1
|
Bravo AC, Morão B, Luz A, Dourado R, Oliveira B, Guedes A, Moreira-Barbosa C, Fidalgo C, Mascarenhas-Lemos L, Costa-Santos MP, Maio R, Paulino J, Viana Baptista P, Fernandes AR, Cravo M. Bringing Hope to Improve Treatment in Pancreatic Ductal Adenocarcinoma-A New Tool for Molecular Profiling of KRAS Mutations in Tumor and Plasma Samples. Cancers (Basel) 2024; 16:3544. [PMID: 39456638 PMCID: PMC11506488 DOI: 10.3390/cancers16203544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Pancreatic ductal adenocarcinoma (PDAC) incidence is rising, and prognosis remains poor due to late diagnosis and limited effective therapies. Currently, patients are treated based on TNM staging, without molecular tumor characterization. This study aimed to validate a technique that combines the amplification refractory mutation system (ARMS) with high-resolution melting analysis (HRMA) for detecting mutations in codon 12 of KRAS in tumor and plasma, and to assess its prognostic value. METHODS Prospective study including patients with newly diagnosed PDAC with tumor and plasma samples collected before treatment. Mutations in codon 12 of KRAS (G12D, G12V, G12C, and G12R) were detected using ARMS-HRMA and compared to Sanger sequencing (SS). Univariate and multivariate analyses were used to evaluate the prognostic significance of these mutations. RESULTS A total of 88 patients, 93% with ECOG-PS 0-1, 57% with resectable disease. ARMS-HRMA technique showed a higher sensitivity than SS, both in tumor and plasma (77% vs. 51%; 25 vs. 0%, respectively). The most frequent mutation was G12D (n = 32, 36%), followed by G12V (n = 22, 25%). On multivariate analysis, patients with G12D and/or G12C mutations, either in tumor or plasma, had lower PFS (HR 1.792, 95% CI 1.061-3.028, p = 0.029; HR 2.081, 95% CI 1.014-4.272, p = 0.046, respectively) and lower OS (HR 1.757, 95% CI 1.013-3.049, p = 0.045; HR 2.229, 95% CI 1.082-4.594, p = 0.030, respectively). CONCLUSIONS ARMS-HRMA is a rapid and cost-effective method for detecting KRAS mutations in PDAC patients, offering the potential for stratifying prognosis and guiding treatment decisions. The presence of G12D and G12C mutations in both tumor and plasma is associated with a poorer prognosis.
Collapse
Affiliation(s)
- Ana Catarina Bravo
- Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (A.C.B.); (B.M.); (A.G.); (C.M.-B.); (C.F.); (R.M.)
| | - Bárbara Morão
- Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (A.C.B.); (B.M.); (A.G.); (C.M.-B.); (C.F.); (R.M.)
| | - André Luz
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (A.L.); (R.D.); (B.O.); (P.V.B.); (A.R.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Rúben Dourado
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (A.L.); (R.D.); (B.O.); (P.V.B.); (A.R.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Beatriz Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (A.L.); (R.D.); (B.O.); (P.V.B.); (A.R.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Ana Guedes
- Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (A.C.B.); (B.M.); (A.G.); (C.M.-B.); (C.F.); (R.M.)
- Hospital da Luz Learning Health, Luz Saúde, 1500-650 Lisboa, Portugal
| | - Catarina Moreira-Barbosa
- Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (A.C.B.); (B.M.); (A.G.); (C.M.-B.); (C.F.); (R.M.)
- Hospital da Luz Learning Health, Luz Saúde, 1500-650 Lisboa, Portugal
| | - Catarina Fidalgo
- Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (A.C.B.); (B.M.); (A.G.); (C.M.-B.); (C.F.); (R.M.)
- Hospital da Luz, 1500-650 Lisboa, Portugal; (L.M.-L.); (J.P.)
| | - Luís Mascarenhas-Lemos
- Hospital da Luz, 1500-650 Lisboa, Portugal; (L.M.-L.); (J.P.)
- NOVA Medical School, 1169-056 Lisboa, Portugal
- Catolica Medical School, 1649-023 Lisboa, Portugal
| | | | - Rui Maio
- Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (A.C.B.); (B.M.); (A.G.); (C.M.-B.); (C.F.); (R.M.)
- Hospital da Luz, 1500-650 Lisboa, Portugal; (L.M.-L.); (J.P.)
- NOVA Medical School, 1169-056 Lisboa, Portugal
| | - Jorge Paulino
- Hospital da Luz, 1500-650 Lisboa, Portugal; (L.M.-L.); (J.P.)
- NOVA Medical School, 1169-056 Lisboa, Portugal
| | - Pedro Viana Baptista
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (A.L.); (R.D.); (B.O.); (P.V.B.); (A.R.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (A.L.); (R.D.); (B.O.); (P.V.B.); (A.R.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Marília Cravo
- Hospital da Luz, 1500-650 Lisboa, Portugal; (L.M.-L.); (J.P.)
- Lisbon School of Medicine, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
2
|
Dubrovsky G, Ross A, Jalali P, Lotze M. Liquid Biopsy in Pancreatic Ductal Adenocarcinoma: A Review of Methods and Applications. Int J Mol Sci 2024; 25:11013. [PMID: 39456796 PMCID: PMC11507494 DOI: 10.3390/ijms252011013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a malignancy with one of the highest mortality rates. One limitation in the diagnosis and treatment of PDAC is the lack of an early and universal biomarker. Extensive research performed recently to develop new assays which could fit this role is available. In this review, we will discuss the current landscape of liquid biopsy in patients with PDAC. Specifically, we will review the various methods of liquid biopsy, focusing on circulating tumor DNA (ctDNA) and exosomes and future opportunities for improvement using artificial intelligence or machine learning to analyze results from a multi-omic approach. We will also consider applications which have been evaluated, including the utility of liquid biopsy for screening and staging patients at diagnosis as well as before and after surgery. We will also examine the potential for liquid biopsy to monitor patient treatment response in the setting of clinical trial development.
Collapse
Affiliation(s)
- Genia Dubrovsky
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; (G.D.); (A.R.)
- Pittsburgh VA Medical Center, Pittsburgh, PA 15240, USA
| | - Alison Ross
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; (G.D.); (A.R.)
| | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Michael Lotze
- Departments of Surgery, Immunology, and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Cheng X, Yu W, Liu Y, Jia S, Wang D, Hu L. Proteomic Characterization of Urinary Exosomes with Pancreatic Cancer by Phosphatidylserine Imprinted Polymer Enrichment and Mass Spectrometry Analysis. J Proteome Res 2024. [PMID: 39392357 DOI: 10.1021/acs.jproteome.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Exosomes, as carriers of cell-to-cell communication, can serve as promising biomarkers for probing the early diagnosis of cancer. Pancreatic cancer is a common malignant tumor of the pancreas with an insidious onset and difficult early diagnosis. The aim of this study was to capture exosomes in urine samples by phosphatidylserine-molecularly imprinted polymers (PS-MIPs). Transmission electron microscopy and nanoparticle tracking analysis as well as Western blot showed that our molecularly imprinted material can effectively capture urinary exosomes. Three parallel tests verified the reproducibility of the mass spectrometry assay and the stability of the material capture efficiency. Mass Spectrometry with nontargeted proteomics was combined to show differentially expressed proteins in exosomes between 5 pancreatic cancer patients and 5 healthy controls. The most significant changes in the proteomic profile in pancreatic cancer patients compared to healthy controls were the overexpression of SLC9A3R1, SPAG9, and ferritin light chain (FTL) These proteins may have an important role in diagnosis and prognostic assessment, supporting further scientific and clinical studies on pancreatic cancer.
Collapse
Affiliation(s)
- Xianhui Cheng
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenjing Yu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yuanyuan Liu
- Beijing Proteome Research Center, National Center for Protein Sciences, Beijing 102206, China
- The π-HuB Project Infrastructure, International Academy of Phronesis Medicine, Guangzhou 510535, China
| | - Shengnan Jia
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun 130041, China
| | - Dongxue Wang
- Beijing Proteome Research Center, National Center for Protein Sciences, Beijing 102206, China
- The π-HuB Project Infrastructure, International Academy of Phronesis Medicine, Guangzhou 510535, China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
4
|
Hewitt DB, Wolfgang CL. The Role of Surgery in "Oligometastatic" Pancreas Cancer. Surg Clin North Am 2024; 104:1065-1081. [PMID: 39237164 DOI: 10.1016/j.suc.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The majority of patients diagnosed with pancreatic cancer already have metastatic disease at the time of presentation, which results in a 5-year survival rate of only 13%. However, multiagent chemotherapy regimens can stabilize the disease in select patients with limited metastatic disease. For such patients, a combination of curative-intent therapy and systemic therapy may potentially enhance outcomes compared to using systemic therapy alone. Of note, the evidence supporting this approach is primarily derived from retrospective studies and may carry a significant selection bias. Looking ahead, ongoing prospective trials are exploring the efficacy of curative-intent therapy in managing oligometastatic pancreatic cancer and the implementation of treatment strategies based on specific biomarkers. The emergence of these trials, coupled with the development of less invasive therapeutic modalities, provides hope for patients with oligometastatic pancreatic cancer.
Collapse
Affiliation(s)
- D Brock Hewitt
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The NYU Grossman School of Medicine, 577 1st Avenue, 2nd Floor, New York, NY 10016, USA.
| | - Christopher L Wolfgang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The NYU Grossman School of Medicine, 577 1st Avenue, 2nd Floor, New York, NY 10016, USA
| |
Collapse
|
5
|
Huerta M, Martín-Arana J, Gimeno-Valiente F, Carbonell-Asins JA, García-Micó B, Martínez-Castedo B, Robledo-Yagüe F, Camblor DG, Fleitas T, García Bartolomé M, Alfaro-Cervelló C, Garcés-Albir M, Dorcaratto D, Muñoz-Forner E, Seguí V, Mora-Oliver I, Gambardella V, Roselló S, Sabater L, Roda D, Cervantes A, Tarazona N. ctDNA whole exome sequencing in pancreatic ductal adenocarcinoma unveils organ-dependent metastatic mechanisms and identifies actionable alterations in fast progressing patients. Transl Res 2024; 271:105-115. [PMID: 38782356 DOI: 10.1016/j.trsl.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Understanding progression mechanisms and developing new targeted therapies is imperative in pancreatic ductal adenocarcinoma (PDAC). In this study, 80 metastatic PDAC patients were prospectively recruited and divided into discovery (n=37) and validation (n=43) cohorts. Tumor and plasma samples taken at diagnosis were pair analyzed using whole exome sequencing (WES) in patients belonging to the discovery cohort alone. The variant allele frequency (VAF) of KRAS mutations was measured by ddPCR in plasma at baseline and response assessment in all patients. Plasma WES identified at least one pathogenic variant across the cohort, uncovering oncogenic mechanisms, DNA repair, microsatellite instability, and alterations in the TGFb pathway. Interestingly, actionable mutations were mostly found in plasma rather than tissue. Patients with shorter survival showed enrichment in cellular organization regulatory pathways. Through WES we could identify a specific molecular profile of patients with liver metastasis, which exhibited exclusive mutations in genes related to the adaptive immune response pathway, highlighting the importance of the immune system in liver metastasis development. Moreover, KRAS mutations in plasma (both at diagnosis and persistent at follow-up) correlated with shorter progression free survival (PFS). Patients presenting a reduction of over 84.75 % in KRAS VAF at response assessment had similar PFS to KRAS-negative patients. Overall, plasma WES reveals molecular profiles indicative of rapid progression, potentially actionable targets, and associations between adaptive immune response pathway alterations and liver tropism.
Collapse
Affiliation(s)
- Marisol Huerta
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Martín-Arana
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London, UK
| | | | - Blanca García-Micó
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Martínez-Castedo
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Fabián Robledo-Yagüe
- Bioinformatics Unit, INCLIVA Biomedical Research Institute, University of Valencia, Spain
| | - Daniel G Camblor
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Tania Fleitas
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel García Bartolomé
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Clara Alfaro-Cervelló
- Department of Pathology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Marina Garcés-Albir
- Liver, Biliary and Pancreatic Unit, Department of General Surgery, INCLIVA Biomedical Research Institute, Hospital Clínico Universitario de Valencia, University of Valencia, Valencia, Spain
| | - Dimitri Dorcaratto
- Liver, Biliary and Pancreatic Unit, Department of General Surgery, INCLIVA Biomedical Research Institute, Hospital Clínico Universitario de Valencia, University of Valencia, Valencia, Spain
| | - Elena Muñoz-Forner
- Liver, Biliary and Pancreatic Unit, Department of General Surgery, INCLIVA Biomedical Research Institute, Hospital Clínico Universitario de Valencia, University of Valencia, Valencia, Spain
| | - Víctor Seguí
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Isabel Mora-Oliver
- Liver, Biliary and Pancreatic Unit, Department of General Surgery, INCLIVA Biomedical Research Institute, Hospital Clínico Universitario de Valencia, University of Valencia, Valencia, Spain
| | - Valentina Gambardella
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Roselló
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Sabater
- Liver, Biliary and Pancreatic Unit, Department of General Surgery, INCLIVA Biomedical Research Institute, Hospital Clínico Universitario de Valencia, University of Valencia, Valencia, Spain
| | - Desamparados Roda
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Andrés Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Noelia Tarazona
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Mishra M, Ahmed R, Das DK, Pramanik DD, Dash SK, Pramanik A. Recent Advancements in the Application of Circulating Tumor DNA as Biomarkers for Early Detection of Cancers. ACS Biomater Sci Eng 2024; 10:4740-4756. [PMID: 38950521 PMCID: PMC11322919 DOI: 10.1021/acsbiomaterials.4c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/24/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024]
Abstract
Early detection of cancer is vital for increasing patient survivability chances. The three major techniques used to diagnose cancers are instrumental examination, tissue biopsy, and tumor biomarker detection. Circulating tumor DNA (ctDNA) has gained much attention in recent years due to advantages over traditional technology, such as high sensitivity, high specificity, and noninvasive nature. Through the mechanism of apoptosis, necrosis, and circulating exosome release in tumor cells, ctDNA can spread throughout the circulatory system and carry modifications such as methylations, mutations, gene rearrangements, and microsatellite instability. Traditional gene-detection technology struggles to achieve real-time, low-cost, and portable ctDNA measurement, whereas electrochemical biosensors offer low cost, high specificity alongside sensitivity, and portability for the detection of ctDNA. Therefore, this review focuses on describing the recent advancements in ctDNA biomarkers for various cancer types and biosensor developments for real-time, noninvasive, and rapid ctDNA detection. Further in the review, ctDNA sensors are also discussed in regards to their selections of probes for receptors based on the electrode surface recognition elements.
