1
|
Hu J, Qin C, Xu Y, Liu X, Wei X, Wu J, Zhao X, Chen C, Lin Y. Decreased thrombospondin-1 impairs endometrial stromal decidualization in unexplained recurrent spontaneous abortion†. Biol Reprod 2024; 111:448-462. [PMID: 38780057 DOI: 10.1093/biolre/ioae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
Inappropriate endometrial stromal decidualization has been implied as an important reason of many pregnancy-related complications, such as unexplained recurrent spontaneous abortion, preeclampsia, and intrauterine growth restriction. Here, we observed that thrombospondin-1, an adhesive glycoprotein, was significantly downregulated in endometrial decidual cells from patients with unexplained recurrent spontaneous abortion. The immortalized human endometrial stromal cell line was used to investigate the possible THBS1-mediated regulation of decidualization. In vitro experiments found that the expression level of THBS1 increased with the normal decidualization process. Knockdown of THBS1 could decrease the expression levels of prolactin and insulin-like growth factor binding protein-1, two acknowledged human decidualization markers, whereas THBS1 overexpression could reverse these effects. The RNA sequencing results demonstrated that the extracellular regulated protein kinases signaling pathway was potentially affected by the knockdown of THBS1. We further confirmed that the regulation of THBS1 on decidualization was achieved through the ERK signaling pathway by the treatment of inhibitors. Moreover, knockdown of THBS1 in pregnant mice could impair decidualization and result in an increased fetus resorption rate. Altogether, our study demonstrated a crucial role of THBS1 in the pathophysiological process of unexplained recurrent spontaneous abortion and provided some new insights into the research of pregnancy-related complications.
Collapse
Affiliation(s)
- Jianing Hu
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
| | - Chuanmei Qin
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
| | - Yichi Xu
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
| | - Xueqing Liu
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
| | - Xiaowei Wei
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai 200030, China
| | - Jiayi Wu
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
| | - Xiaomiao Zhao
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106 Zhongshan Second Road, Yuexiu District, Guangzhou 510080, China
| | - Cailian Chen
- Department of Automation, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, No. 800 Dongchuan Road, Minhang District, Shanghai 201100, China
| | - Yi Lin
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai 200030, China
| |
Collapse
|
2
|
Roshan-Zamir M, Khademolhosseini A, Rajalingam K, Ghaderi A, Rajalingam R. The genomic landscape of the immune system in lung cancer: present insights and continuing investigations. Front Genet 2024; 15:1414487. [PMID: 38983267 PMCID: PMC11231382 DOI: 10.3389/fgene.2024.1414487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Lung cancer is one of the most prevalent malignancies worldwide, contributing to over a million cancer-related deaths annually. Despite extensive research investigating the genetic factors associated with lung cancer susceptibility and prognosis, few studies have explored genetic predispositions regarding the immune system. This review discusses the most recent genomic findings related to the susceptibility to or protection against lung cancer, patient survival, and therapeutic responses. The results demonstrated the effect of immunogenetic variations in immune system-related genes associated with innate and adaptive immune responses, cytokine, and chemokine secretions, and signaling pathways. These genetic diversities may affect the crosstalk between tumor and immune cells within the tumor microenvironment, influencing cancer progression, invasion, and prognosis. Given the considerable variability in the individual immunegenomics profiles, future studies should prioritize large-scale analyses to identify potential genetic variations associated with lung cancer using highthroughput technologies across different populations. This approach will provide further information for predicting response to targeted therapy and promotes the development of new measures for individualized cancer treatment.
Collapse
Affiliation(s)
- Mina Roshan-Zamir
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Khademolhosseini
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kavi Rajalingam
- Cowell College, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Abbas Ghaderi
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
3
|
Ying R, Li C, Li H, Zou J, Hu M, Hong Q, Shen Y, Hou L, Cheng H, Zhou R. RPGR is a guanine nucleotide exchange factor for the small GTPase RAB37 required for retinal function via autophagy regulation. Cell Rep 2024; 43:114010. [PMID: 38536817 DOI: 10.1016/j.celrep.2024.114010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/28/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
Although the small GTPase RAB37 acts as an organizer of autophagosome biogenesis, the upstream regulatory mechanism of autophagy via guanosine diphosphate (GDP)-guanosine triphosphate (GTP) exchange in maintaining retinal function has not been determined. We found that retinitis pigmentosa GTPase regulator (RPGR) is a guanine nucleotide exchange factor that activates RAB37 by accelerating GDP-to-GTP exchange. RPGR directly interacts with RAB37 via the RPGR-RCC1-like domain to promote autophagy through stimulating exchange. Rpgr knockout (KO) in mice leads to photoreceptor degeneration owing to autophagy impairment in the retina. Notably, the retinopathy phenotypes of Rpgr KO retinas are rescued by the adeno-associated virus-mediated transfer of pre-trans-splicing molecules, which produce normal Rpgr mRNAs via trans-splicing in the Rpgr KO retinas. This rescue upregulates autophagy through the re-expression of RPGR in KO retinas to accelerate GDP-to-GTP exchange; thus, retinal homeostasis reverts to normal. Taken together, these findings provide an important missing link for coordinating RAB37 GDP-GTP exchange via the RPGR and retinal homeostasis by autophagy regulation.
Collapse
Affiliation(s)
- Ruhong Ying
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Cong Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Huirong Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325003, China
| | - Juan Zou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Mengxin Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Qiang Hong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Yin Shen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ling Hou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325003, China.
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
4
|
Kuo WT, Kuo IY, Hsieh HC, Wu ST, Su WC, Wang YC. Rab37 mediates trafficking and membrane presentation of PD-1 to sustain T cell exhaustion in lung cancer. J Biomed Sci 2024; 31:20. [PMID: 38321486 PMCID: PMC10848371 DOI: 10.1186/s12929-024-01009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Programmed cell death protein 1 (PD-1) is an immune checkpoint receptor expressed on the surface of T cells. High expression of PD-1 leads to T-cell dysfunction in the tumor microenvironment (TME). However, the mechanism of intracellular trafficking and plasma membrane presentation of PD-1 remains unclear. METHODS Multiple databases of lung cancer patients were integratively analyzed to screen Rab proteins and potential immune-related signaling pathways. Imaging and various biochemical assays were performed in Jurkat T cells, splenocytes, and human peripheral blood mononuclear cells (PBMCs). Rab37 knockout mice and specimens of lung cancer patients were used to validate the concept. RESULTS Here, we identify novel mechanisms of intracellular trafficking and plasma membrane presentation of PD-1 mediated by Rab37 small GTPase to sustain T cell exhaustion, thereby leading to poor patient outcome. PD-1 colocalized with Rab37-specific vesicles of T cells in a GTP-dependent manner whereby Rab37 mediated dynamic trafficking and membrane presentation of PD-1. However, glycosylation mutant PD-1 delayed cargo recruitment to the Rab37 vesicles, thus stalling membrane presentation. Notably, T cell proliferation and activity were upregulated in tumor-infiltrating T cells from the tumor-bearing Rab37 knockout mice compared to those from wild type. Clinically, the multiplex immunofluorescence-immunohistochemical assay indicated that patients with high Rab37+/PD-1+/TIM3+/CD8+ tumor infiltrating T cell profile correlated with advanced tumor stages and poor overall survival. Moreover, human PBMCs from patients demonstrated high expression of Rab37, which positively correlated with elevated levels of PD-1+ and TIM3+ in CD8+ T cells exhibiting reduced tumoricidal activity. CONCLUSIONS Our results provide the first evidence that Rab37 small GTPase mediates trafficking and membrane presentation of PD-1 to sustain T cell exhaustion, and the tumor promoting function of Rab37/PD-1 axis in T cells of TME in lung cancer. The expression profile of Rab37high/PD-1high/TIM3high in tumor-infiltrating CD8+ T cells is a biomarker for poor prognosis in lung cancer patients.
Collapse
Affiliation(s)
- Wan-Ting Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
- Department of Biotechnology, College of Biomedical Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Chia Hsieh
- Institute of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ssu-Ting Wu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Wu-Chou Su
- Division of Oncology, Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan.
- Institute of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
5
|
Huang H, Liang L, Sun D, Li J, Wang W, Zha L, Yang J, Pan K, Fan X, He C, Tang X, Zhang P. Rab37 Promotes Endothelial Differentiation and Accelerates ADSC-Mediated Diabetic Wound Healing through Regulating Secretion of Hsp90α and TIMP1. Stem Cell Rev Rep 2023; 19:1019-1033. [PMID: 36627432 DOI: 10.1007/s12015-022-10491-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/12/2023]
Abstract
Accumulating evidence indicates that adipose tissue-derived mesenchymal stem cells (ADSCs) are an effective treatment for diabetic refractory wounds. However, the application of ADSCs to diabetic wounds is still limited, indicating that we still lack sufficient knowledge regarding regulators/mediators of ADSCs during wound healing. Rab37, a member of RabGTPase, may function as regulator of vesicle trafficking, which is a crucial event for the secretion of cytokines by ADSCs. Our previous study indicated that Rab37 promotes the adiopogenic differentiation of ADSCs. In this study, we explored the role of Rab37 in ADSC-mediated diabetic wound healing. An in vivo study in db/db diabetic mice showed that Rab37-expressing ADSCs shortened the wound closure time, improved re-epithelialization and collagen deposition, and promoted angiogenesis during wound healing. An in vitro study showed that Rab37 promoted the proliferation, migration and endothelial differentiation of ADSCs. LC-MS/MS analysis identified Hsp90α and TIMP1 as up-regulated cytokines in conditioned media of Rab37-ADSCs. The up-regulation of Rab37 enhanced the secretion of Hsp90α and TIMP1 during endothelial differentiation and under high-glucose exposure. Interestingly, Rab37 promoted the expression of TIMP1, but not Hsp90α, during endothelial differentiation. PLA showed that Rab37 can directly bind to Hsp90α orTIMP1 in ADSCs. Moreover, Hsp90α and TIMP1 knockdown compromised the promoting effects of Rab37 on the proliferation, migration and endothelial differentiation of ADSCs. In conclusion, Rab37 promotes the proliferation, migration and endothelial differentiation of ADSCs and accelerates ADSC-mediated diabetic wound healing through regulating the secretion of Hsp90α and TIMP1.
