1
|
Hao J, Huang Z, Zhang S, Song K, Wang J, Gao C, Fang Z, Zhang N. Deciphering the multifaceted roles and clinical implications of 2-hydroxyglutarate in cancer. Pharmacol Res 2024; 209:107437. [PMID: 39349213 DOI: 10.1016/j.phrs.2024.107437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Increasing evidence indicates that 2-hydroxyglutarate (2HG) is an oncometabolite that drives tumour formation and progression. Due to mutations in isocitrate dehydrogenase (IDH) and the dysregulation of other enzymes, 2HG accumulates significantly in tumour cells. Due to its structural similarity to α-ketoglutarate (αKG), accumulated 2HG leads to the competitive inhibition of αKG-dependent dioxygenases (αKGDs), such as KDMs, TETs, and EGLNs. This inhibition results in epigenetic alterations in both tumour cells and the tumour microenvironment. This review comprehensively discusses the metabolic pathways of 2HG and the subsequent pathways influenced by elevated 2HG levels. We will delve into the molecular mechanisms by which 2HG exerts its oncogenic effects, particularly focusing on epigenetic modifications. This review will also explore the various methods available for the detection of 2HG, emphasising both current techniques and emerging technologies. Furthermore, 2HG shows promise as a biomarker for clinical diagnosis and treatment. By integrating these perspectives, this review aims to provide a comprehensive overview of the current understanding of 2HG in cancer biology, highlight the importance of ongoing research, and discuss future directions for translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jie Hao
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ziyi Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Siyue Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Kefan Song
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Juncheng Wang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Rudà R, Horbinski C, van den Bent M, Preusser M, Soffietti R. IDH inhibition in gliomas: from preclinical models to clinical trials. Nat Rev Neurol 2024; 20:395-407. [PMID: 38760442 DOI: 10.1038/s41582-024-00967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Gliomas are the most common malignant primary brain tumours in adults and cannot usually be cured with standard cancer treatments. Gliomas show intratumoural and intertumoural heterogeneity at the histological and molecular levels, and they frequently contain mutations in the isocitrate dehydrogenase 1 (IDH1) or IDH2 gene. IDH-mutant adult-type diffuse gliomas are subdivided into grade 2, 3 or 4 IDH-mutant astrocytomas and grade 2 or 3 IDH-mutant, 1p19q-codeleted oligodendrogliomas. The product of the mutated IDH genes, D-2-hydroxyglutarate (D-2-HG), induces global DNA hypermethylation and interferes with immunity, leading to stimulation of tumour growth. Selective inhibitors of mutant IDH, such as ivosidenib and vorasidenib, have been shown to reduce D-2-HG levels and induce cellular differentiation in preclinical models and to induce MRI-detectable responses in early clinical trials. The phase III INDIGO trial has demonstrated superiority of vorasidenib, a brain-penetrant pan-mutant IDH inhibitor, over placebo in people with non-enhancing grade 2 IDH-mutant gliomas following surgery. In this Review, we describe the pathway of development of IDH inhibitors in IDH-mutant low-grade gliomas from preclinical models to clinical trials. We discuss the practice-changing implications of the INDIGO trial and consider new avenues of investigation in the field of IDH-mutant gliomas.
Collapse
Affiliation(s)
- Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy.
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Martin van den Bent
- Brain Tumour Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy
| |
Collapse
|
3
|
Yu D, Zhong Q, Xiao Y, Feng Z, Tang F, Feng S, Cai Y, Gao Y, Lan T, Li M, Yu F, Wang Z, Gao X, Li Z. Combination of MRI-based prediction and CRISPR/Cas12a-based detection for IDH genotyping in glioma. NPJ Precis Oncol 2024; 8:140. [PMID: 38951603 PMCID: PMC11217299 DOI: 10.1038/s41698-024-00632-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Early identification of IDH mutation status is of great significance in clinical therapeutic decision-making in the treatment of glioma. We demonstrate a technological solution to improve the accuracy and reliability of IDH mutation detection by combining MRI-based prediction and a CRISPR-based automatic integrated gene detection system (AIGS). A model was constructed to predict the IDH mutation status using whole slices in MRI scans with a Transformer neural network, and the predictive model achieved accuracies of 0.93, 0.87, and 0.84 using the internal and two external test sets, respectively. Additionally, CRISPR/Cas12a-based AIGS was constructed, and AIGS achieved 100% diagnostic accuracy in terms of IDH detection using both frozen tissue and FFPE samples in one hour. Moreover, the feature attribution of our predictive model was assessed using GradCAM, and the highest correlations with tumor cell percentages in enhancing and IDH-wildtype gliomas were found to have GradCAM importance (0.65 and 0.5, respectively). This MRI-based predictive model could, therefore, guide biopsy for tumor-enriched, which would ensure the veracity and stability of the rapid detection results. The combination of our predictive model and AIGS improved the early determination of IDH mutation status in glioma patients. This combined system of MRI-based prediction and CRISPR/Cas12a-based detection can be used to guide biopsy, resection, and radiation for glioma patients to improve patient outcomes.
Collapse
Affiliation(s)
- Donghu Yu
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qisheng Zhong
- Department of Neurosurgery, 960 Hospital of PLA, Jinan, Shandong, China
| | - Yilei Xiao
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Zhebin Feng
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Feng Tang
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shiyu Feng
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Yuxiang Cai
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yutong Gao
- Department of Prosthodontics, Wuhan University Hospital of Stomatology, Wuhan, China
| | - Tian Lan
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingjun Li
- Department of Radiology, Liaocheng People's Hospital, Liaocheng, China
| | - Fuhua Yu
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Zefen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
| | - Xu Gao
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Zhiqiang Li
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Mikolajewicz N, Yee PP, Bhanja D, Trifoi M, Miller AM, Metellus P, Bagley SJ, Balaj L, de Macedo Filho LJM, Zacharia BE, Aregawi D, Glantz M, Weller M, Ahluwalia MS, Kislinger T, Mansouri A. Systematic Review of Cerebrospinal Fluid Biomarker Discovery in Neuro-Oncology: A Roadmap to Standardization and Clinical Application. J Clin Oncol 2024; 42:1961-1974. [PMID: 38608213 DOI: 10.1200/jco.23.01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/17/2024] [Accepted: 02/26/2024] [Indexed: 04/14/2024] Open
Abstract
Effective diagnosis, prognostication, and management of CNS malignancies traditionally involves invasive brain biopsies that pose significant risk to the patient. Sampling and molecular profiling of cerebrospinal fluid (CSF) is a safer, rapid, and noninvasive alternative that offers a snapshot of the intracranial milieu while overcoming the challenge of sampling error that plagues conventional brain biopsy. Although numerous biomarkers have been identified, translational challenges remain, and standardization of protocols is necessary. Here, we systematically reviewed 141 studies (Medline, SCOPUS, and Biosis databases; between January 2000 and September 29, 2022) that molecularly profiled CSF from adults with brain malignancies including glioma, brain metastasis, and primary and secondary CNS lymphomas. We provide an overview of promising CSF biomarkers, propose CSF reporting guidelines, and discuss the various considerations that go into biomarker discovery, including the influence of blood-brain barrier disruption, cell of origin, and site of CSF acquisition (eg, lumbar and ventricular). We also performed a meta-analysis of proteomic data sets, identifying biomarkers in CNS malignancies and establishing a resource for the research community.
Collapse
Affiliation(s)
- Nicholas Mikolajewicz
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Patricia P Yee
- Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA
| | - Debarati Bhanja
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Mara Trifoi
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Alexandra M Miller
- Departments of Neurology and Pediatrics, Memorial Sloan Kettering Cancer Center, Manhattan, NY
| | - Philippe Metellus
- Department of Neurosurgery, Ramsay Santé, Hôpital Privé Clairval, Marseille, France
| | - Stephen J Bagley
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Brad E Zacharia
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Dawit Aregawi
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Michael Glantz
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Manmeet S Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| |
Collapse
|
5
|
Riviere-Cazaux C, Graser CJ, Warrington AE, Hoplin MD, Andersen KM, Malik N, Palmer EA, Carlstrom LP, Dasari S, Munoz-Casabella A, Ikram S, Ghadimi K, Himes BT, Jusue-Torres I, Sarkaria JN, Meyer FB, Van Gompel JJ, Kizilbash SH, Sener U, Michor F, Campian JL, Parney IF, Burns TC. The dynamic impact of location and resection on the glioma CSF proteome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307463. [PMID: 38798641 PMCID: PMC11118641 DOI: 10.1101/2024.05.15.24307463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
While serial sampling of glioma tissue is rarely performed prior to recurrence, cerebrospinal fluid (CSF) is an underutilized longitudinal source of candidate glioma biomarkers for understanding therapeutic impacts. However, the impact of key variables to consider in longitudinal CSF samples, including anatomical location and post-surgical changes, remains unknown. To that end, pre- versus post-resection intracranial CSF samples were obtained at early (1-16 days; n=20) or delayed (86-153 days; n=11) timepoints for patients with glioma. Paired lumbar-versus-intracranial glioma CSF samples were also obtained (n=14). Using aptamer-based proteomics, we identify significant differences in the CSF proteome between lumbar, subarachnoid, and ventricular CSF. Our analysis of serial intracranial CSF samples suggests the early potential for disease monitoring and evaluation of pharmacodynamic impact of targeted therapies. Importantly, we found that resection had a significant, evolving longitudinal impact on the CSF proteome. Proteomic data are provided with individual clinical annotations as a resource for the field. One Sentence Summary Glioma cerebrospinal fluid (CSF) accessed intra-operatively and longitudinally via devices can reveal impacts of treatment and anatomical location.
Collapse
|
6
|
Dowdy T, Larion M. Resolving Challenges in Detection and Quantification of D-2-hydroxyglutarate and L-2-hydroxyglutarate via LC/MS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591335. [PMID: 38903117 PMCID: PMC11188093 DOI: 10.1101/2024.04.26.591335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
D-2-Hydroxyglutarate and L-2-Hydroxyglutarate (D-2HG/L-2HG) are typically metabolites of non-specific enzymatic reactions that are kept in check by the housekeeping enzymes, D-2HG /L-2HG dehydrogenase (D-2HGDH/L-2HGDH). In certain disease states, such as D-2HG or L-2HG aciduria and cancers, accumulation of these biomarkers interferes with oxoglutarate-dependent enzymes that regulate bioenergetic metabolism, histone methylation, post-translational modification, protein expression and others. D-2HG has a complex role in tumorigenesis that drives metabolomics investigations. Meanwhile, L-2HG is produced by non-specific action of malate dehydrogenase and lactate dehydrogenase under acidic or hypoxic environments. Characterization of divergent effects of D-2HG/L-2HG on the activity of specific enzymes in diseased metabolism depends on their accurate quantification via mass spectrometry. Despite advancements in high-resolution quadrupole time-of-flight mass spectrometry (HR-QTOF-MS), challenges are typically encountered when attempting to resolve of isobaric and isomeric metabolites such as D-2HG/L-2HG for quantitative analysis. Herein, available D-2HG/L-2HG derivatization and liquid chromatography (LC) MS quantification methods were examined. The outcome led to the development of a robust, high-throughput HR-QTOF-LC/MS approach that permits concomitant quantification of the D-2HG and L-2HG enantiomers with the benefit to quantify the dysregulation of other intermediates within interconnecting pathways. Calibration curve was obtained over the linear range of 0.8-104 nmol/mL with r 2 ≥ 0.995 for each enantiomer. The LC/MS-based assay had an overall precision with intra-day CV % ≤ 8.0 and inter-day CV % ≤ 6.3 across the quality control level for commercial standard and pooled biological samples; relative error % ≤ 2.7 for accuracy; and resolution, R s = 1.6 between 2HG enantiomers (m/z 147.030), D-2HG and L-2HG (at retention time of 5.82 min and 4.75 min, respectively) following chiral derivatization with diacetyl-L-tartaric anhydride (DATAN). Our methodology was applied to disease relevant samples to illustrate the implications of proper enantioselective quantification of both D-2HG and L-2HG. The stability of the method allows scaling to large cohorts of clinical samples in the future.
