1
|
Faupel-Badger J, Kohaar I, Bahl M, Chan AT, Campbell JD, Ding L, De Marzo AM, Maitra A, Merrick DT, Hawk ET, Wistuba II, Ghobrial IM, Lippman SM, Lu KH, Lawler M, Kay NE, Tlsty TD, Rebbeck TR, Srivastava S. Defining precancer: a grand challenge for the cancer community. Nat Rev Cancer 2024; 24:792-809. [PMID: 39354069 DOI: 10.1038/s41568-024-00744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
The term 'precancer' typically refers to an early stage of neoplastic development that is distinguishable from normal tissue owing to molecular and phenotypic alterations, resulting in abnormal cells that are at least partially self-sustaining and function outside of normal cellular cues that constrain cell proliferation and survival. Although such cells are often histologically distinct from both the corresponding normal and invasive cancer cells of the same tissue origin, defining precancer remains a challenge for both the research and clinical communities. Once sufficient molecular and phenotypic changes have occurred in the precancer, the tissue is identified as a 'cancer' by a histopathologist. While even diagnosing cancer can at times be challenging, the determination of invasive cancer is generally less ambiguous and suggests a high likelihood of and potential for metastatic disease. The 'hallmarks of cancer' set out the fundamental organizing principles of malignant transformation but exactly how many of these hallmarks and in what configuration they define precancer has not been clearly and consistently determined. In this Expert Recommendation, we provide a starting point for a conceptual framework for defining precancer, which is based on molecular, pathological, clinical and epidemiological criteria, with the goal of advancing our understanding of the initial changes that occur and opportunities to intervene at the earliest possible time point.
Collapse
Affiliation(s)
| | - Indu Kohaar
- Division of Cancer Prevention, National Cancer Institute, NIH, Rockville, MD, USA
| | - Manisha Bahl
- Division of Breast Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joshua D Campbell
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Li Ding
- Department of Medicine and Genetics, McDonnell Genome Institute, and Siteman Cancer Center, Washington University in St Louis, Saint Louis, MO, USA
| | - Angelo M De Marzo
- Department of Pathology, Urology and Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel T Merrick
- Division of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ernest T Hawk
- Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott M Lippman
- Department of Medicine, University of California, La Jolla, San Diego, CA, USA
| | - Karen H Lu
- Department of Gynecological Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Mark Lawler
- Patrick G Johnson Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Neil E Kay
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Thea D Tlsty
- Department of Medicine and Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Timothy R Rebbeck
- Dana-Farber Cancer Institute and Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Sudhir Srivastava
- Division of Cancer Prevention, National Cancer Institute, NIH, Rockville, MD, USA.
| |
Collapse
|
2
|
Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, Lin D, Wu C. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther 2024; 9:149. [PMID: 38890350 PMCID: PMC11189549 DOI: 10.1038/s41392-024-01848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 06/20/2024] Open
Abstract
Tumorigenesis is a multistep process, with oncogenic mutations in a normal cell conferring clonal advantage as the initial event. However, despite pervasive somatic mutations and clonal expansion in normal tissues, their transformation into cancer remains a rare event, indicating the presence of additional driver events for progression to an irreversible, highly heterogeneous, and invasive lesion. Recently, researchers are emphasizing the mechanisms of environmental tumor risk factors and epigenetic alterations that are profoundly influencing early clonal expansion and malignant evolution, independently of inducing mutations. Additionally, clonal evolution in tumorigenesis reflects a multifaceted interplay between cell-intrinsic identities and various cell-extrinsic factors that exert selective pressures to either restrain uncontrolled proliferation or allow specific clones to progress into tumors. However, the mechanisms by which driver events induce both intrinsic cellular competency and remodel environmental stress to facilitate malignant transformation are not fully understood. In this review, we summarize the genetic, epigenetic, and external driver events, and their effects on the co-evolution of the transformed cells and their ecosystem during tumor initiation and early malignant evolution. A deeper understanding of the earliest molecular events holds promise for translational applications, predicting individuals at high-risk of tumor and developing strategies to intercept malignant transformation.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyi Xiao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyu Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lingxuan Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Changping Laboratory, 100021, Beijing, China
| | - Yanrong Shen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, 100006, Beijing, China.
| |
Collapse
|
3
|
Pyatnitskiy MA, Poverennaya EV. Transcript-Level Biomarkers of Early Lung Carcinogenesis in Bronchial Lesions. Cancers (Basel) 2024; 16:2260. [PMID: 38927965 PMCID: PMC11202239 DOI: 10.3390/cancers16122260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Premalignant lesions within the bronchial epithelium signify the initial phases of squamous cell lung carcinoma, posing challenges for detection via conventional methods. Instead of focusing solely on gene expression, in this study, we explore transcriptomic alterations linked to lesion progression, with an emphasis on protein-coding transcripts. We reanalyzed a publicly available RNA-Seq dataset on airway epithelial cells from 82 smokers with and without premalignant lesions. Transcript and gene abundance were quantified using kallisto, while differential expression and transcript usage analysis was performed utilizing sleuth and RATs packages. Functional characterization involved overrepresentation analysis via clusterProfiler, weighted coexpression network analysis (WGCNA), and network analysis via Enrichr-KG. We detected 5906 differentially expressed transcripts and 4626 genes, exhibiting significant enrichment within pathways associated with oxidative phosphorylation and mitochondrial function. Remarkably, transcript-level WGCNA revealed a single module correlated with dysplasia status, notably enriched in cilium-related biological processes. Notable hub transcripts included RABL2B (ENST00000395590), DNAH1 (ENST00000420323), EFHC1 (ENST00000635996), and VWA3A (ENST00000563389) along with transcription factors such as FOXJ1 and ZNF474 as potential regulators. Our findings underscore the value of transcript-level analysis in uncovering novel insights into premalignant bronchial lesion biology, including identification of potential biomarkers associated with early lung carcinogenesis.