Collapse
Affiliation(s)
- Haili Huang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Ling Liang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Dan Sun
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Jin Li
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Wentao Wang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Lixia Zha
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Jiaqi Yang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Kunyan Pan
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Xianmou Fan
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Chengzhang He
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Xudong Tang
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for Antitumor Active Substance Research and development, Guangdong Medical University, Zhanjiang, China
| | - Peihua Zhang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China.
| |
Collapse
|
6
|
Kuo IY, Hsieh CH, Kuo WT, Chang CP, Wang YC. Recent advances in conventional and unconventional vesicular secretion pathways in the tumor microenvironment. J Biomed Sci 2022; 29:56. [PMID: 35927755 PMCID: PMC9354273 DOI: 10.1186/s12929-022-00837-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
All cells in the changing tumor microenvironment (TME) need a class of checkpoints to regulate the balance among exocytosis, endocytosis, recycling and degradation. The vesicular trafficking and secretion pathways regulated by the small Rab GTPases and their effectors convey cell growth and migration signals and function as meditators of intercellular communication and molecular transfer. Recent advances suggest that Rab proteins govern conventional and unconventional vesicular secretion pathways by trafficking widely diverse cargoes and substrates in remodeling TME. The mechanisms underlying the regulation of conventional and unconventional vesicular secretion pathways, their action modes and impacts on the cancer and stromal cells have been the focus of much attention for the past two decades. In this review, we discuss the current understanding of vesicular secretion pathways in TME. We begin with an overview of the structure, regulation, substrate recognition and subcellular localization of vesicular secretion pathways. We then systematically discuss how the three fundamental vesicular secretion processes respond to extracellular cues in TME. These processes are the conventional protein secretion via the endoplasmic reticulum-Golgi apparatus route and two types of unconventional protein secretion via extracellular vesicles and secretory autophagy. The latest advances and future directions in vesicular secretion-involved interplays between tumor cells, stromal cell and host immunity are also described.
Collapse
Affiliation(s)
- I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsiung Hsieh
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan
| | - Wan-Ting Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
7
|
Hannan R, Mohamad O, Diaz de Leon A, Manna S, Pop LM, Zhang Z, Mannala S, Christie A, Christley S, Monson N, Ishihara D, Hsu EJ, Ahn C, Kapur P, Chen M, Arriaga Y, Courtney K, Cantarel B, Wakeland EK, Fu YX, Pedrosa I, Cowell L, Wang T, Margulis V, Choy H, Timmerman RD, Brugarolas J. Outcome and Immune Correlates of a Phase II Trial of High-Dose Interleukin-2 and Stereotactic Ablative Radiotherapy for Metastatic Renal Cell Carcinoma. Clin Cancer Res 2021; 27:6716-6725. [PMID: 34551906 PMCID: PMC9924935 DOI: 10.1158/1078-0432.ccr-21-2083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/13/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023]
Abstract
PURPOSE This phase II clinical trial evaluated whether the addition of stereotactic ablative radiotherapy (SAbR), which may promote tumor antigen presentation, improves the overall response rate (ORR) to high-dose IL2 (HD IL2) in metastatic renal cell carcinoma (mRCC). PATIENTS AND METHODS Patients with pathologic evidence of clear cell renal cell carcinoma (RCC) and radiographic evidence of metastasis were enrolled in this single-arm trial and were treated with SAbR, followed by HD IL2. ORR was assessed based on nonirradiated metastases. Secondary endpoints included overall survival (OS), progression-free survival (PFS), toxicity, and treatment-related tumor-specific immune response. Correlative studies involved whole-exome and transcriptome sequencing, T-cell receptor sequencing, cytokine analysis, and mass cytometry on patient samples. RESULTS Thirty ethnically diverse mRCC patients were enrolled. A median of two metastases were treated with SAbR. Among 25 patients evaluable by RECIST v1.1, ORR was 16% with 8% complete responses. Median OS was 37 months. Treatment-related adverse events (AE) included 22 grade ≥3 events that were not dissimilar from HD IL2 alone. There were no grade 5 AEs. A correlation was observed between SAbR to lung metastases and improved PFS (P = 0.0165). Clinical benefit correlated with frameshift mutational load, mast cell tumor infiltration, decreased circulating tumor-associated T-cell clones, and T-cell clonal expansion. Higher regulatory/CD8+ T-cell ratios at baseline in the tumor and periphery correlated with no clinical benefit. CONCLUSIONS Adding SAbR did not improve the response rate to HD IL2 in patients with mRCC in this study. Tissue analyses suggest a possible correlation between frameshift mutation load as well as tumor immune infiltrates and clinical outcomes.
Collapse
Affiliation(s)
- Raquibul Hannan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas.
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Osama Mohamad
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Alberto Diaz de Leon
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Subrata Manna
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Laurentiu M Pop
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ze Zhang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Samantha Mannala
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alana Christie
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Scott Christley
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nancy Monson
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Dan Ishihara
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Eric J Hsu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chul Ahn
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Payal Kapur
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yull Arriaga
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kevin Courtney
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Brandi Cantarel
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ivan Pedrosa
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lindsay Cowell
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vitaly Margulis
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hak Choy
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Robert D Timmerman
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - James Brugarolas
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
8
|
Riley A, Jones H, England J, Kuvshinov D, Green V, Greenman J. Identification of soluble tissue-derived biomarkers from human thyroid tissue explants maintained on a microfluidic device. Oncol Lett 2021; 22:780. [PMID: 34594421 DOI: 10.3892/ol.2021.13041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/09/2021] [Indexed: 01/08/2023] Open
Abstract
Although a large cohort of potential biomarkers for thyroid cancer aggressiveness have been tested in various formats in recent years, to the best of our knowledge, thyroglobulin and calcitonin remain the only two established biomarkers associated with thyroid cancer management. Our group has recently validated a novel means of maintaining live, human ex vivo thyroid tissue within a tissue-on-chip format. The present pilot study aimed to interrogate the tissue effluent, containing all the soluble markers released by the tissue samples maintained within the devices' tissue chamber, for the presence of markers potentially associated with thyroid cancer aggressiveness. Culture effluent from tissue samples harvested from 19 individual patients who had undergone thyroidectomy for the treatment of suspected thyroid cancer was assessed, first using a proteome profiler™ angiogenesis array kit. Patients were subcategorised as 'aggressive' if they possessed a minimum of N1b level metastases, whilst 'non-aggressive' samples were T3 or lower without evidence of multifocality; and contralateral healthy thyroid tissue was harvested for comparative studies. Levels of Serpin-F1, vascular endothelial growth factor, Thrombospondin-1 and chemokine (C-C motif) ligand were significantly altered and, thus, were further investigated using ELISA to allow for quantitative analysis. The concentration of serpin-F1 was significantly increased in the effluent of aggressive thyroid cancer tissue when compared with levels released by both non-aggressive and benign samples. The present study demonstrated the usability of microfluidic technology for the analysis of the ex vivo tissue secretome in order to identify novel biomarkers.
Collapse
Affiliation(s)
- Andrew Riley
- Faculty of Health Sciences, University of Hull, Hull HU6 7RX, UK
| | - Heidi Jones
- Department of ENT, Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, Hull HU16 5JQ, UK
| | - James England
- Department of ENT, Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, Hull HU16 5JQ, UK
| | - Dmitriy Kuvshinov
- Faculty of Engineering, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Victoria Green
- Faculty of Health Sciences, University of Hull, Hull HU6 7RX, UK
| | - John Greenman
- Faculty of Health Sciences, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
9
|
High-grade salivary gland cancer: is surgery followed by radiotherapy an adequate treatment to reach tumor control? Results from a tertiary referral centre focussing on incidence and management of distant metastases. Eur Arch Otorhinolaryngol 2021; 279:2553-2563. [PMID: 34436631 PMCID: PMC8986716 DOI: 10.1007/s00405-021-07024-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
Purpose Salivary Gland cancer (SGC) is a rare and heterogenous group of tumors. Standard therapeutic options achieve high local but poor distant control rates, especially in high-grade SGC. The aim of this monocentric study was to evaluate patterns of recurrence and its treatment options (local ablative vs. systemic) in a homogenously treated patient population with high-grade SGC after surgery and radio(chemo)therapy. Methods Monocentric, retrospective study of patients with newly diagnosed high-grade salivary gland cancer. We retrospectively reviewed clinical reports from 69 patients with high-grade salivary gland cancer in a single-center audit. Survival rates were calculated using the Kaplan–Meier method and prognostic variables were analyzed (univariate analysis: log-rank test; multivariate analysis: Cox regression analysis). Results The median time of follow-up was 31 months. After 5 years, the cumulative overall survival was 65.2%, cumulative incidence of local recurrence was 7.2%, whereas the cumulative incidence of distant metastases was 43.5% after 5 years. 30 of 69 patients developed distant metastases during the time of follow-up, especially patients with adenoid cystic carcinoma, salivary duct carcinoma, adenocarcinoma NOS and acinic cell carcinoma with high-grade transformation. The most common type of therapy therefore was chemotherapy (50%). 85.7% of patients with local ablative therapy of distant metastases show disease progression during follow-up afterwards. Conclusion With surgery and radio-chemotherapy, a high rate of loco-regional control is reached, but over 40% of patients develop distant metastases in the further follow-up which usually present a diffuse pattern involving in a diffuse metastases. Therefore, in the future, intensified interdisciplinary combination therapies even in the first-line treatment in certain subtypes of high-grade SGC should be investigated. Supplementary Information The online version contains supplementary material available at 10.1007/s00405-021-07024-9.
Collapse
|
10
|
Bothrops Jararaca Snake Venom Modulates Key Cancer-Related Proteins in Breast Tumor Cell Lines. Toxins (Basel) 2021; 13:toxins13080519. [PMID: 34437390 PMCID: PMC8402457 DOI: 10.3390/toxins13080519] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is characterized by the development of abnormal cells that divide in an uncontrolled way and may spread into other tissues where they may infiltrate and destroy normal body tissue. Several previous reports have described biochemical anti-tumorigenic properties of crude snake venom or its components, including their capability of inhibiting cell proliferation and promoting cell death. However, to the best of our knowledge, there is no work describing cancer cell proteomic changes following treatment with snake venoms. In this work we describe the quantitative changes in proteomics of MCF7 and MDA-MB-231 breast tumor cell lines following treatment with Bothrops jararaca snake venom, as well as the functional implications of the proteomic changes. Cell lines were treated with sub-toxic doses at either 0.63 μg/mL (low) or 2.5 μg/mL (high) of B. jararaca venom for 24 h, conditions that cause no cell death per se. Proteomics analysis was conducted on a nano-scale liquid chromatography coupled on-line with mass spectrometry (nLC-MS/MS). More than 1000 proteins were identified and evaluated from each cell line treated with either the low or high dose of the snake venom. Protein profiling upon venom treatment showed differential expression of several proteins related to cancer cell metabolism, immune response, and inflammation. Among the identified proteins we highlight histone H3, SNX3, HEL-S-156an, MTCH2, RPS, MCC2, IGF2BP1, and GSTM3. These data suggest that sub-toxic doses of B. jararaca venom have potential to modulate cancer-development related protein targets in cancer cells. This work illustrates a novel biochemical strategy to identify therapeutic targets against cancer cell growth and survival.