Collapse
|
7
|
Lee CL, O'Kane GM, Mason WP, Zhang WJ, Spiliopoulou P, Hansen AR, Grant RC, Knox JJ, Stockley TL, Zadeh G, Chen EX. Circulating Oncometabolite 2-hydroxyglutarate as a Potential Biomarker for Isocitrate Dehydrogenase (IDH1/2) Mutant Cholangiocarcinoma. Mol Cancer Ther 2024; 23:394-399. [PMID: 38015561 PMCID: PMC10911702 DOI: 10.1158/1535-7163.mct-23-0460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/19/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
Isocitrate dehydrogenase (IDH) enzymes catalyze the decarboxylation of isocitrate to alpha-ketoglutarate (αKG). IDH1/2 mutations preferentially convert αKG to R-2-hydroxyglutarate (R2HG), resulting in R2HG accumulation in tumor tissues. We investigated circulating 2-hydroxyglutate (2HG) as potential biomarkers for patients with IDH-mutant (IDHmt) cholangiocarcinoma (CCA). R2HG and S-2-hydroxyglutarate (S2HG) levels in blood and tumor tissues were analyzed in a discovery cohort of patients with IDHmt glioma and CCA. Results were validated in cohorts of patients with CCA and clear-cell renal cell carcinoma. The R2HG/S2HG ratio (rRS) was significantly elevated in tumor tissues, but not in blood for patients with IDHmt glioma, while circulating rRS was elevated in patients with IDHmt CCA. There were overlap distributions of circulating R2HG and total 2HG in patients with both IDHmt and wild-type (IDHwt) CCA, while there was minimal overlap in rRS values between patients with IDHmt and IDHwt CCA. Using the rRS cut-off value of 1.5, the sensitivity of rRS was 90% and specificity was 96.8%. Circulating rRS is significantly increased in patients with IDHmt CCA compare with patients with IDHwt CCA. Circulating rRS is a sensitive and specific surrogate biomarker for IDH1/2 mutations in CCA. It can potentially be used as a tool for monitoring IDH-targeted therapy.
Collapse
Affiliation(s)
- Cha Len Lee
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Grainne M. O'Kane
- Department of Medical Oncology, Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Warren P. Mason
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Center, University Health Network, Toronto, Canada
- MacFeeters Hamilton Center for Neuro-Oncology, University Health Network, Toronto, Canada
| | - Wen-Jiang Zhang
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Pavlina Spiliopoulou
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Aaron R. Hansen
- Division of Cancer Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Robert C. Grant
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Jennifer J. Knox
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Tracy L. Stockley
- Advanced Molecular Diagnostic Laboratory, University Health Network, Toronto, Canada
| | - Gelareh Zadeh
- MacFeeters Hamilton Center for Neuro-Oncology, University Health Network, Toronto, Canada
| | - Eric X. Chen
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| |
Collapse
|
8
|
McAfee D, Moyer M, Queen J, Mortazavi A, Boddeti U, Bachani M, Zaghloul K, Ksendzovsky A. Differential metabolic alterations in IDH1 mutant vs. wildtype glioma cells promote epileptogenesis through distinctive mechanisms. Front Cell Neurosci 2023; 17:1288918. [PMID: 38026690 PMCID: PMC10680369 DOI: 10.3389/fncel.2023.1288918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Glioma-related epilepsy (GRE) is a hallmark clinical presentation of gliomas with significant impacts on patient quality of life. The current standard of care for seizure management is comprised of anti-seizure medications (ASMs) and surgical resection. Seizures in glioma patients are often drug-resistant and can often recur after surgery despite total tumor resection. Therefore, current research is focused on the pro-epileptic pathological changes occurring in tumor cells and the peritumoral environment. One important contribution to seizures in GRE patients is metabolic reprogramming in tumor and surrounding cells. This is most evident by the significantly heightened seizure rate in patients with isocitrate dehydrogenase mutated (IDHmut) tumors compared to patients with IDH wildtype (IDHwt) gliomas. To gain further insight into glioma metabolism in epileptogenesis, this review compares the metabolic changes inherent to IDHmut vs. IDHwt tumors and describes the pro-epileptic effects these changes have on both the tumor cells and the peritumoral environment. Understanding alterations in glioma metabolism can help to uncover novel therapeutic interventions for seizure management in GRE patients.
Collapse
Affiliation(s)
- Darrian McAfee
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mitchell Moyer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jaden Queen
- The College of Arts and Sciences, Cornell University, Ithaca, NY, United States
| | - Armin Mortazavi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Ujwal Boddeti
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Muzna Bachani
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kareem Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Sugiyama E, Nishiya Y, Yamashita K, Hirokawa R, Iinuma Y, Nirasawa T, Mizuno H, Hamashima Y, Todoroki K. Charged chiral derivatization for enantioselective imaging of D-,L-2-hydroxyglutaric acid using ion mobility spectrometry/mass spectrometry. Chem Commun (Camb) 2023; 59:10916-10919. [PMID: 37606059 DOI: 10.1039/d3cc01963b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
A newly synthesized charged chiral tag-enabled enantioselective imaging of D-,L-2-hydroxyglutaric acid, which are independently associated with the regulation of DNA methylation. The tag-conjugated diastereomers were ionized efficiently through MALDI, separated by ion mobility spectrometry, and further separated from other molecules in mass spectrometry. On-tissue chiral derivatization using the tag facilitated the visualization of different distributions of the two isomers in the mouse testis.
Collapse
Affiliation(s)
- Eiji Sugiyama
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Yuki Nishiya
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Kenji Yamashita
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Ryo Hirokawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Yoshiteru Iinuma
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Takashi Nirasawa
- Daltonics Division, Bruker Japan K.K., Moriyacho Kanagawa-ku, Yokohama-shi, Kanagawa 221-0022, Japan
| | - Hajime Mizuno
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
- Laboratory of Analytical Chemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya, 468-8503, Japan
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Kenichiro Todoroki
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
10
|
Lininger A, Palermo G, Guglielmelli A, Nicoletta G, Goel M, Hinczewski M, Strangi G. Chirality in Light-Matter Interaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107325. [PMID: 35532188 DOI: 10.1002/adma.202107325] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The scientific effort to control the interaction between light and matter has grown exponentially in the last 2 decades. This growth has been aided by the development of scientific and technological tools enabling the manipulation of light at deeply sub-wavelength scales, unlocking a large variety of novel phenomena spanning traditionally distant research areas. Here, the role of chirality in light-matter interactions is reviewed by providing a broad overview of its properties, materials, and applications. A perspective on future developments is highlighted, including the growing role of machine learning in designing advanced chiroptical materials to enhance and control light-matter interactions across several scales.
Collapse
Affiliation(s)
- Andrew Lininger
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Giovanna Palermo
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Alexa Guglielmelli
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Giuseppe Nicoletta
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Madhav Goel
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Giuseppe Strangi
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| |
Collapse
|
11
|
Park KY, Snyder AZ, Olufawo M, Trevino G, Luckett PH, Lamichhane B, Xie T, Lee JJ, Shimony JS, Leuthardt EC. Glioblastoma induces whole-brain spectral change in resting state fMRI: Associations with clinical comorbidities and overall survival. Neuroimage Clin 2023; 39:103476. [PMID: 37453204 PMCID: PMC10371854 DOI: 10.1016/j.nicl.2023.103476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/02/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Glioblastoma, a highly aggressive form of brain tumor, is a brain-wide disease. We evaluated the impact of tumor burden on whole brain resting-state functional magnetic resonance imaging (rs-fMRI) activity. Specifically, we analyzed rs-fMRI signals in the temporal frequency domain in terms of the power-law exponent and fractional amplitude of low-frequency fluctuations (fALFF). We contrasted 189 patients with newly-diagnosed glioblastoma versus 189 age-matched healthy reference participants from an external dataset. The patient and reference datasets were matched for age and head motion. The principal finding was markedly flatter spectra and reduced grey matter fALFF in the patients as compared to the reference dataset. We posit that the whole-brain spectral change is attributable to global dysregulation of excitatory and inhibitory balance and metabolic demand in the tumor-bearing brain. Additionally, we observed that clinical comorbidities, in particular, seizures, and MGMT promoter methylation, were associated with flatter spectra. Notably, the degree of change in spectra was predictive of overall survival. Our findings suggest that frequency domain analysis of rs-fMRI activity provides prognostic information in glioblastoma patients and offers a means of noninvasively studying the effects of glioblastoma on the whole brain.
Collapse
Affiliation(s)
- Ki Yun Park
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA; Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Abraham Z Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael Olufawo
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Gabriel Trevino
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick H Luckett
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bidhan Lamichhane
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA; Center for Health Sciences, Oklahoma State University, 1013 E 66th Pl, Tulsa, OK 74136, USA
| | - Tao Xie
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - John J Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
12
|
Ahmadi SE, Shabannezhad A, Kahrizi A, Akbar A, Safdari SM, Hoseinnezhad T, Zahedi M, Sadeghi S, Mojarrad MG, Safa M. Tissue factor (coagulation factor III): a potential double-edge molecule to be targeted and re-targeted toward cancer. Biomark Res 2023; 11:60. [PMID: 37280670 DOI: 10.1186/s40364-023-00504-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
Tissue factor (TF) is a protein that plays a critical role in blood clotting, but recent research has also shown its involvement in cancer development and progression. Herein, we provide an overview of the structure of TF and its involvement in signaling pathways that promote cancer cell proliferation and survival, such as the PI3K/AKT and MAPK pathways. TF overexpression is associated with increased tumor aggressiveness and poor prognosis in various cancers. The review also explores TF's role in promoting cancer cell metastasis, angiogenesis, and venous thromboembolism (VTE). Of note, various TF-targeted therapies, including monoclonal antibodies, small molecule inhibitors, and immunotherapies have been developed, and preclinical and clinical studies demonstrating the efficacy of these therapies in various cancer types are now being evaluated. The potential for re-targeting TF toward cancer cells using TF-conjugated nanoparticles, which have shown promising results in preclinical studies is another intriguing approach in the path of cancer treatment. Although there are still many challenges, TF could possibly be a potential molecule to be used for further cancer therapy as some TF-targeted therapies like Seagen and Genmab's tisotumab vedotin have gained FDA approval for treatment of cervical cancer. Overall, based on the overviewed studies, this review article provides an in-depth overview of the crucial role that TF plays in cancer development and progression, and emphasizes the potential of TF-targeted and re-targeted therapies as potential approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Kahrizi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Armin Akbar
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mehrab Safdari
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Taraneh Hoseinnezhad
- Department of Hematolog, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soroush Sadeghi
- Faculty of Science, Engineering and Computing, Kingston University, London, UK
| | - Mahsa Golizadeh Mojarrad
- Shahid Beheshti Educational and Medical Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Safa
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Tang F, Wang DW, Xi C, Yang JZ, Liu ZY, Yu DH, Wang ZF, Li ZQ. Local and systemic effects of IDH mutations on primary glioma patients. Immunology 2023. [PMID: 37054988 DOI: 10.1111/imm.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023] Open
Abstract
Adult gliomas are divided into isocitrate dehydrogenase (IDH) wild-type and IDH mutant subtypes according to the new 2021 World Health Organization classification system. However, the local and systemic effects of IDH mutations on primary glioma patients are not well illustrated. Retrospective analysis, immune-cell infiltration analysis, meta-analysis, and immunohistochemistry assay were applied in the present study. The results from our cohort showed that IDH mutant gliomas own a lower proliferating rate compared to that in wild-type gliomas. Patients with mutant IDH exhibited a higher frequency of seizures in both our cohort and the cohort from the meta-analysis. Mutations in IDH result in lower levels of intra-tumour but higher levels of circulating CD4+ and CD8+ T lymphocytes. Levels of neutrophils in both intra-tumour and circulating blood were lower in IDH mutant gliomas. Moreover, IDH mutant glioma patients receiving radiotherapy in combination with chemotherapy exhibited better overall survival with respect to radiotherapy alone. Mutations in IDH alters the local and circulating immune microenvironment, and increases the sensitivity of tumour cell to chemotherapy.