Collapse
Affiliation(s)
- Mikhail A. Pyatnitskiy
- Institute of Biomedical Chemistry, Moscow 119121, Russia;
- National Research University Higher School of Economics, Moscow 101000, Russia
| | | |
Collapse
|
4
|
Chen Z, Lau KS. Advances in Mapping Tumor Progression from Precancer Atlases. Cancer Prev Res (Phila) 2023; 16:439-447. [PMID: 37167978 PMCID: PMC10523872 DOI: 10.1158/1940-6207.capr-22-0473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
Tissue profiling technologies present opportunities for understanding transition from precancerous lesions to malignancy, which may impact risk stratification, prevention, and even cancer treatment. A human precancer atlas building effort is ongoing to tackle the significant challenge of decoding the heterogeneity among cells, specimens, and patients. Here, we discuss the findings resulting from atlases built across precancer types, including those found in colon, breast, lung, stomach, cervix, and skin, using bulk, single-cell, and spatial profiling strategies. We highlight two main themes that emerge across precancer types: the ordering of molecular events that occur during tumor progression and the fluctuation of microenvironmental response during precancer progression. We further highlight the key challenges of data integration across large cohorts of patients, and the need for computational tools to reliably annotate and quality control high-volume, high-dimensional data.
Collapse
Affiliation(s)
- Zhengyi Chen
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ken S. Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
5
|
Olive GN, Yang IA, Marshall H, Bowman RV, Fong KM. More than meets the eye. Eur Respir J 2022; 60:60/3/2200763. [PMID: 36109046 DOI: 10.1183/13993003.00763-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Gerard N Olive
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia.,UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Ian A Yang
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia.,UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Henry Marshall
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia.,UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Rayleen V Bowman
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia.,UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Kwun M Fong
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia .,UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
6
|
Garland LL, Guillen-Rodriguez J, Hsu CH, Davis LE, Szabo E, Husted CR, Liu H, LeClerc A, Alekseyev YO, Liu G, Bauman JE, Spira AE, Beane J, Wojtowicz M, Chow HHS. Clinical Study of Aspirin and Zileuton on Biomarkers of Tobacco-Related Carcinogenesis in Current Smokers. Cancers (Basel) 2022; 14:2893. [PMID: 35740559 PMCID: PMC9221101 DOI: 10.3390/cancers14122893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
The chemopreventive effect of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) on lung cancer risk is supported by epidemiologic and preclinical studies. Zileuton, a 5-lipoxygenase inhibitor, has additive activity with NSAIDs against tobacco carcinogenesis in preclinical models. We hypothesized that cyclooxygenase plus 5-lipoxygenase inhibition would be more effective than a placebo in modulating the nasal epithelium gene signatures of tobacco exposure and lung cancer. We conducted a randomized, double-blinded study of low-dose aspirin plus zileuton vs. double placebo in current smokers to compare the modulating effects on nasal gene expression and arachidonic acid metabolism. In total, 63 participants took aspirin 81 mg daily plus zileuton (Zyflo CR) 600 mg BID or the placebo for 12 weeks. Nasal brushes from the baseline, end-of-intervention, and one-week post intervention were profiled via microarray. Aspirin plus zilueton had minimal effects on the modulation of the nasal or bronchial gene expression signatures of smoking, lung cancer, and COPD but favorably modulated a bronchial gene expression signature of squamous dysplasia. Aspirin plus zileuton suppressed urinary leukotriene but not prostaglandin E2, suggesting shunting through the cyclooxygenase pathway when combined with 5-lipoxygenase inhibition. Continued investigation of leukotriene inhibitors is needed to confirm these findings, understand the long-term effects on the airway epithelium, and identify the safest, optimally dosed agents.