Collapse
|
11
|
Kenney J, Ndoye A, Lamar JM, DiPersio CM. Comparative use of CRISPR and RNAi to modulate integrin α3β1 in triple negative breast cancer cells reveals that some pro-invasive/pro-metastatic α3β1 functions are independent of global regulation of the transcriptome. PLoS One 2021; 16:e0254714. [PMID: 34270616 PMCID: PMC8284828 DOI: 10.1371/journal.pone.0254714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022] Open
Abstract
Integrin receptors for the extracellular matrix play critical roles at all stages of carcinogenesis, including tumor growth, tumor progression and metastasis. The laminin-binding integrin α3β1 is expressed in all epithelial tissues where it has important roles in cell survival, migration, proliferation, and gene expression programs during normal and pathological tissue remodeling. α3β1 signaling and adhesion functions promote tumor growth and metastasis in a number of different types of cancer cells. Previously, we used RNA interference (RNAi) technology to suppress the expression of the ITGA3 gene (encoding the α3 subunit) in the triple-negative breast cancer cell line, MDA-MB-231, thereby generating variants of this line with reduced expression of integrin α3β1. This approach revealed that α3β1 promotes pro-tumorigenic functions such as cell invasion, lung metastasis, and gene regulation. In the current study, we used CRISPR technology to knock out the ITGA3 gene in MDA-MB-231 cells, thereby ablating expression of integrin α3β1 entirely. RNA-seq analysis revealed that while the global transcriptome was altered substantially by RNAi-mediated suppression of α3β1, it was largely unaffected following CRISPR-mediated ablation of α3β1. Moreover, restoring α3β1 to the latter cells through inducible expression of α3 cDNA failed to alter gene expression substantially, suggesting that use of CRISPR to abolish α3β1 led to a decoupling of the integrin from its ability to regulate the transcriptome. Interestingly, both cell invasion in vitro and metastatic colonization in vivo were reduced when α3β1 was abolished using CRISPR, as we observed previously using RNAi to suppress α3β1. Taken together, our results show that pro-invasive/pro-metastatic roles for α3β1 are not dependent on its ability to regulate the transcriptome. Moreover, our finding that use of RNAi versus CRISPR to target α3β1 produced distinct effects on gene expression underlines the importance of using multiple approaches to obtain a complete picture of an integrin’s functions in cancer cells.
Collapse
Affiliation(s)
- James Kenney
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, United States of America
| | - Abibatou Ndoye
- Department of Surgery, Albany Medical College, Albany, New York, United States of America
| | - John M. Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - C. Michael DiPersio
- Department of Surgery, Albany Medical College, Albany, New York, United States of America
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Tagami M, Kakehashi A, Sakai A, Misawa N, Katsuyama-Yoshikawa A, Wanibuchi H, Azumi A, Honda S. Expression of thrombospondin-1 in conjunctival squamous cell carcinoma is correlated to the Ki67 index and associated with progression-free survival. Graefes Arch Clin Exp Ophthalmol 2021; 259:3127-3136. [PMID: 34050808 DOI: 10.1007/s00417-021-05236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Conjunctival squamous cell carcinoma (SCC) is primarily treated with surgical resection. SCC has various stages, and local recurrence is common. The purpose of this study was to investigate thrombospondin-1 expression and its association with prognosis. METHODS In this retrospective study, a gene expression array along with immunohistochemistry were performed for the evaluation of thrombospondin-1 expression, localization, as well as Ki67 labeling cell indices in carcinoma in situ (Tis) and advanced conjunctival SCC (Tadv). The presence or absence and intensity of cytoplasmic and nuclear staining in tumor cells were also divided into groups with a score of 0-3 and semi-quantitatively analyzed to investigate intracellular staining patterns. The association between thrombospondin-1 expression and tumor progression in a series of 31 conjunctival SCCs was further investigated. RESULTS All 31 patients in the cohort (100%) were East Asian. A simple comparison between Tis and Tadv demonstrated significant differences in expressions of 45 genes, including thrombospondin-1 (p < 0.01). In this cohort, 30/31 tumors were positive (96%) for thrombospondin-1. Furthermore, thrombospondin-1 intracellular staining pattern analysis scores were 2.12 and 0.96 for nuclear and cytoplasmic staining, respectively, with a significant difference observed between Tis and Tadv (p < 0.01). Alteration of the Ki67 labeling index was significantly correlated with that of the thrombospondin-1 cytoplasmic score (p = 0.030). Furthermore, univariate Cox regression analysis showed a significant correlation between thrombospondin-1 staining and progression-free survival (p = 0.026) and final orbital exenteration (p = 0.019). CONCLUSIONS The present results demonstrated that thrombospondin-1 is a potential molecular target in the pathology of conjunctival SCC, in addition to serving as a prognostic factor.
Collapse
Affiliation(s)
- Mizuki Tagami
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Osaka City University, 1-5-7 Asahimachi, Abeno-ku, Osaka-shi, Osaka, 545-8585, Japan.
- Ophthalmology Department and Eye Center, Kobe Kaisei Hospital, Kobe, Hyogo, Japan.
| | - Anna Kakehashi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Atsushi Sakai
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Osaka City University, 1-5-7 Asahimachi, Abeno-ku, Osaka-shi, Osaka, 545-8585, Japan
| | - Norihiko Misawa
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Osaka City University, 1-5-7 Asahimachi, Abeno-ku, Osaka-shi, Osaka, 545-8585, Japan
| | | | - Hideki Wanibuchi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Atsushi Azumi
- Ophthalmology Department and Eye Center, Kobe Kaisei Hospital, Kobe, Hyogo, Japan
| | - Shigeru Honda
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Osaka City University, 1-5-7 Asahimachi, Abeno-ku, Osaka-shi, Osaka, 545-8585, Japan
| |
Collapse
|
13
|
Brunel A, Bégaud G, Auger C, Durand S, Battu S, Bessette B, Verdier M. Autophagy and Extracellular Vesicles, Connected to rabGTPase Family, Support Aggressiveness in Cancer Stem Cells. Cells 2021; 10:1330. [PMID: 34072080 PMCID: PMC8227744 DOI: 10.3390/cells10061330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
Even though cancers have been widely studied and real advances in therapeutic care have been made in the last few decades, relapses are still frequently observed, often due to therapeutic resistance. Cancer Stem Cells (CSCs) are, in part, responsible for this resistance. They are able to survive harsh conditions such as hypoxia or nutrient deprivation. Autophagy and Extracellular Vesicles (EVs) secretion are cellular processes that help CSC survival. Autophagy is a recycling process and EVs secretion is essential for cell-to-cell communication. Their roles in stemness maintenance have been well described. A common pathway involved in these processes is vesicular trafficking, and subsequently, regulation by Rab GTPases. In this review, we analyze the role played by Rab GTPases in stemness status, either directly or through their regulation of autophagy and EVs secretion.
Collapse
|
14
|
Kuo IY, Yang YE, Yang PS, Tsai YJ, Tzeng HT, Cheng HC, Kuo WT, Su WC, Chang CP, Wang YC. Converged Rab37/IL-6 trafficking and STAT3/PD-1 transcription axes elicit an immunosuppressive lung tumor microenvironment. Am J Cancer Res 2021; 11:7029-7044. [PMID: 34093869 PMCID: PMC8171097 DOI: 10.7150/thno.60040] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Increased IL-6 level, M2 macrophages and PD-1+CD8+ T cells in tumor microenvironments (TME) have been identified to correlate with resistance to checkpoint blockade immunotherapy, yet the mechanism remains poorly understood. Rab small GTPase-mediated trafficking of cytokines is critical in immuno-modulation. We have previously reported dysregulation of Rab37 in lung cancer cells, whereas the roles of Rab37 in tumor-infiltrating immune cells and cancer immunotherapy are unclear. Methods: The tumor growth of the syngeneic mouse allograft in wild type or Rab37 knockout mice was analyzed. Imaging analyses and vesicle isolation were conducted to determine Rab37-mediated IL-6 secretion. STAT3 binding sites at PD-1 promoter in T cells were identified by chromatin immunoprecipitation assay. Multiplex fluorescence immunohistochemistry was performed to detect the protein level of Rab37, IL-6 and PD-1 and localization of the tumor-infiltrating immune cells in allografts from mice or tumor specimens from lung cancer patients. Results: We revealed that Rab37 regulates the secretion of IL-6 in a GTPase-dependent manner in macrophages to trigger M2 polarization. Macrophage-derived IL-6 promotes STAT3-dependent PD-1 mRNA expression in CD8+ T cells. Clinically, tumors with high stromal Rab37 and IL-6 expression coincide with tumor infiltrating M2-macrophages and PD1+CD8+ T cells that predicts poor prognosis in lung cancer patients. In addition, lung cancer patients with an increase in plasma IL-6 level are found to be associated with immunotherapeutic resistance. Importantly, combined blockade of IL-6 and CTLA-4 improves survival of tumor-bearing mice by reducing infiltration of PD1+CD8+ T cells and M2 macrophages in TME. Conclusions: Rab37/IL-6 trafficking pathway links with IL-6/STAT3/PD-1 transcription regulation to foster an immunosuppressive TME and combined IL-6/CTLA-4 blockade therapy exerts potent anti-tumor efficacy.
Collapse
|
15
|
Mungenast F, Fernando A, Nica R, Boghiu B, Lungu B, Batra J, Ecker RC. Next-Generation Digital Histopathology of the Tumor Microenvironment. Genes (Basel) 2021; 12:538. [PMID: 33917241 PMCID: PMC8068063 DOI: 10.3390/genes12040538] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Progress in cancer research is substantially dependent on innovative technologies that permit a concerted analysis of the tumor microenvironment and the cellular phenotypes resulting from somatic mutations and post-translational modifications. In view of a large number of genes, multiplied by differential splicing as well as post-translational protein modifications, the ability to identify and quantify the actual phenotypes of individual cell populations in situ, i.e., in their tissue environment, has become a prerequisite for understanding tumorigenesis and cancer progression. The need for quantitative analyses has led to a renaissance of optical instruments and imaging techniques. With the emergence of precision medicine, automated analysis of a constantly increasing number of cellular markers and their measurement in spatial context have become increasingly necessary to understand the molecular mechanisms that lead to different pathways of disease progression in individual patients. In this review, we summarize the joint effort that academia and industry have undertaken to establish methods and protocols for molecular profiling and immunophenotyping of cancer tissues for next-generation digital histopathology-which is characterized by the use of whole-slide imaging (brightfield, widefield fluorescence, confocal, multispectral, and/or multiplexing technologies) combined with state-of-the-art image cytometry and advanced methods for machine and deep learning.
