1
|
Elevation of Cytoplasmic Calcium Suppresses Microtentacle Formation and Function in Breast Tumor Cells. Cancers (Basel) 2023; 15:cancers15030884. [PMID: 36765843 PMCID: PMC9913253 DOI: 10.3390/cancers15030884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Cytoskeletal remodeling in circulating tumor cells (CTCs) facilitates metastatic spread. Previous oncology studies examine sustained aberrant calcium (Ca2+) signaling and cytoskeletal remodeling scrutinizing long-term phenotypes such as tumorigenesis and metastasis. The significance of acute Ca2+ signaling in tumor cells that occur within seconds to minutes is overlooked. This study investigates rapid cytoplasmic Ca2+ elevation in suspended cells on actin and tubulin cytoskeletal rearrangements and the metastatic microtentacle (McTN) phenotype. The compounds Ionomycin and Thapsigargin acutely increase cytoplasmic Ca2+, suppressing McTNs in the metastatic breast cancer cell lines MDA-MB-231 and MDA-MB-436. Functional decreases in McTN-mediated reattachment and cell clustering during the first 24 h of treatment are not attributed to cytotoxicity. Rapid cytoplasmic Ca2+ elevation was correlated to Ca2+-induced actin cortex contraction and rearrangement via myosin light chain 2 and cofilin activity, while the inhibition of actin polymerization with Latrunculin A reversed Ca2+-mediated McTN suppression. Preclinical and phase 1 and 2 clinical trial data have established Thapsigargin derivatives as cytotoxic anticancer agents. The results from this study suggest an alternative molecular mechanism by which these compounds act, and proof-of-principle Ca2+-modulating compounds can rapidly induce morphological changes in free-floating tumor cells to reduce metastatic phenotypes.
Collapse
|
2
|
Huang M, Liu C, Shao Y, Zhou S, Hu G, Yin S, Pu W, Yu H. Anti-tumor pharmacology of natural products targeting mitosis. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0006. [PMID: 35699421 PMCID: PMC9257311 DOI: 10.20892/j.issn.2095-3941.2022.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer has been an insurmountable problem in the history of medical science. The uncontrollable proliferation of cancer cells is one of cancer’s main characteristics, which is closely associated with abnormal mitosis. Targeting mitosis is an effective method for cancer treatment. This review summarizes several natural products with anti-tumor effects related to mitosis, focusing on targeting microtubulin, inducing DNA damage, and modulating mitosis-associated kinases. Furthermore, the main disadvantages of several typical compounds, including drug resistance, toxicity to non-tumor tissues, and poor aqueous solubility and pharmacokinetic properties, are also discussed, together with strategies to address them. Improved understanding of cancer cell mitosis and natural products may pave the way to drug development for the treatment of cancer.
Collapse
Affiliation(s)
- Manru Huang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Caiyan Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yingying Shao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shiyue Zhou
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Gaoyong Hu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuangshuang Yin
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weiling Pu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
3
|
Wang M, Chen B, Zhang W, Zhang F, Qiu Y, Lin Y, Yang S. Dematin inhibits glioblastoma malignancy through RhoA-mediated CDKs downregulation and cytoskeleton remodeling. Exp Cell Res 2022; 417:113196. [PMID: 35561787 DOI: 10.1016/j.yexcr.2022.113196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022]
Abstract
Glioblastoma multiforme (GBM) is well known as a highly aggressive brain tumor subtype. Here, we show that overexpression (OE) of dematin actin-binding protein (DMTN) inhibits GBM proliferation and invasion by affecting cell cycle regulation and actin remodeling, respectively. RT-qPCR, western blotting, and immunohistochemical (IHC) staining demonstrated a significant reduction in DMTN expression in gliomas, especially in high-grade gliomas (HGG) compared with normal brains, which correlates with worse survival in HGG patients. Functional studies revealed inhibitory effects of DMTN on tumor proliferation and migratory capacities. The attenuation in tumor proliferative ability upon DMTN OE was accompanied by RhoA suppression and CDK1, CDK2, CDK4, and cyclin D1 downregulation, while RhoA rescue restored the proliferative phenotype. Meanwhile, overexpression of DMTN produced profoundly disorganized stress fibers, which led to impaired tumor invasion. Furthermore, DMTN overexpression produced substantial suppression of tumor growth upon subcutaneous and intracranial implantation in mice, and this was accompanied by significantly reduced vinculin expression and Ki67 positivity. Taken together, these findings demonstrate the role of DMTN in regulating GBM cell proliferation, actin cytoskeleton, and cell morphology and identify DMTN as a vital tumor suppressor in GBM progression.
