (ADCs) for the treatment of non-Hodgkin lymphoma (NHL) that could provide a longer duration of response and be more effective in indolent NHL than the microtubule-inhibiting ADCs pinatuzumab vedotin [anti-CD22-vc-monomethyl auristatin E (MMAE)] and polatuzumab vedotin (anti-CD79b-vc-MMAE). Pinatuzumab vedotin (anti-CD22-vc-MMAE) and polatuzumab vedotin (anti-CD79b-vc-MMAE) are ADCs that contain the microtubule inhibitor MMAE. Clinical trial data suggest that these ADCs have promising efficacy for the treatment of NHL; however, some patients do not respond or become resistant to the ADCs. We tested an anti-CD22 ADC with a seco-CBI-dimer payload, thio-Hu anti-CD22-(LC:K149C)-SN36248, and compared it with pinatuzumab vedotin for its efficacy and duration of response in xenograft models and its ability to deplete normal B cells in cynomolgus monkeys. We found that anti-CD22-(LC:K149C)-SN36248 was effective in xenograft models resistant to pinatuzumab vedotin, gave a longer duration of response, had a different mechanism of resistance, and was able to deplete normal B cells better than pinatuzumab vedotin. These studies provide evidence that anti-CD22-(LC:K149C)-SN36248 has the potential for longer duration of response and more efficacy in indolent NHL than MMAE ADCs and may provide the opportunity to improve outcomes for patients with NHL.
Collapse
Affiliation(s)
- Shang-Fan Yu
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Donna W Lee
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Bing Zheng
- Research and Early Development, Genentech Inc., South San Francisco, California
| | | | - Douglas Leipold
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Helen Booler
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Fiona Zhong
- Research and Early Development, Genentech Inc., South San Francisco, California
| | | | - Kyu Hong
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Peter Yan
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Rebecca K Rowntree
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Melissa M Schutten
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Thomas Pillow
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Jack D Sadowsky
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Peter S Dragovich
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Andrew G Polson
- Research and Early Development, Genentech Inc., South San Francisco, California.
| |
Collapse
|
48
|
Tolaney SM, Do KT, Eder JP, LoRusso PM, Weekes CD, Chandarlapaty S, Chang CW, Chen SC, Nazzal D, Schuth E, Brunstein F, Carrasco-Triguero M, Darbonne WC, Giltnane JM, Flanagan WM, Commerford SR, Ungewickell A, Shapiro GI, Modi S. A Phase I Study of DLYE5953A, an Anti-LY6E Antibody Covalently Linked to Monomethyl Auristatin E, in Patients with Refractory Solid Tumors. Clin Cancer Res 2020; 26:5588-5597. [PMID: 32694157 PMCID: PMC9899652 DOI: 10.1158/1078-0432.ccr-20-1067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/03/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE DLYE5953A is an antibody-drug conjugate consisting of an anti-LY6E antibody covalently linked to the cytotoxic agent monomethyl auristatin E. This study characterized the safety, pharmacokinetics, immunogenicity, potential biomarkers, and antitumor activity of DLYE5953A in patients with metastatic solid tumors. PATIENTS AND METHODS This was a phase I, open-label, 3+3 dose-escalation, and dose-expansion study of DLYE5953A administered intravenously every 21 days (Q3W) in patients with locally advanced or metastatic solid malignancies. RESULTS Sixty-eight patients received DLYE5953A (median, four cycles; range, 1-27). No dose-limiting toxicities were identified during dose escalation (0.2-2.4 mg/kg; n = 20). The recommended phase II dose (RP2D) of 2.4 mg/kg Q3W was based on overall safety and tolerability. Dose-expansion cohorts for HER2-negative metastatic breast cancer (HER2-negative MBC; n = 23) and non-small cell lung cancer (NSCLC; n = 25) patients were enrolled at the RP2D. Among patients receiving DLYE5953A 2.4 mg/kg (n = 55), the most common (≥30%) related