Collapse
Affiliation(s)
- Felicitas Mungenast
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- TissueGnostics GmbH, 1020 Vienna, Austria;
| | - Achala Fernando
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | | | - Bogdan Boghiu
- TissueGnostics SRL, 700028 Iasi, Romania; (B.B.); (B.L.)
| | - Bianca Lungu
- TissueGnostics SRL, 700028 Iasi, Romania; (B.B.); (B.L.)
| | - Jyotsna Batra
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Rupert C. Ecker
- TissueGnostics GmbH, 1020 Vienna, Austria;
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
16
|
Cao S, Wang Y, Li J, Ling X, Zhang Y, Zhou Y, Zhong H. Prognostic Implication of the Expression Level of PECAM-1 in Non-small Cell Lung Cancer. Front Oncol 2021; 11:587744. [PMID: 33828969 PMCID: PMC8019905 DOI: 10.3389/fonc.2021.587744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/08/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Lung cancer is a malignant disease that threatens human health. Hence, it is crucial to identify effective prognostic factors and treatment targets. Single-cell RNA sequencing can quantify the expression profiles of transcripts in individual cells. Methods: GSE117570 profiles were downloaded from the Gene Expression Omnibus database. Key ligand-receptor genes in the tumor and the normal groups were screened to identify integrated differentially expressed genes (DEGs) from the GSE118370 and The Cancer Genome Atlas Lung Adenocarcinoma databases. DEGs associated with more ligand-receptor pairs were selected as candidate DEGs for Gene Ontology (GO) functional annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and survival analysis. In addition, we conducted validation immunohistochemical experiments on postoperative specimens of 30 patients with lung cancer. Results: A total of 18 candidate DEGs were identified from the tumor and the normal groups. The analysis of the GO biological process revealed that these DEGs were mainly enriched in wound healing, in response to wounding, cell migration, cell motility, and regulation of cell motility, while the KEGG pathway analysis found that these DEGs were mainly enriched in proteoglycans in cancer, bladder cancer, malaria, tyrosine kinase inhibitor resistance in Epidermal Growth Factor Receptor (EGFR), and the ERBB signaling pathway. Survival analysis showed that a high, rather than a low, expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) was associated with improved survival. Similarly, in postoperative patients with lung cancer, we found that the overall survival of the PECAM-1 high-expression group shows a better trend than the PECAM-1 low-expression group (p = 0.172). Conclusions: The candidate DEGs identified in this study may play some important roles in the occurrence and development of lung cancer, especially PECAM-1, which may present potential prognostic biomarkers for the outcome.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Zhou
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Hua Zhong
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
17
|
Dong J, Maj C, Tsavachidis S, Ostrom QT, Gharahkhani P, Anderson LA, Wu AH, Ye W, Bernstein L, Borisov O, Schröder J, Chow WH, Gammon MD, Liu G, Caldas C, Pharoah PD, Risch HA, May A, Gerges C, Anders M, Venerito M, Schmidt T, Izbicki JR, Hölscher AH, Schumacher B, Vashist Y, Neuhaus H, Rösch T, Knapp M, Krawitz P, Böhmer A, Iyer PG, Reid BJ, Lagergren J, Shaheen NJ, Corley DA, Gockel I, Fitzgerald RC, Cook MB, Whiteman DC, Vaughan TL, Schumacher J, Thrift AP. Sex-Specific Genetic Associations for Barrett's Esophagus and Esophageal Adenocarcinoma. Gastroenterology 2020; 159:2065-2076.e1. [PMID: 32918910 PMCID: PMC9057456 DOI: 10.1053/j.gastro.2020.08.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Esophageal adenocarcinoma (EA) and its premalignant lesion, Barrett's esophagus (BE), are characterized by a strong and yet unexplained male predominance (with a male-to-female ratio in EA incidence of up to 6:1). Genome-wide association studies (GWAS) have identified more than 20 susceptibility loci for these conditions. However, potential sex differences in genetic associations with BE/EA remain largely unexplored. METHODS Given strong genetic overlap, BE and EA cases were combined into a single case group for analysis. These were compared with population-based controls. We performed sex-specific GWAS of BE/EA in 3 separate studies and then used fixed-effects meta-analysis to provide summary estimates for >9 million variants for male and female individuals. A series of downstream analyses were conducted separately in male and female individuals to identify genes associated with BE/EA and the genetic correlations between BE/EA and other traits. RESULTS We included 6758 male BE/EA cases, 7489 male controls, 1670 female BE/EA cases, and 6174 female controls. After Bonferroni correction, our meta-analysis of sex-specific GWAS identified 1 variant at chromosome 6q11.1 (rs112894788, KHDRBS2-MTRNR2L9, PBONF = .039) that was statistically significantly associated with BE/EA risk in male individuals only, and 1 variant at chromosome 8p23.1 (rs13259457, PRSS55-RP1L1, PBONF = 0.057) associated, at borderline significance, with BE/EA risk in female individuals only. We also observed strong genetic correlations of BE/EA with gastroesophageal reflux disease in male individuals and obesity in female individuals. CONCLUSIONS The identified novel sex-specific variants associated with BE/EA could improve the understanding of the genetic architecture of the disease and the reasons for the male predominance.
Collapse
Affiliation(s)
- Jing Dong
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas; Division of Hematology and Oncology, Department of Medicine, Cancer Center, and Genomic Sciences & Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Germany
| | - Spiridon Tsavachidis
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Quinn T Ostrom
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Puya Gharahkhani
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lesley A Anderson
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland & Aberdeen Center for Health Data Science, University of Aberdeen, Scotland
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Leslie Bernstein
- Department of Population Sciences, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, California
| | - Oleg Borisov
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Germany
| | - Julia Schröder
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Wong-Ho Chow
- Department of Epidemiology, MD Anderson Cancer Center, Houston, Texas
| | - Marilie D Gammon
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Geoffrey Liu
- Pharmacogenomic Epidemiology, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Carlos Caldas
- Cancer Research UK, Cambridge Institute, Cambridge, UK
| | - Paul D Pharoah
- Department of Oncology, University of Cambridge, Cambridge, UK; Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut
| | - Andrea May
- Department of Medicine II, Sana Klinikum, Offenbach, Germany
| | - Christian Gerges
- Department of Internal Medicine II, Evangelisches Krankenhaus, Düsseldorf, Germany
| | - Mario Anders
- Department of Gastroenterology and Interdisciplinary Endoscopy, Vivantes Wenckebach-Klinikum, Berlin, Germany
| | - Marino Venerito
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Arnulf H Hölscher
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Brigitte Schumacher
- Department of Internal Medicine and Gastroenterology, Elisabeth Hospital, Essen, Germany
| | - Yogesh Vashist
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Horst Neuhaus
- Department of Internal Medicine II, Evangelisches Krankenhaus, Düsseldorf, Germany
| | - Thomas Rösch
- Department of Interdisciplinary Endoscopy, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Knapp
- Institute of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Germany
| | - Anne Böhmer
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Prasad G Iyer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Brian J Reid
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jesper Lagergren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Nicholas J Shaheen
- Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Douglas A Corley
- Division of Research, Kaiser Permanente Northern California, Oakland, California; San Francisco Medical Center, Kaiser Permanente Northern California, San Francisco, California
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Rebecca C Fitzgerald
- Medical Research Council (MRC) Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Michael B Cook
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - David C Whiteman
- Cancer Control, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Thomas L Vaughan
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Aaron P Thrift
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas; Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
18
|
Xu X, Hu M, Ying R, Zou J, Lin L, Cheng H, Zhou R. RAB37 multiple alleles, transcription activation and evolution in mammals. Int J Biol Sci 2020; 16:2964-2973. [PMID: 33061809 PMCID: PMC7545722 DOI: 10.7150/ijbs.47959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/23/2020] [Indexed: 11/29/2022] Open
Abstract
Detecting selection signatures in genomes that relates to transcription regulation has been challenges in genetic analysis. Here, we report a set of transcription factors EBF1, E2F1 and EGR2 for transcription activation of RAB37 promoter by a comparative analysis of promoter activities of RAB37 in humans, mice, and pigs. Two of the transcription factors bound to and co-regulated RAB37 promoter in each species. SNPs were further screened in pig RAB37 gene by population genomics in pig populations from both China and Europe. Three SNPs were identified in second CpG island upstream of core promoter of RAB37. These SNP variations led to at least 5 haplotypes, representing 5 multiple alleles of RAB37 in pig population. Distribution of these alleles in different genetic background of breeds showed a role of artificial selection for the variations of these multiple alleles. Of them, RAB37-c acquired the highest ability to activate gene expression in comparison with the other promoters, thus enhanced autophagy efficiently. These findings provide better understanding of transcription activation of RAB37 and artificial selection via RAB37 for autophagy regulation.
Collapse
Affiliation(s)
- Xu Xu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengxin Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ruhong Ying
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Juan Zou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lan Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
19
|
Zhang Y, Liu S, Zhou S, Yu D, Gu J, Qin Q, Cheng Y, Sun X. Focal adhesion kinase: Insight into its roles and therapeutic potential in oesophageal cancer. Cancer Lett 2020; 496:93-103. [PMID: 33038490 DOI: 10.1016/j.canlet.2020.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/10/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
Oesophageal cancer is associated with high morbidity and mortality rates because it is highly invasive and prone to recurrence and metastasis, with a five-year survival rate of <20%. Therefore, there is an urgent need for new methods aimed at improving therapeutic intervention. Several studies have shown that targeted therapy may be effective for the treatment of oesophageal cancer. Focal adhesion kinase (FAK), a non-receptor tyrosine kinase with kinase activity and scaffolding function, could be overexpressed in a variety of solid tumours, including oesophageal cancer. FAK participates in survival, proliferation, progression, adhesion, invasion, migration, epithelial-to-mesenchymal transition, angiogenesis, DNA damage repair, and other biological processes through multiple signalling pathways in cancer cells. It plays an important role in the occurrence and development of tumours and has been linked to the prognosis of oesophageal cancer. FAK has been suggested as a potential therapeutic target in oesophageal cancer; thus, the combination of FAK inhibitors with chemotherapy, radiotherapy, and immunotherapy is expected to prolong the survival of patients. This paper presents a brief overview of the structure of FAK and its potential role in oesophageal cancer, providing a rationale for the future application of FAK inhibitors in the treatment of the disease.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Shu Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Shu Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Dandan Yu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Junjie Gu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Qin Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Yu Cheng
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China.
| |
Collapse
|
20
|
Sun S, Dong H, Yan T, Li J, Liu B, Shao P, Li J, Liang C. Role of TSP-1 as prognostic marker in various cancers: a systematic review and meta-analysis. BMC MEDICAL GENETICS 2020; 21:139. [PMID: 32600280 PMCID: PMC7325168 DOI: 10.1186/s12881-020-01073-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
Background Published studies present conflicting data regarding the impact of Thrombospondin-1 (TSP-1) expression on prognosis of various cancers. We performed this meta-analysis to illustrate the preliminary predictive value of TSP-1. Methods Twenty-four studies with a total of 2379 patients were included. A comprehensive literature search was performed by using PubMed, Cochrane Library, Web of Science, Embase, and hand searches were also conducted of relevant bibliographies. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) for patient survival and disease recurrence were initially identified to explore relationships between TSP-1 expression and patient prognosis. Results A total of 24 eligible studies were included in this meta-analysis. Our results showed that high level of TSP-1 was correlated significantly with poor overall survival (OS) (HR = 1.40, 95% CI: 1.17 ~ 1.68; P<0.001). However, high TSP-1 expression predicted no significant impact on progression-free survival (PFS)/ metastasis-free survival (MFS) (HR = 1.35, 95%CI: 0.87–2.10; P = 0.176) and disease-free survival (DFS)/ recurrence-free survival (RFS) (HR = 1.40, 95%CI: 0.77–2.53; P = 0.271). In addition, we performed subgroup analyses which showed that high TSP-1 expression predicted poor prognosis in breast cancer and gynecological cancer. Additionally, the relatively small number of studies on PFS/MFS and DFS/RFS is a limitation. The data extracted through Kaplan-Meier curves may not be accurate. Moreover, only English articles were included in this article, which may lead to deviations in the results. Conclusions Our findings indicated high TSP-1 expression may act as a promising biomarker of poor prognosis in cancers, especially in breast cancer and gynecological cancer.