Collapse
Affiliation(s)
- Mengying Wang
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Binghong Chen
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, PR China
| | - Wenrui Zhang
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Fengchen Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Yongming Qiu
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Yingying Lin
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China.
| | - Shaofeng Yang
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China.
| |
Collapse
|
4
|
Mathias TJ, Ju JA, Lee RM, Thompson KN, Mull ML, Annis DA, Chang KT, Ory EC, Stemberger MB, Hotta T, Ohi R, Vitolo MI, Moutin MJ, Martin SS. Tubulin Carboxypeptidase Activity Promotes Focal Gelatin Degradation in Breast Tumor Cells and Induces Apoptosis in Breast Epithelial Cells That Is Overcome by Oncogenic Signaling. Cancers (Basel) 2022; 14:1707. [PMID: 35406479 PMCID: PMC8996877 DOI: 10.3390/cancers14071707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Post-translational modifications (PTMs) of the microtubule network impart differential functions across normal cell types and their cancerous counterparts. The removal of the C-terminal tyrosine of α-tubulin (deTyr-Tub) as performed by the tubulin carboxypeptidase (TCP) is of particular interest in breast epithelial and breast cancer cells. The recent discovery of the genetic identity of the TCP to be a vasohibin (VASH1/2) coupled with a small vasohibin-binding protein (SVBP) allows for the functional effect of this tubulin PTM to be directly tested for the first time. Our studies revealed the immortalized breast epithelial cell line MCF10A undergoes apoptosis following transfection with TCP constructs, but the addition of oncogenic KRas or Bcl-2/Bcl-xL overexpression prevents subsequent apoptotic induction in the MCF10A background. Functionally, an increase in deTyr-Tub via TCP transfection in MDA-MB-231 and Hs578t breast cancer cells leads to enhanced focal gelatin degradation. Given the elevated deTyr-Tub at invasive tumor fronts and the correlation with poor breast cancer survival, these new discoveries help clarify how the TCP synergizes with oncogene activation, increases focal gelatin degradation, and may correspond to increased tumor cell invasion. These connections could inform more specific microtubule-directed therapies to target deTyr-tubulin.
Collapse
Affiliation(s)
- Trevor J. Mathias
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
- Medical Scientist Training Program (MSTP), University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Julia A. Ju
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Rachel M. Lee
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Keyata N. Thompson
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Makenzy L. Mull
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - David A. Annis
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Epidemiology and Human Genetics, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Katarina T. Chang
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Eleanor C. Ory
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Megan B. Stemberger
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Biochemistry & Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA
| | - Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; (T.H.); (R.O.)
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; (T.H.); (R.O.)
| | - Michele I. Vitolo
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Marie-Jo Moutin
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France;
| | - Stuart S. Martin
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Thompson KN, Ju JA, Ory EC, Pratt SJP, Lee RM, Mathias TJ, Chang KT, Lee CJ, Goloubeva OG, Bailey PC, Chakrabarti KR, Jewell CM, Vitolo MI, Martin SS. Microtubule disruption reduces metastasis more effectively than primary tumor growth. Breast Cancer Res 2022; 24:13. [PMID: 35164808 PMCID: PMC8842877 DOI: 10.1186/s13058-022-01506-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
Clinical cancer imaging focuses on tumor growth rather than metastatic phenotypes. The microtubule-depolymerizing drug, Vinorelbine, reduced the metastatic phenotypes of microtentacles, reattachment and tumor cell clustering more than tumor cell viability. Treating mice with Vinorelbine for only 24 h had no significant effect on primary tumor survival, but median metastatic tumor survival was extended from 8 to 30 weeks. Microtentacle inhibition by Vinorelbine was also detectable within 1 h, using tumor cells isolated from blood samples. As few as 11 tumor cells were sufficient to yield 90% power to detect this 1 h Vinorelbine drug response, demonstrating feasibility with the small number of tumor cells available from patient biopsies. This study establishes a proof-of-concept that targeted microtubule disruption can selectively inhibit metastasis and reveals that existing FDA-approved therapies could have anti-metastatic actions that are currently overlooked when focusing exclusively on tumor growth.