Collapse
Affiliation(s)
- Mahima Mishra
- Amity Institute
of Biotechnology, Amity University, Noida 201301, India
| | - Rubai Ahmed
- Department of Physiology, University of Gour Banga, Malda-732103, West Bengal, India
| | - Deepak Kumar Das
- Department
of Chemistry and Nanoscience, GLA University, Mathura, 281406 Uttar Pradesh, India
| | | | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda-732103, West Bengal, India
| | - Arindam Pramanik
- Amity Institute
of Biotechnology, Amity University, Noida 201301, India
- School of Medicine, University of Leeds, Leeds LS53RL, United Kingdom
| |
Collapse
|
7
|
Labiano I, Huerta AE, Alsina M, Arasanz H, Castro N, Mendaza S, Lecumberri A, Gonzalez-Borja I, Guerrero-Setas D, Patiño-Garcia A, Alkorta-Aranburu G, Hernández-Garcia I, Arrazubi V, Mata E, Gomez D, Viudez A, Vera R. Building on the clinical applicability of ctDNA analysis in non-metastatic pancreatic ductal adenocarcinoma. Sci Rep 2024; 14:16203. [PMID: 39003322 PMCID: PMC11246447 DOI: 10.1038/s41598-024-67235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Pancreatic ductal adenocarcinoma represents one of the solid tumors showing the worst prognosis worldwide, with a high recurrence rate after adjuvant or neoadjuvant therapy. Circulating tumor DNA analysis raised as a promising non-invasive tool to characterize tumor genomics and to assess treatment response. In this study, surgical tumor tissue and sequential blood samples were analyzed by next-generation sequencing and were correlated with clinical and pathological characteristics. Thirty resectable/borderline pancreatic ductal adenocarcinoma patients treated at the Hospital Universitario de Navarra were included. Circulating tumoral DNA sequencing identified pathogenic variants in KRAS and TP53, and in other cancer-associated genes. Pathogenic variants at diagnosis were detected in patients with a poorer outcome, and were correlated with response to neoadjuvant therapy in borderline pancreatic ductal adneocarcinoma patients. Higher variant allele frequency at diagnosis was associated with worse prognosis, and thesum of variant allele frequency was greater in samples at progression. Our results build on the potential value of circulating tumor DNA for non-metastatic pancreatic ductal adenocarcinoma patients, by complementing tissue genetic information and as a non-invasive tool for treatment decision. Confirmatory studies are needed to corroborate these findings.
Collapse
Affiliation(s)
- Ibone Labiano
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Ana E Huerta
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Maria Alsina
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain.
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain.
| | - Hugo Arasanz
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - Natalia Castro
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Saioa Mendaza
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Arturo Lecumberri
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - Iranzu Gonzalez-Borja
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - David Guerrero-Setas
- Molecular Pathology of Cancer Group, Navarrabiomed, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Ana Patiño-Garcia
- Department of Pediatrics and Clinical Genetics, Clínica Universidad de Navarra (CUN), Cancer Center Clínica Universidad de Navarra (CCUN), Program in Solid Tumors, Center for Applied Medical Research (CIMA) and Navarra Institute for Health Research (IdiSNA), University of Navarra, Pamplona, Spain
| | | | - Irene Hernández-Garcia
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - Virginia Arrazubi
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - Elena Mata
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - David Gomez
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - Antonio Viudez
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Ruth Vera
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| |
Collapse
|
8
|
Luo X, Jiang P, Ma J, Li Z, Zhou J, Wei X, A J, Chai J, Lv Y, Cheng P, Cao C, A X. Circulating free DNA as a diagnostic marker for echinococcosis: a systematic review and meta-analysis. Front Microbiol 2024; 15:1413532. [PMID: 39021627 PMCID: PMC11251952 DOI: 10.3389/fmicb.2024.1413532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Echinococcosis is a chronic zoonotic disease caused by tapeworms of the genus Echinococcus. The World Health Organization (WHO) has identified encapsulated disease as one of 17 neglected diseases to be controlled or eliminated by 2050. There is no accurate, early, non-invasive molecular diagnostic method to detect echinococcosis. The feasibility of circulating free DNA as a diagnostic method for echinococcosis has yielded inconclusive results in a number of published studies. However, there has been no systematic evaluation to date assessing the overall performance of these assays. We report here the first meta-analysis assessing the diagnostic accuracy of cfDNA in plasma, serum, and urine for echinococcosis. Methods We systematically searched PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), and WeiPu databases up to 17 January 2024, for relevant studies. All analyses were performed using RevMan 5.3, Meta-DiSc 1.4, Stata 17.0, and R 4.3.1 software. The sensitivity, specificity, and other accuracy indicators of circulating free DNA for the diagnosis of echinococcosis were summarized. Subgroup analyses and meta-regression were performed to identify sources of heterogeneity. Results A total of 7 studies included 218 patients with echinococcosis and 214 controls (156 healthy controls, 32 other disease controls (non-hydatid patients), and 26 non-study-targeted echinococcosis controls were included). Summary estimates of the diagnostic accuracy of cfDNA in the diagnosis of echinococcosis were as follows: sensitivity (SEN) of 0.51 (95% CI: 0.45-0.56); specificity (SPE) of 0.99 (95% CI: 0.97-0.99); positive likelihood ratio (PLR) of 11.82 (95% CI: 6.74-20.74); negative likelihood ratio (NLR) of 0.57 (95% CI: 0.41-0.80); diagnostic ratio (DOR) of 36.63 (95% CI: 13.75-97.59); and area under the curve (AUC) value of 0.98 (95% CI: 0.96-1.00). Conclusion Existing evidence indicates that the combined specificity of circulating cfDNA for echinococcosis is high. However, the combined sensitivity performance is unsatisfactory due to significant inter-study heterogeneity. To strengthen the validity and accuracy of our findings, further large-scale prospective studies are required.Systematic review registrationThe systematic review was registered in the International Prospective Register of Systematic Reviews PROSPERO [CRD42023454158]. https://www.crd.york.ac.uk/PROSPERO/.
Collapse
Affiliation(s)
- Xiaoqin Luo
- Qinghai University, Xining, China
- Department of Clinical Laboratory, Qinghai Provincial People’s Hospital, Xining, China
| | | | | | - Zian Li
- Department of Clinical Laboratory, Qinghai Provincial People’s Hospital, Xining, China
| | - Jianwu Zhou
- Department of Clinical Laboratory, Qinghai Provincial People’s Hospital, Xining, China
| | | | - Jide A
- Department of Clinical Laboratory, Qinghai Provincial People’s Hospital, Xining, China
| | - Jinping Chai
- Department of Clinical Laboratory, Qinghai Provincial People’s Hospital, Xining, China
| | - Yanke Lv
- Qinghai University, Xining, China
| | | | | | - Xiangren A
- Qinghai University, Xining, China
- Department of Clinical Laboratory, Qinghai Provincial People’s Hospital, Xining, China
| |
Collapse
|
9
|
Lee MR, Woo SM, Kim MK, Han S, Park S, Lee WJ, Lee D, Choi SI, Choi W, Yoon K, Chun JW, Kim Y, Kong S. Application of plasma circulating KRAS mutations as a predictive biomarker for targeted treatment of pancreatic cancer. Cancer Sci 2024; 115:1283-1295. [PMID: 38348576 PMCID: PMC11007020 DOI: 10.1111/cas.16104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 04/12/2024] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in circulating tumor deoxyribonucleic acid (ctDNA) have been reported as representative noninvasive prognostic markers for pancreatic ductal adenocarcinoma (PDAC). Here, we aimed to evaluate single KRAS mutations as prognostic and predictive biomarkers, with an emphasis on potential therapeutic approaches to PDAC. A total of 128 patients were analyzed for multiple or single KRAS mutations (G12A, G12C, G12D, G12R, G12S, G12V, and G13D) in their tumors and plasma using droplet digital polymerase chain reaction (ddPCR). Overall, KRAS mutations were detected by multiplex ddPCR in 119 (93%) of tumor DNA and 68 (53.1%) of ctDNA, with a concordance rate of 80% between plasma ctDNA and tumor DNA in the metastatic stage, which was higher than the 44% in the resectable stage. Moreover, the prognostic prediction of both overall survival (OS) and progression-free survival (PFS) was more relevant using plasma ctDNA than tumor DNA. Further, we evaluated the selective tumor-suppressive efficacy of the KRAS G12C inhibitor sotorasib in a patient-derived organoid (PDO) from a KRAS G12C-mutated patient using a patient-derived xenograft (PDX) model. Sotorasib showed selective inhibition in vitro and in vivo with altered tumor microenvironment, including fibroblasts and macrophages. Collectively, screening for KRAS single mutations in plasma ctDNA and the use of preclinical models of PDO and PDX with genetic mutations would impact precision medicine in the context of PDAC.
Collapse
Affiliation(s)
- Mi Rim Lee
- Department of Cancer Biomedical ScienceNational Cancer Center Graduate School of Cancer Science and PolicyGoyangKorea
- Molecular Imaging Branch, Division of Convergence TechnologyResearch Institute of National Cancer CenterGoyangKorea
| | - Sang Myung Woo
- Department of Cancer Biomedical ScienceNational Cancer Center Graduate School of Cancer Science and PolicyGoyangKorea
- Center for Liver and Pancreatobiliary Cancer, Hospital, National Cancer CenterGoyangKorea
- Immuno‐Oncology Branch, Division of Rare and Refractory CenterResearch Institute of National Cancer CenterGoyangKorea
| | - Min Kyeong Kim
- Targeted Therapy Branch, Division of Rare and Refractory CenterResearch Institute of National Cancer CenterGoyangKorea
| | - Sung‐Sik Han
- Department of Cancer Biomedical ScienceNational Cancer Center Graduate School of Cancer Science and PolicyGoyangKorea
- Center for Liver and Pancreatobiliary Cancer, Hospital, National Cancer CenterGoyangKorea
| | - Sang‐Jae Park
- Center for Liver and Pancreatobiliary Cancer, Hospital, National Cancer CenterGoyangKorea
| | - Woo Jin Lee
- Center for Liver and Pancreatobiliary Cancer, Hospital, National Cancer CenterGoyangKorea
- Interventional Medicine Branch, Division of Clinical ResearchResearch Institute of National Cancer CenterGoyangKorea
| | - Dong‐eun Lee
- Biostatistics Collaboration TeamResearch Core Center, National Cancer CenterGoyangKorea
| | - Sun Il Choi
- Department of Cancer Biomedical ScienceNational Cancer Center Graduate School of Cancer Science and PolicyGoyangKorea
- Molecular Imaging Branch, Division of Convergence TechnologyResearch Institute of National Cancer CenterGoyangKorea
- Henan Key Laboratory of Brain Targeted Bio‐Nanomedicine, School of Life Sciences & School of PharmacyHenan UniversityKaifengHenanChina
| | - Wonyoung Choi
- Department of Cancer Biomedical ScienceNational Cancer Center Graduate School of Cancer Science and PolicyGoyangKorea
- Center for Clinical Trials, Hospital, National Cancer CenterGoyangKorea
- Cancer Molecular Biology Branch, Division of Cancer BiologyResearch Institute of National Cancer CenterGoyangKorea
| | - Kyong‐Ah Yoon
- College of Veterinary MedicineKonkuk UniversitySeoulKorea
| | - Jung Won Chun
- Center for Liver and Pancreatobiliary Cancer, Hospital, National Cancer CenterGoyangKorea
- Interventional Medicine Branch, Division of Clinical ResearchResearch Institute of National Cancer CenterGoyangKorea
| | - Yun‐Hee Kim
- Department of Cancer Biomedical ScienceNational Cancer Center Graduate School of Cancer Science and PolicyGoyangKorea
- Molecular Imaging Branch, Division of Convergence TechnologyResearch Institute of National Cancer CenterGoyangKorea
| | - Sun‐Young Kong
- Department of Cancer Biomedical ScienceNational Cancer Center Graduate School of Cancer Science and PolicyGoyangKorea
- Targeted Therapy Branch, Division of Rare and Refractory CenterResearch Institute of National Cancer CenterGoyangKorea
- Department of Laboratory MedicineHospital, National Cancer CenterGoyangKorea
| |
Collapse
|
10
|
Zhao G, Jiang R, Shi Y, Gao S, Wang D, Li Z, Zhou Y, Sun J, Wu W, Peng J, Kuang T, Rong Y, Yuan J, Zhu S, Jin G, Wang Y, Lou W. Circulating cell-free DNA methylation-based multi-omics analysis allows early diagnosis of pancreatic ductal adenocarcinoma. Mol Oncol 2024. [PMID: 38561976 DOI: 10.1002/1878-0261.13643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with a 5-year survival rate of 7.2% in China. However, effective approaches for diagnosis of PDAC are limited. Tumor-originating genomic and epigenomic aberration in circulating free DNA (cfDNA) have potential as liquid biopsy biomarkers for cancer diagnosis. Our study aims to assess the feasibility of cfDNA-based liquid biopsy assay for PDAC diagnosis. In this study, we performed parallel genomic and epigenomic profiling of plasma cfDNA from Chinese PDAC patients and healthy individuals. Diagnostic models were built to distinguish PDAC patients from healthy individuals. Cancer-specific changes in cfDNA methylation landscape were identified, and a diagnostic model based on six methylation markers achieved high sensitivity (88.7% for overall cases and 78.0% for stage I patients) and specificity (96.8%), outperforming the mutation-based model significantly. Moreover, the combination of the methylation-based model with carbohydrate antigen 19-9 (CA19-9) levels further improved the performance (sensitivity: 95.7% for overall cases and 95.5% for stage I patients; specificity: 93.3%). In conclusion, our findings suggest that both methylation-based and integrated liquid biopsy assays hold promise as non-invasive tools for detection of PDAC.