Collapse
Affiliation(s)
- Shengjie Sun
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiyu Dong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junchen Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Shao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Zhang K, Li M, Yin L, Fu G, Liu Z. Role of thrombospondin‑1 and thrombospondin‑2 in cardiovascular diseases (Review). Int J Mol Med 2020; 45:1275-1293. [PMID: 32323748 PMCID: PMC7138268 DOI: 10.3892/ijmm.2020.4507] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Thrombospondin (TSP)-1 and TSP-2 are matricellular proteins in the extracellular matrix (ECM), which serve a significant role in the pathological processes of various cardiovascular diseases (CVDs). The multiple effects of TSP-1 and TSP-2 are due to their ability to interact with various ligands, such as structural components of the ECM, cytokines, cellular receptors, growth factors, proteases and other stromal cell proteins. TSP-1 and TSP-2 regulate the structure and activity of the aforementioned ligands by interacting directly or indirectly with them, thereby regulating the activity of different types of cells in response to environmental stimuli. The pathological processes of numerous CVDs are associated with the degradation and remodeling of ECM components, and with cell migration, dysfunction and apoptosis, which may be regulated by TSP-1 and TSP-2 through different mechanisms. Therefore, investigating the role of TSP-1 and TSP-2 in different CVDs and the potential signaling pathways they are associated with may provide a new perspective on potential therapies for the treatment of CVDs. In the present review, the current understanding of the roles TSP-1 and TSP-2 serve in various CVDs were summarized. In addition, the interacting ligands and the potential pathways associated with these thrombospondins in CVDs are also discussed.
Collapse
Affiliation(s)
- Kaijie Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Miaomiao Li
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li Yin
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
22
|
Liu X, Xu D, Liu Z, Li Y, Zhang C, Gong Y, Jiang Y, Xing B. THBS1 facilitates colorectal liver metastasis through enhancing epithelial-mesenchymal transition. Clin Transl Oncol 2020; 22:1730-1740. [PMID: 32052380 DOI: 10.1007/s12094-020-02308-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Liver metastasis is one of the major causes of cancer-related death in patients with colorectal cancer (CRC). The purpose of this study was to identify specific molecules which are involved in colorectal liver metastasis (CRLM). MATERIALS AND METHODS In this study, we employed TMT (tandem mass tags)-labeling combined with liquid chromatography-mass spectrometry technology to do comparative analyses of proteomics between the primary tumor specimens derived from colorectal cancer patients with or without liver metastasis. Pathway enrichment analyses were performed using DAVID database. The crucial molecules were identified through protein-protein interaction network. Immunohistochemistry (IHC) was employed to analyze the expression of THBS1 (thrombospondin-1) in CRC tissues. Finally, transwell cell migration and invasion assays were performed to explore the roles of THBS1 in CRC cell migration and invasion. RESULTS We found that the expression of 311 proteins was dysregulated in CRLM using quantitative proteomics. Among these proteins, we identified FN1, TIMP1, THBS1, POSTN and VCAN as five crucial proteins in CRLM by analysis in silico. IHC assay revealed that increased THBS1 expression was significantly correlated with liver metastasis as well as poor prognosis of CRC patients. GEO data analysis also suggests that upregulated mRNA level of THBS1 is also associated with shorter overall survival of CRC patients. Moreover, THBS1 depletion inhibited migration and invasion of CRC cells through attenuating epithelial-mesenchymal transition. Co-expression analyses with TCGA data indicated that THBS1 is co-expressed with mesenchymal markers, including Vimentin, N-cadherin, Snail1 and Twist1 in CRC tissues. CONCLUSIONS By collecting the omics data with functional studies, the present results reveal that THBS1 facilitates colorectal liver metastasis through promoting epithelial-mesenchymal transition. This understanding of molecular roles of THBS1 in CRLM may be promising to develop targeted therapies to prolong survival in CRC patients.
Collapse
Affiliation(s)
- X Liu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - D Xu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Z Liu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Y Li
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - C Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Y Gong
- Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Y Jiang
- Department of Medical Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - B Xing
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
23
|
Kovács D, Igaz N, Marton A, Rónavári A, Bélteky P, Bodai L, Spengler G, Tiszlavicz L, Rázga Z, Hegyi P, Vizler C, Boros IM, Kónya Z, Kiricsi M. Core-shell nanoparticles suppress metastasis and modify the tumour-supportive activity of cancer-associated fibroblasts. J Nanobiotechnology 2020; 18:18. [PMID: 31964403 PMCID: PMC6974972 DOI: 10.1186/s12951-020-0576-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background Although accumulating evidence suggests that the crosstalk between malignant cells and cancer-associated fibroblasts (CAFs) actively contributes to tumour growth and metastatic dissemination, therapeutic strategies targeting tumour stroma are still not common in the clinical practice. Metal-based nanomaterials have been shown to exert excellent cytotoxic and anti-cancerous activities, however, their effects on the reactive stroma have never been investigated in details. Thus, using feasible in vitro and in vivo systems to model tumour microenvironment, we tested whether the presence of gold, silver or gold-core silver-shell nanoparticles exerts anti-tumour and metastasis suppressing activities by influencing the tumour-supporting activity of stromal fibroblasts. Results We found that the presence of gold-core silver-shell hybrid nanomaterials in the tumour microenvironment attenuated the tumour cell-promoting behaviour of CAFs, and this phenomenon led to a prominent attenuation of metastatic dissemination in vivo as well. Mechanistically, transcriptome analysis on tumour-promoting CAFs revealed that silver-based nanomaterials trigger expressional changes in genes related to cancer invasion and tumour metastasis. Conclusions Here we report that metal nanoparticles can influence the cancer-promoting activity of tumour stroma by affecting the gene expressional and secretory profiles of stromal fibroblasts and thereby altering their intrinsic crosstalk with malignant cells. This potential of metal nanomaterials should be exploited in multimodal treatment approaches and translated into improved therapeutic outcomes.
Collapse
Affiliation(s)
- Dávid Kovács
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Annamária Marton
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Andrea Rónavári
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary.,Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, 6720, Szeged, Hungary
| | - Péter Bélteky
- Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, 6720, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 9, 6720, Szeged, Hungary
| | - László Tiszlavicz
- Department of Pathology, University of Szeged, Állomás u. 2, 6725, Szeged, Hungary
| | - Zsolt Rázga
- Department of Pathology, University of Szeged, Állomás u. 2, 6725, Szeged, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Korányi fasor 8-10, 6720, Szeged, Hungary.,MTA-SZTE Lendület Translational Gastroenterology Research Group, Korányi fasor 8-10, 6720, Szeged, Hungary
| | - Csaba Vizler
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Imre M Boros
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary.,Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Zoltán Kónya
- Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, 6720, Szeged, Hungary.,MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich B. tér 1, 6720, Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary.
| |
Collapse
|
24
|
Chang CP, Hu MH, Hsiao YP, Wang YC. ST2 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1240:83-93. [PMID: 32060890 DOI: 10.1007/978-3-030-38315-2_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Suppression of tumorigenicity 2 (ST2), also known as interleukin-1 receptor-like 1 (IL1RL1), is one of the natural receptors of IL-33. Three major isoforms, ST2L (transmembrane form), sST2 (soluble form), and ST2V, are generated by alternative splicing. Damage to stromal cells induces necrosis and release of IL-33, which binds to heterodimeric ST2L/IL-1RAcP complex on the membrane of a variety of immune cells. This IL-33/ST2L signal induces transcription of the downstream inflammatory and anti-inflammatory genes by activating diverse intracellular kinases and factors to mount an adequate immune response, even in tumor microenvironment. For example, activation of IL-33/ST2L signal may trigger Th2-dependent M2 macrophage polarization to facilitate tumor progression. Notably, sST2 is a soluble form of ST2 that lacks a transmembrane domain but preserves an extracellular domain similar to ST2L, which acts as a "decoy" receptor for IL-33. sST2 has been shown to involve in the inflammatory tumor microenvironment and the progression of colorectal cancer, non-small cell lung cancer, and gastric cancer. Therefore, targeting the IL-33/ST2 axis becomes a promising new immunotherapy for treatment of many cancers. This chapter reviews the recent findings on IL-33/ST2L signaling in tumor microenvironment, the trafficking mode of sST2, and the pharmacological strategies to target IL-33/ST2 axis for cancer treatment.
Collapse
Affiliation(s)
- Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Hsuan Hu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Peng Hsiao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
25
|
Li X, Gao Y, Xu Z, Zhang Z, Zheng Y, Qi F. Identification of prognostic genes in adrenocortical carcinoma microenvironment based on bioinformatic methods. Cancer Med 2019; 9:1161-1172. [PMID: 31856409 PMCID: PMC6997077 DOI: 10.1002/cam4.2774] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/04/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Background To identify prognostic genes which were associated with adrenocortical carcinoma (ACC) tumor microenvironment (TME). Methods and materials Transcriptome profiles and clinical data of ACC samples were collected from The Cancer Genome Atlas (TCGA) database. We use ESTIMATE (estimation of stromal and Immune cells in malignant tumor tissues using expression data) algorithm to calculate immune scores, stromal scores and estimate scores. Heatmap and volcano plots were applied for differential analysis. Venn plots were used for intersect genes selection. We used protein‐protein interaction (PPI) networks and functional analysis to explore underlying pathways. After performing stepwise regression method and multivariate Cox analysis, we finally screened hub genes associated with ACC TME. We calculated risk scores (RS) for ACC cases based on multivariate Cox results and evaluated the prognostic value of RS shown by receiver operating characteristic curve (ROC). We investigated the association between hub genes with immune infiltrates supported by algorithm from online TIMER database. Results Gene expression profiles and clinical data were downloaded from TCGA. Lower immune scores were observed in disease with distant metastasis (DM) and locoregional recurrence (LR) than other cases (P = .0204). Kaplan‐Meier analysis revealed that lower immune scores were significantly associated with poor overall survival (OS) (P = .0495). We screened 1649 differentially expressed genes (DEGs) and 1521 DEGs based on immune scores and stromal scores, respectively. Venn plots helped us find 1122 intersect genes. After analysing by cytoHubba from Cytoscape software, 18 hub genes were found. We calculated RS and ROC showed significantly predictive accuracy (area under curve (AUC) = 0.887). ACC patients with higher RS had worse survival outcomes (P < .0001). Results from TIMER (tumor immune estimation resource) database revealed that HLA‐DOA was significantly related with immune cells infiltration. Conclusion We screened a list of TME‐related genes which predict poor survival outcomes in ACC patients from TCGA database.