Collapse
Affiliation(s)
- Feng Tang
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dan-Wen Wang
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chen Xi
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin-Zhou Yang
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhen-Yuan Liu
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dong-Hu Yu
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China
| | - Zhi-Qiang Li
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
14
|
Riviere-Cazaux C, Lacey JM, Carlstrom LP, Laxen WJ, Munoz-Casabella A, Hoplin MD, Ikram S, Zubair AB, Andersen KM, Warrington AE, Decker PA, Kaufmann TJ, Campian JL, Eckel-Passow JE, Kizilbash SH, Tortorelli S, Burns TC. Cerebrospinal fluid 2-hydroxyglutarate (2-HG) as a monitoring biomarker for IDH-mutant gliomas. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.01.23286412. [PMID: 36909488 PMCID: PMC10002776 DOI: 10.1101/2023.03.01.23286412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
D-2-hydroxyglutarate (D-2-HG) is a well-established oncometabolite of isocitrate dehydrogenase (IDH) mutant gliomas. While prior studies have demonstrated that D-2-HG is elevated in the cerebrospinal fluid (CSF) of patients with IDH-mutant gliomas 1,2 , no study has determined if CSF D-2-HG can provide a plausible method to evaluate therapeutic response. We are obtaining CSF samples from consenting patients during their disease course via intra-operative collection and Ommaya reservoirs. D-2-HG and D/L-2-HG consistently decreased following tumor resection and throughout chemoradiation in patients monitored longitudinally. Our early experience with this strategy demonstrates the potential for intracranial CSF D-2-HG as a monitoring biomarker for IDH-mutant gliomas.
Collapse
|
15
|
Riviere-Cazaux C, Lacey JM, Carlstrom LP, Laxen WJ, Munoz-Casabella A, Hoplin MD, Ikram S, Zubair AB, Andersen KM, Warrington AE, Decker PA, Kaufmann TJ, Campian JL, Eckel-Passow JE, Kizilbash SH, Tortorelli S, Burns TC. Cerebrospinal fluid 2-hydroxyglutarate as a monitoring biomarker for IDH-mutant gliomas. Neurooncol Adv 2023; 5:vdad061. [PMID: 37313502 PMCID: PMC10259246 DOI: 10.1093/noajnl/vdad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Affiliation(s)
- Cecile Riviere-Cazaux
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jean M Lacey
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lucas P Carlstrom
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - William J Laxen
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Amanda Munoz-Casabella
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew D Hoplin
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Samar Ikram
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Abdullah Bin Zubair
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Katherine M Andersen
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Arthur E Warrington
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul A Decker
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Timothy J Kaufmann
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jian L Campian
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeanette E Eckel-Passow
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sani H Kizilbash
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Silvia Tortorelli
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Terry C Burns
- Departments of Neurological Surgery, Laboratory Medicine and Pathology, Neurology, Quantiative Health Sciences, Radiology, and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Development and validation of an LC-MS/MS method for D- and L-2-hydroxyglutaric acid measurement in cerebrospinal fluid, urine and plasma: application to glioma. Bioanalysis 2022; 14:1271-1280. [PMID: 36453751 DOI: 10.4155/bio-2022-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Aim: IDH mutations have been identified as frequent molecular lesions in several tumor types, particularly in gliomas. As a putative marker of IDH mutations, elevated D-2-HG has been reported in glioma, acute myeloid leukemia and intrahepatic cholangiocarcinoma. Excessive production of L-2-HG has also been described in renal cell carcinoma and 2-hydroxyaciduria. Materials & methods: The authors present a fully optimized stable isotope dilution multiple reaction monitoring method for quantification of D-/L-2-HG using LC-MS/MS. This is the first method validation study performed on cerebrospinal fluid, plasma and urine demonstrating clinical applicability with samples from glioma patients. Results & conclusion: This method validation study showed high accuracy and precision with low limit of detection and limit of quantification values. The authors believe that the presented approach is highly applicable for basic and clinical research on related pathologies.
Collapse
|
17
|
Fujita Y, Nunez-Rubiano L, Dono A, Bellman A, Shah M, Rodriguez JC, Putluri V, Kamal AHM, Putluri N, Riascos RF, Zhu JJ, Esquenazi Y, Ballester LY. IDH1 p.R132H ctDNA and D-2-hydroxyglutarate as CSF biomarkers in patients with IDH-mutant gliomas. J Neurooncol 2022; 159:261-270. [PMID: 35816267 PMCID: PMC10183250 DOI: 10.1007/s11060-022-04060-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION We aimed to evaluate IDH1 p.R132H mutation and 2-hydroxyglutarate (2HG) in cerebrospinal fluid (CSF) as biomarkers for patients with IDH-mutant gliomas. METHODS CSF was collected from patients with infiltrating glioma, and 2HG levels were measured by liquid chromatography-mass spectrometry. IDH1 p.R132H mutant allele frequency (MAF) in CSF-ctDNA was measured by digital droplet PCR (ddPCR). Tumor volume was measured from standard-of-care magnetic resonance images. RESULTS The study included 48 patients, 6 with IDH-mutant and 42 with IDH-wildtype gliomas, and 57 samples, 9 from the patients with IDH-mutant and 48 from the patients with IDH-wildtype gliomas. ctDNA was detected in 7 of the 9 samples from patients with IDH-mutant glioma, and IDH1 p.R132H mutation was detected in 5 of the 7 samples. The MAF ranged from 0.3 to 39.95%. Total 2HG level, D-2HG level, and D/L-2HG ratio in CSF were significantly higher in patients with IDH-mutant gliomas than in patients with IDH-wildtype gliomas. D-2HG level and D/L-2HG ratio correlated with total tumor volume in patients with IDH-mutant gliomas but not in patients with IDH-wildtype gliomas. CONCLUSION Our results suggest that detection of IDH1 p.R132H mutation by ddPCR and increased D-2HG level in CSF may help identify IDH-mutant gliomas. Our results also suggest that D-2HG level and D/L-2HG ratio correlate with tumor volume in patients with IDH-mutant gliomas. Further prospective studies with larger cohorts are needed to validate these findings.
Collapse
Affiliation(s)
- Yoko Fujita
- Vivian L. Smith Department of Neurosurgery McGovern Medical School, The University of Texas Health Science Center, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Luis Nunez-Rubiano
- Department of Radiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Antonio Dono
- Vivian L. Smith Department of Neurosurgery McGovern Medical School, The University of Texas Health Science Center, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Allison Bellman
- Department of Pathology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Mauli Shah
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, TX, 77030, USA
| | - Juan C Rodriguez
- Vivian L. Smith Department of Neurosurgery McGovern Medical School, The University of Texas Health Science Center, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Vasanta Putluri
- Advanced Technology Core, Metabolomics Core, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Abu Hena Mostafa Kamal
- Advanced Technology Core, Metabolomics Core, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nagireddy Putluri
- Advanced Technology Core, Metabolomics Core, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Roy F Riascos
- Department of Radiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Memorial Hermann Hospital-TMC, Houston, TX, 77030, USA
| | - Jay-Jiguang Zhu
- Vivian L. Smith Department of Neurosurgery McGovern Medical School, The University of Texas Health Science Center, 6431 Fannin Street, Houston, TX, 77030, USA
- Memorial Hermann Hospital-TMC, Houston, TX, 77030, USA
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery McGovern Medical School, The University of Texas Health Science Center, 6431 Fannin Street, Houston, TX, 77030, USA.
- Memorial Hermann Hospital-TMC, Houston, TX, 77030, USA.
- Center for Precision Health, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Leomar Y Ballester
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd., Unit 85, Houston, TX, 77030, USA.
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Tuna G, Dal-Bekar NE, Akay A, Rükşen M, İşlekel S, İşlekel GH. Minimally Invasive Detection of IDH1 Mutation With Cell-Free Circulating Tumor DNA and D-2-Hydroxyglutarate, D/L-2-Hydroxyglutarate Ratio in Gliomas. J Neuropathol Exp Neurol 2022; 81:502-510. [PMID: 35582888 DOI: 10.1093/jnen/nlac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Isocitrate dehydrogenase-1 (IDH1) mutation is accepted as one of the earliest events in tumorigenesis in gliomas. This mutation causes preferential accumulation of D- relative to L-enantiomer of 2-hydroxyglutarate (2-HG). Minimally invasive techniques to detect IDH1 mutation may prove useful for clinical practice. We adopted 2 different diagnostic approaches to detect IDH1 mutation status in glioma patients: Evaluation of D- and L-2-HG levels in cerebrospinal fluid (CSF), urine, and plasma, and identification of IDH1 mutation using cell-free circulating tumor DNA (ctDNA) in CSF and plasma. Forty-nine glioma patients in different stages were included. Levels of D- and L-2-HG were determined using liquid chromatography-tandem mass spectrometry; IDH1 R132H mutation was determined by digital-PCR. D-2-HG levels and D/L-2-HG ratio (rDL) in CSF and rDL in plasma were significantly higher in the mutant group than in the wild-type group (p = 0.029, 0.032, 0.001, respectively). The IDH1 mutation detection rates in CSF- and plasma-ctDNA were 63.2% and 25.0%, respectively. These data indicate that D-2-HG values in CSF and rDL in plasma and CSF can be considered as significant contributors to the identification of IDH1 mutation status. In addition, detection of IDH1 mutation in CSF-ctDNA from glioma patients provides a basis for future use of ctDNA for minimally invasive clinical assessment of gliomas.