Collapse
Affiliation(s)
- Linda L. Garland
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (J.G.-R.); (C.-H.H.); (H.-H.S.C.)
| | - José Guillen-Rodriguez
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (J.G.-R.); (C.-H.H.); (H.-H.S.C.)
| | - Chiu-Hsieh Hsu
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (J.G.-R.); (C.-H.H.); (H.-H.S.C.)
| | - Lisa E. Davis
- College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA;
| | - Eva Szabo
- Division of Cancer Prevention, National Cancer Institute, Bethesa, MD 20892, USA; (E.S.); (M.W.)
| | - Christopher R. Husted
- Section of Computational Biomedicine, Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA; (C.R.H.); (H.L.); (G.L.); (A.E.S.); (J.B.)
| | - Hanqiao Liu
- Section of Computational Biomedicine, Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA; (C.R.H.); (H.L.); (G.L.); (A.E.S.); (J.B.)
| | - Ashley LeClerc
- Department of Pathology and Laboratory Medicine, School of Medicine, Boston University, Boston, MA 02118, USA; (A.L.); (Y.O.A.)
| | - Yuriy O. Alekseyev
- Department of Pathology and Laboratory Medicine, School of Medicine, Boston University, Boston, MA 02118, USA; (A.L.); (Y.O.A.)
| | - Gang Liu
- Section of Computational Biomedicine, Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA; (C.R.H.); (H.L.); (G.L.); (A.E.S.); (J.B.)
| | - Julie E. Bauman
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (J.G.-R.); (C.-H.H.); (H.-H.S.C.)
- Division of Hematology/Oncology, Department of Medicine, George Washington (GW) University and GW Cancer Center, Washington, DC 20037, USA
| | - Avrum E. Spira
- Section of Computational Biomedicine, Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA; (C.R.H.); (H.L.); (G.L.); (A.E.S.); (J.B.)
| | - Jennifer Beane
- Section of Computational Biomedicine, Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA; (C.R.H.); (H.L.); (G.L.); (A.E.S.); (J.B.)
| | - Malgorzata Wojtowicz
- Division of Cancer Prevention, National Cancer Institute, Bethesa, MD 20892, USA; (E.S.); (M.W.)
| | - H.-H. Sherry Chow
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (J.G.-R.); (C.-H.H.); (H.-H.S.C.)
| |
Collapse
|
7
|
Keith RL, Miller YE, Ghosh M, Franklin WA, Nakachi I, Merrick DT. Lung cancer: Premalignant biology and medical prevention. Semin Oncol 2022; 49:254-260. [PMID: 35305831 DOI: 10.1053/j.seminoncol.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 11/11/2022]
Abstract
Lung cancer (both adenocarcinoma and squamous cell) progress through a series of pre-malignant histologic changes before the development of invasive disease. Each of these carcinogenic cascades is defined by genetic and epigenetic alterations in pulmonary epithelial cells. Additionally, alterations in the immune response, progenitor cell function, mutational burden, and microenvironmental mediated survival of mutated clones contribute to the risk of pre-malignant lesions progressing to cancer. Medical preventions studies have been completed and current and future trials are informed by the improved understanding of pre-malignancy. This will lead to precision chemoprevention trials based on lesional biology and histologic characteristics.
Collapse
Affiliation(s)
- R L Keith
- Division of Pulmonary Sciences and Critical Care Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO.
| | - Y E Miller
- Division of Pulmonary Sciences and Critical Care Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - M Ghosh
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Wilbur A Franklin
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - I Nakachi
- Department of Pulmonary Medicine, Keio University, Tokyo, Japan
| | - D T Merrick
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
8
|
Maoz A, Merenstein C, Koga Y, Potter A, Gower AC, Liu G, Zhang S, Liu H, Stevenson C, Spira A, Reid ME, Campbell JD, Mazzilli SA, Lenburg ME, Beane J. Elevated T cell repertoire diversity is associated with progression of lung squamous cell premalignant lesions. J Immunother Cancer 2021; 9:jitc-2021-002647. [PMID: 34580161 PMCID: PMC8477334 DOI: 10.1136/jitc-2021-002647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
Objective The immune response to invasive carcinoma has been the focus of published work, but little is known about the adaptive immune response to bronchial premalignant lesions (PMLs), precursors of lung squamous cell carcinoma. This study was designed to characterize the T cell receptor (TCR) repertoire in PMLs and its association with clinical, pathological, and molecular features. Methods Endobronchial biopsies (n=295) and brushings (n=137) from high-risk subjects (n=50), undergoing lung cancer screening at approximately 1-year intervals via autofluorescence bronchoscopy and CT, were profiled by RNA-seq. We applied the TCR Repertoire Utilities for Solid Tissue/Tumor tool to the RNA-seq data to identify TCR CDR3 sequences across all samples. In the biopsies, we measured the correlation of TCR diversity with previously derived immune-associated PML transcriptional signatures and PML outcome. We also quantified the spatial and temporal distribution of shared and clonally expanded TCRs. Using the biopsies and brushes, the ratio of private (ie, found in one patient only) and public (ie, found in two or more patients) TCRs was quantified, and the CDR3 sequences were compared with those found in curated databases with known antigen specificities. Results We detected 39,303 unique TCR sequences across all samples. In PML biopsies, TCR diversity was negatively associated with a transcriptional signature of T cell mediated immune activation (p=4e-4) associated with PML outcome. Additionally, in lesions of the proliferative molecular subtype, TCR diversity was decreased in regressive versus progressive/persistent PMLs (p=0.045). Within each patient, TCRs were more likely to be shared between biopsies sampled at the same timepoint than biopsies sampled at the same anatomic location at different times. Clonally expanded TCRs, within a biopsied lesion, were more likely to be expanded at future time points than non-expanded clones. The majority of TCR sequences were found in a single sample, with only 3396 (8.6%) found in more than one sample and 1057 (2.7%) found in two or more patients (ie, public); however, when compared with a public database of CDR3 sequences, 4543 (11.6%) of TCRs were identified as public. TCRs with known antigen specificities were enriched among public TCRs (p<0.001). Conclusions Decreased TCR diversity may reflect nascent immune responses that contribute to PML elimination. Further studies are needed to explore the potential for immunoprevention of PMLs.