Collapse
Affiliation(s)
- Keyata N Thompson
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Research Building, Rm 10-029, Baltimore, MD, 21201, USA
| | - Julia A Ju
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Research Building, Rm 10-029, Baltimore, MD, 21201, USA
| | - Eleanor C Ory
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Research Building, Rm 10-029, Baltimore, MD, 21201, USA
| | - Stephen J P Pratt
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA
| | - Rachel M Lee
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Research Building, Rm 10-029, Baltimore, MD, 21201, USA
| | - Trevor J Mathias
- Program in Molecular Medicine, University of Maryland Graduate Program in Life Sciences, Baltimore, USA
| | - Katarina T Chang
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA
| | - Cornell J Lee
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Research Building, Rm 10-029, Baltimore, MD, 21201, USA
| | - Olga G Goloubeva
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Research Building, Rm 10-029, Baltimore, MD, 21201, USA
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, MD, USA
| | - Patrick C Bailey
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA
| | - Kristi R Chakrabarti
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Research Building, Rm 10-029, Baltimore, MD, 21201, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
| | - Michele I Vitolo
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Research Building, Rm 10-029, Baltimore, MD, 21201, USA.
- Program in Molecular Medicine, University of Maryland Graduate Program in Life Sciences, Baltimore, USA.
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Stuart S Martin
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Research Building, Rm 10-029, Baltimore, MD, 21201, USA.
- Program in Molecular Medicine, University of Maryland Graduate Program in Life Sciences, Baltimore, USA.
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA.
| |
Collapse
|
6
|
Li P, Chen Y, Peng Y, Zhang Y, Zhou H, Chen X, Li T, Li S, Yang H, Wu C, Zheng C, Zhu J, You F, Li L, Qin X, Liu Y. Notch-1 signaling promotes reattachment of suspended cancer cells by cdc42-dependent microtentacles formation. Cancer Sci 2021; 112:4894-4908. [PMID: 34582616 PMCID: PMC8645759 DOI: 10.1111/cas.15146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 01/14/2023] Open
Abstract
Circulating tumor cells (CTCs) are associated with a higher risk of metastasis in tumor patients. The adhesion and arrest of CTCs at a secondary site is an essential prerequisite for the occurrence of tumor metastasis. CTC reattachment has shown to be dependent on microtentacle (McTN) formation in vivo. However, the specific molecular mechanism of McTN formation in suspended cancer cells remains largely unclear. Here, we demonstrated that the activation of Notch-1 signaling triggers McTN formation to facilitate cell reattachment in suspended cell culture conditions. Moreover, molecular mechanistic studies revealed that McTN formation is governed by the balance between microtubule-driven outgrowth and actomyosin-driven cell contractility. The activation of Notch-1 downregulates the acetylation level of microtubules via the Cdc42/HDAC6 pathway, which contributes to microtubule polymerization. Simultaneously, Notch-1 signaling-induced Cdc42 activation also reduced phosphorylation of myosin regulatory light chain, leading to cell contractility attenuation. Altogether, these results defined a novel mechanism by which Notch-1 signaling disturbs the balance between the expansion of microtubules and contraction of the cortical actin, which promotes McTN formation and cell reattachment. Our findings provide a new perspective on the effective therapeutic target to prevent CTC reattachment.
Collapse
Affiliation(s)
- Ping Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yueting Peng
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yixi Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hanying Zhou
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiangyan Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Zhu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Ju JA, Lee CJ, Thompson KN, Ory EC, Lee RM, Mathias TJ, Pratt SJP, Vitolo MI, Jewell CM, Martin SS. Partial thermal imidization of polyelectrolyte multilayer cell tethering surfaces (TetherChip) enables efficient cell capture and microtentacle fixation for circulating tumor cell analysis. LAB ON A CHIP 2020; 20:2872-2888. [PMID: 32744284 PMCID: PMC7595763 DOI: 10.1039/d0lc00207k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The technical challenges of imaging non-adherent tumor cells pose a critical barrier to understanding tumor cell responses to the non-adherent microenvironments of metastasis, like the bloodstream or lymphatics. In this study, we optimized a microfluidic device (TetherChip) engineered to prevent cell adhesion with an optically-clear, thermal-crosslinked polyelectrolyte multilayer nanosurface and a terminal lipid layer that simultaneously tethers the cell membrane for improved spatial immobilization. Thermal imidization of the TetherChip nanosurface on commercially-available microfluidic slides allows up to 98% of tumor cell capture by the lipid tethers. Importantly, time-lapse microscopy demonstrates that unique microtentacles on non-adherent tumor cells are rapidly destroyed during chemical fixation, but tethering microtentacles to the TetherChip surface efficiently preserves microtentacle structure post-fixation and post-blood isolation. TetherChips remain stable for more than 6 months, enabling shipment to distant sites. The broad retention capability of TetherChips allows comparison of multiple tumor cell types, revealing for the first time that carcinomas beyond breast cancer form microtentacles in suspension. Direct integration of TetherChips into the Vortex VTX-1 CTC isolation instrument shows that live CTCs from blood samples are efficiently captured on TetherChips for rapid fixation and same-day immunofluorescence analysis. Highly efficient and unbiased label-free capture of CTCs on a surface that allows rapid chemical fixation also establishes a streamlined clinical workflow to stabilize patient tumor cell samples and minimize analytical variables. While current studies focus primarily on CTC enumeration, this microfluidic device provides a novel platform for functional phenotype testing in CTCs with the ultimate goal of identifying anti-metastatic, patient-specific therapies.
