1
|
Yang J, Lim JT, Victor P, Corona MG, Chen C, Khawaja H, Pan Q, Paine-Murrieta GD, Schnellmann RG, Roe DJ, Gokhale PC, DeCaprio JA, Padi M. Integrative analysis reveals therapeutic potential of pyrvinium pamoate in Merkel cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.01.565218. [PMID: 37961132 PMCID: PMC10635082 DOI: 10.1101/2023.11.01.565218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Merkel Cell Carcinoma (MCC) is an aggressive neuroendocrine cutaneous malignancy arising from either ultraviolet-induced mutagenesis or Merkel cell polyomavirus (MCPyV) integration. Despite extensive research, our understanding of the molecular mechanisms driving the transition from normal cells to MCC remains limited. To address this knowledge gap, we assessed the impact of inducible MCPyV T antigens on normal human fibroblasts by performing RNA sequencing. Our data uncovered changes in expression and regulation of Wnt signaling pathway members. Building on this observation, we bioinformatically evaluated various Wnt pathway perturbagens for their ability to reverse the MCC gene expression signature and identified pyrvinium pamoate, an FDA-approved anthelminthic drug known for its anti-tumor activity in other cancers. Leveraging transcriptomic, network, and molecular analyses, we found that pyrvinium targets multiple MCC vulnerabilities. Pyrvinium not only reverses the neuroendocrine features of MCC by modulating canonical and non-canonical Wnt signaling but also inhibits cancer cell growth by activating p53-mediated apoptosis, disrupting mitochondrial function, and inducing endoplasmic reticulum stress. Finally, we demonstrated that pyrvinium reduces tumor growth in an MCC mouse xenograft model. These findings offer a new understanding of the role of Wnt signaling in MCC and highlight the utility of pyrvinium as a potential treatment for MCC.
Collapse
Affiliation(s)
- Jiawen Yang
- University of Arizona Cancer Center, Tucson, Arizona, USA
| | - James T. Lim
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Paul Victor
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA
| | | | - Chen Chen
- University of Arizona Cancer Center, Tucson, Arizona, USA
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Hunain Khawaja
- University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Qiong Pan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | | | - Rick G. Schnellmann
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA
- The University of Arizona College of Medicine, Tucson, Arizona, USA
- The University of Arizona, BIO5 Institute, Tucson, Arizona, USA
- Southern Arizona VA Health Care System, USA
| | - Denise J. Roe
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Prafulla C. Gokhale
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Megha Padi
- University of Arizona Cancer Center, Tucson, Arizona, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
2
|
Kieliszek AM, Mobilio D, Bassey-Archibong BI, Johnson JW, Piotrowski ML, de Araujo ED, Sedighi A, Aghaei N, Escudero L, Ang P, Gwynne WD, Zhang C, Quaile A, McKenna D, Subapanditha M, Tokar T, Vaseem Shaikh M, Zhai K, Chafe SC, Gunning PT, Montenegro-Burke JR, Venugopal C, Magolan J, Singh SK. De novo GTP synthesis is a metabolic vulnerability for the interception of brain metastases. Cell Rep Med 2024; 5:101755. [PMID: 39366383 PMCID: PMC11513854 DOI: 10.1016/j.xcrm.2024.101755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/21/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
Patients with brain metastases (BM) face a 90% mortality rate within one year of diagnosis and the current standard of care is palliative. Targeting BM-initiating cells (BMICs) is a feasible strategy to treat BM, but druggable targets are limited. Here, we apply Connectivity Map analysis to lung-, breast-, and melanoma-pre-metastatic BMIC gene expression signatures and identify inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme in the de novo GTP synthesis pathway, as a target for BM. We show that pharmacological and genetic perturbation of IMPDH attenuates BMIC proliferation in vitro and the formation of BM in vivo. Metabolomic analyses and CRISPR knockout studies confirm that de novo GTP synthesis is a potent metabolic vulnerability in BM. Overall, our work employs a phenotype-guided therapeutic strategy to uncover IMPDH as a relevant target for attenuating BM outgrowth, which may provide an alternative treatment strategy for patients who are otherwise limited to palliation.
Collapse
Affiliation(s)
- Agata M Kieliszek
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Daniel Mobilio
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Blessing I Bassey-Archibong
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Jarrod W Johnson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Mathew L Piotrowski
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Elvin D de Araujo
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Abootaleb Sedighi
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Nikoo Aghaei
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Laura Escudero
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Patrick Ang
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - William D Gwynne
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Cunjie Zhang
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Andrew Quaile
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Dillon McKenna
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | | | - Tomas Tokar
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Muhammad Vaseem Shaikh
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Kui Zhai
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Shawn C Chafe
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Patrick T Gunning
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON, Canada
| | - J Rafael Montenegro-Burke
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Chitra Venugopal
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Jakob Magolan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Sheila K Singh
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
3
|
Xing Z, Jiang X, Chen Y, Wang T, Li X, Wei X, Fan Q, Yang J, Wu H, Cheng J, Cai R. Glutamine deprivation in glioblastoma stem cells triggers autophagic SIRT3 degradation to epigenetically restrict CD133 expression and stemness. Apoptosis 2024; 29:1619-1631. [PMID: 39068621 DOI: 10.1007/s10495-024-02003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2024] [Indexed: 07/30/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly malignant brain tumor, and glioblastoma stem cells (GSCs) are the primary cause of GBM heterogeneity, invasiveness, and resistance to therapy. Sirtuin 3 (SIRT3) is mainly localized in the mitochondrial matrix and plays an important role in maintaining GSC stemness through cooperative interaction with the chaperone protein tumor necrosis factor receptor-associated protein 1 (TRAP1) to modulate mitochondrial respiration and oxidative stress. The present study aimed to further elucidate the specific mechanisms by which SIRT3 influences GSC stemness, including whether SIRT3 serves as an autophagy substrate and the mechanism of SIRT3 degradation. We first found that SIRT3 is enriched in CD133+ GSCs. Further experiments revealed that in addition to promoting mitochondrial respiration and reducing oxidative stress, SIRT3 maintains GSC stemness by epigenetically regulating CD133 expression via succinate. More importantly, we found that SIRT3 is degraded through the autophagy-lysosome pathway during GSC differentiation into GBM bulk tumor cells. GSCs are highly dependent on glutamine for survival, and in these cells, we found that glutamine deprivation triggers autophagic SIRT3 degradation to restrict CD133 expression, thereby disrupting the stemness of GSCs. Together our results reveal a novel mechanism by which SIRT3 regulates GSC stemness. We propose that glutamine restriction to trigger autophagic SIRT3 degradation offers a strategy to eliminate GSCs, which combined with other treatment methods may overcome GBM resistance to therapy as well as relapse.
Collapse
Affiliation(s)
- Zhengcao Xing
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianguo Jiang
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yalan Chen
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohe Li
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyun Wei
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuju Fan
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Yang
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Jinke Cheng
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Rong Cai
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Agosti E, Zeppieri M, Ghidoni M, Ius T, Tel A, Fontanella MM, Panciani PP. Role of glioma stem cells in promoting tumor chemo- and radioresistance: A systematic review of potential targeted treatments. World J Stem Cells 2024; 16:604-614. [PMID: 38817336 PMCID: PMC11135247 DOI: 10.4252/wjsc.v16.i5.604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/06/2024] [Accepted: 04/19/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Gliomas pose a significant challenge to effective treatment despite advancements in chemotherapy and radiotherapy. Glioma stem cells (GSCs), a subset within tumors, contribute to resistance, tumor heterogeneity, and plasticity. Recent studies reveal GSCs' role in therapeutic resistance, driven by DNA repair mechanisms and dynamic transitions between cellular states. Resistance mechanisms can involve different cellular pathways, most of which have been recently reported in the literature. Despite progress, targeted therapeutic approaches lack consensus due to GSCs' high plasticity. AIM To analyze targeted therapies against GSC-mediated resistance to radio- and chemotherapy in gliomas, focusing on underlying mechanisms. METHODS A systematic search was conducted across major medical databases (PubMed, Embase, and Cochrane Library) up to September 30, 2023. The search strategy utilized relevant Medical Subject Heading terms and keywords related to including "glioma stem cells", "radiotherapy", "chemotherapy", "resistance", and "targeted therapies". Studies included in this review were publications focusing on targeted therapies against the molecular mechanism of GSC-mediated resistance to radiotherapy resistance (RTR). RESULTS In a comprehensive review of 66 studies on stem cell therapies for SCI, 452 papers were initially identified, with 203 chosen for full-text analysis. Among them, 201 were deemed eligible after excluding 168 for various reasons. The temporal breakdown of studies illustrates this trend: 2005-2010 (33.3%), 2011-2015 (36.4%), and 2016-2022 (30.3%). Key GSC models, particularly U87 (33.3%), U251 (15.2%), and T98G (15.2%), emerge as significant in research, reflecting their representativeness of glioma characteristics. Pathway analysis indicates a focus on phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (mTOR) (27.3%) and Notch (12.1%) pathways, suggesting their crucial roles in resistance development. Targeted molecules with mTOR (18.2%), CHK1/2 (15.2%), and ATP binding cassette G2 (12.1%) as frequent targets underscore their importance in overcoming GSC-mediated resistance. Various therapeutic agents, notably RNA inhibitor/short hairpin RNA (27.3%), inhibitors (e.g., LY294002, NVP-BEZ235) (24.2%), and monoclonal antibodies (e.g., cetuximab) (9.1%), demonstrate versatility in targeted therapies. among 20 studies (60.6%), the most common effect on the chemotherapy resistance response is a reduction in temozolomide resistance (51.5%), followed by reductions in carmustine resistance (9.1%) and doxorubicin resistance (3.0%), while resistance to RTR is reduced in 42.4% of studies. CONCLUSION GSCs play a complex role in mediating radioresistance and chemoresistance, emphasizing the necessity for precision therapies that consider the heterogeneity within the GSC population and the dynamic tumor microenvironment to enhance outcomes for glioblastoma patients.
Collapse
Affiliation(s)
- Edoardo Agosti
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia 25123, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy.
| | - Mattia Ghidoni
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia 25123, Italy
| | - Tamara Ius
- Neurosurgery Unit, Department of Head-Neck and NeuroScience, University Hospital of Udine, Udine 33100, Italy
| | - Alessandro Tel
- Clinic of Maxillofacial Surgery, Department of Head-Neck and NeuroScience, University Hospital of Udine, Udine 33100, Italy
| | - Marco Maria Fontanella
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia 25123, Italy
| | - Pier Paolo Panciani
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia 25123, Italy
| |
Collapse
|
5
|
Kieliszek AM, Mobilio D, Upreti D, Bloemberg D, Escudero L, Kwiecien JM, Alizada Z, Zhai K, Ang P, Chafe SC, Vora P, Venugopal C, Singh SK. Intratumoral Delivery of Chimeric Antigen Receptor T Cells Targeting CD133 Effectively Treats Brain Metastases. Clin Cancer Res 2024; 30:554-563. [PMID: 37787999 DOI: 10.1158/1078-0432.ccr-23-1735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/18/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE Brain metastases (BM) are mainly treated palliatively with an expected survival of less than 12 months after diagnosis. In many solid tumors, the human neural stem cell marker glycoprotein CD133 is a marker of a tumor-initiating cell population that contributes to therapy resistance, relapse, and metastasis. EXPERIMENTAL DESIGN Here, we use a variant of our previously described CD133 binder to generate second-generation CD133-specific chimeric antigen receptor T cells (CAR-T) to demonstrate its specificity and efficacy against multiple patient-derived BM cell lines with variable CD133 antigen expression. RESULTS Using both lung- and colon-BM patient-derived xenograft models, we show that a CD133-targeting CAR-T cell therapy can evoke significant tumor reduction and survival advantage after a single dose, with complete remission observed in the colon-BM model. CONCLUSIONS In summary, these data suggest that CD133 plays a critical role in fueling the growth of BM, and immunotherapeutic targeting of this cell population is a feasible strategy to control the outgrowth of BM tumors that are otherwise limited to palliative care. See related commentary by Sloan et al., p. 477.