Collapse
Affiliation(s)
- Guochao Zhao
- Department of Pancreatic Surgery, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Ying Shi
- Envelope Health Biotechnology Co. Ltd., BGI-Shenzhen, China
| | - Suizhi Gao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital Affiliated to Navy Medical University, Shanghai, China
| | - Dansong Wang
- Department of Pancreatic Surgery, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhilong Li
- Envelope Health Biotechnology Co. Ltd., BGI-Shenzhen, China
| | - Yuhong Zhou
- Department of Medical Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianlong Sun
- Envelope Health Biotechnology Co. Ltd., BGI-Shenzhen, China
| | - Wenchuan Wu
- Department of Pancreatic Surgery, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaxi Peng
- Envelope Health Biotechnology Co. Ltd., BGI-Shenzhen, China
| | - Tiantao Kuang
- Department of Pancreatic Surgery, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yefei Rong
- Department of Pancreatic Surgery, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Yuan
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Shida Zhu
- BGI Genomics, BGI-Shenzhen, China
- Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, China
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital Affiliated to Navy Medical University, Shanghai, China
| | - Yuying Wang
- Envelope Health Biotechnology Co. Ltd., BGI-Shenzhen, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Reshkin SJ, Cardone RA, Koltai T. Genetic Signature of Human Pancreatic Cancer and Personalized Targeting. Cells 2024; 13:602. [PMID: 38607041 PMCID: PMC11011857 DOI: 10.3390/cells13070602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Pancreatic cancer is a highly lethal disease with a 5-year survival rate of around 11-12%. Surgery, being the treatment of choice, is only possible in 20% of symptomatic patients. The main reason is that when it becomes symptomatic, IT IS the tumor is usually locally advanced and/or has metastasized to distant organs; thus, early diagnosis is infrequent. The lack of specific early symptoms is an important cause of late diagnosis. Unfortunately, diagnostic tumor markers become positive at a late stage, and there is a lack of early-stage markers. Surgical and non-surgical cases are treated with neoadjuvant and/or adjuvant chemotherapy, and the results are usually poor. However, personalized targeted therapy directed against tumor drivers may improve this situation. Until recently, many pancreatic tumor driver genes/proteins were considered untargetable. Chemical and physical characteristics of mutated KRAS are a formidable challenge to overcome. This situation is slowly changing. For the first time, there are candidate drugs that can target the main driver gene of pancreatic cancer: KRAS. Indeed, KRAS inhibition has been clinically achieved in lung cancer and, at the pre-clinical level, in pancreatic cancer as well. This will probably change the very poor outlook for this disease. This paper reviews the genetic characteristics of sporadic and hereditary predisposition to pancreatic cancer and the possibilities of a personalized treatment according to the genetic signature.
Collapse
Affiliation(s)
- Stephan J. Reshkin
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Tomas Koltai
- Oncomed, Via Pier Capponi 6, 50132 Florence, Italy
| |
Collapse
|
12
|
Anitha K, Posinasetty B, Naveen Kumari K, Chenchula S, Padmavathi R, Prakash S, Radhika C. Liquid biopsy for precision diagnostics and therapeutics. Clin Chim Acta 2024; 554:117746. [PMID: 38151071 DOI: 10.1016/j.cca.2023.117746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Liquid biopsy (LB) has emerged as a highly promising and non-invasive diagnostic approach, particularly in the field of oncology, and has garnered interest in various medical disciplines. This technique involves the examination of biomolecules released into physiological fluids, such as urine samples, blood, and cerebrospinal fluid (CSF). The analysed biomolecules included circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), cell-free DNA (cfDNA), exosomes, and other cell-free components. In contrast to conventional tissue biopsies, LB provides minimally invasive diagnostics, offering invaluable insights into tumor characteristics, treatment response, and early disease detection. This Review explores the contemporary landscape of technologies and clinical applications in the realm of LB, with a particular emphasis on the isolation and analysis of ctDNA and/or cfDNA. Various methodologies have been employed, including droplet digital polymerase chain reaction (DDP), BEAMing (beads, emulsion, amplification, and magnetics), TAm-Seq (tagged-amplicon deep sequencing), CAPP-Seq (cancer personalized profiling by deep sequencing), WGBS-Seq (whole genome bisulfite sequencing), WES (whole exome sequencing), and WGS (whole-genome sequencing). Additionally, CTCs have been successfully isolated through biomarker-based cell capture, employing both positive and negative enrichment strategies based on diverse biophysical and other inherent properties. This approach also addresses challenges and limitations associated with liquid biopsy techniques, such as sensitivity, specificity, standardization and interpretability of findings. This review seeks to identify the current technologies used in liquid biopsy samples, emphasizing their significance in identifying tumor markers for cancer detection, prognosis, and treatment outcome monitoring.
Collapse
Affiliation(s)
- Kuttiappan Anitha
- Department of Pharmacology, School of Pharmacy and Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur 425405, India
| | | | - K Naveen Kumari
- Sri Krishna Teja Pharmacy College, Tirupati, Andhra Pradesh 517502, India
| | | | - R Padmavathi
- SVS Medical College, Hyderabad, Telangana, India
| | - Satya Prakash
- All India Institute of Medical Sciences, Bhopal 462020, India
| | | |
Collapse
|
13
|
Adekolujo OS, Wahab A, Akanbi MO, Oyasiji T, Hrinczenko B, Alese OB. Isolated pulmonary metastases in pancreatic ductal adenocarcinoma: a review of current evidence. Cancer Biol Ther 2023; 24:2198479. [PMID: 37526431 PMCID: PMC10395259 DOI: 10.1080/15384047.2023.2198479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/24/2023] [Indexed: 08/02/2023] Open
Abstract
Despite recent advances in cancer therapeutics, pancreatic ductal adenocarcinoma (PDAC) remains a lethal disease with a 5-year overall survival of only 10%. Since either at or within a few months of diagnosis, most patients with PDAC will present with metastatic disease, a more individualized approach to select patients who may benefit from more aggressive therapy has been suggested. Although studies have reported improved survival in PDAC and isolated pulmonary metastasis (ISP) compared to extrapulmonary metastases, such findings remain controversial. Furthermore, the added benefit of pulmonary metastasectomy and other lung-directed therapies remains unclear. In this review, we discuss the metastatic pattern of PDAC, evaluate the available evidence in the literature for improved survival in PDAC and ISP, evaluate the evidence for the added benefit of pulmonary metastasectomy and other lung-directed therapies, identify prognostic factors for survival, discuss the biological basis for the reported improved survival and identify areas for further research.
Collapse
Affiliation(s)
- Orimisan Samuel Adekolujo
- Department of Medicine, Michigan State University, East Lansing, MI, USA
- Medical Oncology, Karmanos Cancer Institute at McLaren Greater Lansing, Lansing, MI, USA
| | - Ahsan Wahab
- Department of Medicine, Prattville Baptist Hospital, Prattville, AL, USA
| | - Maxwell Oluwole Akanbi
- Department of Medicine, Michigan State University, East Lansing, MI, USA
- Department of Medicine, McLaren Flint, Flint, MI, USA
| | - Tolutope Oyasiji
- Department of Oncology, Barbara Ann Karmanos Cancer Institute at McLaren Flint, Wayne State University, Flint, MI, USA
| | - Borys Hrinczenko
- Department of Medicine, Michigan State University, East Lansing, MI, USA
- Medical Oncology, Karmanos Cancer Institute at McLaren Greater Lansing, Lansing, MI, USA
| | - Olatunji Boladale Alese
- Department of Hematology & Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| |
Collapse
|
14
|
Stosic K, Senar OA, Tarfouss J, Bouchart C, Navez J, Van Laethem JL, Arsenijevic T. A Comprehensive Review of the Potential Role of Liquid Biopsy as a Diagnostic, Prognostic, and Predictive Biomarker in Pancreatic Ductal Adenocarcinoma. Cells 2023; 13:3. [PMID: 38201207 PMCID: PMC10778087 DOI: 10.3390/cells13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal malignant diseases, with a mortality rate being close to incidence. Due to its heterogeneity and plasticity, as well as the lack of distinct symptoms in the early phases, it is very often diagnosed at an advanced stage, resulting in poor prognosis. Traditional tissue biopsies remain the gold standard for making a diagnosis, but have an obvious disadvantage in their inapplicability for frequent sampling. Blood-based biopsies represent a non-invasive method which potentially offers easy and repeated sampling, leading to the early detection and real-time monitoring of the disease and hopefully an accurate prognosis. Given the urgent need for a reliable biomarker that can estimate a patient's condition and response to an assigned treatment, blood-based biopsies are emerging as a potential new tool for improving patients' survival and surveillance. In this article, we discuss the current advances and challenges in using liquid biopsies for pancreatic cancer, focusing on circulating tumour DNA (ctDNA), extracellular vesicles (EVs), and circulating tumour cells (CTCs), and compare the performance and reliability of different biomarkers and combinations of biomarkers.
Collapse
Affiliation(s)
- Kosta Stosic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
| | - Oier Azurmendi Senar
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
| | - Jawad Tarfouss
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
| | - Christelle Bouchart
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Julie Navez
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
- Department of Hepato-Biliary-Pancreatic Surgery, Hopital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| |
Collapse
|
15
|
Alqahtani A, Alloghbi A, Coffin P, Yin C, Mukherji R, Weinberg BA. Prognostic utility of preoperative and postoperative KRAS-mutated circulating tumor DNA (ctDNA) in resected pancreatic ductal adenocarcinoma: A systematic review and meta-analysis. Surg Oncol 2023; 51:102007. [PMID: 37852124 DOI: 10.1016/j.suronc.2023.102007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a challenging disease, with surgery being the only possible cure. However, despite surgery, the majority of patients experience recurrence. Recent evidence suggests that perioperative KRAS-mutated circulating tumor DNA (ctDNA) may have prognostic value. Therefore, we conducted a systematic review and meta-analysis to explore the prognostic significance of preoperative and postoperative KRAS-mutated ctDNA testing in resected PDAC. METHODS We searched PubMed/MEDLINE, Embase, and Cochrane Central Register of Controlled Trials databases for studies that reported the effect of preoperative and postoperative KRAS-mutated ctDNA on overall survival (OS) and/or relapse-free survival (RFS) in resected PDAC. We used a random-effects model to determine the pooled OS and RFS hazard ratios (HR) and their corresponding 95 % confidence intervals (CI). RESULTS We identified 15 studies (868 patients) eligible for analysis. In the preoperative setting, positive ctDNA correlated with worse RFS in 8 studies (HR, 2.067; 95 % CI, 1.346-3.174, P < 0.001) and worse OS in 10 studies (HR, 2.170; 95 % CI, 1.451-3.245, P < 0.001) compared to negative ctDNA. In the postoperative setting, positive ctDNA correlated with worse RFS across 9 studies (HR, 3.32; 95 % CI, 2.19-5.03, P < 0.001) and worse OS in 6 studies (HR, 6.62; 95 % CI, 2.18-20.16, P < 0.001) compared to negative ctDNA. CONCLUSION Our meta-analysis supports the utility of preoperative and postoperative KRAS-mutated ctDNA testing as a prognostic marker for resected PDAC. Further controlled studies are warranted to confirm these results and to investigate the potential therapeutic implications of positive KRAS-mutated ctDNA.
Collapse
Affiliation(s)
- Ali Alqahtani
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA; Medical Oncology Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdurahman Alloghbi
- Cancer Research Unit and Department of Oncology, King Khalid University, Abha, Saudi Arabia
| | - Philip Coffin
- Department of Internal Medicine, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Chao Yin
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Reetu Mukherji
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Benjamin A Weinberg
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
16
|
Evrard C, Ingrand P, Rochelle T, Martel M, Tachon G, Flores N, Randrian V, Ferru A, Haineaux PA, Goujon JM, Karayan-Tapon L, Tougeron D. Circulating tumor DNA in unresectable pancreatic cancer is a strong predictor of first-line treatment efficacy: The KRASCIPANC prospective study. Dig Liver Dis 2023; 55:1562-1572. [PMID: 37308396 DOI: 10.1016/j.dld.2023.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND There is no robust predictor of response to chemotherapy (CT) in unresectable pancreatic adenocarcinomas (UPA). The objective of the KRASCIPANC study was to analyze the kinetics of cell-free DNA (cfDNA)/circulating tumor DNA (ctDNA) as a predictor of response to CT in UPA. METHODS Blood samples were collected just before first CT and at day 28. The primary endpoint was the kinetics of KRAS-mutated ctDNA by digital droplet PCR between D0 and D28 as a predictor of progression-free survival (PFS). RESULTS We analyzed 65 patients with a KRAS-mutated tumor. A high level of cfDNA and KRAS-mutated ctDNA at D0, as well as the presence of KRAS-mutated ctDNA at D28, were strongly associated with lower centralized disease control rate (cDCR), shorter cPFS and OS in multivariate analysis. A score combining cfDNA level at diagnosis ≥ or <30 ng/mL and presence or not of KRAS-mutated ctDNA at D28 was an optimal predictor of cDCR (OR=30.7, IC95% 4.31-218 P=.001), PFS (HR=6.79, IC95% 2.76-16.7, P<.001) and OS (HR=9.98, IC95% 4.14-24.1, P<.001). CONCLUSION A combined score using cfDNA level at diagnosis and KRAS-mutated ctDNA at D28 is strongly associated with patient survival/response to chemotherapy in UPA. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04560270.
Collapse
Affiliation(s)
- Camille Evrard
- Medical Oncology Department, Poitiers University Hospital, Poitiers 86000, France; ProDicET, UR 24144, University of Poitiers, Poitiers 86000, France.
| | - Pierre Ingrand
- Department of Statistics, Faculty of Medicine, University of Poitiers, Poitiers 86000, France
| | - Tristan Rochelle
- Cancer Biology Department, Poitiers University Hospital, Poitiers 86000, France
| | - Marine Martel
- Cancer Biology Department, Poitiers University Hospital, Poitiers 86000, France
| | - Gaëlle Tachon
- Cancer Biology Department, Poitiers University Hospital, Poitiers 86000, France; Cancer Biology Department, Centre Léon Bérard, Lyon 69000, France
| | - Nicolas Flores
- Department of Imaging, University Hospital of Poitiers, Poitiers 86000, France
| | - Violaine Randrian
- ProDicET, UR 24144, University of Poitiers, Poitiers 86000, France; Hepato-Gastroenterology Department, Poitiers University Hospital, Poitiers, France
| | - Aurélie Ferru
- Medical Oncology Department, Poitiers University Hospital, Poitiers 86000, France
| | - Paul-Arthur Haineaux
- Hepato-Gastroenterology Department, Poitiers University Hospital, Poitiers, France; Hepato-Gastroenterology Department, Poitiers University Hospital, Châtellerault Hospital, Poitiers 86106, France
| | - Jean-Michel Goujon
- Department of Pathology, Poitiers University Hospital, Poitiers 86000, France
| | - Lucie Karayan-Tapon
- ProDicET, UR 24144, University of Poitiers, Poitiers 86000, France; Cancer Biology Department, Poitiers University Hospital, Poitiers 86000, France
| | - David Tougeron
- ProDicET, UR 24144, University of Poitiers, Poitiers 86000, France; Hepato-Gastroenterology Department, Poitiers University Hospital, Poitiers, France.