adverse events (AEs) included alopecia, fatigue, nausea, and peripheral neuropathy. Grade ≥3 related AEs occurred in 14 of 55 (26%) patients, with neutropenia being the most common (13%). DLYE5953A demonstrated linear total antibody pharmacokinetics at doses of ≥0.8 mg/kg with low unconjugated monomethyl auristatin E levels in blood. Partial response was confirmed in eight of 68 (12%) patients, including three of 29 patients with MBC (10%) and five of 25 patients with NSCLC (20%) at the RP2D. Stable disease was the best response for 37 of 68 (54%) patients. CONCLUSIONS DLYE5953A administered at 2.4 mg/kg has acceptable safety. Preliminary evidence of antitumor activity in patients with HER2-negative MBC and NSCLC supports further investigation of LY6E as a therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Eva Schuth
- Genentech, Inc., South San Francisco, CA
| | | | | | | | | | | | | | | | | | - Shanu Modi
- Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
49
|
Joubert N, Beck A, Dumontet C, Denevault-Sabourin C. Antibody-Drug Conjugates: The Last Decade. Pharmaceuticals (Basel) 2020; 13:ph13090245. [PMID: 32937862 PMCID: PMC7558467 DOI: 10.3390/ph13090245] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023] Open
Abstract
An armed antibody (antibody–drug conjugate or ADC) is a vectorized chemotherapy, which results from the grafting of a cytotoxic agent onto a monoclonal antibody via a judiciously constructed spacer arm. ADCs have made considerable progress in 10 years. While in 2009 only gemtuzumab ozogamicin (Mylotarg®) was used clinically, in 2020, 9 Food and Drug Administration (FDA)-approved ADCs are available, and more than 80 others are in active clinical studies. This review will focus on FDA-approved and late-stage ADCs, their limitations including their toxicity and associated resistance mechanisms, as well as new emerging strategies to address these issues and attempt to widen their therapeutic window. Finally, we will discuss their combination with conventional chemotherapy or checkpoint inhibitors, and their design for applications beyond oncology, to make ADCs the magic bullet that Paul Ehrlich dreamed of.
Collapse
Affiliation(s)
- Nicolas Joubert
- GICC EA7501, Equipe IMT, Université de Tours, UFR des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France;
- Correspondence:
| | - Alain Beck
- Institut de Recherche Pierre Fabre, Centre d’Immunologie Pierre Fabre, 5 Avenue Napoléon III, 74160 Saint Julien en Genevois, France;
| | - Charles Dumontet
- Cancer Research Center of Lyon (CRCL), INSERM, 1052/CNRS 5286/UCBL, 69000 Lyon, France;
- Hospices Civils de Lyon, 69000 Lyon, France
| | - Caroline Denevault-Sabourin
- GICC EA7501, Equipe IMT, Université de Tours, UFR des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France;
| |
Collapse
|
50
|
Zhao P, Zhang Y, Li W, Jeanty C, Xiang G, Dong Y. Recent advances of antibody drug conjugates for clinical applications. Acta Pharm Sin B 2020; 10:1589-1600. [PMID: 33088681 PMCID: PMC7564033 DOI: 10.1016/j.apsb.2020.04.012] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/25/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023] Open
Abstract
Antibody drug conjugates (ADCs) normally compose of a humanized antibody and small molecular drug via a chemical linker. After decades of preclinical and clinical studies, a series of ADCs have been widely used for treating specific tumor types in the clinic such as brentuximab vedotin (Adcetris®) for relapsed Hodgkin's lymphoma and systemic anaplastic large cell lymphoma, gemtuzumab ozogamicin (Mylotarg®) for acute myeloid leukemia, ado-trastuzumab emtansine (Kadcyla®) for HER2-positive metastatic breast cancer, inotuzumab ozogamicin (Besponsa®) and most recently polatuzumab vedotin-piiq (Polivy®) for B cell malignancies. More than eighty ADCs have been investigated in different clinical stages from approximately six hundred clinical trials to date. This review summarizes the key elements of ADCs and highlights recent advances of ADCs, as well as important lessons learned from clinical data, and future directions.
Collapse
|