Collapse
Affiliation(s)
- Agata M Kieliszek
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Daniel Mobilio
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | - Laura Escudero
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Ontario, Canada
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Jacek M Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zahra Alizada
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Kui Zhai
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Ontario, Canada
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Patrick Ang
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Shawn C Chafe
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Ontario, Canada
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Parvez Vora
- Century Therapeutics, Hamilton, Ontario, Canada
| | - Chitra Venugopal
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Ontario, Canada
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Sheila K Singh
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Afroz R, Goodwin JE. Wnt Signaling in Atherosclerosis: Mechanisms to Therapeutic Implications. Biomedicines 2024; 12:276. [PMID: 38397878 PMCID: PMC10886882 DOI: 10.3390/biomedicines12020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis is a vascular disease in which inflammation plays a pivotal role. Receptor-mediated signaling pathways regulate vascular inflammation and the pathophysiology of atherosclerosis. Emerging evidence has revealed the role of the Wnt pathway in atherosclerosis progression. The Wnt pathway influences almost all stages of atherosclerosis progression, including endothelial dysfunction, monocyte infiltration, smooth muscle cell proliferation and migration, and plaque formation. Targeting the Wnt pathway to treat atherosclerosis represents a promising therapeutic approach that remains understudied. Blocking Wnt signaling utilizing small molecule inhibitors, recombinant proteins, and/or neutralizing antibodies ameliorates atherosclerosis in preclinical models. The Wnt pathway can be potentially manipulated through targeting Wnt ligands, receptors, co-receptors, and downstream signaling molecules. However, there are challenges associated with developing a real world therapeutic compound that targets the Wnt pathway. This review focuses on the role of Wnt signaling in atherosclerosis development, and the rationale for targeting this pathway for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Rizwana Afroz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA;
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA;
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
7
|
Mahmoudian E, Jahani-Asl A. Establishing Brain Tumor Stem Cell Culture from Patient Brain Tumors and Imaging Analysis of Patient-Derived Xenografts. Methods Mol Biol 2024; 2736:177-192. [PMID: 37243860 DOI: 10.1007/7651_2023_482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Brain tumor stem cells (BTSCs) have been isolated from different types of brain tumors including glioblastoma. Although BTSCs share common characteristics with neural stem cells (NSCs), such as capacity to self-renew and undergo long-term proliferation, they have tumor-propagating capabilities. A small population of BTSC can give rise to secondary tumor when transplanted into severe immunodeficient (SCID) mice. The histological and cytological features, as well as genetic heterogeneity of the xenografted tumors in mice, closely resemble those of primary tumors in patients. Patient-derived xenografts (PDX), therefore, provide a clinically relevant model to study brain tumors. Here, we describe our protocol for establishing BTSC cultures following surgical excision of human brain tumors and the procedures to conduct PDX studies in SCID mice. We also provide our detailed step-by-step protocol on in vivo imaging system (IVIS) of the PDX tumors as a noninvasive method to trace the cells and tumor volume.
Collapse
Affiliation(s)
- Elham Mahmoudian
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.
- Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Kim H, Jang B, Zhang C, Caldwell B, Park DJ, Kong SH, Lee HJ, Yang HK, Goldenring JR, Choi E. Targeting Stem Cells and Dysplastic Features With Dual MEK/ERK and STAT3 Suppression in Gastric Carcinogenesis. Gastroenterology 2024; 166:117-131. [PMID: 37802423 PMCID: PMC10841458 DOI: 10.1053/j.gastro.2023.09.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUNDS & AIMS Precancerous metaplasia progression to dysplasia can increase the risk of gastric cancers. However, effective strategies to specifically target these precancerous lesions are currently lacking. To address this, we aimed to identify key signaling pathways that are upregulated during metaplasia progression and critical for stem cell survival and function in dysplasia. METHODS To assess the response to chemotherapeutic drugs, we used metaplastic and dysplastic organoids derived from Mist1-Kras mice and 20 human precancerous organoid lines established from patients with gastric cancer. Phospho-antibody array analysis and single-cell RNA-sequencing were performed to identify target cell populations and signaling pathways affected by pyrvinium, a putative anticancer drug. Pyrvinium was administered to Mist1-Kras mice to evaluate drug effectiveness in vivo. RESULTS Although pyrvinium treatment resulted in growth arrest in metaplastic organoids, it induced cell death in dysplastic organoids. Pyrvinium treatment significantly downregulated phosphorylation of ERK and signal transducer and activator of transcription 3 (STAT3) as well as STAT3-target genes. Single-cell RNA-sequencing data analyses revealed that pyrvinium specifically targeted CD133+/CD166+ stem cell populations, as well as proliferating cells in dysplastic organoids. Pyrvinium inhibited metaplasia progression and facilitated the restoration of normal oxyntic glands in Mist1-Kras mice. Furthermore, pyrvinium exhibited suppressive effects on the growth and survival of human organoids with dysplastic features, through simultaneous blocking of the MEK/ERK and STAT3 signaling pathways. CONCLUSIONS Through its dual blockade of MEK/ERK and STAT3 signaling pathways, pyrvinium can effectively induce growth arrest in metaplasia and cell death in dysplasia. Therefore, our findings suggest that pyrvinium is a promising chemotherapeutic agent for reprogramming the precancerous milieu to prevent gastric cancer development.
Collapse
Affiliation(s)
- Hyesung Kim
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Bogun Jang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Changqing Zhang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brianna Caldwell
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Do-Joong Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - James R Goldenring
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Eunyoung Choi
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
9
|
Eckerdt F, Platanias LC. Emerging Role of Glioma Stem Cells in Mechanisms of Therapy Resistance. Cancers (Basel) 2023; 15:3458. [PMID: 37444568 PMCID: PMC10340782 DOI: 10.3390/cancers15133458] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Since their discovery at the beginning of this millennium, glioma stem cells (GSCs) have sparked extensive research and an energetic scientific debate about their contribution to glioblastoma (GBM) initiation, progression, relapse, and resistance. Different molecular subtypes of GBM coexist within the same tumor, and they display differential sensitivity to chemotherapy. GSCs contribute to tumor heterogeneity and recapitulate pathway alterations described for the three GBM subtypes found in patients. GSCs show a high degree of plasticity, allowing for interconversion between different molecular GBM subtypes, with distinct proliferative potential, and different degrees of self-renewal and differentiation. This high degree of plasticity permits adaptation to the environmental changes introduced by chemo- and radiation therapy. Evidence from mouse models indicates that GSCs repopulate brain tumors after therapeutic intervention, and due to GSC plasticity, they reconstitute heterogeneity in recurrent tumors. GSCs are also inherently resilient to standard-of-care therapy, and mechanisms of resistance include enhanced DNA damage repair, MGMT promoter demethylation, autophagy, impaired induction of apoptosis, metabolic adaptation, chemoresistance, and immune evasion. The remarkable oncogenic properties of GSCs have inspired considerable interest in better understanding GSC biology and functions, as they might represent attractive targets to advance the currently limited therapeutic options for GBM patients. This has raised expectations for the development of novel targeted therapeutic approaches, including targeting GSC plasticity, chimeric antigen receptor T (CAR T) cells, and oncolytic viruses. In this review, we focus on the role of GSCs as drivers of GBM and therapy resistance, and we discuss how insights into GSC biology and plasticity might advance GSC-directed curative approaches.
Collapse
Affiliation(s)
- Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
- Medicine Service, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Manfreda L, Rampazzo E, Persano L. Wnt Signaling in Brain Tumors: A Challenging Therapeutic Target. BIOLOGY 2023; 12:biology12050729. [PMID: 37237541 DOI: 10.3390/biology12050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
The involvement of Wnt signaling in normal tissue homeostasis and disease has been widely demonstrated over the last 20 years. In particular, dysregulation of Wnt pathway components has been suggested as a relevant hallmark of several neoplastic malignancies, playing a role in cancer onset, progression, and response to treatments. In this review, we summarize the current knowledge on the instructions provided by Wnt signaling during organogenesis and, particularly, brain development. Moreover, we recapitulate the most relevant mechanisms through which aberrant Wnt pathway activation may impact on brain tumorigenesis and brain tumor aggressiveness, with a particular focus on the mutual interdependency existing between Wnt signaling components and the brain tumor microenvironment. Finally, the latest anti-cancer therapeutic approaches employing the specific targeting of Wnt signaling are extensively reviewed and discussed. In conclusion, here we provide evidence that Wnt signaling, due to its pleiotropic involvement in several brain tumor features, may represent a relevant target in this context, although additional efforts will be needed to: (i) demonstrate the real clinical impact of Wnt inhibition in these tumors; (ii) overcome some still unsolved concerns about the potential systemic effects of such approaches; (iii) achieve efficient brain penetration.
Collapse
Affiliation(s)
- Lorenzo Manfreda
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Elena Rampazzo
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Luca Persano
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| |
Collapse
|
11
|
Effects of a monoclonal antibody against (pro)renin receptor on gliomagenesis. Sci Rep 2023; 13:808. [PMID: 36646875 PMCID: PMC9842725 DOI: 10.1038/s41598-023-28133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Glioblastoma is characterized by a strong self-renewal potential and poor differentiated state. We have reported previously that the (pro)renin receptor [(P)RR] is a potential target for glioma therapy by silencing the (P)RR gene. Here, we have examined the effects of a monoclonal antibody against (P)RR on gliomagenesis. Human glioma cell lines (U251MG and U87MG) and a glioma stem cell line (MGG23) were used for the in vitro study. The expressions of the Wnt/β-catenin signaling pathway (Wnt signaling pathway) components and stemness markers were measured by Western blotting. The effects of the (P)RR antibody on cell proliferation, sphere formation, apoptosis and migration were also examined. Subcutaneous xenografts were also examined in nude mice. Treatment with the (P)RR antibody reduced expression of Wnt signaling pathway components and stemness markers. Furthermore, the (P)RR antibody reduced cell proliferation and decreased sphere formation significantly. The treatment also suppressed migration and induced apoptosis. In a subcutaneous xenograft model, systemic administration of the (P)RR antibody reduced tumor volume significantly. These data show that treatment with the (P)RR antibody is a potential therapeutic strategy for treating glioblastoma.
Collapse
|
12
|
Sharma P, Mondal H, Mondal S, Majumder R. Recent updates on the role of phytochemicals in the treatment of glioblastoma multiforme. J Cancer Res Ther 2023; 19:S513-S522. [PMID: 38384013 DOI: 10.4103/jcrt.jcrt_1241_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/07/2022] [Indexed: 02/23/2024]
Abstract
ABSTRACTS Glioblastoma multiforme (GBM) is a malignant type of glioma. This malignant brain tumor is a devastating disease and is often fatal. The spectrum of illness and poor prognosis associated with brain tumors extract a terrible toll on patients and their families. The inoperability of these tumors and resistance to radiation and chemotherapy contribute to the fatal outcome of this disease. Thus, scientists are hunting for the new drug candidate and safer chemoprevention, especially the phytochemicals that possess potent anti-tumor properties. We have summarized the cellular and biochemical impacts of different phytochemicals that can successfully encounter GBM via induction of apoptosis and active interference in different cell and molecular pathways associated with GBM in brain tumors. The in silico predictive model determining the blood-brain barrier permeability of the compound and their potential druggability are discussed in the review.