| |
Collapse
|
17
|
Zhao J, Reuther J, Scozzaro K, Hawley M, Metzger E, Emery M, Chen I, Barbosa M, Johnson L, O'Connor A, Washburn M, Hartje L, Reckase E, Johnson V, Zhang Y, Westheimer E, O'Callaghan W, Malani N, Chesh A, Moreau M, Daber R. Personalized Cancer Monitoring Assay for the Detection of ctDNA in Patients with Solid Tumors. Mol Diagn Ther 2023; 27:753-768. [PMID: 37632661 PMCID: PMC10590345 DOI: 10.1007/s40291-023-00670-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Highly sensitive molecular assays have been developed to detect plasma-based circulating tumor DNA (ctDNA), and emerging evidence suggests their clinical utility for monitoring minimal residual disease and recurrent disease, providing prognostic information, and monitoring therapy responses in patients with solid tumors. The Invitae Personalized Cancer Monitoring™ assay uses a patient-specific, tumor-informed variant signature identified through whole exome sequencing to detect ctDNA in peripheral blood of patients with solid tumors. METHODS The assay's tumor whole exome sequencing and ctDNA detection components were analytically validated using 250 unique human specimens and nine commercial reference samples that generated 1349 whole exome sequencing and cell-free DNA (cfDNA)-derived libraries. A comparison of tumor and germline whole exome sequencing was used to identify patient-specific tumor variant signatures and generate patient-specific panels, followed by targeted next-generation sequencing of plasma-derived cfDNA using the patient-specific panels with anchored multiplex polymerase chain reaction chemistry leveraging unique molecular identifiers. RESULTS Whole exome sequencing resulted in overall sensitivity of 99.8% and specificity of > 99.9%. Patient-specific panels were successfully designed for all 63 samples (100%) with ≥ 20% tumor content and 24 (80%) of 30 samples with ≥ 10% tumor content. Limit of blank studies using 30 histologically normal, formalin-fixed paraffin-embedded specimens resulted in 100% expected panel design failure. The ctDNA detection component demonstrated specificity of > 99.9% and sensitivity of 96.3% for a combination of 10 ng of cfDNA input, 0.008% allele frequency, 50 variants on the patient-specific panels, and a baseline threshold. Limit of detection ranged from 0.008% allele frequency when utilizing 60 ng of cfDNA input with 18-50 variants in the patient-specific panels (> 99.9% sensitivity) with a baseline threshold, to 0.05% allele frequency when using 10 ng of cfDNA input with an 18-variant panel with a monitoring threshold (> 99.9% sensitivity). CONCLUSIONS The Invitae Personalized Cancer Monitoring assay, featuring a flexible patient-specific panel design with 18-50 variants, demonstrated high sensitivity and specificity for detecting ctDNA at variant allele frequencies as low as 0.008%. This assay may support patient prognostic stratification, provide real-time data on therapy responses, and enable early detection of residual/recurrent disease.
Collapse
Affiliation(s)
- Jianhua Zhao
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA.
| | | | - Kaylee Scozzaro
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Megan Hawley
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Emily Metzger
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Matthew Emery
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Ingrid Chen
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | | | - Laura Johnson
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Alijah O'Connor
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Mike Washburn
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Luke Hartje
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Erik Reckase
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Verity Johnson
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Yuhua Zhang
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | | | | | - Nirav Malani
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Adrian Chesh
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Michael Moreau
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Robert Daber
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| |
Collapse
|
18
|
Vidal L, Pando E, Blanco L, Fabregat-Franco C, Castet F, Sierra A, Macarulla T, Balsells J, Charco R, Vivancos A. Liquid biopsy after resection of pancreatic adenocarcinoma and its relation to oncological outcomes. Systematic review and meta-analysis. Cancer Treat Rev 2023; 120:102604. [PMID: 37572593 DOI: 10.1016/j.ctrv.2023.102604] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND It has been hypothesised that manipulation during surgery releases tumoral components into circulation. We investigate the effect of surgery on plasma-borne DNA biomarkers and the oncological outcomes in resectable pancreatic ductal adenocarcinoma (PDAC). We also compare non-touch isolation techniques (NTIT) with standard techniques. MATERIALS AND METHODS We performed a systematic review and a meta-analysis of studies analysing liquid biopsy as circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), and messenger RNA (mRNA) in resectable PDAC patients who underwent surgery and its association with overall survival (OS) and disease-free survival (DFS). Research in EMBASE, Web of Science and PubMed was performed. The ctDNA shift negative-to-positive (ctDNA -/+) or ctDNA shift positive-to-negative (ctDNA +/-) before and after surgery was evaluated. RESULTS Twelve studies comprising 413 patients were included. Shorter OS and DFS were identified in patients with positive ctDNA status before (HR = 2.28, p = 0.005 and HR = 2.16, p = 0.006) or after surgery (HR = 3.88, p < 0.0001 and HR = 3.81, p = 0.03), respectively. Surgical resection increased the rate of ctDNA +/-. There were no differences in OS or DFS in the ctDNA +/- group compared with ctDNA +/+ or ctDNA -/+. However, there was a trend to shorter OS in the ctDNA -/+ group (HR = 5.00, p = 0.09). No differences between NTIT and standard techniques on liquid biopsy status were found. CONCLUSION Positive ctDNA in the perioperative period is associated with a worse prognosis. Surgical resection has a role in the negativisation of liquid biopsy status. More studies are needed to assess the potential of minimally invasive techniques on ctDNA dynamics.
Collapse
Affiliation(s)
- Laura Vidal
- Department of HPB and Transplant Surgery, Vall d'Hebron University Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elizabeth Pando
- Department of HPB and Transplant Surgery, Vall d'Hebron University Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Laia Blanco
- Department of HPB and Transplant Surgery, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Carles Fabregat-Franco
- Gastrointestinal and Endocrine Tumour Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Florian Castet
- Gastrointestinal and Endocrine Tumour Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Alexandre Sierra
- Gastrointestinal and Endocrine Tumour Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Teresa Macarulla
- Gastrointestinal and Endocrine Tumour Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Joaquim Balsells
- Department of HPB and Transplant Surgery, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Ramón Charco
- Department of HPB and Transplant Surgery, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Lab, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
19
|
Shen Y, Zhang X, Zhang L, Zhang Z, Lyu B, Lai Q, Li Q, Zhang Y, Ying J, Song J. Performance evaluation of a CRISPR Cas9-based selective exponential amplification assay for the detection of KRAS mutations in plasma of patients with advanced pancreatic cancer. J Clin Pathol 2023:jcp-2023-208974. [PMID: 37679033 DOI: 10.1136/jcp-2023-208974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
AIMS Pancreatic ductal adenocarcinoma (PDAC) is highly malignant, with shockingly mortality rates. KRAS oncoprotein is the main molecular target for PDAC. Liquid biopsies, such as the detection of circulating tumour DNA (ctDNA), offer a promising approach for less invasive diagnosis. In this study, we aim to evaluate the precision and utility of programmable enzyme-based selective exponential amplification (PASEA) assay for rare mutant alleles identification. METHODS PASEA uses CRISPR-Cas9 to continuously shear wild-type alleles during recombinase polymerase amplification, while mutant alleles are exponentially amplified, ultimately reaching a level detectable by Sanger sequencing. We applied PASEA to detect KRAS mutations in plasma ctDNA. A total of 153 patients with stage IV PDAC were enrolled. We investigated the relationship between ctDNA detection rates with various clinical factors. RESULTS Our results showed 91.43% vs 44.83% detection rate in patients of prechemotherapy and undergoing chemotherapy. KRAS ctDNA was more prevalent in patients with liver metastases and patients did not undergo surgical resection. Patients with liver metastases prior to chemotherapy showed a sensitivity of 95.24% (20/21) with PASEA. Through longitudinal monitoring, we found ctDNA may be a more accurate biomarker for monitoring chemotherapy efficacy in PDAC than CA19-9. CONCLUSIONS Our study sheds light on the potential of ctDNA as a valuable complementary biomarker for precision targeted therapy, emphasising the importance of considering chemotherapy status, metastatic sites and surgical history when evaluating its diagnostic potential in PDAC. PASEA technology provides a reliable, cost-effective and minimally invasive method for detecting ctDNA of PDAC.
Collapse
Affiliation(s)
- Yue Shen
- School of life sciences, Tianjin University, Tianjin, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiaoling Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Liyi Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zuoying Zhang
- School of life sciences, Tianjin University, Tianjin, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Bao Lyu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qian Lai
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qinglin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yuhua Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jieer Ying
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jinzhao Song
- School of life sciences, Tianjin University, Tianjin, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Koltai T. Earlier Diagnosis of Pancreatic Cancer: Is It Possible? Cancers (Basel) 2023; 15:4430. [PMID: 37760400 PMCID: PMC10526520 DOI: 10.3390/cancers15184430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/06/2023] [Indexed: 09/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma has a very high mortality rate which has been only minimally improved in the last 30 years. This high mortality is closely related to late diagnosis, which is usually made when the tumor is large and has extensively infiltrated neighboring tissues or distant metastases are already present. This is a paradoxical situation for a tumor that requires nearly 15 years to develop since the first founding mutation. Response to chemotherapy under such late circumstances is poor, resistance is frequent, and prolongation of survival is almost negligible. Early surgery has been, and still is, the only approach with a slightly better outcome. Unfortunately, the relapse percentage after surgery is still very high. In fact, early surgery clearly requires early diagnosis. Despite all the advances in diagnostic methods, the available tools for improving these results are scarce. Serum tumor markers permit a late diagnosis, but their contribution to an improved therapeutic result is very limited. On the other hand, effective screening methods for high-risk populations have not been fully developed as yet. This paper discusses the difficulties of early diagnosis, evaluates whether the available diagnostic tools are adequate, and proposes some simple and not-so-simple measures to improve it.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires C1094, Argentina
| |
Collapse
|
21
|
Zhu L, Xu R, Yang L, Shi W, Zhang Y, Liu J, Li X, Zhou J, Bing P. Minimal residual disease (MRD) detection in solid tumors using circulating tumor DNA: a systematic review. Front Genet 2023; 14:1172108. [PMID: 37636270 PMCID: PMC10448395 DOI: 10.3389/fgene.2023.1172108] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/20/2023] [Indexed: 08/29/2023] Open
Abstract
Minimal residual disease (MRD) refers to a very small number of residual tumor cells in the body during or after treatment, representing the persistence of the tumor and the possibility of clinical progress. Circulating tumor DNA (ctDNA) is a DNA fragment actively secreted by tumor cells or released into the circulatory system during the process of apoptosis or necrosis of tumor cells, which emerging as a non-invasive biomarker to dynamically monitor the therapeutic effect and prediction of recurrence. The feasibility of ctDNA as MRD detection and the revolution in ctDNA-based liquid biopsies provides a potential method for cancer monitoring. In this review, we summarized the main methods of ctDNA detection (PCR-based Sequencing and Next-Generation Sequencing) and their advantages and disadvantages. Additionally, we reviewed the significance of ctDNA analysis to guide the adjuvant therapy and predict the relapse of lung, breast and colon cancer et al. Finally, there are still many challenges of MRD detection, such as lack of standardization, false-negatives or false-positives results make misleading, and the requirement of validation using large independent cohorts to improve clinical outcomes.
Collapse
Affiliation(s)
- Lemei Zhu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha, China
- Academician Workstation, Changsha Medical University, Changsha, China
- School of Public Health, Changsha Medical University, Changsha, China
| | - Ran Xu
- Geneis Beijing Co., Ltd., Beijing, China
| | | | - Wei Shi
- Geneis Beijing Co., Ltd., Beijing, China
| | - Yuan Zhang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha, China
- Academician Workstation, Changsha Medical University, Changsha, China
- School of Public Health, Changsha Medical University, Changsha, China
| | - Juan Liu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha, China
- Academician Workstation, Changsha Medical University, Changsha, China
- School of Public Health, Changsha Medical University, Changsha, China
| | - Xi Li
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, China
| | - Jun Zhou
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha, China
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Pingping Bing
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha, China
- Academician Workstation, Changsha Medical University, Changsha, China
| |
Collapse
|
22
|
Ma Y, Gan J, Bai Y, Cao D, Jiao Y. Minimal residual disease in solid tumors: an overview. Front Med 2023; 17:649-674. [PMID: 37707677 DOI: 10.1007/s11684-023-1018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/24/2023] [Indexed: 09/15/2023]
Abstract
Minimal residual disease (MRD) is termed as the small numbers of remnant tumor cells in a subset of patients with tumors. Liquid biopsy is increasingly used for the detection of MRD, illustrating the potential of MRD detection to provide more accurate management for cancer patients. As new techniques and algorithms have enhanced the performance of MRD detection, the approach is becoming more widely and routinely used to predict the prognosis and monitor the relapse of cancer patients. In fact, MRD detection has been shown to achieve better performance than imaging methods. On this basis, rigorous investigation of MRD detection as an integral method for guiding clinical treatment has made important advances. This review summarizes the development of MRD biomarkers, techniques, and strategies for the detection of cancer, and emphasizes the application of MRD detection in solid tumors, particularly for the guidance of clinical treatment.
Collapse
Affiliation(s)
- Yarui Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingbo Gan
- Genetron Health (Beijing) Co. Ltd., Beijing, 102206, China
| | - Yinlei Bai
- Genetron Health (Beijing) Co. Ltd., Beijing, 102206, China
| | - Dandan Cao
- Genetron Health (Beijing) Co. Ltd., Beijing, 102206, China
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
23
|
Peller MT, Das KK. Blood-Based Biomarkers in the Diagnosis and Risk Stratification of Pancreatic Cysts. Gastrointest Endosc Clin N Am 2023; 33:559-581. [PMID: 37245936 DOI: 10.1016/j.giec.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The use of blood-based biomarkers for the assessment of pancreatic cystic lesions is a rapidly growing field with incredible potential. CA 19-9 remains the only blood-based marker in common use, while many novel biomarkers are in early stages of development and validation. We highlight current work in the fields of proteomics, metabolomics, cell-free DNA/circulating tumor DNA, extracellular vesicles, and microRNA among others, as well as barriers to development and future directions in the work of blood-based biomarkers for pancreatic cystic lesions.