Collapse
Affiliation(s)
- Julia A Ju
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Bressler Research Building Rm 10-29, 655 W, Baltimore St., Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
The Mechanical Microenvironment in Breast Cancer. Cancers (Basel) 2020; 12:cancers12061452. [PMID: 32503141 PMCID: PMC7352870 DOI: 10.3390/cancers12061452] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 01/22/2023] Open
Abstract
Mechanotransduction is the interpretation of physical cues by cells through mechanosensation mechanisms that elegantly translate mechanical stimuli into biochemical signaling pathways. While mechanical stress and their resulting cellular responses occur in normal physiologic contexts, there are a variety of cancer-associated physical cues present in the tumor microenvironment that are pathological in breast cancer. Mechanistic in vitro data and in vivo evidence currently support three mechanical stressors as mechanical modifiers in breast cancer that will be the focus of this review: stiffness, interstitial fluid pressure, and solid stress. Increases in stiffness, interstitial fluid pressure, and solid stress are thought to promote malignant phenotypes in normal breast epithelial cells, as well as exacerbate malignant phenotypes in breast cancer cells.
Collapse
|
9
|
Gauging the Impact of Cancer Treatment Modalities on Circulating Tumor Cells (CTCs). Cancers (Basel) 2020; 12:cancers12030743. [PMID: 32245166 PMCID: PMC7140032 DOI: 10.3390/cancers12030743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
The metastatic cascade consists of multiple complex steps, but the belief that it is a linear process is diminishing. In order to metastasize, cells must enter the blood vessels or body cavities (depending on the cancer type) via active or passive mechanisms. Once in the bloodstream and/or lymphatics, these cancer cells are now termed circulating tumor cells (CTCs). CTC numbers as well as CTC clusters have been used as a prognostic marker with higher numbers of CTCs and/or CTC clusters correlating with an unfavorable prognosis. However, we have very limited knowledge about CTC biology, including which of these cells are ultimately responsible for overt metastatic growth, but due to the fact that higher numbers of CTCs correlate with a worse prognosis; it would seem appropriate to either limit CTCs and/or their dissemination. Here, we will discuss the different cancer treatments which may inadvertently promote the mobilization of CTCs and potential CTC therapies to decrease metastasis.