Collapse
Affiliation(s)
- Xiao Li
- Department of Urology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Gao
- Department of Radiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zicheng Xu
- Department of Urology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Zhang
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yuxiao Zheng
- Department of Urology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Qi
- Department of Urology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Lu S, Zhao R, Shen J, Zhang Y, Shi J, Xu C, Chen J, Lin R, Han W, Luo D. Integrated bioinformatics analysis to screen hub genes in the lymph node metastasis of thyroid cancer. Oncol Lett 2019; 19:1375-1383. [PMID: 31966069 PMCID: PMC6956406 DOI: 10.3892/ol.2019.11188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 10/22/2019] [Indexed: 01/13/2023] Open
Abstract
Thyroid cancer (TC) is one of the most common types of malignancy of the endocrine-system. At present, there is a lack of effective methods to predict neck lymph node metastasis (LNM) in TC. The present study compared the expression profiles from The Cancer Genome Atlas between N1M0 and N0M0 subgroups in each T1-4 stages TC in order to identify the four groups of TC LNM-associated differentially expressed genes (DEGs). Subsequently, DEGs were combined to obtain a total of 493 integrated DEGs by using the method of Robust Rank Aggregation. Furthermore, the underlying mechanisms of LNM were investigated. The results from Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses demonstrated that the identified DEGs may promote LNM via numerous pathways, including extracellular matrix-receptor interaction, PI3K-AKT signaling pathway and focal adhesion. Following construction of a protein-protein interaction network, the significance score for each gene was calculated and seven hub genes were screened, including interleukin 6, actinin α2, collagen type I α 1 chain, actin α1, calbindin 2, thrombospondin 1 and parathyroid hormone. These genes were predicted to serve crucial roles in TC with LNM. The results from the present study could therefore improve the understanding of LNM in TC. In addition, the seven DEGs identified may be considered as potential novel targets for the development of biomarkers that could be used in the diagnosis and therapy of TC.
Collapse
Affiliation(s)
- Si Lu
- Zhejiang Chinese Medical University Affiliated Hangzhou First Hospital, The Fourth Clinical College, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Rongjie Zhao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Jie Shen
- Nanjing Medical University Affiliated Hangzhou Hospital, The First Clinical College, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Yu Zhang
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Jingjing Shi
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Chenke Xu
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Jiali Chen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Renbin Lin
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Dingcun Luo
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
27
|
Cen J, Feng L, Ke H, Bao L, Li LZ, Tanaka Y, Weng J, Su L. Exosomal Thrombospondin-1 Disrupts the Integrity of Endothelial Intercellular Junctions to Facilitate Breast Cancer Cell Metastasis. Cancers (Basel) 2019; 11:cancers11121946. [PMID: 31817450 PMCID: PMC6966578 DOI: 10.3390/cancers11121946] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Abstract
Transendothelial migration of malignant cells plays an essential role in tumor progression and metastasis. The present study revealed that treating human umbilical vein endothelial cells (HUVECs) with exosomes derived from metastatic breast cancer cells increased the number of cancer cells migrating through the endothelial cell layer and impaired the tube formation of HUVECs. Furthermore, the expression of intercellular junction proteins, including vascular endothelial cadherin (VE-cadherin) and zona occluden-1 (ZO-1), was reduced significantly in HUVECs treated with carcinoma-derived exosomes. Proteomic analyses revealed that thrombospondin-1 (TSP1) was highly expressed in breast cancer cell MDA-MB-231-derived exosomes. Treating HUVECs with TSP1-enriched exosomes similarly promoted the transendothelial migration of malignant cells and decreased the expression of intercellular junction proteins. TSP1-down regulation abolished the effects of exosomes on HUVECs. The migration of breast cancer cells was markedly increased in a zebrafish in vivo model injected with TSP1-overexpressing breast cancer cells. Taken together, these results suggest that carcinoma-derived exosomal TSP1 facilitated the transendothelial migration of breast cancer cells via disrupting the intercellular integrity of endothelial cells.
Collapse
Affiliation(s)
- Junyu Cen
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.C.); (L.F.); (H.K.); (L.B.)
| | - Lingyun Feng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.C.); (L.F.); (H.K.); (L.B.)
| | - Huichuan Ke
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.C.); (L.F.); (H.K.); (L.B.)
| | - Lifeng Bao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.C.); (L.F.); (H.K.); (L.B.)
| | - Lin Z. Li
- Department of Radiology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan;
| | - Jun Weng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.C.); (L.F.); (H.K.); (L.B.)
- Correspondence: (J.W.); (L.S.); Tel.: +86-2787792072 (J.W. & L.S.)
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.C.); (L.F.); (H.K.); (L.B.)
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518063, China
- Correspondence: (J.W.); (L.S.); Tel.: +86-2787792072 (J.W. & L.S.)
| |
Collapse
|
28
|
Serum extracellular vesicles contain SPARC and LRG1 as biomarkers of colon cancer and differ by tumour primary location. EBioMedicine 2019; 50:211-223. [PMID: 31753726 PMCID: PMC6921233 DOI: 10.1016/j.ebiom.2019.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Recently, the distinction between left- and right-sided colon cancer (LCC and RCC) has been brought into focus. RCC is associated with an inferior overall survival and progression-free survival. We aimed to perform a detailed analysis of the diversity of extracellular vesicles (EV) between LCC and RCC using quantitative proteomics and to identify for new diagnostic and prognostic biomarkers. METHODS We isolated EVs from patients with LCC, RCC and healthy volunteers, and treated colorectal cancer cell line with serum-derived EVs. We then performed a quantitative proteomics analysis of the serum-derived EVs and cell line treated with EVs. Proteomic data are available via ProteomeXchange with the identifiers PXD012283 and PXD012304. In addition, we assessed the performance of EV SPARC and LRG1 as diagnosis and prognosis biomarkers in colon cancer. FINDINGS The expression profile of the serum EV proteome in patients with RCC was different from that of patients with LCC. Serum-derived EVs in RCC promoted cellular mobility more significantly than EVs derived from LCC. EV SPARC and LRG1 expression levels demonstrated area under the receiver-operating characteristic curve values of 0.95 and 0.93 for discriminating patients with colon cancer from healthy controls. Moreover, the expression levels of SPARC and LRG1 correlated with tumour sidedness and were predictive of tumour recurrence. INTERPRETATION We identified differences in EV protein profiles between LCC and RCC. Serum-derived EVs of RCC may promote metastasis via upregulation of extracellular matrix (ECM)-related proteins, especially SPARC and LRG1, which may serve as diagnosis and prognosis biomarkers in colon cancer.
Collapse
|
29
|
Stephens DC, Osunsanmi N, Sochacki KA, Powell TW, Taraska JW, Harris DA. Spatiotemporal organization and protein dynamics involved in regulated exocytosis of MMP-9 in breast cancer cells. J Gen Physiol 2019; 151:1386-1403. [PMID: 31676484 PMCID: PMC6888755 DOI: 10.1085/jgp.201812299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
This paper describes the dynamics of proteins and lipids during exocytosis of MMP-9 from cancer cells in real time using fluorescence microscopy. Stephens et al. find that core exocytic proteins, accessory proteins, and lipids are involved at sites of secretory vesicle fusion. Altered regulation of exocytosis is an important mechanism controlling many diseases, including cancer. Defects in exocytosis have been implicated in many cancer cell types and are generally attributed to mutations in cellular transport, trafficking, and assembly of machinery necessary for exocytosis of secretory vesicle cargo. In these cancers, up-regulation of trafficking and secretion of matrix metalloproteinase-9 (MMP-9), a proteolytic enzyme, is responsible for degrading the extracellular matrix, a necessary step in tumor progression. Using TIRF microscopy, we identified proteins associated with secretory vesicles containing MMP-9 and imaged the local dynamics of these proteins at fusion sites during regulated exocytosis of MMP-9 from MCF-7 breast cancer cells. We found that many regulators of exocytosis, including several Rab GTPases, Rab effector proteins, and SNARE/SNARE modulator proteins, are stably assembled on docked secretory vesicles before exocytosis. At the moment of fusion, many of these components are quickly lost from the vesicle, while several endocytic proteins and lipids are simultaneously recruited to exocytic sites at precisely that moment. Our findings provide insight into the dynamic behavior of key core exocytic proteins, accessory proteins, lipids, and some endocytic proteins at single sites of secretory vesicle fusion in breast cancer cells.
Collapse
Affiliation(s)
| | | | - Kem A Sochacki
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Tyrel W Powell
- Department of Chemistry, Howard University, Washington, DC
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
30
|
Matsui T, Chiyo T, Kobara H, Fujihara S, Fujita K, Namima D, Nakahara M, Kobayashi N, Nishiyama N, Yachida T, Morishita A, Iwama H, Masaki T. Telmisartan Inhibits Cell Proliferation and Tumor Growth of Esophageal Squamous Cell Carcinoma by Inducing S-Phase Arrest In Vitro and In Vivo. Int J Mol Sci 2019; 20:ijms20133197. [PMID: 31261874 PMCID: PMC6651359 DOI: 10.3390/ijms20133197] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common primary esophageal malignancy. Telmisartan, an angiotensin II type 1 (AT1) receptor blocker (ARB) and a widely used antihypertensive, has been shown to inhibit proliferation of various cancer types. This study evaluated the effects of telmisartan on human ESCC cell proliferation in vitro and in vivo and sought to identify the microRNAs (miRNAs) involved in these antitumor effects. We examined the effects of telmisartan on three human ESCC cell lines (KYSE150, KYSE180, and KYSE850). Telmisartan inhibited proliferation of these three cell lines by inducing S-phase arrest, which was accompanied by decreased expression of cyclin A2, cyclin-dependent kinase 2, and other cell cycle-related proteins. Additionally, telmisartan reduced levels of phosphorylated ErbB3 and thrombospondin-1 in KYSE180 cells. Furthermore, expression of miRNAs was remarkably altered by telmisartan in vitro. Telmisartan also inhibited tumor growth in vivo in a xenograft mouse model. In conclusion, telmisartan inhibited cell proliferation and tumor growth in ESCC cells by inducing cell-cycle arrest.