Collapse
Affiliation(s)
- Asaf Maoz
- Department of Medicine, Secion of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA.,Boston Medical Center, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Carter Merenstein
- Department of Medicine, Secion of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA.,Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Yusuke Koga
- Department of Medicine, Secion of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Austin Potter
- Department of Medicine, Secion of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Adam C Gower
- Department of Medicine, Secion of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Gang Liu
- Department of Medicine, Secion of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Sherry Zhang
- Department of Medicine, Secion of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Hanqiao Liu
- Department of Medicine, Secion of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | | | - Avrum Spira
- Department of Medicine, Secion of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA.,The Lung Cancer Initiative at Johnson and Johnson, Cambridge, Massachusetts, USA
| | - Mary E Reid
- Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Joshua D Campbell
- Department of Medicine, Secion of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Sarah A Mazzilli
- Department of Medicine, Secion of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Marc E Lenburg
- Department of Medicine, Secion of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Jennifer Beane
- Department of Medicine, Secion of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
9
|
Mapping lung squamous cell carcinoma pathogenesis through in vitro and in vivo models. Commun Biol 2021; 4:937. [PMID: 34354223 PMCID: PMC8342622 DOI: 10.1038/s42003-021-02470-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the main cause of cancer death worldwide, with lung squamous cell carcinoma (LUSC) being the second most frequent subtype. Preclinical LUSC models recapitulating human disease pathogenesis are key for the development of early intervention approaches and improved therapies. Here, we review advances and challenges in the generation of LUSC models, from 2D and 3D cultures, to murine models. We discuss how molecular profiling of premalignant lesions and invasive LUSC has contributed to the refinement of in vitro and in vivo models, and in turn, how these systems have increased our understanding of LUSC biology and therapeutic vulnerabilities.
Collapse
|
10
|
Krysan K, Tran LM, Dubinett SM. Immunosurveillance and Regression in the Context of Squamous Pulmonary Premalignancy. Cancer Discov 2021; 10:1442-1444. [PMID: 33004476 DOI: 10.1158/2159-8290.cd-20-1087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this issue of Cancer Discovery, Pennycuick and colleagues comprehensively evaluate the immune contexture of progressive and regressive lesions in squamous pulmonary premalignancy. The authors dissect the molecular features of these lesions and the potential pathways of immune escape operative in progression to invasive cancer.See related article by Pennycuick et al., p. 1489.
Collapse
Affiliation(s)
- Kostyantyn Krysan
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Linh M Tran
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Steven M Dubinett
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
11
|
Xia Y, Ying S, Jin R, Wu H, Shen Y, Yin T, Yan F, Zhang W, Lan F, Zhang B, Zhu C, Li C, Li W, Shen H. Application of a classifier combining bronchial transcriptomics and chest computed tomography features facilitates the diagnostic evaluation of lung cancer in smokers and nonsmokers. Int J Cancer 2021; 149:1290-1301. [PMID: 33963762 DOI: 10.1002/ijc.33675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
Lung cancer screening by computed tomography (CT) reduces mortality but exhibited high false-positive rates. We established a diagnostic classifier combining chest CT features with bronchial transcriptomics. Patients with CT-detected suspected lung cancer were enrolled. The sample collected by bronchial brushing was used for RNA sequencing. The e1071 and pROC packages in R software was applied to build the model. Eventually, a total of 283 patients, including 183 with lung cancer and 100 with benign lesions, were included into final analysis. When incorporating transcriptomic data with radiological characteristics, the advanced model yielded 0.903 AUC with 81.1% NPV. Moreover, the classifier performed well regardless of lesion size, location, stage, histologic type or smoking status. Pathway analysis showed enhanced epithelial differentiation, tumor metastasis, and impaired immunity were predominant in smokers with cancer, whereas tumorigenesis played a central role in nonsmokers with cancer. Apoptosis and oxidative stress contributed critically in metastatic lung cancer; by contrast, immune dysfunction was pivotal in locally advanced lung cancer. Collectively, we devised a minimal-to-noninvasive, efficient diagnostic classifier for smokers and nonsmokers with lung cancer, which provides evidence for different mechanisms of cancer development and metastasis associated with smoking. A negative classifier result will help the physician make conservative diagnostic decisions.