Collapse
Affiliation(s)
- Gamze Tuna
- From the Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Nazlı Ecem Dal-Bekar
- From the Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Ali Akay
- Department of Neurosurgery, Izmir University of Economics Medical Park Hospital, Izmir, Turkey (AA)
| | - Mete Rükşen
- Department of Neurosurgery, Kent Hospital, Izmir, Turkey
| | - Sertaç İşlekel
- Department of Neurosurgery, Kent Hospital, Izmir, Turkey
| | - Gül Hüray İşlekel
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.,Department of Medical Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
19
|
Balana C, Castañer S, Carrato C, Moran T, Lopez-Paradís A, Domenech M, Hernandez A, Puig J. Preoperative Diagnosis and Molecular Characterization of Gliomas With Liquid Biopsy and Radiogenomics. Front Neurol 2022; 13:865171. [PMID: 35693015 PMCID: PMC9177999 DOI: 10.3389/fneur.2022.865171] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
Gliomas are a heterogenous group of central nervous system tumors with different outcomes and different therapeutic needs. Glioblastoma, the most common subtype in adults, has a very poor prognosis and disabling consequences. The World Health Organization (WHO) classification specifies that the typing and grading of gliomas should include molecular markers. The molecular characterization of gliomas has implications for prognosis, treatment planning, and prediction of treatment response. At present, gliomas are diagnosed via tumor resection or biopsy, which are always invasive and frequently risky methods. In recent years, however, substantial advances have been made in developing different methods for the molecular characterization of tumors through the analysis of products shed in body fluids. Known as liquid biopsies, these analyses can potentially provide diagnostic and prognostic information, guidance on choice of treatment, and real-time information on tumor status. In addition, magnetic resonance imaging (MRI) is another good source of tumor data; radiomics and radiogenomics can link the imaging phenotypes to gene expression patterns and provide insights to tumor biology and underlying molecular signatures. Machine and deep learning and computational techniques can also use quantitative imaging features to non-invasively detect genetic mutations. The key molecular information obtained with liquid biopsies and radiogenomics can be useful not only in the diagnosis of gliomas but can also help predict response to specific treatments and provide guidelines for personalized medicine. In this article, we review the available data on the molecular characterization of gliomas using the non-invasive methods of liquid biopsy and MRI and suggest that these tools could be used in the future for the preoperative diagnosis of gliomas.
Collapse
Affiliation(s)
- Carmen Balana
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
- *Correspondence: Carmen Balana
| | - Sara Castañer
- Diagnostic Imaging Institute (IDI), Hospital Universitari Germans Trias I Pujol, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Cristina Carrato
- Department of Pathology, Hospital Universitari Germans Trias I Pujol, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Teresa Moran
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Assumpció Lopez-Paradís
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Marta Domenech
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Ainhoa Hernandez
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Josep Puig
- Department of Radiology IDI [Girona Biomedical Research Institute] IDIBGI, Hospital Universitari Dr Josep Trueta, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Comparative Medicine and Bioimage of Catalonia, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| |
Collapse
|
20
|
Asensio AF, Alvarez-González E, Rodríguez A, Sierra LM, Blanco-González E. Chromatographic methods coupled to mass spectrometry for the determination of oncometabolites in biological samples-A review. Anal Chim Acta 2021; 1177:338646. [PMID: 34482900 DOI: 10.1016/j.aca.2021.338646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
It is now well-established that dysregulation of the tricarboxylic acid (TCA) cycle enzymes succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase leads to the abnormal cellular accumulation of succinate, fumarate, and 2-hydroxyglutarate, respectively, which contribute to the formation and malignant progression of numerous types of cancers. Thus, these metabolites, called oncometabolites, could potentially be useful as tumour-specific biomarkers and as therapeutic targets. For this reason, the development of analytical methodologies for the accurate identification and determination of their levels in biological matrices is an important task in the field of cancer research. Currently, hyphenated gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) techniques are the most powerful analytical tools in what concerns high sensitivity and selectivity to achieve such difficult task. In this review, we first provide a brief description of the biological formation of oncometabolites and their oncogenic properties, and then we present an overview and critical assessment of the GC-MS and LC-MS based analytical approaches that are reported in the literature for the determination of oncometabolites in biological samples, such as biofluids, cells, and tissues. Advantages and drawbacks of these approaches will be comparatively discussed. We believe that the present review represents the first attempt to summarize the applications of these hyphenated techniques in the context of oncometabolite analysis, which may be useful to new and existing researchers in this field.
Collapse
Affiliation(s)
- A Fernández Asensio
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, Institute of Sanitary Research of Asturias (ISPA), University of Oviedo. C/ Julian Clavería 8, 33006, Oviedo. Spain; Department of Functional Biology (Genetic Area), Oncology University Institute (IUOPA) and Institute of Sanitary Research of Asturias (ISPA), University of Oviedo. C/ Julian Clavería s/n, 33006, Oviedo. Spain
| | - E Alvarez-González
- Department of Functional Biology (Genetic Area), Oncology University Institute (IUOPA) and Institute of Sanitary Research of Asturias (ISPA), University of Oviedo. C/ Julian Clavería s/n, 33006, Oviedo. Spain
| | - A Rodríguez
- Department of Functional Biology (Genetic Area), Oncology University Institute (IUOPA) and Institute of Sanitary Research of Asturias (ISPA), University of Oviedo. C/ Julian Clavería s/n, 33006, Oviedo. Spain
| | - L M Sierra
- Department of Functional Biology (Genetic Area), Oncology University Institute (IUOPA) and Institute of Sanitary Research of Asturias (ISPA), University of Oviedo. C/ Julian Clavería s/n, 33006, Oviedo. Spain
| | - E Blanco-González
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, Institute of Sanitary Research of Asturias (ISPA), University of Oviedo. C/ Julian Clavería 8, 33006, Oviedo. Spain.
| |
Collapse
|
21
|
Chou FJ, Liu Y, Lang F, Yang C. D-2-Hydroxyglutarate in Glioma Biology. Cells 2021; 10:cells10092345. [PMID: 34571995 PMCID: PMC8464856 DOI: 10.3390/cells10092345] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) mutations are common genetic abnormalities in glioma, which result in the accumulation of an "oncometabolite", D-2-hydroxyglutarate (D-2-HG). Abnormally elevated D-2-HG levels result in a distinctive pattern in cancer biology, through competitively inhibiting α-ketoglutarate (α-KG)/Fe(II)-dependent dioxgenases (α-KGDDs). Recent studies have revealed that D-2-HG affects DNA/histone methylation, hypoxia signaling, DNA repair, and redox homeostasis, which impacts the oncogenesis of IDH-mutated cancers. In this review, we will discuss the current understanding of D-2-HG in cancer biology, as well as the emerging opportunities in therapeutics in IDH-mutated glioma.
Collapse
|
22
|
Maravat M, Bertrand M, Landon C, Fayon F, Morisset-Lopez S, Sarou-Kanian V, Decoville M. Complementary Nuclear Magnetic Resonance-Based Metabolomics Approaches for Glioma Biomarker Identification in a Drosophila melanogaster Model. J Proteome Res 2021; 20:3977-3991. [PMID: 34286978 DOI: 10.1021/acs.jproteome.1c00304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human malignant gliomas are the most common type of primary brain tumor. Composed of glial cells and their precursors, they are aggressive and highly invasive, leading to a poor prognosis. Due to the difficulty of surgically removing tumors and their resistance to treatments, novel therapeutic approaches are needed to improve patient life expectancy and comfort. Drosophila melanogaster is a compelling genetic model to better understanding human neurological diseases owing to its high conservation in signaling pathways and cellular content of the brain. Here, glioma has been induced in Drosophila by co-activating the epidermal growth factor receptor and the phosphatidyl-inositol-3 kinase signaling pathways. Complementary nuclear magnetic resonance (NMR) techniques were used to obtain metabolic profiles in the third instar larvae brains. Fresh organs were directly studied by 1H high resolution-magic angle spinning (HR-MAS) NMR, and brain extracts were analyzed by solution-state 1H-NMR. Statistical analyses revealed differential metabolic signatures, impacted metabolic pathways, and glioma biomarkers. Each method was efficient to determine biomarkers. The highlighted metabolites including glucose, myo-inositol, sarcosine, glycine, alanine, and pyruvate for solution-state NMR and proline, myo-inositol, acetate, and glucose for HR-MAS show very good performances in discriminating samples according to their nature with data mining based on receiver operating characteristic curves. Combining results allows for a more complete view of induced disturbances and opens the possibility of deciphering the biochemical mechanisms of these tumors. The identified biomarkers provide a means to rebalance specific pathways through targeted metabolic therapy and to study the effects of pharmacological treatments using Drosophila as a model organism.
Collapse
Affiliation(s)
- Marion Maravat
- CNRS, CEMHTI UPR3079, Université d'Orléans, F-45071 Orléans, France
| | | | - Céline Landon
- CNRS, CBM UPR4301, Université d'Orléans, F-45071 Orléans, France
| | - Franck Fayon
- CNRS, CEMHTI UPR3079, Université d'Orléans, F-45071 Orléans, France
| | | | | | | |
Collapse
|
23
|
IDH Inhibitors and Beyond: The Cornerstone of Targeted Glioma Treatment. Mol Diagn Ther 2021; 25:457-473. [PMID: 34095989 DOI: 10.1007/s40291-021-00537-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
Diffuse low-grade gliomas account for approximately 20% of all primary brain tumors, they arise from glial cells and show infiltrative growth without histological features of malignancy. Mutations of the IDH1 and IDH2 genes constitute a reliable molecular signature of low-grade gliomas and are the earliest driver mutations occurring during gliomagenesis, representing a relevant biomarker with diagnostic, prognostic, and predictive value. IDH mutations induce a neomorphic enzyme that converts α-ketoglutarate to the oncometabolite D-2-hydroxyglutarate, which leads to widespread effects on cellular epigenetics and metabolism. Currently, there are no approved molecularly targeted therapies and the standard treatment for low-grade gliomas consists of radiation therapy and chemotherapy, with rising concern about treatment-related toxicities. Targeting D-2-hydroxyglutarate is considered a novel attractive therapeutic approach for low-grade gliomas and the insights from clinical trials suggest that mutant-selective IDH inhibitors are the ideal candidates, with a favorable benefit/risk ratio. A pivotal question is whether blocking IDH neomorphic activity may activate alternative oncogenetic pathways, inducing acquired resistance to IDH inhibitors. Based on this rationale, combination therapies to enhance the antitumor activity of IDH inhibitors and approaches aimed at exploiting, rather than inhibiting, the metabolism of IDH-mutant cancer cells, such as poly (adenosine 5'-diphosphate-ribose) polymerase inhibitors, are emerging from preclinical research and clinical trials. In this review, we discuss the pivotal role of IDH mutations in gliomagenesis and the complex interactions between the genomic and epigenetic landscapes, providing an overview of how, in the last decade, therapeutic approaches for low-grade gliomas have evolved.
Collapse
|
24
|
Di Gregorio E, Miolo G, Saorin A, Steffan A, Corona G. From Metabolism to Genetics and Vice Versa: The Rising Role of Oncometabolites in Cancer Development and Therapy. Int J Mol Sci 2021; 22:5574. [PMID: 34070384 PMCID: PMC8197491 DOI: 10.3390/ijms22115574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last decades, the study of cancer metabolism has returned to the forefront of cancer research and challenged the role of genetics in the understanding of cancer development. One of the major impulses of this new trend came from the discovery of oncometabolites, metabolic intermediates whose abnormal cellular accumulation triggers oncogenic signalling and tumorigenesis. These findings have led to reconsideration and support for the long-forgotten hypothesis of Warburg of altered metabolism as oncogenic driver of cancer and started a novel paradigm whereby mitochondrial metabolites play a pivotal role in malignant transformation. In this review, we describe the evolution of the cancer metabolism research from a historical perspective up to the oncometabolites discovery that spawned the new vision of cancer as a metabolic disease. The oncometabolites' mechanisms of cellular transformation and their contribution to the development of new targeted cancer therapies together with their drawbacks are further reviewed and discussed.