Collapse
|
10
|
Yoo JH, Brady SW, Acosta-Alvarez L, Rogers A, Peng J, Sorensen LK, Wolff RK, Mleynek T, Shin D, Rich CP, Kircher DA, Bild A, Odelberg SJ, Li DY, Holmen SL, Grossmann AH. The Small GTPase ARF6 Activates PI3K in Melanoma to Induce a Prometastatic State. Cancer Res 2019; 79:2892-2908. [PMID: 31048499 DOI: 10.1158/0008-5472.can-18-3026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/11/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022]
Abstract
Melanoma has an unusual capacity to spread in early-stage disease, prompting aggressive clinical intervention in very thin primary tumors. Despite these proactive efforts, patients with low-risk, low-stage disease can still develop metastasis, indicating the presence of permissive cues for distant spread. Here, we show that constitutive activation of the small GTPase ARF6 (ARF6Q67L) is sufficient to accelerate metastasis in mice with BRAFV600E/Cdkn2aNULL melanoma at a similar incidence and severity to Pten loss, a major driver of PI3K activation and melanoma metastasis. ARF6Q67L promoted spontaneous metastasis from significantly smaller primary tumors than PTENNULL, implying an enhanced ability of ARF6-GTP to drive distant spread. ARF6 activation increased lung colonization from circulating melanoma cells, suggesting that the prometastatic function of ARF6 extends to late steps in metastasis. Unexpectedly, ARF6Q67L tumors showed upregulation of Pik3r1 expression, which encodes the p85 regulatory subunit of PI3K. Tumor cells expressing ARF6Q67L displayed increased PI3K protein levels and activity, enhanced PI3K distribution to cellular protrusions, and increased AKT activation in invadopodia. ARF6 is necessary and sufficient for activation of both PI3K and AKT, and PI3K and AKT are necessary for ARF6-mediated invasion. We provide evidence for aberrant ARF6 activation in human melanoma samples, which is associated with reduced survival. Our work reveals a previously unknown ARF6-PI3K-AKT proinvasive pathway, it demonstrates a critical role for ARF6 in multiple steps of the metastatic cascade, and it illuminates how melanoma cells can acquire an early metastatic phenotype in patients. SIGNIFICANCE: These findings reveal a prometastatic role for ARF6 independent of tumor growth, which may help explain how melanoma spreads distantly from thin, early-stage primary tumors.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/11/2892/F1.large.jpg.
Collapse
Affiliation(s)
- Jae Hyuk Yoo
- Department of Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah
| | - Samuel W Brady
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah.,Department of Biomedical Informatics, School of Medicine, University of Utah, Salt Lake City, Utah
| | | | - Aaron Rogers
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Jingfu Peng
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Lise K Sorensen
- Department of Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah
| | - Roger K Wolff
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Tara Mleynek
- Department of Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah
| | - Donghan Shin
- Department of Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah
| | - Coulson P Rich
- Department of Pathology, University of Utah, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - David A Kircher
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, Utah
| | - Andrea Bild
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah.,Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, Utah.,Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Institute, Monrovia, California
| | - Shannon J Odelberg
- Department of Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, Utah
| | - Dean Y Li
- Department of Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah.,Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, Utah.,Department of Human Genetics, University of Utah, Salt Lake City, Utah
| | - Sheri L Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah.,Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, Utah.,Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Allie H Grossmann
- Department of Pathology, University of Utah, Salt Lake City, Utah. .,Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah.,ARUP Laboratories, University of Utah, Salt Lake City, Utah
| |
Collapse
|
11
|
Li X, Huang L, Gao W. Overexpression of Tripartite Motif Conaining 55 (TRIM55) Inhibits Migration and Invasion of Hepatocellular Carcinoma (HCC) Cells via Epithelial-Mesenchymal Transition and Matrix Metalloproteinase-2 (MMP2). Med Sci Monit 2019; 25:771-777. [PMID: 30685767 PMCID: PMC6360872 DOI: 10.12659/msm.910984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tripartite motif containing 55 (TRIM55) plays a regulatory role in assembly of sarcomeres, but few studies have assessed its function in hepatocellular carcinoma (HCC). MATERIAL AND METHODS Immunohistochemistry (IHC) was used to detect expression of TRIM55 in tissues samples of HCC patients. Transwell assay was used to study migration and invasion ability of HCC cells. Western blot and immunofluorescence (IF) were used to analyze mechanism of TRIM55 in cell migration and invasion. RESULTS We found TRIM55 was downregulated in HCC tissues and was associated with prognosis of HCC patients. Cox regression analysis showed that TRIM55 was an independent risk factor of prognosis of HCC patients. Overexpression of TRIM55 was associated with lower cell migration and invasion ability, and it led to high expression of E-cadherin and low expression of Vimentin and MMP2. CONCLUSIONS Our study found TRIM55 is an independent factor affecting the prognosis of HCC patients, and overexpression of TRIM55 inhibits migration and invasion of HCC cells through epithelial-mesenchymal transition and MMP2.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China (mainland)
| | - Lei Huang
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China (mainland)
| | - Weijie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China (mainland)
| |
Collapse
|
12
|
Estramustine Phosphate Inhibits TGF- β-Induced Mouse Macrophage Migration and Urokinase-Type Plasminogen Activator Production. Anal Cell Pathol (Amst) 2018; 2018:3134102. [PMID: 30245956 PMCID: PMC6139214 DOI: 10.1155/2018/3134102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/29/2018] [Indexed: 11/17/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) has been demonstrated as a key regulator of immune responses including monocyte/macrophage functions. TGF-β regulates macrophage cell migration and polarization, as well as it is shown to modulate macrophage urokinase-type plasminogen activator (uPA) production, which also contributes to macrophage chemotaxis and migration toward damaged or inflamed tissues. Microtubule (MT) cytoskeleton dynamic plays a key role during the cell motility, and any interference on the MT network profoundly affects cell migration. In this study, by using estramustine phosphate (EP), which modifies MT stability, we analysed whether tubulin cytoskeleton contributes to TGF-β-induced macrophage cell migration and uPA expression. We found out that, in the murine macrophage cell line RAW 264.7, EP at noncytotoxic concentrations inhibited cell migration and uPA expression induced by TGF-β. Moreover, EP greatly reduced the capacity of TGF-β to trigger the phosphorylation and activation of its downstream Smad3 effector. Furthermore, Smad3 activation seems to be critical for the increased cell motility. Thus, our data suggest that EP, by interfering with MT dynamics, inhibits TGF-β-induced RAW 264.7 cell migration paralleled with reduction of uPA induction, in part by disabling Smad3 activation by TGF-β.