Collapse
Affiliation(s)
- Matthew T Peller
- Division of Gastroenterology, Washington University School of Medicine, 660 South Euclid Avenue Campus Box 8124, Saint Louis, MO 63110, USA
| | - Koushik K Das
- Division of Gastroenterology, Washington University School of Medicine, 660 South Euclid Avenue Campus Box 8124, Saint Louis, MO 63110, USA.
| |
Collapse
|
24
|
Wang Q, Yu T, Ke ZH, Wang FF, Yin JN, Shao Y, Lu KH. RB1 aberrations predict outcomes of immune checkpoint inhibitor combination therapy in NSCLC. Front Oncol 2023; 13:1172728. [PMID: 37441425 PMCID: PMC10334286 DOI: 10.3389/fonc.2023.1172728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/06/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Immune checkpoint inhibitors (ICI) have changed the treatment of non-small cell lung cancer (NSCLC). Furthermore, compared with monotherapy, ICI combination therapy had better efficacy and partly different mechanism. Therefore, we aim to investigate and improve biomarkers specialized for ICI combination therapy. Methods We enrolled 53 NSCLC patients treated with ICI combination therapy and collected their tissue and plasma samples to perform next-generation sequencing (NGS) with a 425-gene panel. Results The line of treatment was the only clinical factor significantly affecting objective response rate (ORR) and progression-free survival (PFS). Surprisingly, classical markers PD-L1 and TMB only had limited predictive values in the ICI combination therapy. Instead, we found RB1 mutation was significantly associated with prognosis. Patients with mutated RB1 had shorter PFS than those with wild RB1 (134d vs 219d, p=0.018). Subsequent analysis showed the RB1 related mutated cell cycle and chromosomal instability were also deleterious to prognosis (103d vs 411d, p<0.001; 138d vs 505d, p=0.018). Additionally, patients with more circulating tumor DNA (ctDNA) had significantly shorter PFS (41d vs 194d, p=0.0043). Conclusion This study identified that NSCLC patients with mutated RB1 were less sensitive to ICI combination therapy. RB1 mutations and following cell cycle abnormalities and chromosomal instability can potentially guide clinical management.
Collapse
Affiliation(s)
- Qian Wang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Yu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zi-Hao Ke
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fu-Feng Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Jia-Ni Yin
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai-Hua Lu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Dayimu A, Di Lisio L, Anand S, Roca-Carreras I, Qian W, Al-Mohammad A, Basu B, Valle JW, Jodrell D, Demiris N, Corrie P. Clinical and biological markers predictive of treatment response associated with metastatic pancreatic adenocarcinoma. Br J Cancer 2023; 128:1672-1680. [PMID: 36813867 PMCID: PMC10133256 DOI: 10.1038/s41416-023-02170-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Chemotherapy for metastatic pancreatic adenocarcinoma (PDAC) offers limited benefits, but survival outcomes vary. Reliable predictive response biomarkers to guide patient management are lacking. METHODS Patient performance status, tumour burden (determined by the presence or absence of liver metastases), plasma protein biomarkers (CA19-9, albumin, C-reactive protein and neutrophils) and circulating tumour DNA (ctDNA) were assessed in 146 patients with metastatic PDAC prior to starting either concomitant or sequential nab-paclitaxel + gemcitabine chemotherapy in the SIEGE randomised prospective clinical trial, as well as during the first 8 weeks of treatment. Correlations were made with objective response, death within 1 year and overall survival (OS). RESULTS Initial poor patient performance status, presence of liver metastases and detectable mutKRAS ctDNA all correlated with worse OS after adjusting for the different biomarkers of interest. Objective response at 8 weeks also correlated with OS (P = 0.026). Plasma biomarkers measured during treatment and prior to the first response assessment identified ≥10% decrease in albumin at 4 weeks predicted for worse OS (HR 4.75, 95% CI 1.43-16.94, P = 0.012), while any association of longitudinal evaluation of mutKRAS ctDNA with OS was unclear (β = 0.024, P = 0.057). CONCLUSIONS Readily measurable patient variables can aid the prediction of outcomes from combination chemotherapy used to treat metastatic PDAC. The role of mutKRAS ctDNA as a tool to guide treatment warrants further exploration. CLINICAL TRIAL REGISTRATION ISRCTN71070888; ClinialTrials.gov (NCT03529175).
Collapse
Affiliation(s)
- Alimu Dayimu
- Clinical Trials Unit, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Lorena Di Lisio
- Cancer Molecular Diagnostics Laboratory, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Shubha Anand
- Cancer Molecular Diagnostics Laboratory, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Isart Roca-Carreras
- Cancer Molecular Diagnostics Laboratory, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Wendi Qian
- Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Bristi Basu
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Juan W Valle
- University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Duncan Jodrell
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Nikos Demiris
- Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Statistics, Athens University of Economics and Business, Athens, Greece
| | - Pippa Corrie
- Oncology Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
26
|
Khan SR, Scheffler M, Soomar SM, Rashid YA, Moosajee M, Ahmad A, Raza A, Uddin S. Role of circulating-tumor DNA in the early-stage non-small cell lung carcinoma as a predictive biomarker. Pathol Res Pract 2023; 245:154455. [PMID: 37054576 DOI: 10.1016/j.prp.2023.154455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
Lung cancer is one of the most common solid malignancies. Tissue biopsy is the standard method for accurately diagnosing lung and many other malignancies over decades. However, molecular profiling of tumors leads to establishing a new horizon in the field of precision medicine, which has now entered the mainstream in clinical practice. In this context, a minimally invasive complementary method has been proposed as a liquid biopsy (LB) which is a blood-based test that is gaining popularity as it provides the opportunity to test genotypes in a unique, less invasive manner. Circulating tumor cells (CTC) captivating the Circulating-tumor DNA (Ct-DNA) are often present in the blood of lung cancer patients and are the fundamental concept behind LB. There are multiple clinical uses of Ct-DNA, including its role in prognostic and therapeutic purposes. The treatment of lung cancer has drastically evolved over time. Therefore, this review article mainly focuses on the current literature on circulating tumor DNA and its clinical implications and future goals in non-small cell lung cancer.
Collapse
Affiliation(s)
- Saqib Raza Khan
- Medical Oncology Department, Aga Khan University Hospital, Karachi, Pakistan.
| | - Matthias Scheffler
- Internal Medicine Department, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | | - Yasmin Abdul Rashid
- Medical Oncology Department, Aga Khan University Hospital, Karachi, Pakistan
| | - Munira Moosajee
- Medical Oncology Department, Aga Khan University Hospital, Karachi, Pakistan
| | - Aamir Ahmad
- Translational Research Institute & Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Shahab Uddin
- Translational Research Institute & Dermatology Institute, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
27
|
Marin AM, Sanchuki HBS, Namur GN, Uno M, Zanette DL, Aoki MN. Circulating Cell-Free Nucleic Acids as Biomarkers for Diagnosis and Prognosis of Pancreatic Cancer. Biomedicines 2023; 11:biomedicines11041069. [PMID: 37189687 DOI: 10.3390/biomedicines11041069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
A lack of reliable early diagnostic tools represents a major challenge in the management of pancreatic cancer (PCa), as the disease is often only identified after it reaches an advanced stage. This highlights the urgent need to identify biomarkers that can be used for the early detection, staging, treatment monitoring, and prognosis of PCa. A novel approach called liquid biopsy has emerged in recent years, which is a less- or non-invasive procedure since it focuses on plasmatic biomarkers such as DNA and RNA. In the blood of patients with cancer, circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs) have been identified such as DNA, mRNA, and non-coding RNA (miRNA and lncRNA). The presence of these molecules encouraged researchers to investigate their potential as biomarkers. In this article, we focused on circulating cfNAs as plasmatic biomarkers of PCa and analyzed their advantages compared to traditional biopsy methods.
Collapse
Affiliation(s)
- Anelis Maria Marin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| | - Heloisa Bruna Soligo Sanchuki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| | - Guilherme Naccache Namur
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 01246-000, Brazil
| | - Miyuki Uno
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 01246-000, Brazil
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| |
Collapse
|
28
|
Filis P, Kyrochristos I, Korakaki E, Baltagiannis EG, Thanos D, Roukos DH. Longitudinal ctDNA profiling in precision oncology and immunο-oncology. Drug Discov Today 2023; 28:103540. [PMID: 36822363 DOI: 10.1016/j.drudis.2023.103540] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Serial analysis of circulating tumor DNA (ctDNA) over the disease course is emerging as a prognostic, predictive and patient-monitoring biomarker. In the metastatic setting, several multigene ctDNA assays have been approved or recommended by regulatory organizations for personalized targeted therapy, especially for lung cancer. By contrast, in nonmetastatic disease, detection of ctDNA resulting from minimal residual disease (MRD) following multimodal treatment with curative intent presents major technical challenges. Several studies using tumor genotyping-informed serial ctDNA profiling have provided promising findings on the sensitivity and specificity of ctDNA in predicting the risk of recurrence. We discuss progress, limitations and future perspectives relating to the use of ctDNA as a biomarker to guide targeted therapy in metastatic disease, as well as the use of ctDNA MRD detection to guide adjuvant treatment in the nonmetastatic setting.
Collapse
Affiliation(s)
- Panagiotis Filis
- Centre for Biosystems and Genome Network Medicine, Ioannina University, 45110 Ioannina, Greece; Department of Medical Oncology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Ioannis Kyrochristos
- Centre for Biosystems and Genome Network Medicine, Ioannina University, 45110 Ioannina, Greece; Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, D-80539 Munich, Germany
| | - Efterpi Korakaki
- Centre for Biosystems and Genome Network Medicine, Ioannina University, 45110 Ioannina, Greece; Department of Physiology, Medical School, University of Ioannina, Ioannina 45110, Greece
| | - Evangelos G Baltagiannis
- Centre for Biosystems and Genome Network Medicine, Ioannina University, 45110 Ioannina, Greece; Department of Surgery, University Hospital of Ioannina, Ioannina 45500, Greece
| | - Dimitris Thanos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Dimitrios H Roukos
- Centre for Biosystems and Genome Network Medicine, Ioannina University, 45110 Ioannina, Greece; Department of Systems Biology, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece.
| |
Collapse
|
29
|
David P, Mittelstädt A, Kouhestani D, Anthuber A, Kahlert C, Sohn K, Weber GF. Current Applications of Liquid Biopsy in Gastrointestinal Cancer Disease-From Early Cancer Detection to Individualized Cancer Treatment. Cancers (Basel) 2023; 15:cancers15071924. [PMID: 37046585 PMCID: PMC10093361 DOI: 10.3390/cancers15071924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Worldwide, gastrointestinal (GI) cancers account for a significant amount of cancer-related mortality. Tests that allow an early diagnosis could lead to an improvement in patient survival. Liquid biopsies (LBs) due to their non-invasive nature as well as low risk are the current focus of cancer research and could be a promising tool for early cancer detection. LB involves the sampling of any biological fluid (e.g., blood, urine, saliva) to enrich and analyze the tumor's biological material. LBs can detect tumor-associated components such as circulating tumor DNA (ctDNA), extracellular vesicles (EVs), and circulating tumor cells (CTCs). These components can reflect the status of the disease and can facilitate clinical decisions. LBs offer a unique and new way to assess cancers at all stages of treatment, from cancer screenings to prognosis to management of multidisciplinary therapies. In this review, we will provide insights into the current status of the various types of LBs enabling early detection and monitoring of GI cancers and their use in in vitro diagnostics.
Collapse
Affiliation(s)
- Paul David
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anke Mittelstädt
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Dina Kouhestani
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anna Anthuber
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christoph Kahlert
- Department of Surgery, Carl Gustav Carus University Hospital, 01307 Dresden, Germany
| | - Kai Sohn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany
| | - Georg F Weber
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
30
|
Sellahewa R, Moghaddam SM, Lundy J, Jenkins BJ, Croagh D. Circulating Tumor DNA Is an Accurate Diagnostic Tool and Strong Prognostic Marker in Pancreatic Cancer. Pancreas 2023; 52:e188-e195. [PMID: 37751379 DOI: 10.1097/mpa.0000000000002239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
OBJECTIVE The objectives of the study are to investigate the sensitivity and specificity of circulating tumor DNA (ctDNA) for the diagnosis of pancreatic cancer and to assess the utility of ctDNA as a prognostic marker in this disease. METHODS Cell-free DNA was extracted from plasma of patients who underwent endoscopic ultrasound fine-needle aspiration or surgical resections for pancreatic cancer. The cell-free DNA was then analyzed using droplet digital polymerase chain reaction for KRAS G12/13 mutations. Eighty-one patients with pancreatic cancer and 30 patients with benign pancreatic disease were analyzed. RESULTS ctDNA KRAS G12/13 mutations were detected in 63% of all patients with pancreatic cancer and in 76% of those patients who also had KRAS G12/13 mutations detected in the pancreatic primary. Specificity and tissue concordance were both 100%. Circulating tumor DNA corresponded with tumor size and stage, and high ctDNA was associated with significantly worse prognosis on both univariate and multivariate testing. CONCLUSION Our study shows that ctDNA is an accurate diagnostic tool and strong prognostic marker in patients with pancreatic cancer. The continued investigation of ctDNA will enable its implementation in clinical practice to optimize the care and survival outcomes of patients with pancreatic cancer.
Collapse
|
31
|
Labiano I, Huerta AE, Arrazubi V, Hernandez-Garcia I, Mata E, Gomez D, Arasanz H, Vera R, Alsina M. State of the Art: ctDNA in Upper Gastrointestinal Malignancies. Cancers (Basel) 2023; 15:1379. [PMID: 36900172 PMCID: PMC10000247 DOI: 10.3390/cancers15051379] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Circulating tumor DNA (ctDNA) has emerged as a promising non-invasive source to characterize genetic alterations related to the tumor. Upper gastrointestinal cancers, including gastroesophageal adenocarcinoma (GEC), biliary tract cancer (BTC) and pancreatic ductal adenocarcinoma (PADC) are poor prognostic malignancies, usually diagnosed at advanced stages when no longer amenable to surgical resection and show a poor prognosis even for resected patients. In this sense, ctDNA has emerged as a promising non-invasive tool with different applications, from early diagnosis to molecular characterization and follow-up of tumor genomic evolution. In this manuscript, novel advances in the field of ctDNA analysis in upper gastrointestinal tumors are presented and discussed. Overall, ctDNA analyses can help in early diagnosis, outperforming current diagnostic approaches. Detection of ctDNA prior to surgery or active treatment is also a prognostic marker that associates with worse survival, while ctDNA detection after surgery is indicative of minimal residual disease, anticipating in some cases the imaging-based detection of progression. In the advanced setting, ctDNA analyses characterize the genetic landscape of the tumor and identify patients for targeted-therapy approaches, and studies show variable concordance levels with tissue-based genetic testing. In this line, several studies also show that ctDNA serves to follow responses to active therapy, especially in targeted approaches, where it can detect multiple resistance mechanisms. Unfortunately, current studies are still limited and observational. Future prospective multi-center and interventional studies, carefully designed to assess the value of ctDNA to help clinical decision-making, will shed light on the real applicability of ctDNA in upper gastrointestinal tumor management. This manuscript presents a review of the evidence available in this field up to date.