Collapse
Affiliation(s)
- Emanuela Di Gregorio
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Asia Saorin
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| |
Collapse
|
25
|
Abstract
Metabolic reprogramming is an important characteristics of glioma, the most common form of malignant brain tumor. In this chapter, we aim to discuss some of the recently discovered metabolic alterations in glioma, including the dysregulated TCA cycle, amino acid, nucleotide, and lipid metabolism. We have also detailed some of the metabolomic applications in gliomas, particularly the analyses of body fluids and tissues of glioma patients. With new improvement of the technology, metabolomics will become a powerful tool to discover truly meaningful biomarkers for clinical applications in gliomas. Metabolomic studies of gliomas will also facilitate a better understanding of the molecular targets/pathways and the development of new therapeutic treatments for this devastating disease.
Collapse
|
26
|
Pan Y, Long W, Liu Q. Current Advances and Future Perspectives of Cerebrospinal Fluid Biopsy in Midline Brain Malignancies. Curr Treat Options Oncol 2019; 20:88. [PMID: 31784837 DOI: 10.1007/s11864-019-0689-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OPINION STATEMENT Malignancies arising in midline brain structures, including lymphomas, teratomas, germinomas, diffuse midline gliomas, and medulloblastomas typically respond to systemic therapies, and excessive surgical excision can result in serious complications, so that total surgical removal is not routinely performed. Identifying tumor specific biomarkers that can facilitate diagnosis at early stage and allow for dynamic surveillance of the tumor is of great clinical importance. However, existing standard methods for biopsy of these brain neoplasms are high risk, time consuming, and costly. Thus, less invasive and more rapid diagnosis tests are urgently needed to detect midline brain malignancies. Currently, tools for cerebrospinal biopsy of midline brain malignancies mainly include circulating tumor DNA, circulating tumor cells, and extracellular vesicles. Circulating tumor DNA achieved minimally invasive biopsy in several brain malignancies and has advantages in detecting tumor-specific mutations. In the field of tumor heterogeneity, circulating tumor cells better reflect the genome of tumors than surgical biopsy specimens. They can be applied for the diagnosis of leptomeningeal metastasis. Extracellular vesicles contain lots of genetic information about cancer cells, so they have potential in finding therapeutic targets and studying tumor invasion and metastasis.
Collapse
Affiliation(s)
- Yimin Pan
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wenyong Long
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qing Liu
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
27
|
Park JW, Turcan Ş. Epigenetic Reprogramming for Targeting IDH-Mutant Malignant Gliomas. Cancers (Basel) 2019; 11:cancers11101616. [PMID: 31652645 PMCID: PMC6826741 DOI: 10.3390/cancers11101616] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 12/24/2022] Open
Abstract
Targeting the epigenome has been considered a compelling treatment modality for several cancers, including gliomas. Nearly 80% of the lower-grade gliomas and secondary glioblastomas harbor recurrent mutations in isocitrate dehydrogenase (IDH). Mutant IDH generates high levels of 2-hydroxyglutarate (2-HG) that inhibit various components of the epigenetic machinery, including histone and DNA demethylases. The encouraging results from current epigenetic therapies in hematological malignancies have reinvigorated the interest in solid tumors and gliomas, both preclinically and clinically. Here, we summarize the recent advancements in epigenetic therapy for lower-grade gliomas and discuss the challenges associated with current treatment options. A particular focus is placed on therapeutic mechanisms underlying favorable outcome with epigenetic-based drugs in basic and translational research of gliomas. This review also highlights emerging bridges to combination treatment with respect to epigenetic drugs. Given that epigenetic therapies, particularly DNA methylation inhibitors, increase tumor immunogenicity and antitumor immune responses, appropriate drug combinations with immune checkpoint inhibitors may lead to improvement of treatment effectiveness of immunotherapy, ultimately leading to tumor cell eradication.
Collapse
Affiliation(s)
- Jong-Whi Park
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Şevin Turcan
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
28
|
Linninger A, Hartung GA, Liu BP, Mirkov S, Tangen K, Lukas RV, Unruh D, James CD, Sarkaria JN, Horbinski C. Modeling the diffusion of D-2-hydroxyglutarate from IDH1 mutant gliomas in the central nervous system. Neuro Oncol 2019; 20:1197-1206. [PMID: 29660019 DOI: 10.1093/neuonc/noy051] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Among diffusely infiltrative gliomas in adults, 20%-30% contain a point mutation in isocitrate dehydrogenase 1 (IDH1mut), which increases production of D-2-hydroxyglutarate (D2HG). This is so efficient that D2HG often reaches 30 mM within IDH1mut gliomas. Yet, while up to 100 µM D2HG can be detected in the circulating cerebrospinal fluid of IDH1mut glioma patients, the exposure of nonneoplastic cells within and surrounding an IDH1mut glioma to D2HG is unknown and difficult to measure directly. Methods Conditioned medium from patient-derived wild type IDH1 (IDH1wt) and IDH1mut glioma cells was analyzed for D2HG by liquid chromatography-mass spectrometry (LC-MS). Mathematical models of D2HG release and diffusion around an IDH1mut glioma were independently generated based on fluid dynamics within the brain and on previously reported intratumoral and cerebrospinal D2HG concentrations. Results LC-MS analysis indicates that patient-derived IDH1mut glioma cells release 3.7-97.0 pg D2HG per cell per week. Extrapolating this to an average-sized tumor (30 mL glioma volume and 1 × 108 cells/mL tumor), the rate of D2HG release by an IDH1mut glioma (SA) is estimated at 3.2-83.0 × 10-12 mol/mL/sec. Mathematical models estimate an SA of 2.9-12.9 × 10-12 mol/mL/sec, within the range of the in vitro LC-MS data. In even the most conservative of these models, the extracellular concentration of D2HG exceeds 3 mM within a 2 cm radius from the center of an IDH1mut glioma. Conclusions The microenvironment of an IDH1mut glioma is likely being exposed to high concentrations of D2HG, in the low millimolar range. This has implications for understanding how D2HG affects nonneoplastic cells in an IDH1mut glioma.
Collapse
Affiliation(s)
- Andreas Linninger
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois.,Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois
| | - Grant A Hartung
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois
| | - Benjamin P Liu
- Department of Radiology, Northwestern University, Chicago, Illinois
| | - Snezana Mirkov
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Kevin Tangen
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois
| | - Rimas V Lukas
- Department of Neurology, Northwestern University, Chicago, Illinois
| | - Dusten Unruh
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - C David James
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | | | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois.,Department of Pathology, Northwestern University, Chicago, Illinois
| |
Collapse
|
29
|
Current and Future Trends on Diagnosis and Prognosis of Glioblastoma: From Molecular Biology to Proteomics. Cells 2019; 8:cells8080863. [PMID: 31405017 PMCID: PMC6721640 DOI: 10.3390/cells8080863] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme is the most aggressive malignant tumor of the central nervous system. Due to the absence of effective pharmacological and surgical treatments, the identification of early diagnostic and prognostic biomarkers is of key importance to improve the survival rate of patients and to develop new personalized treatments. On these bases, the aim of this review article is to summarize the current knowledge regarding the application of molecular biology and proteomics techniques for the identification of novel biomarkers through the analysis of different biological samples obtained from glioblastoma patients, including DNA, microRNAs, proteins, small molecules, circulating tumor cells, extracellular vesicles, etc. Both benefits and pitfalls of molecular biology and proteomics analyses are discussed, including the different mass spectrometry-based analytical techniques, highlighting how these investigation strategies are powerful tools to study the biology of glioblastoma, as well as to develop advanced methods for the management of this pathology.
Collapse
|
30
|
Richardson LG, Choi BD, Curry WT. (R)-2-hydroxyglutarate drives immune quiescence in the tumor microenvironment of IDH-mutant gliomas. Transl Cancer Res 2019; 8:S167-S170. [PMID: 30956952 PMCID: PMC6448779 DOI: 10.21037/tcr.2019.01.08] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Leland G Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bryan D Choi
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - William T Curry
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Papathomas TG, Sun N, Chortis V, Taylor AE, Arlt W, Richter S, Eisenhofer G, Ruiz-Babot G, Guasti L, Walch AK. Novel methods in adrenal research: a metabolomics approach. Histochem Cell Biol 2019; 151:201-216. [PMID: 30725173 DOI: 10.1007/s00418-019-01772-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
Abstract
Metabolic alterations have implications in a spectrum of tissue functions and disease. Aided by novel molecular biological and computational tools, our understanding of physiological and pathological processes underpinning endocrine and endocrine-related disease has significantly expanded over the last decade. Herein, we focus on novel metabolomics-related methodologies in adrenal research: in situ metabolomics by mass spectrometry imaging, steroid metabolomics by gas and liquid chromatography-mass spectrometry, energy pathway metabologenomics by liquid chromatography-mass spectrometry-based metabolomics of Krebs cycle intermediates, and cellular reprogramming to generate functional steroidogenic cells and hence to modulate the steroid metabolome. All four techniques to assess and/or modulate the metabolome in biological systems provide tremendous opportunities to manage neoplastic and non-neoplastic disease of the adrenal glands in the era of precision medicine. In this context, we discuss emerging clinical applications and/or promising metabolic-driven research towards diagnostic, prognostic, predictive and therapeutic biomarkers in tumours arising from the adrenal gland and extra-adrenal paraganglia as well as modern approaches to delineate and reprogram adrenal metabolism.
Collapse
Affiliation(s)
- Thomas G Papathomas
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Vasileios Chortis
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Angela E Taylor
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Susan Richter
- Faculty of Medicine Carl Gustav Carus, School of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Graeme Eisenhofer
- Faculty of Medicine Carl Gustav Carus, School of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine III, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Gerard Ruiz-Babot
- Department of Internal Medicine III, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, USA
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Axel Karl Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
| |
Collapse
|
32
|
Sim HW, Nejad R, Zhang W, Nassiri F, Mason W, Aldape KD, Zadeh G, Chen EX. Tissue 2-Hydroxyglutarate as a Biomarker for Isocitrate Dehydrogenase Mutations in Gliomas. Clin Cancer Res 2019; 25:3366-3373. [PMID: 30777876 DOI: 10.1158/1078-0432.ccr-18-3205] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/12/2018] [Accepted: 02/14/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Isocitrate dehydrogenase (IDH) mutations are common in low-grade gliomas and the IDH mutation status is now integrated into the WHO classification of gliomas. IDH mutations lead to preferential accumulation of the R- relative to the S-enantiomer of 2-hydroxyglutarate (2-HG). We investigated the utility of tissue total 2-HG, R-2-HG, and the R-2-HG/S-2-HG ratio (rRS) as diagnostic and prognostic biomarkers for IDH mutations in gliomas.Experimental Design: Glioma tissue and blood samples from 87 patients were analyzed with HPLC-MS/MS coupled with a CHIROBIOTIC column to quantify both enantiomers of 2-HG. ROC analysis was conducted to evaluate the sensitivity and specificity of 2-HG, R-2-HG, and rRS. The feasibility of real-time determination of IDH status was evaluated in 11 patients intraoperatively. The prognostic value of rRS was evaluated using the Kaplan-Meier method. RESULTS The rRS in glioma tissues clearly distinguished patients with IDH-mutant versus wild-type tumors (P < 0.001). Sensitivity and specificity using an rRS cut-off value of 32.26 were 97% and 100%, respectively. None of total 2-HG, R-2-HG, or rRS was elevated in serum samples. Among patients with IDH-mutant tumors, tissue rRS stratifies overall survival. The duration of tissue analysis is approximately 60 minutes. CONCLUSIONS Our study demonstrates that rRS is a reliable biomarker of IDH mutation status. This technique can be used to determine IDH mutation status intraoperatively, and to guide treatment decisions based on IDH mutation status in real time. Finally, rRS values may provide additional prognostic information and further validation is required.