Collapse
Affiliation(s)
- Yang Xia
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Songmin Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Jin
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wu
- Department of Human Genetics, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Shen
- Hangzhou Mitigenomics Technology Co, Ltd, Hangzhou, China
| | - Tong Yin
- Hangzhou Mitigenomics Technology Co, Ltd, Hangzhou, China
| | - Fugui Yan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhang
- Hangzhou Mitigenomics Technology Co, Ltd, Hangzhou, China
| | - Fen Lan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Zhu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Li
- Department of Human Genetics, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Abstract
Early intervention and risk stratification solutions for lung cancer are limited by our understanding of how carcinogenesis transforms the pre-invasive epithelium and its microenvironment before the carcinoma stage. We describe the sequence of molecular and cellular changes leading to cancer formation and the co-evolution of the earliest immune response. We revealed that immune sensing, infiltration and activation of immune cells, immune escape, and microenvironment reorganization occur early in pre-cancer. These findings urge the need for broadening the scope of the established immunotherapy approaches toward prophylactic cancer treatment and preventive intervention. Leveraging the immune contexture and the mechanisms of immune modulation for individuals at risk of developing cancer and further to the general population will allow for early detection, chemoprevention, and risk stratification in the near future.
Collapse
Affiliation(s)
- Mihaela Angelova
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France.,Equipe Labellisée Ligue Contre Le Cancer, Paris, France.,Centre De Recherche Des Cordeliers, Sorbonne Université, Université De Paris, Paris, France.,Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Céline Mascaux
- Service De Pneumologie, Hôpitaux Universitaires De Strasbourg, Strasbourg, France.,Université De Strasbourg, Inserm UMR_S 1113, IRFAC, Laboratory Streinth (Stress REsponse and INnovative THerapy against Cancer), ITI InnoVec, Strasbourg, France
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France.,Equipe Labellisée Ligue Contre Le Cancer, Paris, France.,Centre De Recherche Des Cordeliers, Sorbonne Université, Université De Paris, Paris, France
| |
Collapse
|
13
|
Alam A, Ansari MA, Badrealam KF, Pathak S. Molecular approaches to lung cancer prevention. Future Oncol 2021; 17:1793-1810. [PMID: 33653087 DOI: 10.2217/fon-2020-0789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lung cancer is generally diagnosed at advanced stages when surgical resection is not possible. Late diagnosis, along with development of chemoresistance, results in high mortality. Preventive approaches, including smoking cessation, chemoprevention and early detection are needed to improve survival. Smoking cessation combined with low-dose computed tomography screening has modestly improved survival. Chemoprevention has also shown some promise. Despite these successes, most lung cancer cases remain undetected until advanced stages. Additional early detection strategies may further improve survival and treatment outcome. Molecular alterations taking place during lung carcinogenesis have the potential to be used in early detection via noninvasive methods and may also serve as biomarkers for success of chemopreventive approaches. This review focuses on the utilization of molecular biomarkers to increase the efficacy of various preventive approaches.
Collapse
Affiliation(s)
- Asrar Alam
- Department of Preventive Oncology, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Mohammad A Ansari
- Department of Epidemic Disease Research, Institute of Research & Medical Consultation, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Khan F Badrealam
- Cardiovascular & Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Sujata Pathak
- Department of Preventive Oncology, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
14
|
Keshavarz-Fathi M, Rezaei N. Cancer Immunoprevention: Current Status and Future Directions. Arch Immunol Ther Exp (Warsz) 2021; 69:3. [PMID: 33638703 DOI: 10.1007/s00005-021-00604-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/06/2021] [Indexed: 12/24/2022]
Abstract
Cancer is one of the most serious diseases affecting health and the second leading cause of death worldwide. Despite the development of various therapeutic modalities to deal with cancer, limited improvement in overall survival of patients has been yielded. Since there is no certain cure for cancer, detection of premalignant lesions, and prevention of their progression are vital to the decline of high morbidity and mortality of cancer. Among approaches to cancer prevention, immunoprevention has gained further attention in recent years. Deep understanding of the tumor/immune system interplay and successful prevention of virally-induced malignancies by vaccines have paved the way toward broadening cancer immunoprevention application. The identification of tumor antigens in premalignant lesions was the turning point in cancer immunoprevention that led to designing preventive vaccines for various malignancies including multiple myeloma, colorectal, and breast cancer. In addition to vaccines, immune checkpoint inhibitors are also being tested for the prevention of oral squamous cell carcinoma (SCC), and imiquimod which is an established drug for the prevention of skin SCC, is a non-specific immunomodulator. Herein, to provide a bench-to-bedside understanding of cancer immunoprevention, we will review the role of the immune system in suppression and promotion of tumors, immunoprevention of virally-induced cancers, identification of tumor antigens in premalignant lesions, and clinical advances of cancer immunoprevention.