Collapse
Affiliation(s)
- Pramita Sharma
- Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Himel Mondal
- Department of Physiology, All India Institute of Medical Sciences, Deoghar, Jharkhand, India
| | - Shaikat Mondal
- Department of Physiology, Raiganj Government Medical College, Raiganj, West Bengal, India
| | - Rabindranath Majumder
- Centre of Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| |
Collapse
|
13
|
Schultz CW, Nevler A. Pyrvinium Pamoate: Past, Present, and Future as an Anti-Cancer Drug. Biomedicines 2022; 10:3249. [PMID: 36552005 PMCID: PMC9775650 DOI: 10.3390/biomedicines10123249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Pyrvinium, a lipophilic cation belonging to the cyanine dye family, has been used in the clinic as a safe and effective anthelminthic for over 70 years. Its structure, similar to some polyaminopyrimidines and mitochondrial-targeting peptoids, has been linked with mitochondrial localization and targeting. Over the past two decades, increasing evidence has emerged showing pyrvinium to be a strong anti-cancer molecule in various human cancers in vitro and in vivo. This efficacy against cancers has been attributed to diverse mechanisms of action, with the weight of evidence supporting the inhibition of mitochondrial function, the WNT pathway, and cancer stem cell renewal. Despite the overwhelming evidence demonstrating the efficacy of pyrvinium for the treatment of human cancers, pyrvinium has not yet been repurposed for the treatment of cancers. This review provides an in-depth analysis of the history of pyrvinium as a therapeutic, the rationale and data supporting its use as an anticancer agent, and the challenges associated with repurposing pyrvinium as an anti-cancer agent.
Collapse
Affiliation(s)
- Christopher W. Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Avinoam Nevler
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Qazi MA, Salim SK, Brown KR, Mikolajewicz N, Savage N, Han H, Subapanditha MK, Bakhshinyan D, Nixon A, Vora P, Desmond K, Chokshi C, Singh M, Khoo A, Macklin A, Khan S, Tatari N, Winegarden N, Richards L, Pugh T, Bock N, Mansouri A, Venugopal C, Kislinger T, Goyal S, Moffat J, Singh SK. Characterization of the minimal residual disease state reveals distinct evolutionary trajectories of human glioblastoma. Cell Rep 2022; 40:111420. [PMID: 36170831 DOI: 10.1016/j.celrep.2022.111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/15/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
Recurrence of solid tumors renders patients vulnerable to advanced, treatment-refractory disease state with mutational and oncogenic landscape distinctive from initial diagnosis. Improving outcomes for recurrent cancers requires a better understanding of cell populations that expand from the post-therapy, minimal residual disease (MRD) state. We profile barcoded tumor stem cell populations through therapy at tumor initiation, MRD, and recurrence in our therapy-adapted, patient-derived xenograft models of glioblastoma (GBM). Tumors show distinct patterns of recurrence in which clonal populations exhibit either a pre-existing fitness advantage or an equipotency fitness acquired through therapy. Characterization of the MRD state by single-cell and bulk RNA sequencing reveals a tumor-intrinsic immunomodulatory signature with prognostic significance at the transcriptomic level and in proteomic analysis of cerebrospinal fluid (CSF) collected from patients with GBM. Our results provide insight into the innate and therapy-driven dynamics of human GBM and the prognostic value of interrogating the MRD state in solid cancers.
Collapse
Affiliation(s)
- Maleeha A Qazi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sabra K Salim
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Kevin R Brown
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Nicholas Mikolajewicz
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Hong Han
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Minomi K Subapanditha
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - David Bakhshinyan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Allison Nixon
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Parvez Vora
- Department of Surgery, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Kimberly Desmond
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON L8S 4K1, Canada; Sunnybrook Research Institute, Physical Sciences Platform, Toronto, ON M4N 3M5, Canada
| | - Chirayu Chokshi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Mohini Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Amanda Khoo
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Andrew Macklin
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Shahbaz Khan
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Nazanin Tatari
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | | | | | - Trevor Pugh
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Nicholas Bock
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA
| | - Chitra Venugopal
- Department of Surgery, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Sidhartha Goyal
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
| | - Jason Moffat
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Institute for Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Sheila K Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
15
|
Chemical genomics with pyrvinium identifies C1orf115 as a regulator of drug efflux. Nat Chem Biol 2022; 18:1370-1379. [PMID: 35970996 DOI: 10.1038/s41589-022-01109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Pyrvinium is a quinoline-derived cyanine dye and an approved anti-helminthic drug reported to inhibit WNT signaling and have anti-proliferative effects in various cancer cell lines. To further understand the mechanism by which pyrvinium is cytotoxic, we conducted a pooled genome-wide CRISPR loss-of-function screen in the human HAP1 cell model. The top drug-gene sensitizer interactions implicated the malate-aspartate and glycerol-3-phosphate shuttles as mediators of cytotoxicity to mitochondrial complex I inhibition including pyrvinium. By contrast, perturbation of the poorly characterized gene C1orf115/RDD1 resulted in strong resistance to the cytotoxic effects of pyrvinium through dysregulation of the major drug efflux pump ABCB1/MDR1. Interestingly, C1orf115/RDD1 was found to physically associate with ABCB1/MDR1 through proximity-labeling experiments and perturbation of C1orf115 led to mis-localization of ABCB1/MDR1. Our results are consistent with a model whereby C1orf115 modulates drug efflux through regulation of the major drug exporter ABCB1/MDR1.
Collapse
|
16
|
Singhal S, Maheshwari P, Krishnamurthy PT, Patil VM. Drug Repurposing Strategies for Non-Cancer to Cancer Therapeutics. Anticancer Agents Med Chem 2022; 22:2726-2756. [PMID: 35301945 DOI: 10.2174/1871520622666220317140557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/15/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
Global efforts invested for the prevention and treatment of cancer need to be repositioned to develop safe, effective, and economic anticancer therapeutics by adopting rational approaches of drug discovery. Drug repurposing is one of the established approaches to reposition old, clinically approved off patent noncancer drugs with known targets into newer indications. The literature review suggests key role of drug repurposing in the development of drugs intended for cancer as well as noncancer therapeutics. A wide category of noncancer drugs namely, drugs acting on CNS, anthelmintics, cardiovascular drugs, antimalarial drugs, anti-inflammatory drugs have come out with interesting outcomes during preclinical and clinical phases. In the present article a comprehensive overview of the current scenario of drug repurposing for the treatment of cancer has been focused. The details of some successful studies along with examples have been included followed by associated challenges.
Collapse
Affiliation(s)
- Shipra Singhal
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Priyal Maheshwari
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | | | - Vaishali M Patil
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| |
Collapse
|
17
|
Barzegar Behrooz A, Talaie Z, Jusheghani F, Łos MJ, Klonisch T, Ghavami S. Wnt and PI3K/Akt/mTOR Survival Pathways as Therapeutic Targets in Glioblastoma. Int J Mol Sci 2022; 23:ijms23031353. [PMID: 35163279 PMCID: PMC8836096 DOI: 10.3390/ijms23031353] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is a devastating type of brain tumor, and current therapeutic treatments, including surgery, chemotherapy, and radiation, are palliative at best. The design of effective and targeted chemotherapeutic strategies for the treatment of GBM require a thorough analysis of specific signaling pathways to identify those serving as drivers of GBM progression and invasion. The Wnt/β-catenin and PI3K/Akt/mTOR (PAM) signaling pathways are key regulators of important biological functions that include cell proliferation, epithelial–mesenchymal transition (EMT), metabolism, and angiogenesis. Targeting specific regulatory components of the Wnt/β-catenin and PAM pathways has the potential to disrupt critical brain tumor cell functions to achieve critical advancements in alternative GBM treatment strategies to enhance the survival rate of GBM patients. In this review, we emphasize the importance of the Wnt/β-catenin and PAM pathways for GBM invasion into brain tissue and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Brain Cancer Department, Asu vanda Gene Industrial Research Company, Tehran 1533666398, Iran; (A.B.B.); (Z.T.)
| | - Zahra Talaie
- Brain Cancer Department, Asu vanda Gene Industrial Research Company, Tehran 1533666398, Iran; (A.B.B.); (Z.T.)
| | - Fatemeh Jusheghani
- Department of Biotechnology, Asu vanda Gene Industrial Research Company, Tehran 1533666398, Iran;
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
- Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Surgery, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
- Correspondence:
| |
Collapse
|
18
|
Deciphering the Role of Pyrvinium Pamoate in the Generation of Integrated Stress Response and Modulation of Mitochondrial Function in Myeloid Leukemia Cells through Transcriptome Analysis. Biomedicines 2021; 9:biomedicines9121869. [PMID: 34944685 PMCID: PMC8698814 DOI: 10.3390/biomedicines9121869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/15/2023] Open
Abstract
Pyrvinium pamoate, a widely-used anthelmintic agent, reportedly exhibits significant anti-tumor effects in several cancers. However, the efficacy and mechanisms of pyrvinium against myeloid leukemia remain unclear. The growth inhibitory effects of pyrvinium were tested in human AML cell lines. Transcriptome analysis of Molm13 myeloid leukemia cells suggested that pyrvinium pamoate could trigger an unfolded protein response (UPR)-like pathway, including responses to extracellular stimulus [p-value = 2.78 × 10-6] and to endoplasmic reticulum stress [p-value = 8.67 × 10-7], as well as elicit metabolic reprogramming, including sulfur compound catabolic processes [p-value = 2.58 × 10-8], and responses to a redox state [p-value = 5.80 × 10-5]; on the other hand, it could elicit a pyrvinium blunted protein folding function, including protein folding [p-value = 2.10 × 10-8] and an ATP metabolic process [p-value = 3.95 × 10-4]. Subsequently, pyrvinium was verified to induce an integrated stress response (ISR), demonstrated by activation of the eIF2α-ATF4 pathway and inhibition of mTORC1 signaling, in a dose- and time-dependent manner. Additionally, pyrvinium could co-localize with mitochondria and then decrease the mitochondrial basal oxidative consumption rate, ultimately dysregulating the mitochondrial function. Similar effects were observed in cabozantinib-resistant Molm13-XR cell lines. Furthermore, pyrvinium treatment retarded Molm13 and Molm13-XR xenograft tumor growth. Thus, we concluded that pyrvinium exerts anti-tumor activity, at least, via the modulation of the mitochondrial function and by triggering ISR.
Collapse
|
19
|
Kilian M, Bunse T, Wick W, Platten M, Bunse L. Genetically Modified Cellular Therapies for Malignant Gliomas. Int J Mol Sci 2021; 22:12810. [PMID: 34884607 PMCID: PMC8657496 DOI: 10.3390/ijms222312810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
Despite extensive preclinical research on immunotherapeutic approaches, malignant glioma remains a devastating disease of the central nervous system for which standard of care treatment is still confined to resection and radiochemotherapy. For peripheral solid tumors, immune checkpoint inhibition has shown substantial clinical benefit, while promising preclinical results have yet failed to translate into clinical efficacy for brain tumor patients. With the advent of high-throughput sequencing technologies, tumor antigens and corresponding T cell receptors (TCR) and antibodies have been identified, leading to the development of chimeric antigen receptors (CAR), which are comprised of an extracellular antibody part and an intracellular T cell receptor signaling part, to genetically engineer T cells for antigen recognition. Due to efficacy in other tumor entities, a plethora of CARs has been designed and tested for glioma, with promising signs of biological activity. In this review, we describe glioma antigens that have been targeted using CAR T cells preclinically and clinically, review their drawbacks and benefits, and illustrate how the emerging field of transgenic TCR therapy can be used as a potent alternative for cell therapy of glioma overcoming antigenic limitations.