Collapse
Affiliation(s)
- Hao-Wen Sim
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Romina Nejad
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Wenjiang Zhang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Farshad Nassiri
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Warren Mason
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kenneth D Aldape
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| | - Eric X Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
Current and future tools for determination and monitoring of isocitrate dehydrogenase status in gliomas. Curr Opin Neurol 2018; 31:727-732. [DOI: 10.1097/wco.0000000000000617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Picca A, Berzero G, Di Stefano AL, Sanson M. The clinical use of IDH1 and IDH2 mutations in gliomas. Expert Rev Mol Diagn 2018; 18:1041-1051. [PMID: 30427756 DOI: 10.1080/14737159.2018.1548935] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Mutations in the genes isocitrate dehydrogenase (IDH) 1 and 2 have been reported in a limited number of tumors. In gliomas, IDH mutations are primarily detected in WHO grade II-III tumors and represent a major biomarker with diagnostic, prognostic, and predictive implications. The recent development of IDH inhibitors and vaccines suggests that the IDH mutation is also an appealing target for therapy. Areas covered: This review focuses on the role of IDH mutations in diffuse gliomas. Besides discussing their role in gliomagenesis, we will emphasize the role of IDH mutations in clinical practice as a diagnostic, prognostic and predictive biomarker, and as a potential therapeutic target. Noninvasive detection of the IDH mutation by means of liquid biopsy and MR spectroscopy will also be discussed. Expert commentary: While IDH mutation is a consolidated diagnostic and prognostic biomarker in clinical practice, its role in oncogenesis is far from being elucidated, and there are several pending issues. The routine use of noninvasive techniques for detection and monitoring of the IDH status remains challenging. Although the IDH mutation is a very early alteration in gliomagenesis, it may then be omitted during tumor progression. This observation has important implications when designing targeted clinical trials.
Collapse
Affiliation(s)
- Alberto Picca
- a Neuroscience Consortium , University of Pavia , Pavia , Italy
| | - Giulia Berzero
- b Neuroncology Unit , IRCCS Mondino Foundation , Pavia , Italy.,c Biomedical Sciences , University of Pavia , Pavia , Italy
| | - Anna Luisa Di Stefano
- d Sorbonne Universités , Paris , France.,e Department of Neurology , Foch Hospital , Suresnes, Paris , France
| | - Marc Sanson
- d Sorbonne Universités , Paris , France.,f Service de Neurologie 2 , AP-HP, Hôpital de la Pitié-Salpêtrière , Paris , France
| |
Collapse
|
35
|
Zorofchian S, Iqbal F, Rao M, Aung PP, Esquenazi Y, Ballester LY. Circulating tumour DNA, microRNA and metabolites in cerebrospinal fluid as biomarkers for central nervous system malignancies. J Clin Pathol 2018; 72:271-280. [DOI: 10.1136/jclinpath-2018-205414] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/11/2018] [Accepted: 10/21/2018] [Indexed: 01/06/2023]
Abstract
Central nervous system (CNS) malignancies can be difficult to diagnose and many do not respond satisfactorily to existing therapies. Monitoring patients with CNS malignancies for treatment response and tumour recurrence can be challenging because of the difficulty and risks of brain biopsies, and the low specificity and sensitivity of the less invasive methodologies that are currently available. Uncertainty about tumour diagnosis or whether a tumour has responded to treatment or has recurred can cause delays in therapeutic decisions that can impact patient outcome. Therefore, there is an urgent need to develop and validate reliable and minimally invasive biomarkers for CNS tumours that can be used alone or in combination with current clinical practices. Blood-based biomarkers can be informative in the diagnosis and monitoring of various types of cancer. However, blood-based biomarkers have proven suboptimal for analysis of CNS tumours. In contrast, circulating biomarkers in cerebrospinal fluid (CSF), including circulating tumour DNA, microRNAs and metabolites, hold promise for accurate and minimally invasive assessment of CNS tumours. This review summarises the current understanding of these three types of CSF biomarkers and their potential use in neuro-oncologic clinical practice.
Collapse
|
36
|
|
37
|
Tripathi SC, Fahrmann JF, Vykoukal JV, Dennison JB, Hanash SM. Targeting metabolic vulnerabilities of cancer: Small molecule inhibitors in clinic. Cancer Rep (Hoboken) 2018; 2:e1131. [PMID: 32721114 DOI: 10.1002/cnr2.1131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Altered cell metabolism is an established hallmark of cancer. Advancement in our understanding of dysregulated cellular metabolism has aided drastically in identifying metabolic vulnerabilities that can be exploited therapeutically. Indeed, this knowledge has led to the development of a multitude of agents targeting various aspects of tumor metabolism. RECENT FINDINGS The intent of this review is to provide insight into small molecule inhibitors that target tumor metabolism and that are currently being explored in active clinical trials as either preventive, stand-alone, or adjuvant therapies for various malignancies. For each inhibitor, we outline the mechanism (s) of action, preclinical/clinical findings, and limitations. Sections are divided into three aspects based on the primary target of the small molecule inhibitor (s): those that impact (1) cancer cells directly, (2) immune cells present in the tumor microenvironment, or (3) both cancer cells and immune cells. We highlight small molecule targeting of metabolic pathways including de novo fatty acid synthesis, NAD+ biosynthesis, 2-hydroxyglutarate biosynthesis, polyamine metabolism, the kynurenine pathway, as well as glutamine and arginine metabolism. CONCLUSIONS Use of small molecule inhibitors aimed at exploiting tumor metabolic vulnerabilities continues to be an active area of research. Identifying metabolic dependencies specific to cancer cells and/or constituents of the tumor microenvironment is a viable area of therapeutic intervention that holds considerable clinical potential.
Collapse
Affiliation(s)
- Satyendra C Tripathi
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Jody V Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| |
Collapse
|
38
|
Ballester LY, Lu G, Zorofchian S, Vantaku V, Putluri V, Yan Y, Arevalo O, Zhu P, Riascos RF, Sreekumar A, Esquenazi Y, Putluri N, Zhu JJ. Analysis of cerebrospinal fluid metabolites in patients with primary or metastatic central nervous system tumors. Acta Neuropathol Commun 2018; 6:85. [PMID: 30170631 PMCID: PMC6117959 DOI: 10.1186/s40478-018-0588-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/21/2018] [Indexed: 12/30/2022] Open
Abstract
Cancer cells have altered cellular metabolism. Mutations in genes associated with key metabolic pathways (e.g., isocitrate dehydrogenase 1 and 2, IDH1/IDH2) are important drivers of cancer, including central nervous system (CNS) tumors. Therefore, we hypothesized that the abnormal metabolic state of CNS cancer cells leads to abnormal levels of metabolites in the CSF, and different CNS cancer types are associated with specific changes in the levels of CSF metabolites. To test this hypothesis, we used mass spectrometry to analyze 129 distinct metabolites in CSF samples from patients without a history of cancer (n = 8) and with a variety of CNS tumor types (n = 23) (i.e., glioma IDH-mutant, glioma-IDH wildtype, metastatic lung cancer and metastatic breast cancer). Unsupervised hierarchical clustering analysis shows tumor-specific metabolic signatures that facilitate differentiation of tumor type from CSF analysis. We identified differences in the abundance of 43 metabolites between CSF from control patients and the CSF of patients with primary or metastatic CNS tumors. Pathway analysis revealed alterations in various metabolic pathways (e.g., glycine, choline and methionine degradation, dipthamide biosynthesis and glycolysis pathways, among others) between IDH-mutant and IDH-wildtype gliomas. Moreover, patients with IDH-mutant gliomas demonstrated higher levels of D-2-hydroxyglutarate in the CSF, in comparison to patients with other tumor types, or controls. This study demonstrates that analysis of CSF metabolites can be a clinically useful tool for diagnosing and monitoring patients with primary or metastatic CNS tumors.
Collapse
Affiliation(s)
- Leomar Y Ballester
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA.
- Department of Neurosurgery, University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA.
- Memorial Hermann Hospital, Houston, TX, 77030, USA.
| | - Guangrong Lu
- Department of Neurosurgery, University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA
| | - Soheil Zorofchian
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA
| | - Venkatrao Vantaku
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 120D, Jewish Building, One Baylor Plaza, Houston, TX, 77030, USA
| | - Vasanta Putluri
- Advanced Technology Core, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuanqing Yan
- Department of Neurosurgery, University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA
| | - Octavio Arevalo
- Department of Radiology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ping Zhu
- Department of Neurosurgery, University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA
| | - Roy F Riascos
- Department of Radiology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Memorial Hermann Hospital, Houston, TX, 77030, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 120D, Jewish Building, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yoshua Esquenazi
- Department of Neurosurgery, University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA
- Memorial Hermann Hospital, Houston, TX, 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 120D, Jewish Building, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Jay-Jiguang Zhu
- Department of Neurosurgery, University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA
- Memorial Hermann Hospital, Houston, TX, 77030, USA
| |
Collapse
|
39
|
Fan X, Li Y, Shan X, You G, Wu Z, Li Z, Qiao H, Jiang T. Seizures at presentation are correlated with better survival outcomes in adult diffuse glioma: A systematic review and meta-analysis. Seizure 2018; 59:16-23. [PMID: 29727741 DOI: 10.1016/j.seizure.2018.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Seizures are the most common presenting sign of patients with diffuse glioma. In the current study, we performed a meta-analysis to determine the correlation of seizures at presentation to survival outcomes in adult diffuse glioma, and the possible mechanisms were also discussed. METHODS A comprehensive literature search was performed in PUBMED, EMBASE, Web of Science and the Cochrane Central Register of Controlled Trials. The pooled hazard ratio (HR) and corresponding 95% confidence interval (CI) were used to estimate effects. Heterogeneity among studies and publication bias were also evaluated. RESULTS 11 studies with 2088 patients were finally included for the current meta-analysis. Seizure-free preoperatively was significantly associated with a poor overall survival in patients with diffuse glioma, the pooled HR was 1.73 (95% CI 1.43-2.08, Z = 5.71, p < 0.001). Subgroup analysis was also performed by tumor grade, the same association was identified in both low-grade glioma (pooled HR 2.49, 95% CI 1.47-4.20, Z = 3.40, p < 0.001) and glioblastoma (pooled HR 1.46, 95% CI 1.27-1.68, Z = 5.24, p < 0.001). A significant correlation of seizure-free with a poor progression-free survival was also identified (pooled HR 1.42, 95% CI 1.06-1.92, Z = 2.33, p = 0.02), although only 3 studies comprising 368 patients were included. CONCLUSION The current study determined that seizures at presentation were an independent predictor of better survival outcomes in adult diffuse glioma. It is the first study which provides a comprehensive standardized assessment of the association between seizures at presentation with long-term survival outcomes in patients with diffuse glioma.