Collapse
Affiliation(s)
- Takanori Matsui
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-0793, Japan
| | - Taiga Chiyo
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-0793, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-0793, Japan
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-0793, Japan
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-0793, Japan
| | - Daisuke Namima
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-0793, Japan
| | - Mai Nakahara
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-0793, Japan
| | - Nobuya Kobayashi
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-0793, Japan
| | - Noriko Nishiyama
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-0793, Japan
| | - Tatsuo Yachida
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, Kagawa 761-0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-0793, Japan.
| |
Collapse
|
31
|
Hsieh JJ, Hou MM, Chang JWC, Shen YC, Cheng HY, Hsu T. RAB38 is a potential prognostic factor for tumor recurrence in non-small cell lung cancer. Oncol Lett 2019; 18:2598-2604. [PMID: 31452745 DOI: 10.3892/ol.2019.10547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/09/2019] [Indexed: 11/06/2022] Open
Abstract
Ras-related protein Rab-38 (RAB38) is a member of the Ras small G protein family that regulates intracellular vesicular trafficking. Although the expression of RAB38 is reportedly deregulated in several types of cancer, its role in tumor biology remains to be elucidated. In the present study, the expression of RAB38 was analyzed in tumor specimens from patients with non-small cell lung cancer (NSCLC) with tumor recurrence within 4 years (Group R), and those remaining disease-free following initial surgery (Group NR), by reverse transcription-semi-quantitative PCR and subsequent semi-quantification using ImageJ v4.0 software. The results revealed that the expression of RAB38 in Group R and NR specimens was positively associated with tumor recurrence; a high expression level was also associated with poor survival rate in these patients. Using NSCLC cell lines, it was demonstrated that tumor cells with mutations in the active epidermal growth factor receptor (EGFR) gene expressed higher levels of RAB38 compared with those with the wild-type gene by reverse transcription-PCR and western blot analysis. Furthermore, following specific RAB38 gene knockdown by short hairpin RNA transfection, EGFR mutants exhibited markedly reduced invasiveness when compared with cells transfected with empty vector controls by Matrigel Transwell assays. These results suggest that RAB38 is an important prognostic factor in NSCLC, and may serve a critical role in NSCLC-associated tumor metastasis.
Collapse
Affiliation(s)
- Jia-Juan Hsieh
- Department of Bioscience and Biotechnology and Center of Excellence for The Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan, R.O.C
| | - Ming-Mo Hou
- Division of Hematology-Oncology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan, R.O.C
| | - John Wen-Cheng Chang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan, R.O.C
| | - Yung-Chi Shen
- Department of Bioscience and Biotechnology and Center of Excellence for The Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan, R.O.C
| | - Hsin-Yi Cheng
- Division of Hematology-Oncology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan, R.O.C
| | - Todd Hsu
- Department of Bioscience and Biotechnology and Center of Excellence for The Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan, R.O.C
| |
Collapse
|
32
|
Ren J, Gu C, Yang Y, Xue J, Sun Y, Jian F, Chen D, Bian L, Sun Q. TSP-1 is downregulated and inversely correlates with miR-449c expression in Cushing's disease. J Cell Mol Med 2019; 23:4097-4110. [PMID: 31016850 PMCID: PMC6533510 DOI: 10.1111/jcmm.14297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/29/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of Cushing's disease, which is caused by pituitary corticotroph adenoma, remains to be studied. Secreted angioinhibitory factor thrombospondin-1 (TSP-1) is an adhesive glycoprotein that mediates cell-to-cell and cell-to-matrix interactions and is associated with platelet aggregation, angiogenesis and tumorigenesis. We have found that the expression of TSP-1 is significantly lower in human pituitary corticotroph tumours compared with normal adenohypophysis. This study aims to elucidate the role of TSP-1 in regulating the tumour function of pituitary adenomas. Forced overexpression of TSP-1 in a murine AtT20 pituitary corticotroph tumour cell line decreased corticotroph precursor hormone proopiomelanocortin (POMC) transcription and adrenocorticotropic hormone (ACTH) secretion. Functional studies showed that TSP-1 overexpression in pituitary adenoma cells suppressed proliferation, migration and invasion. We have demonstrated that TSP-1 is a direct target of miR-449c. Further study showed that miR-449c activity enhanced tumorigenesis by directly inhibiting TSP-1 expression. Low expression of lncTHBS1, along with low expression of TSP-1, was associated with the high expression of miR-449c in Cushing's disease patients. Furthermore, RNA-immunoprecipitation associates miR-449c with lncTHBS1 suggesting that lncTHBS1 might be a negative regulator of miR-449c. Taken together, this study has demonstrated that lncTHBS1 might function as competing endogenous RNA for miR-449c, which could suppress the development of Cushing's disease.
Collapse
Affiliation(s)
- Jie Ren
- Department of Neurosurgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiP.R. China
| | - Changwei Gu
- Department of Neurosurgery, Ruijin Hospital, Luwan BranchShanghai Jiaotong University School of MedicineShanghaiP.R. China
| | - Yong Yang
- Department of NeurosurgeryGuangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Jun Xue
- Department of Neurosurgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiP.R. China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiP.R. China
| | - Fangfang Jian
- Department of Obstetrics and Gynecology, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiP.R. China
| | - Dongjiang Chen
- Department of Neurosurgery, McKnight Brain InstituteUniversity of FloridaGainesvilleFlorida
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiP.R. China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiP.R. China
- Department of Neurosurgery, Ruijin Hospital, Luwan BranchShanghai Jiaotong University School of MedicineShanghaiP.R. China
| |
Collapse
|
33
|
Rab25 and RCP in cancer progression. Arch Pharm Res 2019; 42:101-112. [DOI: 10.1007/s12272-019-01129-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/29/2019] [Indexed: 01/10/2023]
|
34
|
Tong Q, Wang XL, Li SB, Yang GL, Jin S, Gao ZY, Liu XB. Combined detection of IL-6 and IL-8 is beneficial to the diagnosis of early stage esophageal squamous cell cancer: a preliminary study based on the screening of serum markers using protein chips. Onco Targets Ther 2018; 11:5777-5787. [PMID: 30254470 PMCID: PMC6140751 DOI: 10.2147/ott.s171242] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background The diagnosis rate of early stage esophageal squamous cell carcinoma (ESCC) is low due to the lack of specific tumor markers. Seeking for these markers is beneficial to improve the early diagnosis rate and the prognosis of patients. This study profiles the differentially expressed proteins of early stage ESCC patients via the AAH-BLG-507 protein chip, which further consolidates the clinical evidence of ESCC diagnosis. Materials and methods In this study, 20 serum samples were collected from Taihe Hospital between August 2016 and June 2017. Ten of them carried ESCC, while the rest were healthy controls. To profile the proteins’ expression level, the AAH-BLG-507 protein chip was used, and both highly expressed and lowly expressed proteins were fished out. Meanwhile, their biological roles were examined by using Gene Ontology (GO) database and String database, and they were further verified by ELISA. Results Results showed that the expression levels of AXL, ARTN, Ang2, BDNF, BMP7, cripto-1, CCL28, E-selectin, IL-6, IL-8 and SHH in the serum of early ESCC were significantly upregulated (P<0.05), particularly IL-6 and IL-8. The expression levels of TSP1 and MMP-8 were markedly downregulated (P<0.05). Analysis showed that these proteins were mainly involved in angiogenesis, signal transduction, cell proliferation and migration, indicating the close relationship with the development of ESCC. Conclusion It suggested that IL-6 and IL-8 proteins could be considered as the markers for ESCC diagnosis.
Collapse
Affiliation(s)
- Qiang Tong
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People's Republic of China,
| | - Xiao-Long Wang
- Department of Gastroenterology, Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People's Republic of China
| | - Sheng-Bao Li
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People's Republic of China,
| | - Gong-Li Yang
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People's Republic of China,
| | - Shu Jin
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People's Republic of China,
| | - Zi-Ye Gao
- Department of Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People's Republic of China
| | - Xiao-Bo Liu
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People's Republic of China,
| |
Collapse
|
35
|
Cho SH, Kuo IY, Lu PJF, Tzeng HT, Lai WW, Su WC, Wang YC. Rab37 mediates exocytosis of secreted frizzled-related protein 1 to inhibit Wnt signaling and thus suppress lung cancer stemness. Cell Death Dis 2018; 9:868. [PMID: 30158579 PMCID: PMC6115395 DOI: 10.1038/s41419-018-0915-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023]
Abstract
Recent studies have revealed that dysregulated Rab small GTPase-mediated vesicle trafficking pathways are associated with cancer progression. However, whether any of the Rabs plays a suppressor role in cancer stemness is least explored. Rab37 has been postulated as a tumor suppressive small GTPase for trafficking anti-tumor cargos. Here, we report a previously uncharacterized mechanism by which Rab37 mediates exocytosis of secreted frizzled-related protein-1 (SFRP1), an extracellular antagonist of Wnt, to suppress Wnt signaling and cancer stemness in vitro and in vivo. Reconstitution experiments indicate that SFRP1 secretion is crucial for Rab37-mediated cancer stemness suppression and treatment with SRPP1 recombinant protein reduces xenograft tumor initiation ability. Clinical results confirm that concordantly low Rab37, low SFRP1, and high Oct4 stemness protein expression profile can be used as a biomarker to predict poor prognosis in lung cancer patients. Our findings reveal that Rab37-mediated SFRP1 secretion suppresses cancer stemness, and dysregulated Rab37-SFRP1 pathway confers cancer stemness via the activation of Wnt signaling. Rab37-SFRP1-Wnt axis could be a potential therapeutic target for attenuating lung cancer stemness.
Collapse
Affiliation(s)
- Shu-Huei Cho
- Department of Pharmacology, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - I-Ying Kuo
- Department of Pharmacology, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - Pei-Jung Frank Lu
- Institute of Clinical Medicine, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - Hong-Tai Tzeng
- Department of Pharmacology, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - Wu-Wei Lai
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - Wu-Chou Su
- Division of Oncology, Department of Internal Medicine, National Cheng Kung University, Tainan 701, Tainan City, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, National Cheng Kung University, Tainan 701, Tainan City, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Tainan City, Taiwan.
| |
Collapse
|
36
|
VAMP8, a vesicle-SNARE required for RAB37-mediated exocytosis, possesses a tumor metastasis suppressor function. Cancer Lett 2018; 437:79-88. [PMID: 30165196 DOI: 10.1016/j.canlet.2018.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022]
Abstract
We previously identified a metastasis suppressor RAB37 small GTPase that regulated exocytosis of tissue inhibitor of metalloproteinases 1 (TIMP1) to suppress lung cancer metastasis. Here, we show that vesicle-associated membrane protein 8 (VAMP8), a v-SNARE (vesicle soluble N-ethylmaleimide-sensitive factor activating protein receptor), interacts with RAB37 and drives the secretion of TIMP1 to inhibit tumor metastases. Confocal and total internal reflection fluorescence microscopic images demonstrated that VAMP8 co-localized with RAB37 and facilitated trafficking of RAB37-TIMP1 vesicles. Reconstitution experiments using tail-vein injection and lung-to-lung metastasis in mice showed that VAMP8 was essential for RAB37-regulated vesicle trafficking of TIMP1 to suppress cancer metastasis. Lung cancer patients with low VAMP8 showed distant metastasis, poor overall survival and progression-free survival. Importantly, multivariate Cox regression analysis indicated that patients with low VAMP8/low RAB37 expression profile showed significantly high risk of death (hazard ratio = 3.42, P < 0.001) even after adjusting for tumor metastasis parameter. Our findings reveal that VAMP8 is a novel v-SNARE crucial for RAB37-mediated exocytic transport of TIMP1 to suppress lung tumor metastasis. VAMP8 possesses a tumor metastasis suppressor function with a prognostic value in lung cancer.