Collapse
Affiliation(s)
- Ibone Labiano
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Ana Elsa Huerta
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Virginia Arrazubi
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Irene Hernandez-Garcia
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Elena Mata
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - David Gomez
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Hugo Arasanz
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Ruth Vera
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Maria Alsina
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| |
Collapse
|
32
|
Raufi AG, May MS, Hadfield MJ, Seyhan AA, El-Deiry WS. Advances in Liquid Biopsy Technology and Implications for Pancreatic Cancer. Int J Mol Sci 2023; 24:4238. [PMID: 36835649 PMCID: PMC9958987 DOI: 10.3390/ijms24044238] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 02/23/2023] Open
Abstract
Pancreatic cancer is a highly aggressive malignancy with a climbing incidence. The majority of cases are detected late, with incurable locally advanced or metastatic disease. Even in individuals who undergo resection, recurrence is unfortunately very common. There is no universally accepted screening modality for the general population and diagnosis, evaluation of treatment response, and detection of recurrence relies primarily on the use of imaging. Identification of minimally invasive techniques to help diagnose, prognosticate, predict response or resistance to therapy, and detect recurrence are desperately needed. Liquid biopsies represent an emerging group of technologies which allow for non-invasive serial sampling of tumor material. Although not yet approved for routine use in pancreatic cancer, the increasing sensitivity and specificity of contemporary liquid biopsy platforms will likely change clinical practice in the near future. In this review, we discuss the recent technological advances in liquid biopsy, focusing on circulating tumor DNA, exosomes, microRNAs, and circulating tumor cells.
Collapse
Affiliation(s)
- Alexander G. Raufi
- Division of Hematology/Oncology, Department of Medicine, Lifespan Health System, Providence, RI 02903, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Brown University, Providence, RI 02903, USA
| | - Michael S. May
- Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew J. Hadfield
- Division of Hematology/Oncology, Department of Medicine, Lifespan Health System, Providence, RI 02903, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
| | - Attila A. Seyhan
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Brown University, Providence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Wafik S. El-Deiry
- Division of Hematology/Oncology, Department of Medicine, Lifespan Health System, Providence, RI 02903, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Brown University, Providence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| |
Collapse
|
33
|
Ba H, Zhu F, Zhang X, Mei Z, Zhu Y. Comparison of efficacy and tolerability of adjuvant therapy for resected high-risk stage III-IV cutaneous melanoma: a systemic review and Bayesian network meta-analysis. Ther Adv Med Oncol 2023; 15:17588359221148918. [PMID: 36743526 PMCID: PMC9893404 DOI: 10.1177/17588359221148918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/15/2022] [Indexed: 01/25/2023] Open
Abstract
Background Although immune checkpoint inhibitors (ICIs) and targeted therapies have been widely used as adjuvant treatment for resected melanoma, the optimal therapy remains controversial. Therefore, we conducted this updated network meta-analysis (NMA) to assess the efficacy and tolerability of adjuvant therapies for cutaneous melanoma. Methods PubMed, Embase, Cochrane library, and Web of Science were systematically searched for relevant literatures published in the last 30 years. Disease-free survival (DFS), overall survival (OS), and serious adverse events were considered as the efficacy and tolerability outcomes. Results In all, 27 randomized controlled trials (RCTs) including 16,709 stage III-IV melanoma patients were enrolled in this NMA. For BRAF wild-type melanoma, our analysis showed that both nivolumab and pembrolizumab demonstrated significantly better DFS and tolerability than ipilimumab (10 mg/kg). Nivolumab, pembrolizumab, ipilimumab (3 mg/kg), and ipilimumab (10 mg/kg) all appeared to be effective in prolonging OS, but no therapy demonstrated significantly better OS than ipilimumab (10 mg/kg). Nivolumab + ipilimumab showed the best DFS, but did not appear to be effective in improving OS and ranked only seventh in tolerability. Vaccines and granulocyte-macrophage colony-stimulating factor therapies were well tolerated, but all failed to improve the DFS or OS in stage III melanoma patients. In terms of BRAF mutation-positive melanoma, ICIs (nivolumab + ipilimumab, nivolumab, pembrolizumab, ipilimumab; 10 mg/kg) exhibited comparable efficacy to dabrafenib + trametinib, and all these therapies showed significantly better DFS than placebo. Conclusion Considering efficacy and tolerability, nivolumab and pembrolizumab seem to be preferable adjuvant therapies for patients with stage III-IV melanoma. For BRAF mutation-positive patients, more RCTs are still required to determine which is better between ICIs and targeted therapy.
Collapse
Affiliation(s)
- He Ba
- Department Chinese and Western Medicine Integrated Oncology, the First Affiliated Hospital of Anhui Medical University, No. 120 Wansui Road, Hefei 230000, Anhui Province, China
| | - Fangyuan Zhu
- Department Chinese and Western Medicine Integrated Oncology, the First Affiliated Hospital of Anhui Medical University, No. 120 Wansui Road, Hefei 230000, Anhui Province, China
| | - Xiaoze Zhang
- Department Chinese and Western Medicine Integrated Oncology, the First Affiliated Hospital of Anhui Medical University, No. 120 Wansui Road, Hefei 230000, Anhui Province, China
| | | | - Yaodong Zhu
- Department Chinese and Western Medicine Integrated Oncology, the First Affiliated Hospital of Anhui Medical University, No. 120 Wansui Road, Hefei 230000, Anhui Province, China
| |
Collapse
|
34
|
Watanabe F, Suzuki K, Noda H, Rikiyama T. Liquid biopsy leads to a paradigm shift in the treatment of pancreatic cancer. World J Gastroenterol 2022; 28:6478-6496. [PMID: 36569270 PMCID: PMC9782840 DOI: 10.3748/wjg.v28.i46.6478] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most cancers. Its 5-year survival rate is very low. The recent induction of neoadjuvant chemotherapy and improvements in chemotherapy for patients with pancreatic cancer have resulted in improved survival outcomes. However, the prognosis of pancreatic cancer is still poor. To dramatically improve the prognosis, we need to develop more tools for early diagnosis, treatment selection, disease monitoring, and response rate evaluation. Recently, liquid biopsy (circulating free DNA, circulating tumor DNA, circulating tumor cells, exosomes, and microRNAs) has caught the attention of many researchers as a new biomarker that is minimally invasive, confers low-risk, and displays an overall state of the tumor. Thus, liquid biopsy does not employ the traditional difficulties of obtaining tumor samples from patients with advanced PDAC to investigate their molecular biological status. In addition, it allows for long-term monitoring of the molecular profile of tumor progression. These could help in identifying tumor-specific alterations that use the target structure for tailor-made therapy. Through this review, we highlighted the latest discoveries and advances in liquid biopsy technology in pancreatic cancer research and showed how it can be applied in clinical practice.
Collapse
Affiliation(s)
- Fumiaki Watanabe
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Koichi Suzuki
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Hiroshi Noda
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Toshiki Rikiyama
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| |
Collapse
|
35
|
Park MA, Zaw T, Yoder SJ, Gomez M, Genilo-Delgado M, Basinski T, Katende E, Dam A, Mok SRS, Monteiro A, Mohammadi A, Jeong DK, Jiang K, Centeno BA, Hodul P, Malafa M, Fleming J, Chen DT, Mo Q, Teer JK, Permuth JB. A pilot study to evaluate tissue- and plasma-based DNA driver mutations in a cohort of patients with pancreatic intraductal papillary mucinous neoplasms. G3 (BETHESDA, MD.) 2022; 13:6861874. [PMID: 36454217 PMCID: PMC9911050 DOI: 10.1093/g3journal/jkac314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/22/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) are precursor lesions to pancreatic ductal adenocarcinoma that are challenging to manage due to limited imaging, cytologic, and molecular markers that accurately classify lesions, grade of dysplasia, or focus of invasion preoperatively. The objective of this pilot study was to determine the frequency and type of DNA mutations in a cohort of surgically resected, pathologically confirmed IPMN, and to determine if concordant mutations are detectable in paired pretreatment plasma samples. Formalin-fixed paraffin-embedded (FFPE) tissue from 46 surgically resected IPMNs (31 low-grade, 15 high-grade) and paired plasma from a subset of 15 IPMN cases (10 low-grade, 5 high-grade) were subjected to targeted mutation analysis using a QIAseq Targeted DNA Custom Panel. Common driver mutations were detected in FFPE from 44 of 46 (95.6%) IPMN cases spanning all grades; the most common DNA mutations included: KRAS (80%), RNF43 (24%), and GNAS (43%). Of note, we observed a significant increase in the frequency of RNF43 mutations from low-grade to high-grade IPMNs associated or concomitant with invasive carcinoma (trend test, P = 0.01). Among the subset of cases with paired plasma, driver mutations identified in the IPMNs were not detected in circulation. Overall, our results indicate that mutational burden for IPMNs is a common occurrence, even in low-grade IPMNs. Furthermore, although blood-based biopsies are an attractive, noninvasive method for detecting somatic DNA mutations, the QIAseq panel was not sensitive enough to detect driver mutations that existed in IPMN tissue using paired plasma in the volume we were able to retrieve for this retrospective study.
Collapse
Affiliation(s)
| | | | - Sean J Yoder
- Molecular Genomics Core Facility, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33620, USA
| | - Maria Gomez
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33620, USA
| | - Maria Genilo-Delgado
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33620, USA
| | - Toni Basinski
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33620, USA
| | - Esther Katende
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33620, USA
| | - Aamir Dam
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33620, USA
| | - Shaffer R S Mok
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33620, USA
| | - Alvaro Monteiro
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33620, USA
| | - Amir Mohammadi
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33620, USA
| | - Daniel K Jeong
- Department of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33620, USA
| | - Kun Jiang
- Department of Anatomic Pathology, H. Lee Moffitt Cancer & Research Institute, Tampa, FL 33620, USA
| | - Barbara A Centeno
- Department of Anatomic Pathology, H. Lee Moffitt Cancer & Research Institute, Tampa, FL 33620, USA
| | - Pamela Hodul
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33620, USA
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33620, USA
| | - Jason Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33620, USA
| | - Dung-Tsa Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer & Research Institute, Tampa, FL 33620, USA
| | - Qianxing Mo
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer & Research Institute, Tampa, FL 33620, USA
| | | | - Jennifer B Permuth
- Corresponding author: Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33620, USA.
| |
Collapse
|
36
|
Jo JH, Jung DE, Lee HS, Park SB, Chung MJ, Park JY, Bang S, Park SW, Cho S, Song SY. A phase I/II study of ivaltinostat combined with gemcitabine and erlotinib in patients with untreated locally advanced or metastatic pancreatic adenocarcinoma. Int J Cancer 2022; 151:1565-1577. [PMID: 35657348 PMCID: PMC9545559 DOI: 10.1002/ijc.34144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 12/03/2022]
Abstract
This phase I/II study evaluated the safety and efficacy of a new histone deacetylase (HDAC) inhibitor, ivaltinostat, in combination with gemcitabine and erlotinib for advanced pancreatic ductal adenocarcinoma (PDAC). Patients diagnosed with unresectable, histologically confirmed PDAC who had not undergone previous therapy were eligible. Phase I had a 3 + 3 dose escalation design to determine the maximum tolerable dose (MTD) of ivaltinostat (intravenously on days 1, 8 and 15) with gemcitabine (1000 mg/m2 intravenously on days 1, 8 and 15) and erlotinib (100 mg/day, orally) for a 28-day cycle. In phase II, patients received a six-cycle treatment with the MTD of ivaltinostat determined in phase I. The primary endpoint was the objective response rate (ORR). Secondary endpoints included overall survival (OS), disease control rate (DCR) and progression-free survival (PFS). The MTD of ivaltinostat for the phase II trial was determined to be 250 mg/m2 . In phase II, 24 patients were enrolled. The median OS and PFS were 8.6 (95% confidence interval [CI]: 5.3-11.2) and 5.3 months (95% CI: 3.7-5.8). Of the 16 patients evaluated for response, ORR and DCR were 25.0% and 93.8% with a median OS/PFS of 10.8 (95% CI: 8.3-16.7)/5.8 (95% CI: 4.6-6.7) months. Correlative studies showed that mutation burden detected by cfDNA and specific blood markers such as TIMP1, pro-MMP10, PECAM1, proMMP-2 and IGFBP1 were associated with clinical outcomes. Although the result of a small study, a combination of ivaltinostat, gemcitabine and erlotinib appeared to be a potential treatment option for advanced PDAC.
Collapse
Affiliation(s)
- Jung Hyun Jo
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Dawoon E. Jung
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Hee Seung Lee
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Soo Been Park
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Moon Jae Chung
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Jeong Youp Park
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Seungmin Bang
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Seung Woo Park
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Sangsook Cho
- CG PharmaceuticalsOrindaCaliforniaUSA
- CrystalGenomicsSeongnamsi, GyeonggidoSouth Korea
| | - Si Young Song
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| |
Collapse
|
37
|
Bispo IMC, Granger HP, Almeida PP, Nishiyama PB, de Freitas LM. Systems biology and OMIC data integration to understand gastrointestinal cancers. World J Clin Oncol 2022; 13:762-778. [PMID: 36337313 PMCID: PMC9630993 DOI: 10.5306/wjco.v13.i10.762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/22/2021] [Accepted: 10/02/2022] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers are a set of diverse diseases affecting many parts/ organs. The five most frequent GI cancer types are esophageal, gastric cancer (GC), liver cancer, pancreatic cancer, and colorectal cancer (CRC); together, they give rise to 5 million new cases and cause the death of 3.5 million people annually. We provide information about molecular changes crucial to tumorigenesis and the behavior and prognosis. During the formation of cancer cells, the genomic changes are microsatellite instability with multiple chromosomal arrangements in GC and CRC. The genomically stable subtype is observed in GC and pancreatic cancer. Besides these genomic subtypes, CRC has epigenetic modification (hypermethylation) associated with a poor prognosis. The pathway information highlights the functions shared by GI cancers such as apoptosis; focal adhesion; and the p21-activated kinase, phosphoinositide 3-kinase/Akt, transforming growth factor beta, and Toll-like receptor signaling pathways. These pathways show survival, cell proliferation, and cell motility. In addition, the immune response and inflammation are also essential elements in the shared functions. We also retrieved information on protein-protein interaction from the STRING database, and found that proteins Akt1, catenin beta 1 (CTNNB1), E1A binding protein P300, tumor protein p53 (TP53), and TP53 binding protein 1 (TP53BP1) are central nodes in the network. The protein expression of these genes is associated with overall survival in some GI cancers. The low TP53BP1 expression in CRC, high EP300 expression in esophageal cancer, and increased expression of Akt1/TP53 or low CTNNB1 expression in GC are associated with a poor prognosis. The Kaplan Meier plotter database also confirmed the association between expression of the five central genes and GC survival rates. In conclusion, GI cancers are very diverse at the molecular level. However, the shared mutations and protein pathways might be used to understand better and reveal diagnostic/prognostic or drug targets.