Collapse
Affiliation(s)
- Michael Kilian
- DKTK (German Cancer Consortium), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Theresa Bunse
- DKTK (German Cancer Consortium), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, University of Heidelberg, 68167 Mannheim, Germany
| | - Wolfgang Wick
- Neurology Clinic, Heidelberg University Hospital, University of Heidelberg, 69120 Heidelberg, Germany
- DKTK CCU Neurooncology, DKFZ, 69120 Heidelberg, Germany
| | - Michael Platten
- DKTK (German Cancer Consortium), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, University of Heidelberg, 68167 Mannheim, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Helmholtz-Institute of Translational Oncology (HI-TRON), 55131 Mainz, Germany
| | - Lukas Bunse
- DKTK (German Cancer Consortium), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
20
|
Abstract
Around three out of one hundred thousand people are diagnosed with glioblastoma multiforme, simply called glioblastoma, which is the most common primary brain tumor in adults. With a dismal prognosis of a little over a year, receiving a glioblastoma diagnosis is oftentimes fatal. A major advancement in its treatment was made almost two decades ago when the alkylating chemotherapeutic agent temozolomide (TMZ) was combined with radiotherapy (RT). Little progress has been made since then. Therapies that focus on the modulation of autophagy, a key process that regulates cellular homeostasis, have been developed to curb the progression of glioblastoma. The dual role of autophagy (cell survival or cell death) in glioblastoma has led to the development of autophagy inhibitors and promoters that either work as monotherapies or as part of a combination therapy to induce cell death, cellular senescence, and counteract the ability of glioblastoma stem cells (GSCs) for initiating tumor recurrence. The myriad of cellular pathways that act upon the modulation of autophagy have created contention between two groups: those who use autophagy inhibition versus those who use promotion of autophagy to control glioblastoma growth. We discuss rationale for using current major therapeutics, their molecular mechanisms for modulation of autophagy in glioblastoma and GSCs, their potentials for making strides in combating glioblastoma progression, and their possible shortcomings. These shortcomings may fuel the innovation of novel delivery systems and therapies involving TMZ in conjunction with another agent to pave the way towards a new gold standard of glioblastoma treatment.
Collapse
Affiliation(s)
- Amanda J Manea
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC, 29209, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC, 29209, USA.
| |
Collapse
|
21
|
Pyrvinium pamoate regulates MGMT expression through suppressing the Wnt/β-catenin signaling pathway to enhance the glioblastoma sensitivity to temozolomide. Cell Death Discov 2021; 7:288. [PMID: 34642308 PMCID: PMC8511032 DOI: 10.1038/s41420-021-00654-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/23/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022] Open
Abstract
Temozolomide (TMZ) is the mainstream chemotherapeutic drug for treating glioblastoma multiforme (GBM), but the intrinsic or acquired chemoresistance to TMZ has become the leading clinical concern, which is related to the repair of DNA alkylation sites by O6-methylguanine-DNA methyltransferase (MGMT). Pyrvinium pamoate (PP), the FDA-approved anthelminthic drug, has been reported to inhibit the Wnt/β-catenin pathway within numerous cancer types, and Wnt/β-catenin signaling pathway can modulate the expression of MGMT gene. However, whether PP affects the expression of MGMT and enhances TMZ sensitivity in GBM cells remains unclear. In the present study, we found that PP and TMZ had synergistic effect on inhibiting the viability of GBM cells, and PP induced inhibition of MGMT and enhanced the TMZ chemosensitivity of GBM cells through down-regulating Wnt/β-catenin pathway. Moreover, the overexpression of MGMT or β-catenin weakened the synergy between PP and TMZ. The mechanism of PP in inhibiting the Wnt pathway was indicated that PP resulted in the degradation of β-catenin via the AKT/GSK3β/β-catenin signaling axis. Moreover, Ser552 phosphorylation in β-catenin, which promotes its nuclear accumulation and transcriptional activity, is blocked by PP that also inhibits the Wnt pathway to some extent. The intracranial GBM mouse model also demonstrated that the synergy between PP and TMZ could be achieved through down-regulating β-catenin and MGMT, which prolonged the survival time of tumor-bearing mice. Taken together, our data suggest that PP may serve as the prospect medicine to improve the chemotherapeutic effect on GBM, especially for chemoresistant to TMZ induced by MGMT overexpression.
Collapse
|
22
|
Sharanek A, Burban A, Hernandez-Corchado A, Madrigal A, Fatakdawala I, Najafabadi HS, Soleimani VD, Jahani-Asl A. Transcriptional control of brain tumor stem cells by a carbohydrate binding protein. Cell Rep 2021; 36:109647. [PMID: 34469737 DOI: 10.1016/j.celrep.2021.109647] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/29/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Brain tumor stem cells (BTSCs) and intratumoral heterogeneity represent major challenges in glioblastoma therapy. Here, we report that the LGALS1 gene, encoding the carbohydrate binding protein, galectin1, is a key regulator of BTSCs and glioblastoma resistance to therapy. Genetic deletion of LGALS1 alters BTSC gene expression profiles and results in downregulation of gene sets associated with the mesenchymal subtype of glioblastoma. Using a combination of pharmacological and genetic approaches, we establish that inhibition of LGALS1 signaling in BTSCs impairs self-renewal, suppresses tumorigenesis, prolongs lifespan, and improves glioblastoma response to ionizing radiation in preclinical animal models. Mechanistically, we show that LGALS1 is a direct transcriptional target of STAT3 with its expression robustly regulated by the ligand OSM. Importantly, we establish that galectin1 forms a complex with the transcription factor HOXA5 to reprogram the BTSC transcriptional landscape. Our data unravel an oncogenic signaling pathway by which the galectin1/HOXA5 complex maintains BTSCs and promotes glioblastoma.
Collapse
Affiliation(s)
- Ahmad Sharanek
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, Montréal, QC H4A 3T2, Canada
| | - Audrey Burban
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, Montréal, QC H4A 3T2, Canada
| | - Aldo Hernandez-Corchado
- Department of Human Genetics, McGill University, Montréal, QC H3A OC7, Canada; McGill Genome Centre, Montréal, QC H3A 0G1, Canada
| | - Ariel Madrigal
- Department of Human Genetics, McGill University, Montréal, QC H3A OC7, Canada; McGill Genome Centre, Montréal, QC H3A 0G1, Canada
| | - Idris Fatakdawala
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montréal, QC H3A OC7, Canada; McGill Genome Centre, Montréal, QC H3A 0G1, Canada
| | - Vahab D Soleimani
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Department of Human Genetics, McGill University, Montréal, QC H3A OC7, Canada
| | - Arezu Jahani-Asl
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, Montréal, QC H4A 3T2, Canada; Integrated program in Neuroscience, Montréal Neurological Institute, Montréal, QC H3A 2B4, Canada.
| |
Collapse
|
23
|
Sogut MS, Venugopal C, Kandemir B, Dag U, Mahendram S, Singh S, Gulfidan G, Arga KY, Yilmaz B, Kurnaz IA. ETS-Domain Transcription Factor Elk-1 Regulates Stemness Genes in Brain Tumors and CD133+ BrainTumor-Initiating Cells. J Pers Med 2021; 11:jpm11020125. [PMID: 33672811 PMCID: PMC7917801 DOI: 10.3390/jpm11020125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
Elk-1, a member of the ternary complex factors (TCFs) within the ETS (E26 transformation-specific) domain superfamily, is a transcription factor implicated in neuroprotection, neurodegeneration, and brain tumor proliferation. Except for known targets, c-fos and egr-1, few targets of Elk-1 have been identified. Interestingly, SMN, SOD1, and PSEN1 promoters were shown to be regulated by Elk-1. On the other hand, Elk-1 was shown to regulate the CD133 gene, which is highly expressed in brain-tumor-initiating cells (BTICs) and used as a marker for separating this cancer stem cell population. In this study, we have carried out microarray analysis in SH-SY5Y cells overexpressing Elk-1-VP16, which has revealed a large number of genes significantly regulated by Elk-1 that function in nervous system development, embryonic development, pluripotency, apoptosis, survival, and proliferation. Among these, we have shown that genes related to pluripotency, such as Sox2, Nanog, and Oct4, were indeed regulated by Elk-1, and in the context of brain tumors, we further showed that Elk-1 overexpression in CD133+ BTIC population results in the upregulation of these genes. When Elk-1 expression is silenced, the expression of these stemness genes is decreased. We propose that Elk-1 is a transcription factor upstream of these genes, regulating the self-renewal of CD133+ BTICs.
Collapse
Affiliation(s)
- Melis Savasan Sogut
- Institute of Biotechnology, Gebze Technical University, 41400 Kocaeli, Turkey; (M.S.S.); (B.K.)
- Molecular Neurobiology Laboratory (AxanLab), Department of Molecular Biology and Genetics, Gebze Technical University, 41400 Kocaeli, Turkey
- Biotechnology Graduate Program, Graduate School of Sciences, Yeditepe University, 26 Agustos Yerlesimi, Kayisdagi, 34755 Istanbul, Turkey;
| | - Chitra Venugopal
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada; (C.V.); (S.M.); (S.S.)
| | - Basak Kandemir
- Institute of Biotechnology, Gebze Technical University, 41400 Kocaeli, Turkey; (M.S.S.); (B.K.)
- Molecular Neurobiology Laboratory (AxanLab), Department of Molecular Biology and Genetics, Gebze Technical University, 41400 Kocaeli, Turkey
- Biotechnology Graduate Program, Graduate School of Sciences, Yeditepe University, 26 Agustos Yerlesimi, Kayisdagi, 34755 Istanbul, Turkey;
| | - Ugur Dag
- Biotechnology Graduate Program, Graduate School of Sciences, Yeditepe University, 26 Agustos Yerlesimi, Kayisdagi, 34755 Istanbul, Turkey;
| | - Sujeivan Mahendram
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada; (C.V.); (S.M.); (S.S.)
| | - Sheila Singh
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada; (C.V.); (S.M.); (S.S.)
| | - Gizem Gulfidan
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (G.G.); (K.Y.A.)
| | - Kazim Yalcin Arga
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (G.G.); (K.Y.A.)
| | - Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, 26 Agustos Yerlesimi, Kayisdagi, 34755 Istanbul, Turkey
- Correspondence: (B.Y.); (I.A.K.)
| | - Isil Aksan Kurnaz
- Institute of Biotechnology, Gebze Technical University, 41400 Kocaeli, Turkey; (M.S.S.); (B.K.)
- Molecular Neurobiology Laboratory (AxanLab), Department of Molecular Biology and Genetics, Gebze Technical University, 41400 Kocaeli, Turkey
- Correspondence: (B.Y.); (I.A.K.)
| |
Collapse
|
24
|
Senbabaoglu F, Aksu AC, Cingoz A, Seker-Polat F, Borklu-Yucel E, Solaroglu İ, Bagci-Onder T. Drug Repositioning Screen on a New Primary Cell Line Identifies Potent Therapeutics for Glioblastoma. Front Neurosci 2021; 14:578316. [PMID: 33390879 PMCID: PMC7773901 DOI: 10.3389/fnins.2020.578316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma is a malignant brain cancer with limited treatment options and high mortality rate. While established glioblastoma cell line models provide valuable information, they ultimately lose most primary characteristics of tumors under long-term serum culture conditions. Therefore, established cell lines do not necessarily recapitulate genetic and morphological characteristics of real tumors. In this study, in line with the growing interest in using primary cell line models derived from patient tissue, we generated a primary glioblastoma cell line, KUGBM8 and characterized its genetic alterations, long term growth ability, tumor formation capacity and its response to Temozolomide, the front-line chemotherapy utilized clinically. In addition, we performed a drug repurposing screen on the KUGBM8 cell line to identify FDA-approved agents that can be incorporated into glioblastoma treatment regimen and identified Topotecan as a lead drug among 1,200 drugs. We showed Topotecan can induce cell death in KUGBM8 and other primary cell lines and cooperate with Temozolomide in low dosage combinations. Together, our study provides a new primary cell line model that can be suitable for both in vitro and in vivo studies and suggests that Topotecan can offer promise as a therapeutic approach for glioblastoma.