Collapse
|
37
|
Li Y, Yang X, Du X, Lei Y, He Q, Hong X, Tang X, Wen X, Zhang P, Sun Y, Zhang J, Wang Y, Ma J, Liu N. RAB37 Hypermethylation Regulates Metastasis and Resistance to Docetaxel-Based Induction Chemotherapy in Nasopharyngeal Carcinoma. Clin Cancer Res 2018; 24:6495-6508. [PMID: 30131385 DOI: 10.1158/1078-0432.ccr-18-0532] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/30/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Epigenetic alterations play important roles in metastasis and drug resistance through gene regulation. However, the functional features and molecular mechanisms of epigenetic changes remain largely unclear in nasopharyngeal carcinoma (NPC) metastasis. EXPERIMENTAL DESIGN Gene regulatory network analysis was used to identify metastatic-specific dysregulated genes between normal and NPC tissues and the expression was validated in published Gene-Expression Omnibus data set. The regulatory and functional role of RAB37 downregulation was examined in NPC and was validated in vitro and in vivo, and downstream target of RAB37 was explored. The clinical value of RAB37 methylation was evaluated in NPC metastasis and chemosensitivity. RESULTS We identified RAB37 as a specific hypermethylated gene that is most commonly downregulated in NPC. Moreover, RAB37 downregulation was attributed to hypermethylation of its promoter and was significantly associated with metastasis- and docetaxel chemoresistance-related features in NPC. Ectopic RAB37 overexpression suppressed NPC cell metastasis and enhanced chemosensitivity to docetaxel. Mechanistically, RAB37 colocalized with TIMP2, regulated TIMP2 secretion, inhibited downstream MMP2 activity, and consequently altered NPC cell metastasis. Furthermore, RAB37 hypermethylation was correlated with poor clinical outcomes in patients with NPC. We developed a prognostic model based on RAB37 methylation and N stage that effectively predicted an increased risk of distant metastasis and a favorable response to docetaxel-containing induction chemotherapy (IC) in NPC patients. CONCLUSIONS This study shows that RAB37 hypermethylation is involved in NPC metastasis and chemoresistance, and that our prognostic model can identify patients who are at a high risk of distant metastasis and might benefit from for docetaxel IC.
Collapse
Affiliation(s)
- Yingqin Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xiaojing Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xiaojing Du
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Yuan Lei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Qingmei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xiaohong Hong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xinran Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xin Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Panpan Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Ying Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Jian Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Yaqin Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Jun Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Na Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China.
| |
Collapse
|
38
|
Tzeng H, Su C, Chang C, Lai W, Su W, Wang Y. Rab37 in lung cancer mediates exocytosis of soluble ST2 and thus skews macrophages toward tumor‐suppressing phenotype. Int J Cancer 2018; 143:1753-1763. [DOI: 10.1002/ijc.31569] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/03/2018] [Accepted: 04/24/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Hong‐Tai Tzeng
- Department of PharmacologyNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan Taiwan
| | - Ching‐Chin Su
- Department of PharmacologyNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan Taiwan
| | - Chih‐Peng Chang
- Department of Microbiology and ImmunologyNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan Taiwan
| | - Wu‐Wei Lai
- Division of Thoracic Surgery, Department of SurgeryNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan Taiwan
| | - Wu‐Chou Su
- Division of Oncology, Department of Internal MedicineNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan Taiwan
| | - Yi‐Ching Wang
- Department of PharmacologyNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan Taiwan
| |
Collapse
|
39
|
Zang Y, Gu L, Zhang Y, Wang Y, Xue F. Identification of key genes and pathways in uterine leiomyosarcoma through bioinformatics analysis. Oncol Lett 2018; 15:9361-9368. [PMID: 29844831 DOI: 10.3892/ol.2018.8503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
Uterine leiomyosarcoma (uLMS) is a rare but malignant gynaecological tumour with a poor survival outcome. The present study was aimed at identifying the key genes and pathways in the development of uLMS through bioinformatics analysis. To minimize the frequency of false-positive results of the bioinformatics analysis, 3 microarrays including GSE764, GSE64763 and GSE68312 were downloaded from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were screened out using the online tool GEO2R. Then, Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery. Finally, a protein-protein interaction (PPI) network of the DEGs was constructed using Cytoscape, and module analysis was conducted using the plug-in MCODE. A total of 95 DEGs including 21 upregulated genes and 74 downregulated genes were identified. The upregulated DEGs were annotated with 'DNA metabolic process', 'nucleobase-containing compound biosynthetic process' and 'cellular macromolecule biosynthetic process', while the downregulated DEGs were annotated with 'cellular response to chemical stimulus', 'movement of cell or subcellular component' and 'response to inorganic substances'. The results of the PPI network analysis demonstrated that matrix metallopeptidase 9, apolipoprotein E, cyclin E1 and syndecan 1 were the predominant upregulated genes in uLMS. Additionally, the genes in the main module were enriched in 'proteoglycans in cancer', 'p53 signalling pathway' and 'extracellular matrix-receptor interaction'. The key genes and pathways identified in the present study may provide valuable clues for clarifying the molecular mechanism underlying the development of uLMS and demonstrate promise for use as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lina Gu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yanfang Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
40
|
Patel H, Nilendu P, Jahagirdar D, Pal JK, Sharma NK. Modulating secreted components of tumor microenvironment: A masterstroke in tumor therapeutics. Cancer Biol Ther 2018; 19:3-12. [PMID: 29219656 PMCID: PMC5790373 DOI: 10.1080/15384047.2017.1394538] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/07/2017] [Accepted: 10/15/2017] [Indexed: 12/13/2022] Open
Abstract
The microenvironment in which cancer resides plays an important role in regulating cancer survival, progression, malignancy and drug resistance. Tumor microenvironment (TME) consists of heterogeneous number and types of cellular and non-cellular components that vary in relation to tumor phenotype and genotype. In recent, non-cellular secreted components of microenvironmental heterogeneity have been suggested to contain various growth factors, cytokines, RNA, DNA, metabolites, structural matrix and matricellular proteins. These non-cellular components have been indicated to orchestrate numerous ways to support cancer survival and progression by providing metabolites, energy, growth signals, evading immune surveillance, drug resistance environment, metastatic and angiogenesis cues. Thus, switching action from pro-cancer to anti-cancer activities of these secreted components of TME has been considered as a new avenue in cancer therapeutics and drug resistance. In this report, we summarize the recent pre-clinical and clinical evidences to emphasize the importance of non-cellular components of TME in achieving precision therapeutics and biomarker study.
Collapse
Affiliation(s)
- Himadri Patel
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Pritish Nilendu
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Devashree Jahagirdar
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Jayanta K. Pal
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
41
|
Tzeng HT, Li TH, Tang YA, Tsai CH, Frank Lu PJ, Lai WW, Chiang CW, Wang YC. Phosphorylation of Rab37 by protein kinase C alpha inhibits the exocytosis function and metastasis suppression activity of Rab37. Oncotarget 2017; 8:108556-108570. [PMID: 29312551 PMCID: PMC5752464 DOI: 10.18632/oncotarget.20998] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/05/2017] [Indexed: 01/31/2023] Open
Abstract
We previously identified a novel Rab small GTPase protein, Rab37, which plays a critical role in regulating exocytosis of secreted glycoproteins, tissue inhibitor of metalloproteinases 1 (TIMP1) to suppress lung cancer metastasis. Patients with preserved Rab37 protein expression were associated with better prognosis. However, a significant number of the patients with preserved Rab37 expression showed poor survival. In addition, the molecular mechanism for the regulation of Rab37-mediated exocytosis remained to be further identified. Therefore, we investigated the molecular mechanism underlying the dysregulation of Rab37-mediated exocytosis and metastasis suppression. Here, we report a novel mechanism for Rab37 inactivation by phosphorylation. Lung cancer patients with preserved Rab37, low TIMP1, and high PKCα expression profile correlate with worse progression-free survival examined by Kaplan-Meier survival, suggesting that PKCα overexpression leads to dysfunction of Rab37. This PKCα-Rab37-TIMP1 expression profile predicts the poor outcome by multivariate Cox regression analysis. We also show that Rab37 is phosphorylated by protein kinase Cα (PKCα) at threonine 172 (T172), leading to attenuation of its GTP-bound state, and impairment of the Rab37-mediated exocytosis of TIMP1, and thus reduces its suppression activity on lung cancer cell motility. We further demonstrate that PKCα reduces vesicle colocalization of Rab37 and TIMP1, and therefore inhibits Rab37-mediated TIMP1 trafficking. Moreover, Phospho-mimetic aspartate substitution mutant T172D of Rab37 significantly promotes tumor metastasis in vivo. Our findings reveal a novel regulation of Rab37 activity by PKCα-mediated phosphorylation which inhibits exocytic transport of TIMP1 and thereby enhances lung tumor metastasis.
Collapse
Affiliation(s)
- Hong-Tai Tzeng
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Hsin Li
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-An Tang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology and Research (ASTAR), Singapore
| | - Chung-Han Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jung Frank Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wu-Wei Lai
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Wu Chiang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
42
|
Huang T, Sun L, Yuan X, Qiu H. Thrombospondin-1 is a multifaceted player in tumor progression. Oncotarget 2017; 8:84546-84558. [PMID: 29137447 PMCID: PMC5663619 DOI: 10.18632/oncotarget.19165] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/28/2017] [Indexed: 01/21/2023] Open
Abstract
Thrombospondins are a family of extracellular matrix (ECM) proteins. Thrombospondin-1 (TSP1) was the first member to be identified and is a main player in tumor microenvironment. The diverse functions of TSP1 depend on the interactions between its structural domains and multiple cell surface molecules. TSP1 acts as an angiogenesis inhibitor by stimulating endothelial cell apoptosis, inhibiting endothelial cell migration and proliferation, and regulating vascular endothelial growth factor bioavailability and activity. In addition to angiogenesis modulation, TSP1 also affects tumor cell adhesion, invasion, migration, proliferation, apoptosis and tumor immunity. This review discusses the multifaceted and sometimes opposite effects of TSP1 on tumor progression depending on the molecular and cellular composition of the microenvironment. Clinical implications of TSP1-related compounds are also discussed.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li Sun
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| |
Collapse
|