Collapse
Affiliation(s)
- Iasmin Moreira Costa Bispo
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Henry Paul Granger
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Palloma Porto Almeida
- Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro 20231-050, Brazil
| | - Patricia Belini Nishiyama
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Leandro Martins de Freitas
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| |
Collapse
|
38
|
Caliez O, Pietrasz D, Ksontini F, Doat S, Simon JM, Vaillant JC, Taly V, Laurent-Puig P, Bachet JB. Circulating tumor DNA: a help to guide therapeutic strategy in patients with borderline and locally advanced pancreatic adenocarcinoma? Dig Liver Dis 2022; 54:1428-1436. [PMID: 35120842 DOI: 10.1016/j.dld.2022.01.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND prognostic biomarkers could be useful to better select patients with borderline resectable (BR) or locally advanced (LA) pancreatic adenocarcinoma (PA) for chemoradiotherapy (CRT) and/or secondary resection. AIMS The main objective of this work was to study characteristics, received treatments and prognostic of patients with BR or LA PA according to their baseline circulating tumor DNA status and, for secondary objective, neutrophil-to-lymphocyte Ratio (NLR). METHODS ctDNA status at baseline was determined using Next Generation Sequencing in a consecutive monocentric cohort of patients with a BR or LA PA. RESULTS 69 patients were included, 31 with BR PA and 38 with LA PA. 14 (20.3%) patients had baseline positive ctDNA. Five (7.8%) patients had NLR> 5. Patients with positive ctDNA had 3.7 months shorter progression free survival (p = 0.006). Patients with positive ctDNA had earlier progression after the beginning of CRT (4.4 vs 7.1 months; p = 0.068) and shorter relapse free survival after secondary resection (9.2 vs 22.9 months; p = 0.016). CONCLUSIONS positive ctDNA at baseline was associated with a worse prognosis in patients with BR or LA PA. These data are exploratory and must be confirmed in further prospective trials.
Collapse
Affiliation(s)
- Olivier Caliez
- Department of Gastroenterology, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; French National Institute of Health and Medical Research (INSERM), Centre de Recherche des Cordeliers, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université de Paris, Paris, France; Sorbonne Université, UPMC, Paris 6, France
| | - Daniel Pietrasz
- French National Institute of Health and Medical Research (INSERM), Centre de Recherche des Cordeliers, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université de Paris, Paris, France; Department of Digestive Surgery, Hôpital Paul Brousse, Villejuif, France
| | - Feryel Ksontini
- Department of Oncology, Institute Salah-Azaïz, Tunis, Tunisia
| | - Solène Doat
- Department of Gastroenterology, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Marc Simon
- Department of Radiation Oncology, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Christophe Vaillant
- Department of Digestive Surgery, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Valerie Taly
- French National Institute of Health and Medical Research (INSERM), Centre de Recherche des Cordeliers, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université de Paris, Paris, France
| | - Pierre Laurent-Puig
- French National Institute of Health and Medical Research (INSERM), Centre de Recherche des Cordeliers, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université de Paris, Paris, France
| | - Jean-Baptiste Bachet
- Department of Gastroenterology, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; French National Institute of Health and Medical Research (INSERM), Centre de Recherche des Cordeliers, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université de Paris, Paris, France; Sorbonne Université, UPMC, Paris 6, France.
| |
Collapse
|
39
|
Methodology established for the detection of circulating tumor DNA by hybridization capture. Biotechniques 2022; 73:151-158. [PMID: 36065956 DOI: 10.2144/btn-2022-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Roche's AVENIO ctDNA analysis kits and bioinformatics analysis (the AVENIO system) are accessible to all NGS laboratories. We have developed an approach, namely the Sec-Seq system, and compared the accuracy, sensitivity, repeatability and economic cost between the AVENIO system and the Sec-Seq system. Both methods share the comparable accuracy and sensitivity in detecting the variant allele frequency of 0.0005, while the Sec-Seq system shows better accuracy in detecting the variant allele frequency of 0.001. Furthermore, the Sec-Seq system displays a much better detection sensitivity than the AVENIO system. The Sec-Seq system has satisfactory performance in detecting the rare genetic variants in ctDNA with lower economic cost compared with the AVENIO system.
Collapse
|
40
|
Ueberroth BE, Jones JC, Bekaii-Saab TS. Circulating tumor DNA (ctDNA) to evaluate minimal residual disease (MRD), treatment response, and posttreatment prognosis in pancreatic adenocarcinoma. Pancreatology 2022; 22:741-748. [PMID: 35725696 DOI: 10.1016/j.pan.2022.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) has emerged as a blood-based test with multiple utilities in oncology. In the past few years, multiple studies of varying designs, methods, and quality have emerged which show promise for ctDNA as a tool to assess response to treatment and detect minimal residual disease (MRD) across various gastrointestinal (GI) malignancies. We aim to review the current literature for ctDNA as it pertains to assessing treatment response, MRD, prognosis, and risk of recurrence for pancreatic adenocarcinoma. METHODS PubMed was queried with a combination of terms regarding pancreatic adenocarcinoma, minimal residual disease, resection, and prognosis. All resultant articles were reviewed by the authors for appropriate fit with scope. RESULTS Fourteen articles were identified that fit with the scope of this review. CONCLUSIONS Detectable ctDNA after definitive resection, specifically mutated KRAS, correlates with shorter recurrence-free survival (RFS), overall survival (OS), and overall prognosis. Limited data also suggests ctDNA may provide a noninvasive means to assess response to chemotherapy. Whether this information is actionable in terms of altering neoadjuvant or postresection treatment regimens remains an open question requiring further study.
Collapse
Affiliation(s)
- Benjamin E Ueberroth
- Department of Internal Medicine, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| | - Jeremy C Jones
- Mayo Clinic Comprehensive Cancer Center, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Tanios S Bekaii-Saab
- Mayo Clinic Comprehensive Cancer Center, 5881 E Mayo Blvd, Phoenix, AZ, 85054, USA
| |
Collapse
|
41
|
Sheel A, Addison S, Nuguru SP, Manne A. Is Cell-Free DNA Testing in Pancreatic Ductal Adenocarcinoma Ready for Prime Time? Cancers (Basel) 2022; 14:3453. [PMID: 35884515 PMCID: PMC9322623 DOI: 10.3390/cancers14143453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/03/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cell-free DNA (cfDNA) testing currently does not have a significant role in PDA management: it is insufficient to diagnose PDA, and its use is primarily restricted to identifying targetable mutations (if tissue is insufficient or unavailable). cfDNA testing has the potential to address critical needs in PDA management, such as pre-operative risk stratification (POR), prognostication, and predicting (and monitoring) treatment response. Prior studies have focused primarily on somatic mutations, specifically KRAS variants, and have shown limited success in addressing prognosis and POR. Recent studies have demonstrated the importance of other less prevalent mutations (ERBB2 and TP53), but no studies have provided reliable mutation panels for clinical use. Methylation aberrations in cfDNA (epigenetic markers) in PDA have been relatively less explored. However, early evidence has suggested they offer diagnostic and, to some extent, prognostic value. The inclusion of epigenetic markers of cfDNA adds another dimension to genomic testing and may open new therapeutic avenues beyond addressing critical areas of need in PDA treatment. For cfDNA to substantially influence PDA management, concerted efforts are required to include less frequent mutations and epigenetic markers. Furthermore, relying on KRAS mutations for PDA management will always be inadequate.
Collapse
Affiliation(s)
- Ankur Sheel
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 432120, USA;
| | - Sarah Addison
- School of Medicine, The Ohio State University, Columbus, OH 432120, USA;
| | - Surya Pratik Nuguru
- Department of Internal Medicine, Kamineni Academy of Medical Sciences and Research Center, Hyderabad 500012, India;
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
42
|
Chapin WJ, Till JE, Hwang WT, Eads JR, Karasic TB, O'Dwyer PJ, Schneider CJ, Teitelbaum UR, Romeo J, Black TA, Christensen TE, Redlinger Tabery C, Anderson A, Slade M, LaRiviere M, Yee SS, Reiss KA, O'Hara MH, Carpenter EL. Multianalyte Prognostic Signature Including Circulating Tumor DNA and Circulating Tumor Cells in Patients With Advanced Pancreatic Adenocarcinoma. JCO Precis Oncol 2022; 6:e2200060. [PMID: 35939771 PMCID: PMC9384952 DOI: 10.1200/po.22.00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/24/2022] [Accepted: 06/15/2022] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is associated with a poor prognosis. Multianalyte signatures, including liquid biopsy and traditional clinical variables, have shown promise for improving prognostication in other solid tumors but have not yet been rigorously assessed for PDAC. MATERIALS AND METHODS We performed a prospective cohort study of patients with newly diagnosed locally advanced pancreatic cancer (LAPC) or metastatic PDAC (mPDAC) who were planned to undergo systemic therapy. We collected peripheral blood before systemic therapy and assessed circulating tumor cells (CTCs), cell-free DNA concentration (cfDNA), and circulating tumor KRAS (ctKRAS)-variant allele fraction (VAF). Association of variables with overall survival (OS) was assessed in univariate and multivariate survival analysis, and comparisons were made between models containing liquid biopsy variables combined with traditional clinical prognostic variables versus models containing traditional clinical prognostic variables alone. RESULTS One hundred four patients, 40 with LAPC and 64 with mPDAC, were enrolled. CTCs, cfDNA concentration, and ctKRAS VAF were all significantly higher in patients with mPDAC than patients with LAPC. ctKRAS VAF (cube root; 0.05 unit increments; hazard ratio, 1.11; 95% CI, 1.03 to 1.21; P = .01), and CTCs ≥ 1/mL (hazard ratio, 2.22; 95% CI, 1.34 to 3.69; P = .002) were significantly associated with worse OS in multivariate analysis while cfDNA concentration was not. A model selected by backward selection containing traditional clinical variables plus liquid biopsy variables had better discrimination of OS compared with a model containing traditional clinical variables alone (optimism-corrected Harrell's C-statistic 0.725 v 0.681). CONCLUSION A multianalyte prognostic signature containing CTCs, ctKRAS, and cfDNA concentration outperformed a model containing traditional clinical variables alone suggesting that CTCs, ctKRAS, and cfDNA provide prognostic information complementary to traditional clinical variables in advanced PDAC.
Collapse
Affiliation(s)
- William J. Chapin
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jacob E. Till
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA
| | - Jennifer R. Eads
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Thomas B. Karasic
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Peter J. O'Dwyer
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Charles J. Schneider
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ursina R. Teitelbaum
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Janae Romeo
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Taylor A. Black
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Theresa E. Christensen
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Colleen Redlinger Tabery
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | - Michael LaRiviere
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stephanie S. Yee
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kim A. Reiss
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mark H. O'Hara
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Erica L. Carpenter
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
43
|
Kirchweger P, Wundsam HV, Rumpold H. Circulating tumor DNA for diagnosis, prognosis and treatment of gastrointestinal malignancies. World J Clin Oncol 2022; 13:473-484. [PMID: 35949436 PMCID: PMC9244970 DOI: 10.5306/wjco.v13.i6.473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/06/2021] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Minimally invasive detection of circulating tumor DNA (ctDNA) in peripheral blood or other body fluids of patients with gastrointestinal malignancies via liquid biopsy has emerged as a promising biomarker. This is urgently needed, as conventional imaging and plasma protein-derived biomarkers lack sensitivity and specificity in prognosis, early detection of relapse or treatment monitoring. This review summarizes the potential role of liquid biopsy in diagnosis, prognosis and treatment monitoring of gastrointestinal malignancies, including upper gastrointestinal, liver, bile duct, pancreatic and colorectal cancer. CtDNA can now be part of the clinical routine as a promising, highly sensitive and specific biomarker with a broad range of applicability. Liquid-biopsy based postoperative relapse prediction could lead to improved survival by intensification of adjuvant treatment in patients identified to be at risk of early recurrence. Moreover, ctDNA allows monitoring of antineoplastic treatment success, with identification of potentially developed resistance or therapeutic targets during the course of treatment. It may also assist in early change of chemotherapy in metastatic gastrointestinal malignancies prior to imaging findings of relapse. Nevertheless, clinical utility is dependent on the tumor’s entity and burden.
Collapse
Affiliation(s)
- Patrick Kirchweger
- Department of Surgery, Ordensklinikum Linz, Linz 4010, Austria
- Gastrointestinal Cancer Center, Ordensklinikum Linz, Linz 4010, Austria
- Medical Faculty, JKU University Linz, Linz 4040, Austria
| | | | - Holger Rumpold
- Gastrointestinal Cancer Center, Ordensklinikum Linz, Linz 4010, Austria
- Medical Faculty, JKU University Linz, Linz 4040, Austria
| |
Collapse
|
44
|
Pietrasz D, Sereni E, Lancelotti F, Pea A, Luchini C, Innamorati G, Salvia R, Bassi C. Circulating tumour DNA: a challenging innovation to develop "precision onco-surgery" in pancreatic adenocarcinoma. Br J Cancer 2022; 126:1676-1683. [PMID: 35197581 PMCID: PMC9174156 DOI: 10.1038/s41416-022-01745-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is predicted to become the third leading cause of cancer-related mortality within the next decade. Management of PDAC remains challenging with limited effective treatment options and a dismal long-term prognosis. Liquid biopsy and circulating biomarkers seem to be promising to improve the multidisciplinary approach in PDAC treatment. Circulating tumour DNA (ctDNA) is the most studied blood liquid biopsy analyte and can provide insight into the molecular profile and individual characteristics of the tumour in real-time and in advance of standard imaging modalities. This could pave the way for identifying new therapeutic targets and markers of tumour response to supplement diagnostic and provide enhanced stratified treatment. Although its specificity seems excellent, the current sensitivity of ctDNA remains a limitation for clinical use, especially in patients with a low tumour burden. Increasing evidence suggests that ctDNA is a pertinent candidate biomarker to assess minimal residual disease after surgery but also a strong independent prognostic biomarker. This review explores the current knowledge and recent developments in ctDNA as a screening, diagnostic, prognostic and predictive biomarker in the management of resectable PDAC but also technical and analytical challenges that must be overcome to move toward "precision onco-surgery."
Collapse
Affiliation(s)
- Daniel Pietrasz
- APHP Hôpital Paul-Brousse, Centre Hépato-Biliaire, Université Paris-Saclay, 94800, Villejuif, France.