Collapse
Affiliation(s)
- Filiz Senbabaoglu
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Ali Cenk Aksu
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Cingoz
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Fidan Seker-Polat
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Esra Borklu-Yucel
- Medical Genetics Department and Diagnostic Center for Genetic Diseases, Koç University Hospital, Istanbul, Turkey
| | - İhsan Solaroglu
- Koç University Research Center for Translational Medicine, Istanbul, Turkey.,Department of Neurosurgery, Koç University School of Medicine, Istanbul, Turkey.,Department of Basic Sciences, Loma Linda University, Loma Linda, CA, United States
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Istanbul, Turkey
| |
Collapse
|
25
|
Datta S, Sears T, Cortopassi G, Woolard K, Angelastro JM. Repurposing FDA approved drugs inhibiting mitochondrial function for targeting glioma-stem like cells. Biomed Pharmacother 2020; 133:111058. [PMID: 33378970 DOI: 10.1016/j.biopha.2020.111058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma Multiforme (GBM) tumors contain a small population of glioma stem-like cells (GSCs) among the various differentiated GBM cells (d-GCs). GSCs drive tumor recurrence, and resistance to Temozolomide (TMZ), the standard of care (SoC) for GBM chemotherapy. In order to investigate a potential link between GSC specific mitochondria function and SoC resistance, two patient-derived GSC lines were evaluated for differences in their mitochondrial metabolism. In both the lines, GSCs had significantly lower mitochondrial -content, and -function compared to d-GCs. In vitro, the standard mitochondrial-specific inhibitors oligomycin A, antimycin A, and rotenone selectively inhibited GSC proliferation to a greater extent than d-GCs and human primary astrocytes. These findings indicate that mitochondrial inhibition can be a potential GSC-targeted therapeutic strategy in GBM with minimal off-target toxicity. Mechanistically the standard mitochondrial inhibitors elicit their GSC-selective cytotoxic effects through the induction of apoptosis or autophagy pathways. We tested for GSC proliferation in the presence of 3 safe FDA-approved drugs--trifluoperazine, mitoxantrone, and pyrvinium pamoate, all of which are also known mitochondrial-targeting agents. The SoC GBM therapeutic TMZ did not trigger cytotoxicity in glioma stem cells, even at 100 μM concentration. By contrast, trifluoperazine, mitoxantrone, and pyrvinium pamoate exerted antiproliferative effects in GSCs about 30-50 fold more effectively than temozolomide. Thus, we hereby demonstrate that FDA-approved mitochondrial inhibitors induce GSC-selective cytotoxicity, and targeting mitochondrial function could present a potential therapeutic option for GBM treatment.
Collapse
Affiliation(s)
- Sandipan Datta
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Thomas Sears
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Gino Cortopassi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kevin Woolard
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - James M Angelastro
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
26
|
Vora P, Venugopal C, Salim SK, Tatari N, Bakhshinyan D, Singh M, Seyfrid M, Upreti D, Rentas S, Wong N, Williams R, Qazi MA, Chokshi C, Ding A, Subapanditha M, Savage N, Mahendram S, Ford E, Adile AA, McKenna D, McFarlane N, Huynh V, Wylie RG, Pan J, Bramson J, Hope K, Moffat J, Singh S. The Rational Development of CD133-Targeting Immunotherapies for Glioblastoma. Cell Stem Cell 2020; 26:832-844.e6. [PMID: 32464096 DOI: 10.1016/j.stem.2020.04.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 12/16/2019] [Accepted: 04/14/2020] [Indexed: 01/01/2023]
Abstract
CD133 marks self-renewing cancer stem cells (CSCs) in a variety of solid tumors, and CD133+ tumor-initiating cells are known markers of chemo- and radio-resistance in multiple aggressive cancers, including glioblastoma (GBM), that may drive intra-tumoral heterogeneity. Here, we report three immunotherapeutic modalities based on a human anti-CD133 antibody fragment that targets a unique epitope present in glycosylated and non-glycosylated CD133 and studied their effects on targeting CD133+ cells in patient-derived models of GBM. We generated an immunoglobulin G (IgG) (RW03-IgG), a dual-antigen T cell engager (DATE), and a CD133-specific chimeric antigen receptor T cell (CAR-T): CART133. All three showed activity against patient-derived CD133+ GBM cells, and CART133 cells demonstrated superior efficacy in patient-derived GBM xenograft models without causing adverse effects on normal CD133+ hematopoietic stem cells in humanized CD34+ mice. Thus, CART133 cells may be a therapeutically tractable strategy to target CD133+ CSCs in human GBM or other treatment-resistant primary cancers.
Collapse
Affiliation(s)
- Parvez Vora
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Chitra Venugopal
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Sabra Khalid Salim
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Nazanin Tatari
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - David Bakhshinyan
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Mohini Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Mathieu Seyfrid
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Deepak Upreti
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Stefan Rentas
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Nicholas Wong
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Rashida Williams
- Donnelly Centre, Department of Molecular Genetics, Institute of Biomolecular Engineering, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Maleeha Ahmad Qazi
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Chirayu Chokshi
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Avrilynn Ding
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Minomi Subapanditha
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Neil Savage
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Sujeivan Mahendram
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Emily Ford
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Ashley Ann Adile
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Dillon McKenna
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Nicole McFarlane
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Vince Huynh
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton ON L8S 4M1, Canada
| | - Ryan Gavin Wylie
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton ON L8S 4M1, Canada
| | - James Pan
- Donnelly Centre, Department of Molecular Genetics, Institute of Biomolecular Engineering, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Jonathan Bramson
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Kristin Hope
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Jason Moffat
- Donnelly Centre, Department of Molecular Genetics, Institute of Biomolecular Engineering, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| | - Sheila Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada; Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
27
|
Wang D, Wang C, Wang L, Chen Y. A comprehensive review in improving delivery of small-molecule chemotherapeutic agents overcoming the blood-brain/brain tumor barriers for glioblastoma treatment. Drug Deliv 2020; 26:551-565. [PMID: 31928355 PMCID: PMC6534214 DOI: 10.1080/10717544.2019.1616235] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain tumor which is highly resistant to conventional radiotherapy and chemotherapy, and cannot be effectively controlled by surgical resection. Due to inevitable recurrence of GBM, it remains essentially incurable with a median overall survival of less than 18 months after diagnosis. A great challenge in current therapies lies in the abrogated delivery of most of the chemotherapeutic agents to the tumor location in the presence of blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB). These protective barriers serve as a selectively permeable hurdle reducing the efficacy of anti-tumor drugs in GBM therapy. This work systematically gives a comprehensive review on: (i) the characteristics of the BBB and the BBTB, (ii) the influence of BBB/BBTB on drug delivery and the screening strategy of small-molecule chemotherapeutic agents with promising BBB/BBTB-permeable potential, (iii) the strategies to overcome the BBB/BBTB as well as the techniques which can lead to transient BBB/BBTB opening or disruption allowing for improving BBB/BBTB-penetration of drugs. It is hoped that this review provide practical guidance for the future development of small BBB/BBTB-permeable agents against GBM as well as approaches enhancing drug delivery across the BBB/BBTB to GBM.
Collapse
Affiliation(s)
- Da Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Chao Wang
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Liang Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
28
|
Sharif T, Dai C, Martell E, Ghassemi-Rad MS, Hanes MR, Murphy PJ, Kennedy BE, Venugopal C, Subapanditha M, Giacomantonio CA, Marcato P, Singh SK, Gujar S. TAp73 Modifies Metabolism and Positively Regulates Growth of Cancer Stem-Like Cells in a Redox-Sensitive Manner. Clin Cancer Res 2018; 25:2001-2017. [PMID: 30593514 DOI: 10.1158/1078-0432.ccr-17-3177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/14/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Stem-like cancer cells, with characteristic self-renewal abilities, remain highly refractory to various clinical interventions. As such, stemness-inhibiting entities, such as tumor suppressor p53, are therapeutically pursued for their anticancer activities. Interestingly, similar implications for tumor suppressor TAp73 in regulating stemness features within stem-like cancer cells remain unknown.Experimental Design: This study utilizes various in vitro molecular biology techniques, including immunoblotting, qRT-PCR, and mass spectrometry-based proteomics, and metabolomics approaches to study the role of TAp73 in human and murine embryonal carcinoma stem-like cells (ECSLC) as well as human breast cancer stem-like cells (BCSLC). These findings were confirmed using patient-derived brain tumor-initiating cells (BTIC) and in vivo xenograft models. RESULTS TAp73 inhibition decreases the expression of stem cell transcription factors Oct4, Nanog, and Sox-2, as well as tumorsphere formation capacity in ECSLCs. In vivo, TAp73-deficient ECSLCs and BCSLCs demonstrate decreased tumorigenic potential when xenografted in mice. Mechanistically, TAp73 modifies the proline regulatory axis through regulation of enzymes GLS, OAT, and PYCR1 involved in the interconversion of proline-glutamine-ornithine. Further, TAp73 deficiency exacerbates glutamine dependency, enhances accumulation of reactive oxygen species through reduced superoxide dismutase 1 (SOD1) expression, and promotes differentiation by arresting cell cycle and elevating autophagy. Most importantly, the knockdown of TAp73 in CD133HI BTICs, separated from three different glioblastoma patients, strongly decreases the expression of prosurvival factors Sox-2, BMI-1, and SOD1, and profoundly decreases their self-renewal capacity as evidenced through their reduced tumorsphere formation ability. CONCLUSIONS Collectively, we reveal a clinically relevant aspect of cancer cell growth and stemness regulation through TAp73-mediated redox-sensitive metabolic reprogramming.
Collapse
Affiliation(s)
- Tanveer Sharif
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cathleen Dai
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Emma Martell
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Mark Robert Hanes
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Patrick J Murphy
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Barry E Kennedy
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Chitra Venugopal
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Minomi Subapanditha
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Carman A Giacomantonio
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sheila K Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada. .,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Innovative and Collaborative Health Systems Research, IWK Health Centre, Halifax, Nova Scotia, Canada
| |
Collapse
|
29
|
Fernandes GFDS, Fernandes BC, Valente V, Dos Santos JL. Recent advances in the discovery of small molecules targeting glioblastoma. Eur J Med Chem 2018; 164:8-26. [PMID: 30583248 DOI: 10.1016/j.ejmech.2018.12.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022]
Abstract
Glioblastoma (GBM) is one of the most common central nervous system cancers. It is characterized as a fast-growing tumor that arises from multiple cell types with neural stem-cell-like properties. Additionally, GBM tumors are highly invasive, which is attributed to the presence of glioblastoma stem cells that makes surgery ineffective in most cases. Currently, temozolomide is the unique chemotherapy option approved by the U.S. Food and Drug Administration for GBM treatment. This review analyzes the emergence and development of new synthetic small molecules discovered as promising anti-glioblastoma agents. A number of compounds were described herein and grouped according to the main chemical class used in the drug discovery process. Importantly, we focused only on synthetic compounds published in the last 10 years, thus excluding natural products. Furthermore, we included in this review only those most biologically active compounds with proven in vitro and/or in vivo efficacy.