Collapse
|
13
|
Virtanen SS, Ishizu T, Sandholm JA, Löyttyniemi E, Väänänen HK, Tuomela JM, Härkönen PL. Alendronate-induced disruption of actin cytoskeleton and inhibition of migration/invasion are associated with cofilin downregulation in PC-3 prostate cancer cells. Oncotarget 2018; 9:32593-32608. [PMID: 30220968 PMCID: PMC6135693 DOI: 10.18632/oncotarget.25961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/28/2018] [Indexed: 12/31/2022] Open
Abstract
Bisphosphonates are used for prevention of osteoporosis and metastatic bone diseases. Anti-invasive effects on various cancer cells have also been reported, but the mechanisms involved are not well-understood. We investigated the effects of the nitrogen-containing bisphosphonate alendronate (ALN) on the regulation of actin cytoskeleton in PC-3 cells. We analyzed the ALN effect on the organization and the dynamics of actin, and on the cytoskeleton-related regulatory proteins cofilin, p21-associated kinase 2 (PAK2), paxillin and focal adhesion kinase. Immunostainings of cofilin in ALN-treated PC-3 cells and xenografts were performed, and the role of cofilin in ALN-regulated F-actin organization and migration/invasion in PC-3 cells was analyzed using cofilin knockdown and transfection. We demonstrate that disrupted F-actin organization and decreased cell motility in ALN-treated PC-3 cells were associated with decreased levels of total and phosphorylated cofilin. PAK2 levels were also lowered but adhesion-related proteins were not altered. The knockdown of cofilin similarly impaired F-actin organization and decreased invasion of PC-3 cells, whereas in the cells transfected with a cofilin expressing vector, ALN treatment did not decrease cellular cofilin levels and migration as in mock transfected cells. ALN also reduced immunohistochemical staining of cofilin in PC-3 xenografts. Our results suggest that reduction of cofilin has an important role in ALN-induced disruption of the actin cytoskeleton and inhibition of the PC-3 cell motility and invasion. These data also support the idea that the nitrogen-containing bisphosphonates could be efficacious in inhibition of prostate cancer invasion and metastasis, if delivered in a pharmacological formulation accessible to the tumors.