Collapse
Affiliation(s)
- Xing Fan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Yucai Li
- People's Hospital of Rizhao, Rizhao 276800, China
| | - Xia Shan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Gan You
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Zhifeng Wu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Zhibao Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Hui Qiao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China.
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China; Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; Department of Clinical Oncology, Beijing Academy of Critical Illness in Brain, Beijing 100069, China.
| |
Collapse
|
40
|
Andronesi OC, Arrillaga-Romany IC, Ly KI, Bogner W, Ratai EM, Reitz K, Iafrate AJ, Dietrich J, Gerstner ER, Chi AS, Rosen BR, Wen PY, Cahill DP, Batchelor TT. Pharmacodynamics of mutant-IDH1 inhibitors in glioma patients probed by in vivo 3D MRS imaging of 2-hydroxyglutarate. Nat Commun 2018; 9:1474. [PMID: 29662077 PMCID: PMC5902553 DOI: 10.1038/s41467-018-03905-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 03/21/2018] [Indexed: 12/27/2022] Open
Abstract
Inhibitors of the mutant isocitrate dehydrogenase 1 (IDH1) entered recently in clinical trials for glioma treatment. Mutant IDH1 produces high levels of 2-hydroxyglurate (2HG), thought to initiate oncogenesis through epigenetic modifications of gene expression. In this study, we show the initial evidence of the pharmacodynamics of a new mutant IDH1 inhibitor in glioma patients, using non-invasive 3D MR spectroscopic imaging of 2HG. Our results from a Phase 1 clinical trial indicate a rapid decrease of 2HG levels by 70% (CI 13%, P = 0.019) after 1 week of treatment. Importantly, inhibition of mutant IDH1 may lead to the reprogramming of tumor metabolism, suggested by simultaneous changes in glutathione, glutamine, glutamate, and lactate. An inverse correlation between metabolic changes and diffusion MRI indicates an effect on the tumor-cell density. We demonstrate a feasible radiopharmacodynamics approach to support the rapid clinical translation of rationally designed drugs targeting IDH1/2 mutations for personalized and precision medicine of glioma patients.
Collapse
Affiliation(s)
- Ovidiu C Andronesi
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, 02129, USA.
| | - Isabel C Arrillaga-Romany
- Department of Neurology, Massachusetts General Hospital, Stephen E. and Catherine Pappas Center for Neuro-Oncology, Division of Hematology/Oncology, Harvard Medical School, Boston, MA, 02114, USA
| | - K Ina Ly
- Department of Neurology, Massachusetts General Hospital, Stephen E. and Catherine Pappas Center for Neuro-Oncology, Division of Hematology/Oncology, Harvard Medical School, Boston, MA, 02114, USA
| | - Wolfgang Bogner
- Department of Biomedical Imaging and Image-guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, 1090, Austria
| | - Eva M Ratai
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, 02129, USA
| | - Kara Reitz
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital, Center for Integrated Diagnostics, Harvard Medical School, Boston, MA, 02114, USA
| | - Jorg Dietrich
- Department of Neurology, Massachusetts General Hospital, Stephen E. and Catherine Pappas Center for Neuro-Oncology, Division of Hematology/Oncology, Harvard Medical School, Boston, MA, 02114, USA
| | - Elizabeth R Gerstner
- Department of Neurology, Massachusetts General Hospital, Stephen E. and Catherine Pappas Center for Neuro-Oncology, Division of Hematology/Oncology, Harvard Medical School, Boston, MA, 02114, USA
| | - Andrew S Chi
- Brain Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center and School of Medicine, New York, NY, 10016, USA
| | - Bruce R Rosen
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, 02129, USA
| | - Patrick Y Wen
- Dana-Farber Cancer Institute, Boston, MA, 02284, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Tracy T Batchelor
- Department of Neurology, Massachusetts General Hospital, Stephen E. and Catherine Pappas Center for Neuro-Oncology, Division of Hematology/Oncology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
41
|
Li Y, Shan X, Wu Z, Wang Y, Ling M, Fan X. IDH1 mutation is associated with a higher preoperative seizure incidence in low-grade glioma: A systematic review and meta-analysis. Seizure 2018; 55:76-82. [PMID: 29414139 DOI: 10.1016/j.seizure.2018.01.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/30/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Gliomas, particularly low-grade gliomas (LGGs), are highly epileptogenic. Seizure is the most common presenting sign of LGG patients and significantly decreases their quality of life. Accordingly, there is a need for a better understanding of the mechanisms and risk factors of glioma-related epilepsy. The current study aimed to perform a comprehensive meta-analysis to investigate the correlation of isocitrate-dehydrogenase 1 (IDH1), an important molecular biomarker for glioma classification and prognosis, to preoperative seizure incidence in LGG. METHODS PUBMED, EMBASE, and Web of Science databases were searched for relevant studies. The odds ratio (OR) and corresponding 95% confidence interval (CI) were used as the primary measures to assess the correlation between IDH1 mutation and preoperative seizure incidence. RESULTS A total of 722 LGG patients, including 555 patients with IDH1 mutation and 167 patients with wild-type IDH1 were enrolled in the current meta-analysis. The pooled OR was 2.47 (95% CI 1.70-3.57, Z = 4.78, p < 0.01). No significant heterogeneity was observed among all included studies and no publication bias was identified. CONCLUSION The current meta-analysis identified that IDH1 mutation was correlated to a higher preoperative seizure incidence in LGG. This result would generate impetus for research on the mechanisms behind this correlation, and provide a new idea for the individualized treatment of glioma-related epilepsy.
Collapse
Affiliation(s)
- Yucai Li
- People's Hospital of Rizhao, Rizhao, 276800, China
| | - Xia Shan
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Zhifeng Wu
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Yinyan Wang
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Miao Ling
- Department of Neuroelectrophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Xing Fan
- Department of Neuroelectrophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
42
|
Showalter MR, Hatakeyama J, Cajka T, VanderVorst K, Carraway KL, Fiehn O. Replication Study: The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. eLife 2017; 6. [PMID: 28653623 PMCID: PMC5487214 DOI: 10.7554/elife.26030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
In 2016, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Fiehn et al., 2016), that described how we intended to replicate selected experiments from the paper "The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate" (Ward et al., 2010). Here, we report the results of those experiments. We found that cells expressing R172K mutant IDH2 did not display isocitrate-dependent NADPH production above vector control levels, in contrast to the increased production observed with wild-type IDH2. Conversely, expression of R172K mutant IDH2 resulted in increased alpha-ketoglutarate-dependent consumption of NADPH compared to wild-type IDH2 or vector control. These results are similar to those reported in the original study (Figure 2; Ward et al., 2010). Further, expression of R172K mutant IDH2 resulted in increased 2HG levels within cells compared to the background levels observed in wild-type IDH2 and vector control, similar to the original study (Figure 3D; Ward et al., 2010). In primary human AML samples, the 2HG levels observed in samples with mutant IDH1 or IDH2 status were higher than those observed in samples without an IDH mutation, similar to what was observed in the original study (Figure 5C; Ward et al., 2010). Finally, we report meta-analyses for each result.
Collapse
Affiliation(s)
| | - Jason Hatakeyama
- Department of Biochemistry and Molecular Medicine, University of California, California, United States.,University of California Davis Comprehensive Cancer Center, University of California, California, United States
| | - Tomas Cajka
- West Coast Metabolomics Center, University of California, Davis, United States
| | - Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine, University of California, California, United States.,University of California Davis Comprehensive Cancer Center, University of California, California, United States
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, University of California, California, United States.,University of California Davis Comprehensive Cancer Center, University of California, California, United States
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, United States
| | | |
Collapse
|
43
|
Chen H, Judkins J, Thomas C, Wu M, Khoury L, Benjamin CG, Pacione D, Golfinos JG, Kumthekar P, Ghamsari F, Chen L, Lein P, Chetkovich DM, Snuderl M, Horbinski C. Mutant IDH1 and seizures in patients with glioma. Neurology 2017; 88:1805-1813. [PMID: 28404805 DOI: 10.1212/wnl.0000000000003911] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/13/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Because the d-2-hydroxyglutarate (D2HG) product of mutant isocitrate dehydrogenase 1 (IDH1mut) is released by tumor cells into the microenvironment and is structurally similar to the excitatory neurotransmitter glutamate, we sought to determine whether IDH1mut increases the risk of seizures in patients with glioma, and whether D2HG increases the electrical activity of neurons. METHODS Three WHO grade II-IV glioma cohorts from separate institutions (total N = 712) were retrospectively assessed for the presence of preoperative seizures and tumor location, WHO grade, 1p/19q codeletion, and IDH1mut status. Rat cortical neurons were grown on microelectrode arrays, and their electrical activity was measured before and after treatment with exogenous D2HG, in the presence or absence of the selective NMDA antagonist, AP5. RESULTS Preoperative seizures were observed in 18%-34% of IDH1 wild-type (IDH1wt) patients and in 59%-74% of IDH1mut patients (p < 0.001). Multivariable analysis, including WHO grade, 1p/19q codeletion, and temporal lobe location, showed that IDH1mut was an independent correlate with seizures (odds ratio 2.5, 95% confidence interval 1.6-3.9, p < 0.001). Exogenous D2HG increased the firing rate of cultured rat cortical neurons 4- to 6-fold, but was completely blocked by AP5. CONCLUSIONS The D2HG product of IDH1mut may increase neuronal activity by mimicking the activity of glutamate on the NMDA receptor, and IDH1mut gliomas are more likely to cause seizures in patients. This has rapid translational implications for the personalized management of tumor-associated epilepsy, as targeted IDH1mut inhibitors may improve antiepileptic therapy in patients with IDH1mut gliomas.