Collapse
Affiliation(s)
- Guilherme Felipe Dos Santos Fernandes
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Araraquara, 14800-060, Brazil
| | - Barbara Colatto Fernandes
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil
| | - Valeria Valente
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil
| | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Araraquara, 14800-060, Brazil.
| |
Collapse
|
30
|
BMI1 is a therapeutic target in recurrent medulloblastoma. Oncogene 2018; 38:1702-1716. [PMID: 30348991 DOI: 10.1038/s41388-018-0549-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 11/09/2022]
Abstract
Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor, representing 20% of newly diagnosed childhood central nervous system malignancies. Although advances in multimodal therapy yielded a 5-year survivorship of 80%, MB still accounts for the leading cause of childhood cancer mortality. In this work, we describe the epigenetic regulator BMI1 as a novel therapeutic target for the treatment of recurrent human Group 3 MB, a childhood brain tumor for which there is virtually no treatment option beyond palliation. Current clinical trials for recurrent MB patients based on genomic profiles of primary, treatment-naive tumors will provide limited clinical benefit since recurrent metastatic MBs are highly genetically divergent from their primary tumor. Using a small molecule inhibitor against BMI1, PTC-028, we were able to demonstrate complete ablation of self-renewal of MB stem cells in vitro. When administered to mice xenografted with patient tumors, we observed significant reduction in tumor burden in both local and metastatic compartments and subsequent increased survival, without neurotoxicity. Strikingly, serial in vivo re-transplantation assays demonstrated a marked reduction in tumor initiation ability of recurrent MB cells upon re-transplantation of PTC-028-treated cells into secondary recipient mouse brains. As Group 3 MB is often metastatic and uniformly fatal at recurrence, with no current or planned trials of targeted therapy, an efficacious targeted agent would be rapidly transitioned to clinical trials.
Collapse
|
31
|
Phosphoglycerate dehydrogenase inhibition induces p-mTOR-independent autophagy and promotes multilineage differentiation in embryonal carcinoma stem-like cells. Cell Death Dis 2018; 9:990. [PMID: 30250195 PMCID: PMC6155240 DOI: 10.1038/s41419-018-0997-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/22/2018] [Accepted: 06/01/2018] [Indexed: 12/21/2022]
Abstract
Cancer cells with a less differentiated stem-like phenotype are more resistant to therapeutic manipulations than their differentiated counterparts, and are considered as one of the main causes of cancer persistence and relapse. As such, induction of differentiation in cancer stem-like cells (CSLCs) has emerged as an alternative strategy to enhance the efficacy of anticancer therapies. CSLCs are metabolically distinct from differentiated cells, and any aberration from the intrinsic metabolic state can induce differentiation of CSLCs. Therefore, metabolism-related molecular targets, with a capacity to promote differentiation within CSLCs, are of therapeutic importance. Here, we demonstrate that phosphoglycerate dehydrogenase (PHGDH), an essential enzyme catalyzing the synthesis of amino acid serine, is important for maintaining the poorly differentiated, stem-like state of CSLCs. Our data shows that PHGDH deficiency impairs the tumorsphere formation capacity in embryonal carcinoma stem-like cells (ECSLCs), breast cancer stem-like cells (BCSLCs) and patient-derived brain tumor-initiating cells (BTICs), which is accompanied by the reduced expression of characteristic stemness-promoting factors, such as Oct4, Nanog, Sox-2, and Bmi-1. Mechanistically, PHGDH deficiency in ECSLCs promotes differentiation to various lineages via degradation of Oct4 and by increasing the stability of differentiation marker β3-tubulin. Furthermore, PHGDH inhibition promotes p-mTOR independent but Beclin-1-dependent autophagy, independent of apoptosis. When studied in combination, the inhibition of both PHGDH and p-mTOR in ECSLCs causes further augmentation of autophagy, and additionally promotes apoptosis, demonstrating the clinical applicability of PHGDH-based manipulations in cancer therapies. Recapitulating these in vitro findings in CSLC models, the intratumoral PHGDH expression in patient-derived tumors is positively correlated with the mRNA levels of stemness factors, especially Oct4, and cancer patients co-expressing high levels of PHGDH and Oct4 display significantly lower survival than those with low PHGDH/Oct4 co-expression. Altogether, this study identifies a clinically-relevant role for PHGDH in the regulation of stemness-differentiation axis within CSLCs.
Collapse
|
32
|
Singh M, Venugopal C, Tokar T, McFarlane N, Subapanditha MK, Qazi M, Bakhshinyan D, Vora P, Murty NK, Jurisica I, Singh SK. Therapeutic Targeting of the Premetastatic Stage in Human Lung-to-Brain Metastasis. Cancer Res 2018; 78:5124-5134. [PMID: 29986997 DOI: 10.1158/0008-5472.can-18-1022] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/29/2018] [Accepted: 06/29/2018] [Indexed: 11/16/2022]
Abstract
Brain metastases (BM) result from the spread of primary tumors to the brain and are a leading cause of cancer mortality in adults. Secondary tissue colonization remains the main bottleneck in metastatic development, yet this "premetastatic" stage of the metastatic cascade, when primary tumor cells cross the blood-brain barrier and seed the brain before initiating a secondary tumor, remains poorly characterized. Current studies rely on specimens from fully developed macrometastases to identify therapeutic options in cancer treatment, overlooking the potentially more treatable "premetastatic" phase when colonizing cancer cells could be targeted before they initiate the secondary brain tumor. Here we use our established brain metastasis initiating cell (BMIC) models and gene expression analyses to characterize premetastasis in human lung-to-BM. Premetastatic BMIC engaged invasive and epithelial developmental mechanisms while simultaneously impeding proliferation and apoptosis. We identified the dopamine agonist apomorphine to be a potential premetastasis-targeting drug. In vivo treatment with apomorphine prevented BM formation, potentially by targeting premetastasis-associated genes KIF16B, SEPW1, and TESK2 Low expression of these genes was associated with poor survival of patients with lung adenocarcinoma. These results illuminate the cellular and molecular dynamics of premetastasis, which is subclinical and currently impossible to identify or interrogate in human patients with BM. These data present several novel therapeutic targets and associated pathways to prevent BM initiation.Significance: These findings unveil molecular features of the premetastatic stage of lung-to-brain metastases and offer a potential therapeutic strategy to prevent brain metastases. Cancer Res; 78(17); 5124-34. ©2018 AACR.
Collapse
Affiliation(s)
- Mohini Singh
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Chitra Venugopal
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Tomas Tokar
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Nicole McFarlane
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | | | - Maleeha Qazi
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - David Bakhshinyan
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Parvez Vora
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Naresh K Murty
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Igor Jurisica
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontario, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Sheila K Singh
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada. .,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
33
|
Repurposing drugs for glioblastoma: From bench to bedside. Cancer Lett 2018; 428:173-183. [PMID: 29729291 DOI: 10.1016/j.canlet.2018.04.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme is the most common, aggressive and lethal type of brain tumor. It is a stage IV cancer disease with a poor prognosis, as the current therapeutic options (surgery, radiotherapy and chemotherapy) are not able to eradicate tumor cells. The approach to treat glioblastoma has not suffered major changes over the last decade and temozolomide (TMZ) remains the mainstay for chemotherapy. However, resistance mechanisms to TMZ and other chemotherapeutic agents are becoming more frequent. The lack of effective options is a reality that may be counterbalanced by repositioning known and commonly used drugs for other diseases. This approach takes into consideration the available pharmacokinetic, pharmacodynamic, toxicity and safety data, and allows a much faster and less expensive drug and product development process. In this review, an extensive literature search is conducted aiming to list drugs with repurposing usage, based on their preferential damage in glioblastoma cells through various mechanisms. Some of these drugs have already entered clinical trials, exhibiting favorable outcomes, which sparks their potential application in glioblastoma treatment.
Collapse
|
34
|
Cai Z, Cao Y, Luo Y, Hu H, Ling H. Signalling mechanism(s) of epithelial-mesenchymal transition and cancer stem cells in tumour therapeutic resistance. Clin Chim Acta 2018; 483:156-163. [PMID: 29709449 DOI: 10.1016/j.cca.2018.04.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023]
Abstract
Epithelial-mesenchymal transition (EMT) leads to tumour progression, including tumour metastasis, disease recurrence and therapy resistance. Cancer stem cells (CSCs) are a small group of cells that have the ability to undergo self-renewal and heterogeneous differentiation, which play a key role in the occurrence and development of cancer. EMT can promote tumour cells to develop stem cell characteristics, which makes tumours more difficult to treat. Therefore, exploring the role of EMT and CSCs in the metastasis of cancer is of great significance to guide tumour treatment and prognosis. In this review, we discuss EMT and CSCs in cancer progression and therapeutic resistance, with a special focus on the common characteristics and relationships between these processes, to explore the crucial relationships in the development of improved anti-tumour therapies. AREAS COVERED In this brief review article, the author has searched PubMed and Wikipedia for original research and reviewed articles to gather current information on the association of CSCs and EMT with therapeutic resistance characteristics, cancer growth and metastasis, which are believed to be regulated by the TGF-β, Wnt, Hedgehog (Hh), β-catenin, STAT3, Notch, and Nanog signalling pathways and other factors (miRNAs, microenvironment and additional cytokines).
Collapse
Affiliation(s)
- Zhihong Cai
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, PR China
| | - Yijing Cao
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, PR China
| | - Yichen Luo
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, PR China
| | - Haobin Hu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, PR China
| | - Hui Ling
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, PR China.
| |
Collapse
|
35
|
Zuccarini M, Giuliani P, Ziberi S, Carluccio M, Iorio PD, Caciagli F, Ciccarelli R. The Role of Wnt Signal in Glioblastoma Development and Progression: A Possible New Pharmacological Target for the Therapy of This Tumor. Genes (Basel) 2018; 9:genes9020105. [PMID: 29462960 PMCID: PMC5852601 DOI: 10.3390/genes9020105] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/26/2022] Open
Abstract
Wnt is a complex signaling pathway involved in the regulation of crucial biological functions such as development, proliferation, differentiation and migration of cells, mainly stem cells, which are virtually present in all embryonic and adult tissues. Conversely, dysregulation of Wnt signal is implicated in development/progression/invasiveness of different kinds of tumors, wherein a certain number of multipotent cells, namely “cancer stem cells”, are characterized by high self-renewal and aggressiveness. Hence, the pharmacological modulation of Wnt pathway could be of particular interest, especially in tumors for which the current standard therapy results to be unsuccessful. This might be the case of glioblastoma multiforme (GBM), one of the most lethal, aggressive and recurrent brain cancers, probably due to the presence of highly malignant GBM stem cells (GSCs) as well as to a dysregulation of Wnt system. By examining the most recent literature, here we point out several factors in the Wnt pathway that are altered in human GBM and derived GSCs, as well as new molecular strategies or experimental drugs able to modulate/inhibit aberrant Wnt signal. Altogether, these aspects serve to emphasize the existence of alternative pharmacological targets that may be useful to develop novel therapies for GBM.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
- StemTeCh Group, via L. Polacchi 11, 66100 Chieti, Italy.
| | - Marzia Carluccio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
- StemTeCh Group, via L. Polacchi 11, 66100 Chieti, Italy.
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Francesco Caciagli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
- StemTeCh Group, via L. Polacchi 11, 66100 Chieti, Italy.
| |
Collapse
|
36
|
Qazi MA, Vora P, Venugopal C, Sidhu SS, Moffat J, Swanton C, Singh SK. Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Ann Oncol 2018; 28:1448-1456. [PMID: 28407030 DOI: 10.1093/annonc/mdx169] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Indexed: 01/01/2023] Open
Abstract
Intratumoral heterogeneity (ITH) has increasingly being described for multiple cancers as the root cause of therapy resistance. Recent studies have started to explore the scope of ITH in glioblastoma (GBM), a highly aggressive and fatal form of brain tumor, to explain its inevitable therapy resistance and disease relapse. In this review, we detail the emerging data that explores the extensive genetic, cellular and functional ITH present in GBM. We discuss current experimental models of human GBM recurrence and suggest harnessing new technologies (CRISPR-Cas9 screening, CyTOF, cellular barcoding, single cell analysis) to delineate GBM ITH and identify treatment-refractory cell populations, thus opening new therapeutic windows. We will also explore why current therapeutics have failed in clinical trials and how ITH can inform us on developing empiric therapies for the treatment of recurrent GBM.