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy.
| | - Elisabetta Sereni
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Francesco Lancelotti
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Antonio Pea
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Giulio Innamorati
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Roberto Salvia
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Claudio Bassi
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| |
Collapse
|
45
|
Wang R, Zhao Y, Wang Y, Zhao Z, Chen Q, Duan Y, Xiong S, Luan Z, Wang J, Cheng B. Diagnostic and Prognostic Values of KRAS Mutations on EUS-FNA Specimens and Circulating Tumor DNA in Patients With Pancreatic Cancer. Clin Transl Gastroenterol 2022; 13:e00487. [PMID: 35351843 PMCID: PMC9132521 DOI: 10.14309/ctg.0000000000000487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The ability of carbohydrate antigen 19-9 (CA19-9) to differentiate pancreatic cancer from other benign pancreatic lesions is unsatisfactory. This study explored the diagnostic value of KRAS gene mutations and plasma circulating tumor DNA (ctDNA) in patients with pancreatic cancer. METHODS The prospective cohort study comprised 149 consecutive patients with solid pancreatic lesions who underwent endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA). KRAS subtype mutations were analyzed by digital droplet PCR (ddPCR) in EUS-FNA histopathology tissue samples, and blood samples were sent for plasma ctDNA analysis. The final diagnosis was based on surgical resection pathology or follow-up for at least 2 years. RESULTS Adding KRAS mutation ddPCR increased the sensitivity and accuracy of EUS-FNA from 71.4% to 91.6% (P < 0.001) and 75.8% to 88.6% (P < 0.001), respectively. By comparison, the sensitivities of circulating biomarkers ctDNA and CA19-9 were only 35.2% and 71.2%. The area under the curve of the receiver operating characteristic curve (AUC) of EUS-FNA and KRAS ddPCR combination was >0.90 for distinguishing pancreatic cancer from benign lesions, whereas the AUC of EUS-FNA and CA19-9 combination was 0.83. The median survival time was significantly shorter in patients with G12D KRAS mutations than that in patients with other mutations (180 vs 240 days, P < 0.001). DISCUSSION FNA tissue sample KRAS mutation analysis in tissues significantly improves the diagnostic accuracy of cyto/histopathological evaluation in EUS-FNA samples. The combination of EUS-FNA and tissue sample KRAS ddPCR provided a more accurate method for pancreatic cancer diagnosis, superior to the combination of EUS-FNA and CA19-9/ctDNA. G12D KRAS mutations in pancreatic cancer were independently associated with poor overall survival.
Collapse
Affiliation(s)
- Ronghua Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenxiong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Duan
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Luan
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinlin Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Alese OB, Cook N, Ortega-Franco A, Ulanja MB, Tan L, Tie J. Circulating Tumor DNA: An Emerging Tool in Gastrointestinal Cancers. Am Soc Clin Oncol Educ Book 2022; 42:1-20. [PMID: 35471832 DOI: 10.1200/edbk_349143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Circulating tumor DNA (ctDNA) is tumor-derived fragmented DNA in the bloodstream that has come from primary or metastatic cancer sites. Neoplasm-specific genetic and epigenetic abnormalities are increasingly being identified through liquid biopsy: a novel, minimally invasive technique used to isolate and analyze ctDNA in the peripheral circulation. Liquid biopsy and other emerging ctDNA technologies represent a paradigm shift in cancer diagnostics because they allow for the detection of minimal residual disease in patients with early-stage disease, improve risk stratification, capture tumor heterogeneity and genomic evolution, and enhance ctDNA-guided adjuvant and palliative cancer therapy. Moreover, ctDNA can be used to monitor the tumor response to neoadjuvant and postoperative therapy in patients with metastatic disease. Using clearance of ctDNA as an endpoint for escalation/de-escalation of adjuvant chemotherapy for patients considered to have high-risk disease has become an important area of research. The possibility of using ctDNA as a surrogate for treatment response-including for overall survival, progression-free survival, and disease-free survival-is an attractive concept; this surrogate will arguably reduce study duration and expedite the development of new therapies. In this review, we summarize the current evidence on the applications of ctDNA for the diagnosis and management of gastrointestinal tumors. Gastrointestinal cancers-including tumors of the esophagus, stomach, colon, liver, and pancreas-account for one-quarter of global cancer diagnoses and contribute to more than one-third of cancer-related deaths. Given the prevalence of gastrointestinal malignancies, ctDNA technology represents a powerful tool to reduce the global burden of disease.
Collapse
Affiliation(s)
- Olatunji B Alese
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Natalie Cook
- Experimental Cancer Medicine Team, The Christie NHS Foundation Trust, Manchester, United Kingdom.,Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Ana Ortega-Franco
- Experimental Cancer Medicine Team, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Mark B Ulanja
- Christus Ochsner St. Patrick Hospital, Lake Charles, LA
| | - Lavinia Tan
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Jeanne Tie
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Division of Personalized Oncology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| |
Collapse
|
47
|
Sivapalan L, Thorn GJ, Gadaleta E, Kocher HM, Ross-Adams H, Chelala C. Longitudinal profiling of circulating tumour DNA for tracking tumour dynamics in pancreatic cancer. BMC Cancer 2022; 22:369. [PMID: 35392854 PMCID: PMC8991893 DOI: 10.1186/s12885-022-09387-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The utility of circulating tumour DNA (ctDNA) for longitudinal tumour monitoring in pancreatic ductal adenocarcinoma (PDAC) has not been explored beyond mutations in the KRAS proto-oncogene. Here, we aimed to characterise and track patient-specific somatic ctDNA variants, to assess longitudinal changes in disease burden and explore the landscape of actionable alterations. METHODS We followed 3 patients with resectable disease and 4 patients with unresectable disease, including 4 patients with ≥ 3 serial follow-up samples, of whom 2 were rare long survivors (> 5 years). We performed whole exome sequencing of tumour gDNA and plasma ctDNA (n = 20) collected over a ~ 2-year period from diagnosis through treatment to death or final follow-up. Plasma from 3 chronic pancreatitis cases was used as a comparison for analysis of ctDNA mutations. RESULTS We detected > 55% concordance between somatic mutations in tumour tissues and matched serial plasma. Mutations in ctDNA were detected within known PDAC driver genes (KRAS, TP53, SMAD4, CDKN2A), in addition to patient-specific variants within alternative cancer drivers (NRAS, HRAS, MTOR, ERBB2, EGFR, PBRM1), with a trend towards higher overall mutation loads in advanced disease. ctDNA alterations with potential for therapeutic actionability were identified in all 7 patients, including DNA damage response (DDR) variants co-occurring with hypermutation signatures predictive of response to platinum chemotherapy. Longitudinal tracking in 4 patients with follow-up > 2 years demonstrated that ctDNA mutant allele fractions and clonal trends were consistent with CA19-9 measurements and/or clinically reported disease burden. The estimated prevalence of 'stem clones' was highest in an unresectable patient where changes in ctDNA dynamics preceded CA19-9 levels. Longitudinal evolutionary trajectories revealed ongoing subclonal evolution following chemotherapy. CONCLUSION These results provide proof-of-concept for the use of exome sequencing of serial plasma to characterise patient-specific ctDNA profiles, and demonstrate the sensitivity of ctDNA in monitoring disease burden in PDAC even in unresectable cases without matched tumour genotyping. They reveal the value of tracking clonal evolution in serial ctDNA to monitor treatment response, establishing the potential of applied precision medicine to guide stratified care by identifying and evaluating actionable opportunities for intervention aimed at optimising patient outcomes for an otherwise intractable disease.
Collapse
Affiliation(s)
- Lavanya Sivapalan
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Graeme J Thorn
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Emanuela Gadaleta
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Helen Ross-Adams
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Claude Chelala
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
48
|
Tjensvoll K, Lapin M, Gilje B, Garresori H, Oltedal S, Forthun RB, Molven A, Rozenholc Y, Nordgård O. Novel hybridization- and tag-based error-corrected method for sensitive ctDNA mutation detection using ion semiconductor sequencing. Sci Rep 2022; 12:5816. [PMID: 35388068 PMCID: PMC8986848 DOI: 10.1038/s41598-022-09698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
Abstract
Circulating tumor DNA (ctDNA) analysis has emerged as a clinically useful tool for cancer diagnostics and treatment monitoring. However, ctDNA detection is complicated by low DNA concentrations and technical challenges. Here we describe our newly developed sensitive method for ctDNA detection on the Ion Torrent sequencing platform, which we call HYbridization- and Tag-based Error-Corrected sequencing (HYTEC-seq). This method combines hybridization-based capture with molecular tags, and the novel variant caller PlasmaMutationDetector2 to eliminate background errors. We describe the validation of HYTEC-seq using control samples with known mutations, demonstrating an analytical sensitivity down to 0.1% at > 99.99% specificity. Furthermore, to demonstrate the utility of this method in a clinical setting, we analyzed plasma samples from 44 patients with advanced pancreatic cancer, revealing mutations in 57% of the patients at allele frequencies as low as 0.23%.
Collapse
Affiliation(s)
- Kjersti Tjensvoll
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway.
| | - Morten Lapin
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway
| | - Bjørnar Gilje
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway
| | - Herish Garresori
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway
| | - Satu Oltedal
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway
| | - Rakel Brendsdal Forthun
- Department of Medical Genetics, Haukeland University Hospital, 5020, Bergen, Norway
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, 5020, Bergen, Norway
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, 5020, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, 5021, Bergen, Norway
| | - Yves Rozenholc
- BioSTM UR 7537, Faculté de Pharmacie de Paris, Université Paris Citè, 75006, Paris, France
| | - Oddmund Nordgård
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway
| |
Collapse
|
49
|
Dopico PJ, Le MCN, Burgess B, Yang Z, Zhao Y, Wang Y, George TJ, Fan ZH. Longitudinal Study of Circulating Biomarkers in Patients with Resectable Pancreatic Ductal Adenocarcinoma. BIOSENSORS 2022; 12:206. [PMID: 35448266 PMCID: PMC9028387 DOI: 10.3390/bios12040206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 05/12/2023]
Abstract
While patients with resectable pancreatic ductal adenocarcinoma (PDAC) show improved survival compared to their non-resectable counterparts, survival remains low owing to occult metastatic disease and treatment resistance. Liquid biopsy based on circulating tumor cells (CTCs) and cell-free DNA (cfDNA) has been shown to predict recurrence and treatment resistance in various types of cancers, but their utility has not been fully demonstrated in resectable PDAC. We have simultaneously tracked three circulating biomarkers, including CTCs, cfDNA, and circulating tumor DNA (ctDNA), over a period of cancer treatment using a microfluidic device and droplet digital PCR (ddPCR). The microfluidic device is based on the combination of filtration and immunoaffinity mechanisms. We have measured CTCs, cfDNA, and ctDNA in a cohort of seven resectable PDAC patients undergoing neoadjuvant therapy followed by surgery, and each patient was followed up to 10 time points over a period of 4 months. CTCs were detectable in all patients (100%) at some point during treatment but were detectable in only three out of six patients (50%) prior to the start of treatment. Median cfDNA concentrations remained comparable to negative controls throughout treatment. ddPCR was able to find KRAS mutations in six of seven patients (86%); however, these mutations were present in only two of seven patients (29%) prior to treatment. Overall, the majority of circulating biomarkers (81% for CTCs and 91% for cfDNA/ctDNA) were detected after the start of neoadjuvant therapy but before surgery. This study suggests that a longitudinal study of circulating biomarkers throughout treatment provides more useful information than those single time-point tests for resectable PDAC patients.
Collapse
Affiliation(s)
- Pablo J. Dopico
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (P.J.D.); (M.-C.N.L.)
| | - Minh-Chau N. Le
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (P.J.D.); (M.-C.N.L.)
| | - Benjamin Burgess
- UF Health Cancer Center, University of Florida, 2033 Mowry Rd., Gainesville, FL 32610, USA;
| | - Zhijie Yang
- Atila Biosystems, 740 Sierra Vista Ave., Unit E, Mountain View, CA 94043, USA; (Z.Y.); (Y.Z.); (Y.W.)
| | - Yu Zhao
- Atila Biosystems, 740 Sierra Vista Ave., Unit E, Mountain View, CA 94043, USA; (Z.Y.); (Y.Z.); (Y.W.)
| | - Youxiang Wang
- Atila Biosystems, 740 Sierra Vista Ave., Unit E, Mountain View, CA 94043, USA; (Z.Y.); (Y.Z.); (Y.W.)
| | - Thomas J. George
- UF Health Cancer Center, University of Florida, 2033 Mowry Rd., Gainesville, FL 32610, USA;
- Department of Medicine, University of Florida, 1600 SW Archer Rd., Gainesville, FL 32610, USA
| | - Z. Hugh Fan
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (P.J.D.); (M.-C.N.L.)
- UF Health Cancer Center, University of Florida, 2033 Mowry Rd., Gainesville, FL 32610, USA;
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
50
|
Hsu PJ, Singh K, Dhiman A, Witmer HDD, He C, Eng OS, Catenacci DVT, Posner MC, Turaga KK. Utility of Perioperative Measurement of Cell-Free DNA and Circulating Tumor DNA in Informing the Prognosis of GI Cancers: A Systematic Review. JCO Precis Oncol 2022; 6:e2100337. [PMID: 35188804 PMCID: PMC8984241 DOI: 10.1200/po.21.00337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Current surveillance imaging and tumor markers lack sensitivity for the early detection of recurrence in GI cancers. This study critically evaluates the current literature on the role of sequential measurement of circulating tumor DNA (ctDNA) before and after curative resection in informing recurrence. METHODS A systematic search using a predefined, registered protocol was conducted for studies published between January 2010 and May 2020. Included studies described patients with GI cancers treated with curative-intent surgical resection and measurement of ctDNA both before and after surgery. Patients were divided into three groups on the basis of the presence or absence of ctDNA at these time points. The primary outcome was recurrence-free survival (RFS). RESULTS The search yielded 3,873 articles; five met the inclusion criteria and collectively evaluated 57 patients. Pooled median RFS was 62 months (interquartile range 19 to not reached). Although median RFS was not reached in group 1 (- to -) or group 2 (+ to -), median RFS in group 3 (+ to +) was 15 months (interquartile range 9.6-60.4 months). Cox hazard ratio was 4.46 (95% CI, 1.17 to 16.99; P = .028) between group 1 and group 2, and 10.47 (95% CI, 2.91 to 37.74; P < .001) between group 2 and group 3. CONCLUSION Detectable ctDNA, either preoperatively or postoperatively, and its persistence after curative surgery are associated with a greater risk of recurrence and decreased RFS in GI cancers. Thus, perioperative measurement of ctDNA may be a useful postoperative risk stratification tool and guide additional therapies.
Collapse
Affiliation(s)
- Phillip J. Hsu
- Department of Surgery, University of Chicago, Chicago, IL,University of Chicago, Medical Scientist Training Program, Chicago, IL
| | - Khushboo Singh
- Department of Surgery, University of Chicago, Chicago, IL
| | - Ankit Dhiman
- Department of Surgery, University of Chicago, Chicago, IL
| | | | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL
| | - Oliver S. Eng
- Department of Surgery, University of Chicago, Chicago, IL
| | | | | | - Kiran K. Turaga
- Department of Surgery, University of Chicago, Chicago, IL,Kiran K. Turaga, MD, MPH, 5841 S. Maryland Ave, MC 5094, Chicago, IL 60637; e-mail:
| |
Collapse
|