Collapse
Affiliation(s)
- Hao Chen
- From the University of California, Davis (H.C., P.L.), CA; Departments of Neurosurgery (M.W., C.H.), Neurology (L.C., D.M.C.), Physiology (D.M.C.), and Pathology (C.H.), Feinberg School of Medicine (J.J., F.G.), Northwestern University, Chicago, IL; Departments of Pathology (C.T., M.S.) and Neurosurgery (C.G.B., D.P., J.G.G.), Langone School of Medicine, New York University, New York; and Departments of Neurosurgery (L.K.) and Cancer Biostatistics (P.K.), University of Kentucky, Lexington
| | - Jonathon Judkins
- From the University of California, Davis (H.C., P.L.), CA; Departments of Neurosurgery (M.W., C.H.), Neurology (L.C., D.M.C.), Physiology (D.M.C.), and Pathology (C.H.), Feinberg School of Medicine (J.J., F.G.), Northwestern University, Chicago, IL; Departments of Pathology (C.T., M.S.) and Neurosurgery (C.G.B., D.P., J.G.G.), Langone School of Medicine, New York University, New York; and Departments of Neurosurgery (L.K.) and Cancer Biostatistics (P.K.), University of Kentucky, Lexington
| | - Cheddhi Thomas
- From the University of California, Davis (H.C., P.L.), CA; Departments of Neurosurgery (M.W., C.H.), Neurology (L.C., D.M.C.), Physiology (D.M.C.), and Pathology (C.H.), Feinberg School of Medicine (J.J., F.G.), Northwestern University, Chicago, IL; Departments of Pathology (C.T., M.S.) and Neurosurgery (C.G.B., D.P., J.G.G.), Langone School of Medicine, New York University, New York; and Departments of Neurosurgery (L.K.) and Cancer Biostatistics (P.K.), University of Kentucky, Lexington
| | - Meijing Wu
- From the University of California, Davis (H.C., P.L.), CA; Departments of Neurosurgery (M.W., C.H.), Neurology (L.C., D.M.C.), Physiology (D.M.C.), and Pathology (C.H.), Feinberg School of Medicine (J.J., F.G.), Northwestern University, Chicago, IL; Departments of Pathology (C.T., M.S.) and Neurosurgery (C.G.B., D.P., J.G.G.), Langone School of Medicine, New York University, New York; and Departments of Neurosurgery (L.K.) and Cancer Biostatistics (P.K.), University of Kentucky, Lexington
| | - Laith Khoury
- From the University of California, Davis (H.C., P.L.), CA; Departments of Neurosurgery (M.W., C.H.), Neurology (L.C., D.M.C.), Physiology (D.M.C.), and Pathology (C.H.), Feinberg School of Medicine (J.J., F.G.), Northwestern University, Chicago, IL; Departments of Pathology (C.T., M.S.) and Neurosurgery (C.G.B., D.P., J.G.G.), Langone School of Medicine, New York University, New York; and Departments of Neurosurgery (L.K.) and Cancer Biostatistics (P.K.), University of Kentucky, Lexington
| | - Carolina G Benjamin
- From the University of California, Davis (H.C., P.L.), CA; Departments of Neurosurgery (M.W., C.H.), Neurology (L.C., D.M.C.), Physiology (D.M.C.), and Pathology (C.H.), Feinberg School of Medicine (J.J., F.G.), Northwestern University, Chicago, IL; Departments of Pathology (C.T., M.S.) and Neurosurgery (C.G.B., D.P., J.G.G.), Langone School of Medicine, New York University, New York; and Departments of Neurosurgery (L.K.) and Cancer Biostatistics (P.K.), University of Kentucky, Lexington
| | - Donato Pacione
- From the University of California, Davis (H.C., P.L.), CA; Departments of Neurosurgery (M.W., C.H.), Neurology (L.C., D.M.C.), Physiology (D.M.C.), and Pathology (C.H.), Feinberg School of Medicine (J.J., F.G.), Northwestern University, Chicago, IL; Departments of Pathology (C.T., M.S.) and Neurosurgery (C.G.B., D.P., J.G.G.), Langone School of Medicine, New York University, New York; and Departments of Neurosurgery (L.K.) and Cancer Biostatistics (P.K.), University of Kentucky, Lexington
| | - John G Golfinos
- From the University of California, Davis (H.C., P.L.), CA; Departments of Neurosurgery (M.W., C.H.), Neurology (L.C., D.M.C.), Physiology (D.M.C.), and Pathology (C.H.), Feinberg School of Medicine (J.J., F.G.), Northwestern University, Chicago, IL; Departments of Pathology (C.T., M.S.) and Neurosurgery (C.G.B., D.P., J.G.G.), Langone School of Medicine, New York University, New York; and Departments of Neurosurgery (L.K.) and Cancer Biostatistics (P.K.), University of Kentucky, Lexington
| | - Priya Kumthekar
- From the University of California, Davis (H.C., P.L.), CA; Departments of Neurosurgery (M.W., C.H.), Neurology (L.C., D.M.C.), Physiology (D.M.C.), and Pathology (C.H.), Feinberg School of Medicine (J.J., F.G.), Northwestern University, Chicago, IL; Departments of Pathology (C.T., M.S.) and Neurosurgery (C.G.B., D.P., J.G.G.), Langone School of Medicine, New York University, New York; and Departments of Neurosurgery (L.K.) and Cancer Biostatistics (P.K.), University of Kentucky, Lexington
| | - Farhad Ghamsari
- From the University of California, Davis (H.C., P.L.), CA; Departments of Neurosurgery (M.W., C.H.), Neurology (L.C., D.M.C.), Physiology (D.M.C.), and Pathology (C.H.), Feinberg School of Medicine (J.J., F.G.), Northwestern University, Chicago, IL; Departments of Pathology (C.T., M.S.) and Neurosurgery (C.G.B., D.P., J.G.G.), Langone School of Medicine, New York University, New York; and Departments of Neurosurgery (L.K.) and Cancer Biostatistics (P.K.), University of Kentucky, Lexington
| | - Li Chen
- From the University of California, Davis (H.C., P.L.), CA; Departments of Neurosurgery (M.W., C.H.), Neurology (L.C., D.M.C.), Physiology (D.M.C.), and Pathology (C.H.), Feinberg School of Medicine (J.J., F.G.), Northwestern University, Chicago, IL; Departments of Pathology (C.T., M.S.) and Neurosurgery (C.G.B., D.P., J.G.G.), Langone School of Medicine, New York University, New York; and Departments of Neurosurgery (L.K.) and Cancer Biostatistics (P.K.), University of Kentucky, Lexington
| | - Pamela Lein
- From the University of California, Davis (H.C., P.L.), CA; Departments of Neurosurgery (M.W., C.H.), Neurology (L.C., D.M.C.), Physiology (D.M.C.), and Pathology (C.H.), Feinberg School of Medicine (J.J., F.G.), Northwestern University, Chicago, IL; Departments of Pathology (C.T., M.S.) and Neurosurgery (C.G.B., D.P., J.G.G.), Langone School of Medicine, New York University, New York; and Departments of Neurosurgery (L.K.) and Cancer Biostatistics (P.K.), University of Kentucky, Lexington
| | - Dane M Chetkovich
- From the University of California, Davis (H.C., P.L.), CA; Departments of Neurosurgery (M.W., C.H.), Neurology (L.C., D.M.C.), Physiology (D.M.C.), and Pathology (C.H.), Feinberg School of Medicine (J.J., F.G.), Northwestern University, Chicago, IL; Departments of Pathology (C.T., M.S.) and Neurosurgery (C.G.B., D.P., J.G.G.), Langone School of Medicine, New York University, New York; and Departments of Neurosurgery (L.K.) and Cancer Biostatistics (P.K.), University of Kentucky, Lexington
| | - Matija Snuderl
- From the University of California, Davis (H.C., P.L.), CA; Departments of Neurosurgery (M.W., C.H.), Neurology (L.C., D.M.C.), Physiology (D.M.C.), and Pathology (C.H.), Feinberg School of Medicine (J.J., F.G.), Northwestern University, Chicago, IL; Departments of Pathology (C.T., M.S.) and Neurosurgery (C.G.B., D.P., J.G.G.), Langone School of Medicine, New York University, New York; and Departments of Neurosurgery (L.K.) and Cancer Biostatistics (P.K.), University of Kentucky, Lexington
| | - Craig Horbinski
- From the University of California, Davis (H.C., P.L.), CA; Departments of Neurosurgery (M.W., C.H.), Neurology (L.C., D.M.C.), Physiology (D.M.C.), and Pathology (C.H.), Feinberg School of Medicine (J.J., F.G.), Northwestern University, Chicago, IL; Departments of Pathology (C.T., M.S.) and Neurosurgery (C.G.B., D.P., J.G.G.), Langone School of Medicine, New York University, New York; and Departments of Neurosurgery (L.K.) and Cancer Biostatistics (P.K.), University of Kentucky, Lexington.
| |
Collapse
|
44
|
Unruh D, Schwarze SR, Khoury L, Thomas C, Wu M, Chen L, Chen R, Liu Y, Schwartz MA, Amidei C, Kumthekar P, Benjamin CG, Song K, Dawson C, Rispoli JM, Fatterpekar G, Golfinos JG, Kondziolka D, Karajannis M, Pacione D, Zagzag D, McIntyre T, Snuderl M, Horbinski C. Mutant IDH1 and thrombosis in gliomas. Acta Neuropathol 2016; 132:917-930. [PMID: 27664011 PMCID: PMC5640980 DOI: 10.1007/s00401-016-1620-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/16/2016] [Accepted: 09/16/2016] [Indexed: 10/21/2022]
Abstract
Mutant isocitrate dehydrogenase 1 (IDH1) is common in gliomas, and produces D-2-hydroxyglutarate (D-2-HG). The full effects of IDH1 mutations on glioma biology and tumor microenvironment are unknown. We analyzed a discovery cohort of 169 World Health Organization (WHO) grade II-IV gliomas, followed by a validation cohort of 148 cases, for IDH1 mutations, intratumoral microthrombi, and venous thromboemboli (VTE). 430 gliomas from The Cancer Genome Atlas were analyzed for mRNAs associated with coagulation, and 95 gliomas in a tissue microarray were assessed for tissue factor (TF) protein. In vitro and in vivo assays evaluated platelet aggregation and clotting time in the presence of mutant IDH1 or D-2-HG. VTE occurred in 26-30 % of patients with wild-type IDH1 gliomas, but not in patients with mutant IDH1 gliomas (0 %). IDH1 mutation status was the most powerful predictive marker for VTE, independent of variables such as GBM diagnosis and prolonged hospital stay. Microthrombi were far less common within mutant IDH1 gliomas regardless of WHO grade (85-90 % in wild-type versus 2-6 % in mutant), and were an independent predictor of IDH1 wild-type status. Among all 35 coagulation-associated genes, F3 mRNA, encoding TF, showed the strongest inverse relationship with IDH1 mutations. Mutant IDH1 gliomas had F3 gene promoter hypermethylation, with lower TF protein expression. D-2-HG rapidly inhibited platelet aggregation and blood clotting via a novel calcium-dependent, methylation-independent mechanism. Mutant IDH1 glioma engraftment in mice significantly prolonged bleeding time. Our data suggest that mutant IDH1 has potent antithrombotic activity within gliomas and throughout the peripheral circulation. These findings have implications for the pathologic evaluation of gliomas, the effect of altered isocitrate metabolism on tumor microenvironment, and risk assessment of glioma patients for VTE.
Collapse
Affiliation(s)
- Dusten Unruh
- Department of Neurosurgery, Northwestern University, Tarry 2-705, 300 East Superior Street, Chicago, IL, 60611, USA
| | | | - Laith Khoury
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
| | - Cheddhi Thomas
- Department of Pathology, New York University, New York, NY, USA
| | - Meijing Wu
- Department of Neurosurgery, Northwestern University, Tarry 2-705, 300 East Superior Street, Chicago, IL, 60611, USA
| | - Li Chen
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Rui Chen
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Yinxing Liu
- Department of Pathology, University of Kentucky, Lexington, KY, USA
| | | | - Christina Amidei
- Department of Neurosurgery, Northwestern University, Tarry 2-705, 300 East Superior Street, Chicago, IL, 60611, USA
| | - Priya Kumthekar
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | - John G Golfinos
- Department of Neurosurgery, New York University, New York, NY, USA
| | | | | | - Donato Pacione
- Department of Neurosurgery, New York University, New York, NY, USA
| | - David Zagzag
- Department of Pathology, New York University, New York, NY, USA
- Department of Neurosurgery, New York University, New York, NY, USA
| | - Thomas McIntyre
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Matija Snuderl
- Department of Pathology, New York University, New York, NY, USA
| | - Craig Horbinski
- Department of Neurosurgery, Northwestern University, Tarry 2-705, 300 East Superior Street, Chicago, IL, 60611, USA.
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|