Collapse
Affiliation(s)
- Mahsa Keshavarz-Fathi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
15
|
Kalinke L, Thakrar R, Janes SM. The promises and challenges of early non-small cell lung cancer detection: patient perceptions, low-dose CT screening, bronchoscopy and biomarkers. Mol Oncol 2020; 15:2544-2564. [PMID: 33252175 PMCID: PMC8486568 DOI: 10.1002/1878-0261.12864] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/04/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Lung cancer survival statistics are sobering with survival ranking among the poorest of all cancers despite the addition of targeted therapies and immunotherapies. However, improvements in tools for early detection hold promise. The Nederlands–Leuvens Longkanker Screenings Onderzoek (NELSON) trial recently corroborated the findings from the previous National Lung Screening Trial low‐dose Computerised Tomography (NLST) screening trial in reducing lung cancer mortality. Biomarker research and development is increasing at pace as the molecular life histories of lung cancers become further unravelled. Low‐dose CT screening (LDCT) is effective but targets only those at the highest risk and is burdensome on healthcare. An optimally designed CT screening programme at best will only detect a low proportion of overall lung cancers as only those at very high‐risk meet screening criteria. Biomarkers that help risk stratify suitable patients for LDCT screening, and those that assist in determining which LDCT detected nodules are likely to represent malignant disease are needed. Some biomarkers have been proposed as standalone lung cancer diagnosis tools. Bronchoscopy technology is improving, with better capacity to identify and obtain samples from early lung cancers. Clinicians need to be aware of each early lung cancer detection method’s inherent limitations. We anticipate that the future of early lung cancer diagnosis will involve a synergistic, multimodal approach, combining several early detection methods.
Collapse
Affiliation(s)
- Lukas Kalinke
- Lungs for Living Research Centre, University College London, UK
| | - Ricky Thakrar
- Lungs for Living Research Centre, University College London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, University College London, UK
| |
Collapse
|
16
|
Lim RJ, Liu B, Krysan K, Dubinett SM. Lung Cancer and Immunity Markers. Cancer Epidemiol Biomarkers Prev 2020. [PMID: 32856614 DOI: 10.1158/1055-9965.epi200716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
An in-depth understanding of lung cancer biology and mechanisms of tumor progression has facilitated significant advances in the treatment of lung cancer. There remains a pressing need for the development of innovative approaches to detect and intercept lung cancer at its earliest stage of development. Recent advances in genomics, computational biology, and innovative technologies offer unique opportunities to identify the immune landscape in the tumor microenvironment associated with early-stage lung carcinogenesis, and provide further insight in the mechanism of lung cancer evolution. This review will highlight the concept of immunoediting and focus on recent studies assessing immune changes and biomarkers in pulmonary premalignancy and early-stage non-small cell lung cancer. A protumor immune response hallmarked by an increase in checkpoint inhibition and inhibitory immune cells and a simultaneous reduction in antitumor immune response have been correlated with tumor progression. The potential systemic biomarkers associated with early lung cancer will be highlighted along with current clinical efforts for lung cancer interception. Research focusing on the development of novel strategies for cancer interception prior to the progression to advanced stages will potentially lead to a paradigm shift in the treatment of lung cancer and have a major impact on clinical outcomes.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Raymond J Lim
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Bin Liu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kostyantyn Krysan
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Steven M Dubinett
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California. .,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, California.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
17
|
Parker AL, Cox TR. The Role of the ECM in Lung Cancer Dormancy and Outgrowth. Front Oncol 2020; 10:1766. [PMID: 33014869 PMCID: PMC7516130 DOI: 10.3389/fonc.2020.01766] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
The dissemination of tumor cells to local and distant sites presents a significant challenge in the clinical management of many solid tumors. These cells may remain dormant for months or years before overt metastases are re-awakened. The components of the extracellular matrix, their posttranslational modifications and their associated factors provide mechanical, physical and chemical cues to these disseminated tumor cells. These cues regulate the proliferative and survival capacity of these cells and lay the foundation for their engraftment and colonization. Crosstalk between tumor cells, stromal and immune cells within primary and secondary sites is fundamental to extracellular matrix remodeling that feeds back to regulate tumor cell dormancy and outgrowth. This review will examine the role of the extracellular matrix and its associated factors in establishing a fertile soil from which individual tumor cells and micrometastases establish primary and secondary tumors. We will focus on the role of the lung extracellular matrix in providing the architectural support for local metastases in lung cancer, and distant metastases in many solid tumors. This review will define how the matrix and matrix associated components are collectively regulated by lung epithelial cells, fibroblasts and resident immune cells to orchestrate tumor dormancy and outgrowth in the lung. Recent advances in targeting these lung-resident tumor cell subpopulations to prevent metastatic disease will be discussed. The development of novel matrix-targeted strategies have the potential to significantly reduce the burden of metastatic disease in lung and other solid tumors and significantly improve patient outcome in these diseases.