Collapse
Affiliation(s)
- M A Qazi
- Stem Cell and Cancer Research Institute.,Department of Biochemistry and Biomedical Sciences
| | - P Vora
- Stem Cell and Cancer Research Institute.,Department of Surgery, McMaster University, Hamilton
| | - C Venugopal
- Stem Cell and Cancer Research Institute.,Department of Surgery, McMaster University, Hamilton
| | - S S Sidhu
- Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - J Moffat
- Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - C Swanton
- The Francis Crick Institute, University College London Institute, London, UK
| | - S K Singh
- Stem Cell and Cancer Research Institute.,Department of Biochemistry and Biomedical Sciences.,Department of Surgery, McMaster University, Hamilton
| |
Collapse
|
37
|
Singh M, Venugopal C, Tokar T, Brown KR, McFarlane N, Bakhshinyan D, Vijayakumar T, Manoranjan B, Mahendram S, Vora P, Qazi M, Dhillon M, Tong A, Durrer K, Murty N, Hallet R, Hassell JA, Kaplan DR, Cutz JC, Jurisica I, Moffat J, Singh SK. RNAi screen identifies essential regulators of human brain metastasis-initiating cells. Acta Neuropathol 2017; 134:923-940. [PMID: 28766011 DOI: 10.1007/s00401-017-1757-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022]
Abstract
Brain metastases (BM) are the most common brain tumor in adults and are a leading cause of cancer mortality. Metastatic lesions contain subclones derived from their primary lesion, yet their functional characterization is limited by a paucity of preclinical models accurately recapitulating the metastatic cascade, emphasizing the need for a novel approach to BM and their treatment. We identified a unique subset of stem-like cells from primary human patient brain metastases, termed brain metastasis-initiating cells (BMICs). We now establish a BMIC patient-derived xenotransplantation (PDXT) model as an investigative tool to comprehensively interrogate human BM. Using both in vitro and in vivo RNA interference screens of these BMIC models, we identified SPOCK1 and TWIST2 as essential BMIC regulators. SPOCK1 in particular is a novel regulator of BMIC self-renewal, modulating tumor initiation and metastasis from the lung to the brain. A prospective cohort of primary lung cancer specimens showed that SPOCK1 was overexpressed only in patients who ultimately developed BM. Protein-protein interaction network mapping between SPOCK1 and TWIST2 identified novel pathway interactors with significant prognostic value in lung cancer patients. Of these genes, INHBA, a TGF-β ligand found mutated in lung adenocarcinoma, showed reduced expression in BMICs with knockdown of SPOCK1. In conclusion, we have developed a useful preclinical model of BM, which has served to identify novel putative BMIC regulators, presenting potential therapeutic targets that block the metastatic process, and transform a uniformly fatal systemic disease into a locally controlled and eminently more treatable one.
Collapse
Affiliation(s)
- Mohini Singh
- MDCL 5027, Stem Cell and Cancer Research Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Chitra Venugopal
- MDCL 5027, Stem Cell and Cancer Research Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Tomas Tokar
- Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada
| | - Kevin R Brown
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Donnelly Centre, Toronto, ON, Canada
| | - Nicole McFarlane
- MDCL 5027, Stem Cell and Cancer Research Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - David Bakhshinyan
- MDCL 5027, Stem Cell and Cancer Research Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Thusyanth Vijayakumar
- MDCL 5027, Stem Cell and Cancer Research Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Branavan Manoranjan
- MDCL 5027, Stem Cell and Cancer Research Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Sujeivan Mahendram
- MDCL 5027, Stem Cell and Cancer Research Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Parvez Vora
- MDCL 5027, Stem Cell and Cancer Research Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Maleeha Qazi
- MDCL 5027, Stem Cell and Cancer Research Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Manvir Dhillon
- MDCL 5027, Stem Cell and Cancer Research Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Amy Tong
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Donnelly Centre, Toronto, ON, Canada
| | - Kathrin Durrer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Donnelly Centre, Toronto, ON, Canada
| | - Naresh Murty
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Robin Hallet
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - John A Hassell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - David R Kaplan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Jean-Claude Cutz
- Anatomic Pathology, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Igor Jurisica
- Princess Margaret Cancer Centre, IBM Life Sciences Discovery Centre, University Health Network, Toronto, ON, Canada
- Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Donnelly Centre, Toronto, ON, Canada
| | - Sheila K Singh
- MDCL 5027, Stem Cell and Cancer Research Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
- Department of Surgery, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
38
|
Chen B, Ma L, Paik H, Sirota M, Wei W, Chua MS, So S, Butte AJ. Reversal of cancer gene expression correlates with drug efficacy and reveals therapeutic targets. Nat Commun 2017; 8:16022. [PMID: 28699633 PMCID: PMC5510182 DOI: 10.1038/ncomms16022] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/17/2017] [Indexed: 02/07/2023] Open
Abstract
The decreasing cost of genomic technologies has enabled the molecular characterization of large-scale clinical disease samples and of molecular changes upon drug treatment in various disease models. Exploring methods to relate diseases to potentially efficacious drugs through various molecular features is critically important in the discovery of new therapeutics. Here we show that the potency of a drug to reverse cancer-associated gene expression changes positively correlates with that drug's efficacy in preclinical models of breast, liver and colon cancers. Using a systems-based approach, we predict four compounds showing high potency to reverse gene expression in liver cancer and validate that all four compounds are effective in five liver cancer cell lines. The in vivo efficacy of pyrvinium pamoate is further confirmed in a subcutaneous xenograft model. In conclusion, this systems-based approach may be complementary to the traditional target-based approach in connecting diseases to potentially efficacious drugs.
Collapse
Affiliation(s)
- Bin Chen
- Department of Pediatrics, Institute for Computational Health Sciences, University of California, San Francisco, 550 16th Street, San Francisco, California 94143, USA
| | - Li Ma
- Department of Surgery, Asian Liver Center, School of Medicine, Stanford University, 1201 Welch Road, Stanford, California 94305, USA
| | - Hyojung Paik
- Department of Pediatrics, Institute for Computational Health Sciences, University of California, San Francisco, 550 16th Street, San Francisco, California 94143, USA.,Biomedical HPC Technology Research Center, Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Marina Sirota
- Department of Pediatrics, Institute for Computational Health Sciences, University of California, San Francisco, 550 16th Street, San Francisco, California 94143, USA
| | - Wei Wei
- Department of Surgery, Asian Liver Center, School of Medicine, Stanford University, 1201 Welch Road, Stanford, California 94305, USA
| | - Mei-Sze Chua
- Department of Surgery, Asian Liver Center, School of Medicine, Stanford University, 1201 Welch Road, Stanford, California 94305, USA
| | - Samuel So
- Department of Surgery, Asian Liver Center, School of Medicine, Stanford University, 1201 Welch Road, Stanford, California 94305, USA
| | - Atul J Butte
- Department of Pediatrics, Institute for Computational Health Sciences, University of California, San Francisco, 550 16th Street, San Francisco, California 94143, USA
| |
Collapse
|
39
|
Kleinlützum D, Hanauer JDS, Muik A, Hanschmann KM, Kays SK, Ayala-Breton C, Peng KW, Mühlebach MD, Abel T, Buchholz CJ. Enhancing the Oncolytic Activity of CD133-Targeted Measles Virus: Receptor Extension or Chimerism with Vesicular Stomatitis Virus Are Most Effective. Front Oncol 2017; 7:127. [PMID: 28695108 PMCID: PMC5483446 DOI: 10.3389/fonc.2017.00127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/01/2017] [Indexed: 12/16/2022] Open
Abstract
Therapy resistance and tumor recurrence are often linked to a small refractory and highly tumorigenic subpopulation of neoplastic cells, known as cancer stem cells (CSCs). A putative marker of CSCs is CD133 (prominin-1). We have previously described a CD133-targeted oncolytic measles virus (MV-CD133) as a promising approach to specifically eliminate CD133-positive tumor cells. Selectivity was introduced at the level of cell entry by an engineered MV hemagglutinin (H). The H protein was blinded for its native receptors and displayed a CD133-specific single-chain antibody fragment (scFv) as targeting domain. Interestingly, MV-CD133 was more active in killing CD133-positive tumors than the unmodified MV-NSe despite being highly selective for its target cells. To further enhance the antitumoral activity of MV-CD133, we here pursued arming technologies, receptor extension, and chimeras between MV-CD133 and vesicular stomatitis virus (VSV). All newly generated viruses including VSV-CD133 were highly selective in eliminating CD133-positive cells. MV-CD46/CD133 killed in addition CD133-negative cells being positive for the MV receptors. In an orthotopic glioma model, MV-CD46/CD133 and MVSCD-CD133, which encodes the super cytosine deaminase, were most effective. Notably, VSV-CD133 caused fatal neurotoxicity in this tumor model. Use of CD133 as receptor could be excluded as being causative. In a subcutaneous tumor model of hepatocellular cancer, VSV-CD133 revealed the most potent oncolytic activity and also significantly prolonged survival of the mice when injected intravenously. Compared to MV-CD133, VSV-CD133 infected a more than 104-fold larger area of the tumor within the same time period. Our data not only suggest new concepts and approaches toward enhancing the oncolytic activity of CD133-targeted oncolytic viruses but also raise awareness about careful toxicity testing of novel virus types.
Collapse
Affiliation(s)
- Dina Kleinlützum
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia D S Hanauer
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Alexander Muik
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Sarah-Katharina Kays
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Michael D Mühlebach
- Product Testing of Immunological Medicinal Products for Veterinary Use, Paul-Ehrlich-Institut, Langen, Germany
| | - Tobias Abel
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
40
|
Momtazi-borojeni AA, Abdollahi E, Ghasemi F, Caraglia M, Sahebkar A. The novel role of pyrvinium in cancer therapy. J Cell Physiol 2017; 233:2871-2881. [DOI: 10.1002/jcp.26006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/11/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Amir A. Momtazi-borojeni
- Nanotechnology Research Center; Bu-Ali Research Institute; Mashhad University of Medical Sciences; Mashhad Iran
- Faculty of Medicine; Department of Medical Biotechnology; Student Research Committee; Mashhad University of Medical Sciences; Mashhad Iran
| | - Elham Abdollahi
- Department of Medical Immunology; School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
- Student Research Committee; Mashhad University of Medical Sciences; Mashhad Iran
| | - Faezeh Ghasemi
- Faculty of Medicine; Department of Medical Biotechnology; Arak University of Medical Sciences; Arak Iran
| | - Michele Caraglia
- Department of Biochemistry; Biophysics and General Pathology; University of Campania “L. Vanvitelli”; Via L. De Crecchio; Naples Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
41
|
Abou-Antoun TJ, Hale JS, Lathia JD, Dombrowski SM. Brain Cancer Stem Cells in Adults and Children: Cell Biology and Therapeutic Implications. Neurotherapeutics 2017; 14:372-384. [PMID: 28374184 PMCID: PMC5398995 DOI: 10.1007/s13311-017-0524-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Brain tumors represent some of the most malignant cancers in both children and adults. Current treatment options target the majority of tumor cells but do not adequately target self-renewing cancer stem cells (CSCs). CSCs have been reported to resist the most aggressive radiation and chemotherapies, and give rise to recurrent, treatment-resistant secondary malignancies. With advancing technologies, we now have a better understanding of the genetic, epigenetic and molecular signatures and microenvironmental influences which are useful in distinguishing between distinctly different tumor subtypes. As a result, efforts are now underway to identify and target CSCs within various tumor subtypes based on this foundation. This review discusses progress in CSC biology as it relates to targeted therapies which may be uniquely different between pediatric and adult brain tumors. Studies to date suggest that pediatric brain tumors may benefit more from genetic and epigenetic targeted therapies, while combination treatments aimed specifically at multiple molecular pathways may be more effective in treating adult brain tumors which seem to have a greater propensity towards microenvironmental interactions. Ultimately, CSC targeting approaches in combination with current clinical therapies have the potential to be more effective owing to their ability to compromise CSCs maintenance and the mechanisms which underlie their highly aggressive and deadly nature.