Collapse
Affiliation(s)
- Sanna S Virtanen
- University of Turku, Institute of Biomedicine, FI-20520 Turku, Finland.,Turku University of Applied Sciences, Health and Well-being, FI-20520 Turku, Finland
| | - Tamiko Ishizu
- University of Turku, Institute of Biomedicine, FI-20520 Turku, Finland
| | - Jouko A Sandholm
- Cell Imaging Core, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20521 Turku, Finland
| | - Eliisa Löyttyniemi
- University of Turku, Department of Biostatistics, FI-20520 Turku, Finland
| | | | - Johanna M Tuomela
- University of Turku, Institute of Biomedicine, FI-20520 Turku, Finland
| | - Pirkko L Härkönen
- University of Turku, Institute of Biomedicine, FI-20520 Turku, Finland
| |
Collapse
|
14
|
Maysinger D, Moquin A, Choi J, Kodiha M, Stochaj U. Gold nanourchins and celastrol reorganize the nucleo- and cytoskeleton of glioblastoma cells. NANOSCALE 2018; 10:1716-1726. [PMID: 29308473 DOI: 10.1039/c7nr07833a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The physicochemical properties and cytotoxicity of diverse gold nanoparticle (AuNP) morphologies with smooth surfaces have been examined extensively. Much less is known about AuNPs with irregular surfaces. This study focuses on the effects of gold nanourchins in glioblastoma cells. With limited success of monotherapies for glioblastoma, multimodal treatment has become the preferred regimen. One possible example for such future therapeutic applications is the combination of AuNPs with the natural cytotoxic agent celastrol. Here, we used complementary physical, chemical and biological methods to characterize AuNPs and investigate their impact on glioblastoma cells. Our results show that gold nanourchins altered glioblastoma cell morphology and reorganized the nucleo- and cytoskeleton. These changes were dependent on gold nanourchin surface modification. PEGylated nanourchins had no significant effect on glioblastoma cell morphology or viability, unless they were combined with celastrol. By contrast, CTAB-nanourchins adversely affected the nuclear lamina, microtubules and filamentous actin. These alterations correlated with significant glioblastoma cell death. We identified several mechanisms that contributed to the impact of AuNPs on the cytoskeleton and cell survival. Specifically, CTAB-nanourchins caused a significant increase in the abundance of Rock1. This protein kinase is a key regulator of the cytoskeleton. In addition, CTAB-nanourchins led to a marked decline in pro-survival signaling via the PI3 kinase-Akt pathway. Taken together, our study provides new insights into the molecular pathways and structural components altered by gold nanourchins and their implications for multimodal glioblastoma therapy.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| | | | | | | | | |
Collapse
|
15
|
Modulation Of Microtubule Acetylation By The Interplay Of TPPP/p25, SIRT2 And New Anticancer Agents With Anti-SIRT2 Potency. Sci Rep 2017; 7:17070. [PMID: 29213065 PMCID: PMC5719079 DOI: 10.1038/s41598-017-17381-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/24/2017] [Indexed: 02/06/2023] Open
Abstract
The microtubule network exerts multifarious functions controlled by its decoration with various proteins and post-translational modifications. The disordered microtubule associated Tubulin Polymerization Promoting Protein (TPPP/p25) and the NAD+-dependent tubulin deacetylase sirtuin-2 (SIRT2) play key roles in oligodendrocyte differentiation by acting as dominant factors in the organization of myelin proteome. Herein, we show that SIRT2 impedes the TPPP/p25-promoted microtubule assembly independently of NAD+; however, the TPPP/p25-assembled tubulin ultrastructures were resistant against SIRT2 activity. TPPP/p25 counteracts the SIRT2-derived tubulin deacetylation producing enhanced microtubule acetylation. The inhibition of the SIRT2 deacetylase activity by TPPP/p25 is evolved by the assembly of these tubulin binding proteins into a ternary complex, the concentration-dependent formation of which was quantified by experimental-based mathematical modelling. Co-localization of the SIRT2-TPPP/p25 complex on the microtubule network was visualized in HeLa cells by immunofluorescence microscopy using Bimolecular Fluorescence Complementation. We also revealed that a new potent SIRT2 inhibitor (MZ242) and its proteolysis targeting chimera (SH1) acting together with TPPP/p25 provoke microtubule hyperacetylation, which is coupled with process elongation only in the case of the degrader SH1. Both the structural and the functional effects manifesting themselves by this deacetylase proteome could lead to the fine-tuning of the regulation of microtubule dynamics and stability.
Collapse
|
16
|
The IKK/NF-κB signaling pathway requires Morgana to drive breast cancer metastasis. Nat Commun 2017; 8:1636. [PMID: 29158506 PMCID: PMC5696377 DOI: 10.1038/s41467-017-01829-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 10/19/2017] [Indexed: 12/31/2022] Open
Abstract
NF-κB is a transcription factor involved in the regulation of multiple physiological and pathological cellular processes, including inflammation, cell survival, proliferation, and cancer cell metastasis. NF-κB is frequently hyperactivated in several cancers, including triple-negative breast cancer. Here we show that NF-κB activation in breast cancer cells depends on the presence of the CHORDC1 gene product Morgana, a previously unknown component of the IKK complex and essential for IκBα substrate recognition. Morgana silencing blocks metastasis formation in breast cancer mouse models and this phenotype is reverted by IκBα downregulation. High Morgana expression levels in cancer cells decrease recruitment of natural killer cells in the first phases of tumor growth and induce the expression of cytokines able to attract neutrophils in the primary tumor, as well as in the pre-metastatic lungs, fueling cancer metastasis. In accordance, high Morgana levels positively correlate with NF-κB target gene expression and poor prognosis in human patients. NF-κB regulates inflammation, cell survival, proliferation, and metastasis and is often hyperactivated in triple-negative breast cancer. Here the authors show that Morgana, a protein highly expressed in triple-negative breast cancers, drives NF-kB activation to promote metastasis and neutrophil recruitment.