Collapse
Affiliation(s)
- Amelia L Parker
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Thomas R Cox
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| |
Collapse
|
18
|
Lim RJ, Liu B, Krysan K, Dubinett SM. Lung Cancer and Immunity Markers. Cancer Epidemiol Biomarkers Prev 2020; 29:2423-2430. [PMID: 32856614 DOI: 10.1158/1055-9965.epi-20-0716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
An in-depth understanding of lung cancer biology and mechanisms of tumor progression has facilitated significant advances in the treatment of lung cancer. There remains a pressing need for the development of innovative approaches to detect and intercept lung cancer at its earliest stage of development. Recent advances in genomics, computational biology, and innovative technologies offer unique opportunities to identify the immune landscape in the tumor microenvironment associated with early-stage lung carcinogenesis, and provide further insight in the mechanism of lung cancer evolution. This review will highlight the concept of immunoediting and focus on recent studies assessing immune changes and biomarkers in pulmonary premalignancy and early-stage non-small cell lung cancer. A protumor immune response hallmarked by an increase in checkpoint inhibition and inhibitory immune cells and a simultaneous reduction in antitumor immune response have been correlated with tumor progression. The potential systemic biomarkers associated with early lung cancer will be highlighted along with current clinical efforts for lung cancer interception. Research focusing on the development of novel strategies for cancer interception prior to the progression to advanced stages will potentially lead to a paradigm shift in the treatment of lung cancer and have a major impact on clinical outcomes.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Raymond J Lim
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Bin Liu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kostyantyn Krysan
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Steven M Dubinett
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California. .,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, California.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
19
|
van der Heijden M, Essers PBM, Verhagen CVM, Willems SM, Sanders J, de Roest RH, Vossen DM, Leemans CR, Verheij M, Brakenhoff RH, van den Brekel MWM, Vens C. Epithelial-to-mesenchymal transition is a prognostic marker for patient outcome in advanced stage HNSCC patients treated with chemoradiotherapy. Radiother Oncol 2020; 147:186-194. [PMID: 32413532 DOI: 10.1016/j.radonc.2020.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The prognosis of patients with HPV-negative advanced stage head and neck squamous cell carcinoma (HNSCC) remains poor. No prognostic markers other than TNM staging are routinely used in clinic. Epithelial-to-mesenchymal transition (EMT) has been shown to be a strong prognostic factor in other cancer types. The purpose of this study was to determine the role of EMT in HPV-negative HNSCC outcomes. METHODS Pretreatment tumor material from patients of two cohorts, totalling 174 cisplatin-based chemoradiotherapy treated HPV-negative HNSCC patients, was RNA-sequenced. Seven different EMT gene expression signatures were used for EMT status classification and generation of HNSCC-specific EMT models using Random Forest machine learning. RESULTS Mesenchymal classification by all EMT signatures consistently enriched for poor prognosis patients in both cohorts of 98 and 76 patients. Uni- and multivariate analyses show important HR of 1.6-5.8, thereby revealing EMT's role in HNSCC outcome. Discordant classification by these signatures prompted the generation of an HNSCC-specific EMT profile based on the concordantly classified samples in the first cohort (cross-validation AUC > 0.98). The independent validation cohort confirmed the association of mesenchymal classification by the HNSCC-EMT model with poor overall survival (HR = 3.39, p < 0.005) and progression free survival (HR = 3.01, p < 0.005) in multivariate analysis with TNM. Analysis of an additional HNSCC cohort from PET-positive patients with metastatic disease prior to treatment further supports this relationship and reveals a strong link of EMT to the propensity to metastasize. CONCLUSIONS EMT in HPV-negative HNSCC co-defines patient outcome after chemoradiotherapy. The generated HNSCC-EMT prediction models can function as strong prognostic biomarkers.
Collapse
Affiliation(s)
- Martijn van der Heijden
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Paul B M Essers
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Caroline V M Verhagen
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Stefan M Willems
- Department of Pathology, University Medical Center Utrecht, The Netherlands
| | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Reinout H de Roest
- Department of Otolaryngology/Head and Neck Surgery, VUmc Cancer Center Amsterdam, The Netherlands
| | - David M Vossen
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C René Leemans
- Department of Otolaryngology/Head and Neck Surgery, VUmc Cancer Center Amsterdam, The Netherlands
| | - Marcel Verheij
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Department of Otolaryngology/Head and Neck Surgery, VUmc Cancer Center Amsterdam, The Netherlands
| | - Michiel W M van den Brekel
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Oral and Maxillofacial Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - Conchita Vens
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Garland LL, Guillen-Rodriguez J, Hsu CH, Yozwiak M, Zhang HH, Alberts DS, Davis LE, Szabo E, Merenstein C, Lel J, Zhang X, Liu H, Liu G, Spira AE, Beane JE, Wojtowicz M, Chow HHS. Effect of Intermittent Versus Continuous Low-Dose Aspirin on Nasal Epithelium Gene Expression in Current Smokers: A Randomized, Double-Blinded Trial. Cancer Prev Res (Phila) 2019; 12:809-820. [PMID: 31451521 PMCID: PMC7485120 DOI: 10.1158/1940-6207.capr-19-0036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/23/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
A chemopreventive effect of aspirin (ASA) on lung cancer risk is supported by epidemiologic and preclinical studies. We conducted a randomized, double-blinded study in current heavy smokers to compare modulating effects of intermittent versus continuous low-dose ASA on nasal epithelium gene expression and arachidonic acid (ARA) metabolism. Fifty-four participants were randomized to intermittent (ASA 81 mg daily for one week/placebo for one week) or continuous (ASA 81 mg daily) for 12 weeks. Low-dose ASA suppressed urinary prostaglandin E2 metabolite (PGEM; change of -4.55 ± 11.52 from baseline 15.44 ± 13.79 ng/mg creatinine for arms combined, P = 0.02), a surrogate of COX-mediated ARA metabolism, but had minimal effects on nasal gene expression of nasal or bronchial gene-expression signatures associated with smoking, lung cancer, and chronic obstructive pulmonary disease. Suppression of urinary PGEM correlated with favorable changes in a smoking-associated gene signature (P < 0.01). Gene set enrichment analysis (GSEA) showed that ASA intervention led to 1,079 enriched gene sets from the Canonical Pathways within the Molecular Signatures Database. In conclusion, low-dose ASA had minimal effects on known carcinogenesis gene signatures in nasal epithelium of current smokers but results in wide-ranging genomic changes in the nasal epithelium, demonstrating utility of nasal brushings as a surrogate to measure gene-expression responses to chemoprevention. PGEM may serve as a marker for smoking-associated gene-expression changes and systemic inflammation. Future studies should focus on NSAIDs or agent combinations with broader inhibition of pro-inflammatory ARA metabolism to shift gene signatures in an anti-carcinogenic direction.