Collapse
Affiliation(s)
- Tamara J Abou-Antoun
- School of Pharmacy, Department of Pharmaceutical Sciences, Lebanese American University, Byblos, Lebanon
| | - James S Hale
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case, Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Stephen M Dombrowski
- Department of Neurological Surgery, Section of Pediatric Neurosurgical Oncology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
42
|
Garg N, Bakhshinyan D, Venugopal C, Mahendram S, Rosa DA, Vijayakumar T, Manoranjan B, Hallett R, McFarlane N, Delaney KH, Kwiecien JM, Arpin CC, Lai PS, Gómez-Biagi RF, Ali AM, de Araujo ED, Ajani OA, Hassell JA, Gunning PT, Singh SK. CD133 + brain tumor-initiating cells are dependent on STAT3 signaling to drive medulloblastoma recurrence. Oncogene 2016; 36:606-617. [PMID: 27775079 PMCID: PMC5541269 DOI: 10.1038/onc.2016.235] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 04/27/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022]
Abstract
Medulloblastoma (MB), the most common malignant paediatric brain tumor, is currently treated using a combination of surgery, craniospinal radiotherapy and chemotherapy. Owing to MB stem cells (MBSCs), a subset of MB patients remains untreatable despite standard therapy. CD133 is used to identify MBSCs although its functional role in tumorigenesis has yet to be determined. In this work, we showed enrichment of CD133 in Group 3 MB is associated with increased rate of metastasis and poor clinical outcome. The signal transducers and activators of transcription-3 (STAT3) pathway are selectively activated in CD133+ MBSCs and promote tumorigenesis through regulation of c-MYC, a key genetic driver of Group 3 MB. We screened compound libraries for STAT3 inhibitors and treatment with the selected STAT3 inhibitors resulted in tumor size reduction in vivo. We propose that inhibition of STAT3 signaling in MBSCs may represent a potential therapeutic strategy to treat patients with recurrent MB.
Collapse
Affiliation(s)
- N Garg
- McMaster Stem Cell and Cancer Research Institute, Hamilton, Ontario, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - D Bakhshinyan
- McMaster Stem Cell and Cancer Research Institute, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - C Venugopal
- McMaster Stem Cell and Cancer Research Institute, Hamilton, Ontario, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - S Mahendram
- McMaster Stem Cell and Cancer Research Institute, Hamilton, Ontario, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - D A Rosa
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - T Vijayakumar
- McMaster Stem Cell and Cancer Research Institute, Hamilton, Ontario, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - B Manoranjan
- McMaster Stem Cell and Cancer Research Institute, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - R Hallett
- McMaster Centre for Functional Genomics, McMaster University, Hamilton, Ontario, Canada
| | - N McFarlane
- McMaster Stem Cell and Cancer Research Institute, Hamilton, Ontario, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - K H Delaney
- Departement of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - J M Kwiecien
- Departement of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - C C Arpin
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - P-S Lai
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - R F Gómez-Biagi
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - A M Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - E D de Araujo
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - O A Ajani
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - J A Hassell
- McMaster Stem Cell and Cancer Research Institute, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,McMaster Centre for Functional Genomics, McMaster University, Hamilton, Ontario, Canada.,Departments of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - P T Gunning
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - S K Singh
- McMaster Stem Cell and Cancer Research Institute, Hamilton, Ontario, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
43
|
Abe S, Yamamoto K, Kurata M, Abe-Suzuki S, Horii R, Akiyama F, Kitagawa M. Targeting MCM2 function as a novel strategy for the treatment of highly malignant breast tumors. Oncotarget 2016; 6:34892-909. [PMID: 26430873 PMCID: PMC4741497 DOI: 10.18632/oncotarget.5408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/18/2015] [Indexed: 12/23/2022] Open
Abstract
Highly malignant tumors express high levels of the minichromosome maintenance 2 (MCM2) protein, which is associated with advanced tumor grade, advanced stage, and poor prognosis. In a previous study, we showed that Friend leukemia virus (FLV) envelope protein gp70 bound MCM2, impaired its nuclear translocation, and enhanced DNA-damage-induced apoptosis in FLV-infected hematopoietic cells when the cells expressed high levels of MCM2. Here, we show that MCM2 is highly expressed in clinical samples of invasive carcinoma of the breast, especially triple-negative breast cancer (TNBC), and in cancer stem cell (CSC) marker-positive breast cancer cells. To generate a cancer therapy model using gp70, we introduced the gp70 protein into the cytoplasm of murine breast cancer cells that express high levels of MCM2 by conjugating the protein transduction domain (PTD) of Hph-1 to gp70 (Hph- 1-gp70). Hph-1-gp70 was successfully transduced into the cytoplasm of breast cancer cells. The transduced protein enhanced the DNA damage-induced apoptosis of cancer cells in vitro and in vivo. Therefore, an MCM2-targeted strategy using Hph-1-gp70 treatment to induce DNA damage might be a successful therapy for highly malignant breast cancers such as TNBC and for the eradication of CSC-like cells from breast cancer tissue.
Collapse
Affiliation(s)
- Shinya Abe
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiho Abe-Suzuki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rie Horii
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Futoshi Akiyama
- Department of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
44
|
Ghosh D, Ulasov IV, Chen L, Harkins LE, Wallenborg K, Hothi P, Rostad S, Hood L, Cobbs CS. TGFβ-Responsive HMOX1 Expression Is Associated with Stemness and Invasion in Glioblastoma Multiforme. Stem Cells 2016; 34:2276-89. [PMID: 27354342 DOI: 10.1002/stem.2411] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 04/09/2016] [Accepted: 05/03/2016] [Indexed: 01/06/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal adult brain tumor. Resistance to standard radiation and chemotherapy is thought to involve survival of GBM cancer stem cells (CSCs). To date, no single marker for identifying GBM CSCs has been able to capture the diversity of CSC populations, justifying the needs for additional CSC markers for better characterization. Employing targeted mass spectrometry, here we present five cell-surface markers HMOX1, SLC16A1, CADM1, SCAMP3, and CLCC1 which were found to be elevated in CSCs relative to healthy neural stem cells (NSCs). Transcriptomic analyses of REMBRANDT and TCGA compendiums also indicated elevated expression of these markers in GBM relative to controls and non-GBM diseases. Two markers SLC16A1 and HMOX1 were found to be expressed among pseudopalisading cells that reside in the hypoxic region of GBM, substantiating the histopathological hallmarks of GBM. In a prospective study (N = 8) we confirmed the surface expression of HMOX1 on freshly isolated primary GBM cells (P0). Employing functional assays that are known to evaluate stemness, we demonstrate that elevated HMOX1 expression is associated with stemness in GBM and can be modulated through TGFβ. siRNA-mediated silencing of HMOX1 impaired GBM invasion-a phenomenon related to poor prognosis. In addition, surgical resection of GBM tumors caused declines (18% ± 5.1SEM) in the level of plasma HMOX1 as measured by ELISA, in 8/10 GBM patients. These findings indicate that HMOX1 is a robust predictor of GBM CSC stemness and pathogenesis. Further understanding of the role of HMOX1 in GBM may uncover novel therapeutic approaches. Stem Cells 2016;34:2276-2289.
Collapse
Affiliation(s)
- Dhiman Ghosh
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle. .,Institute for Systems Biology, Seattle.
| | - Ilya V Ulasov
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle
| | - LiPing Chen
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle
| | - Lualhati E Harkins
- Department of Pathology and Laboratory Medicine, Birmingham Veterans Hospital, Birmingham
| | | | - Parvinder Hothi
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle
| | - Steven Rostad
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle.,CellNetix Pathology and Laboratories, Seattle
| | | | - Charles S Cobbs
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle. .,Institute for Systems Biology, Seattle.
| |
Collapse
|
45
|
Allan KJ, Stojdl DF, Swift SL. High-throughput screening to enhance oncolytic virus immunotherapy. Oncolytic Virother 2016; 5:15-25. [PMID: 27579293 PMCID: PMC4996253 DOI: 10.2147/ov.s66217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
High-throughput screens can rapidly scan and capture large amounts of information across multiple biological parameters. Although many screens have been designed to uncover potential new therapeutic targets capable of crippling viruses that cause disease, there have been relatively few directed at improving the efficacy of viruses that are used to treat disease. Oncolytic viruses (OVs) are biotherapeutic agents with an inherent specificity for treating malignant disease. Certain OV platforms – including those based on herpes simplex virus, reovirus, and vaccinia virus – have shown success against solid tumors in advanced clinical trials. Yet, many of these OVs have only undergone minimal engineering to solidify tumor specificity, with few extra modifications to manipulate additional factors. Several aspects of the interaction between an OV and a tumor-bearing host have clear value as targets to improve therapeutic outcomes. At the virus level, these include delivery to the tumor, infectivity, productivity, oncolysis, bystander killing, spread, and persistence. At the host level, these include engaging the immune system and manipulating the tumor microenvironment. Here, we review the chemical- and genome-based high-throughput screens that have been performed to manipulate such parameters during OV infection and analyze their impact on therapeutic efficacy. We further explore emerging themes that represent key areas of focus for future research.
Collapse
Affiliation(s)
- K J Allan
- Children's Hospital of Eastern Ontario (CHEO) Research Institute; Department of Biology, Microbiology and Immunology
| | - David F Stojdl
- Children's Hospital of Eastern Ontario (CHEO) Research Institute; Department of Biology, Microbiology and Immunology; Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| | - S L Swift
- Children's Hospital of Eastern Ontario (CHEO) Research Institute
| |
Collapse
|
46
|
Xu L, Zhang L, Hu C, Liang S, Fei X, Yan N, Zhang Y, Zhang F. WNT pathway inhibitor pyrvinium pamoate inhibits the self-renewal and metastasis of breast cancer stem cells. Int J Oncol 2016; 48:1175-86. [PMID: 26781188 DOI: 10.3892/ijo.2016.3337] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/17/2015] [Indexed: 11/06/2022] Open
Abstract
Acquisition of chemoresistance and metastatic phenotype are the major causes of breast cancer treatment failure and cancer-related mortality. Recently, a plethora of experimental and clinical studies points toward a central role of cancer stem cells (CSCs) in the chemoresistance and metastasis. In the present study, we demonstrated that pyrvinium pamoate (PP), an anthelmintic drug, inhibited proliferation of different subtypes of breast cancer cells (luminal: MCF-7, claudin-low: MDA-MB‑231, basal-like: MDA-MB‑468 and Her-2 enriched: SkBr-3) as a novel WNT pathway inhibitor. Additionally, PP was also shown to inhibit self-renewal of breast cancer stem cells (BCSCs) and decrease both CD44+CD24-/low and ALDH-positive BCSCs content in a panel of breast cancer cell lines. Besides, the metastatic potential and expression of EMT markers (such as N-cadherin, vimentin, Snail) were also found suppressed by PP. By using a xenograft model, we next tested the efficacy of PP on tumorigenicity of MDA-MB‑231, one of the most aggressive breast cancer cell lines, and we observed PP significantly delayed tumor growth in vivo. Moreover, in-depth analysis revealed that PP caused inhibition of WNT pathway activity and stemness regulator expression including NANOG, SOX2 and OCT4, which were inherently upregulated in the BCSCs as compared with the bulk of cells within the tumor. Collectively, our findings provide direct evidence for PP serving as a promising high-yield agent targeting BCSCs and cancer heterogeneity. Therefore, strategies combining PP with standard chemotherapy drugs which fail to eliminate the BCSCs hold promise to overcome BCSCs associated treatment resistance and achieve a better therapeutic outcome.
Collapse
Affiliation(s)
- Liang Xu
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Le Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Chun Hu
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Shujing Liang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Ningning Yan
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Yanyun Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM, Shanghai 200031, P.R. China
| | - Fengchun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|