Collapse
|
17
|
Septin remodeling is essential for the formation of cell membrane protrusions (microtentacles) in detached tumor cells. Oncotarget 2017; 8:76686-76698. [PMID: 29100341 PMCID: PMC5652735 DOI: 10.18632/oncotarget.20805] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
Microtentacles are mostly microtubule-based cell protrusions that are formed by detached tumor cells. Here, we report that the formation of tumor cell microtentacles depends on the presence and dynamics of guanine nucleotide-binding proteins of the septin family, which are part of the cytoskeleton. In matrix-attached breast, lung, prostate and pancreas cancer cells, septins are associated with the cytosolic actin cytoskeleton. Detachment of cells causes redistribution of septins to the membrane, where microtentacle formation occurs. Forchlorfenuron, which inhibits septin functions, blocks microtentacle formation. The small GTPase Cdc42 and its effector proteins Borgs regulate septins and are essential for microtentacle formation. Dominant active and inactive Cdc42 inhibit microtentacle formation indicating that the free cycling of Cdc42 between its active and inactive state is essential for septin regulation and microtentacle formation. Cell attachment and aggregation models suggest that septins play an essential role in the metastatic behavior of tumor cells.
Collapse
|
18
|
Ory EC, Bhandary L, Boggs AE, Chakrabarti KR, Parker J, Losert W, Martin SS. Analysis of microtubule growth dynamics arising from altered actin network structure and contractility in breast tumor cells. Phys Biol 2017; 14:026005. [PMID: 28092269 PMCID: PMC5738915 DOI: 10.1088/1478-3975/aa59a2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The periphery of epithelial cells is shaped by opposing cytoskeletal physical forces generated predominately by two dynamic force generating systems-growing microtubule ends push against the boundary from the cell center, and the actin cortex contracts the attached plasma membrane. Here we investigate how changes to the structure and dynamics of the actin cortex alter the dynamics of microtubules. Current drugs target actin polymerization and contraction to reduce cell division and invasiveness; however, the impacts on microtubule dynamics remain incompletely understood. Using human MCF-7 breast tumor cells expressing GFP-tagged microtubule end-binding-protein-1 (EB1) and coexpression of cytoplasmic fluorescent protein mCherry, we map the trajectories of growing microtubule ends and cytoplasmic boundary respectively. Based on EB1 tracks and cytoplasmic boundary outlines, we calculate the speed, distance from cytoplasmic boundary, and straightness of microtubule growth. Actin depolymerization with Latrunculin-A reduces EB1 growth speed as well as allows the trajectories to extend beyond the cytoplasmic boundary. Blebbistatin, a direct myosin-II inhibitor, reduced EB1 speed and yielded less straight EB1 trajectories. Inhibiting signaling upstream of myosin-II contractility via the Rho-kinase inhibitor, Y-27632, altered EB1 dynamics differently from Blebbistatin. These results indicate that reduced actin cortex integrity can induce distinct alterations in microtubule dynamics. Given recent findings that tumor stem cell characteristics are increased by drugs which reduce actin contractility or stabilize microtubules, it remains important to clearly define how cytoskeletal drugs alter the interactions between these two filament systems in tumor cells.
Collapse
Affiliation(s)
- Eleanor C Ory
- Department of Physics, IPST, and IREAP, University of Maryland, College Park, MD, United States of America
| | - Lekhana Bhandary
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States of America
- Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, United States of America
| | - Amanda E Boggs
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States of America
- Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, United States of America
| | - Kristi R Chakrabarti
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States of America
- Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, United States of America
| | - Joshua Parker
- Department of Physics, IPST, and IREAP, University of Maryland, College Park, MD, United States of America
| | - Wolfgang Losert
- Department of Physics, IPST, and IREAP, University of Maryland, College Park, MD, United States of America
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States of America
| | - Stuart S Martin
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States of America
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Bldg. Rm 10-29, Baltimore, MD 21201, United States of America
| |
Collapse
|