Collapse
Affiliation(s)
| | | | - Chiu-Hsieh Hsu
- University of Arizona Cancer Center, University of Arizona
| | | | | | | | - Lisa E Davis
- University of Arizona Cancer Center, University of Arizona
| | - Eva Szabo
- Division of Cancer Prevention, NCI/NIH, Boston, Massachusetts
| | | | - Julian Lel
- Boston University School of Medicine, Boston, Massachusetts
| | - Xiaohui Zhang
- Boston University School of Medicine, Boston, Massachusetts
| | - Hanqiao Liu
- Boston University School of Medicine, Boston, Massachusetts
| | - Gang Liu
- Boston University School of Medicine, Boston, Massachusetts
| | - Avrum E Spira
- Boston University School of Medicine, Boston, Massachusetts
| | | | | | | |
Collapse
|
21
|
Davidson DD, Cheng L. Perspectives of lung cancer control and molecular prevention. Future Oncol 2019; 15:3527-3530. [PMID: 31650845 DOI: 10.2217/fon-2019-0523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Darrell D Davidson
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, IN 46202, USA
| | - Liang Cheng
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, IN 46202, USA
| |
Collapse
|
22
|
Cheng M, Hanna NH, Davidson DD, Gunderman RB. Predicting progression of in situ carcinoma in the era of precision genomics. J Thorac Dis 2019; 11:2222-2225. [PMID: 31372258 DOI: 10.21037/jtd.2019.05.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Monica Cheng
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nasser H Hanna
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Darrell D Davidson
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Richard B Gunderman
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
23
|
Gupta A, Harris K, Dhillon SS. Role of bronchoscopy in management of central squamous cell lung carcinoma in situ. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:354. [PMID: 31516900 DOI: 10.21037/atm.2019.04.36] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Squamous cell carcinoma in situ (SCIS) is the pre-invasive stage of squamous cell carcinoma. Early detection and management of SCIS can prevent further progression. Although surgery and external beam radiation therapy are treatment options for SCIS, smaller lesions can be easily managed by bronchoscopic modalities like photodynamic therapy (PDT), cryotherapy, mechanical debulking with biopsy forceps, electrocautery and argon plasma coagulation (APC). Endobronchial brachytherapy (EBBT) and lasers may be judiciously utilized in selected cases. Although, previous studies of treatment modalities may have inadvertently included cases of invasive carcinomas, the advent of new technologies like radial probe endobronchial ultrasound (RP-EBUS) and optical coherence tomography (OCT) can help accurately determine the of depth of invasion. Superficial extent can also be better demarcated with techniques like auto-fluorescence bronchoscopy and narrow band imaging (NBI). New drugs for PDT with deeper penetration and less phototoxicity are being developed. These advances hopefully will allow us to perform superior clinical trials in future and improve our understanding of diagnosis and management of SCIS.
Collapse
Affiliation(s)
- Ankit Gupta
- Division of Pulmonary and Critical Care Medicine, Hartford Healthcare, Norwich, CT, USA
| | - Kassem Harris
- Interventional Pulmonology Section, Pulmonary Critical Care Division, Department of Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | - Samjot Singh Dhillon
- Pulmonary Critical Care and Sleep Medicine, Interventional Pulmonary, The Permanente Medical Group, Roseville and Sacramento, CA, USA
| |
Collapse
|
24
|
Alborelli I, Generali D, Jermann P, Cappelletti MR, Ferrero G, Scaggiante B, Bortul M, Zanconati F, Nicolet S, Haegele J, Bubendorf L, Aceto N, Scaltriti M, Mucci G, Quagliata L, Novelli G. Cell-free DNA analysis in healthy individuals by next-generation sequencing: a proof of concept and technical validation study. Cell Death Dis 2019; 10:534. [PMID: 31296838 PMCID: PMC6624284 DOI: 10.1038/s41419-019-1770-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 02/08/2023]
Abstract
Pre-symptomatic screening of genetic alterations might help identify subpopulations of individuals that could enter into early access prevention programs. Since liquid biopsy is minimally invasive it can be used for longitudinal studies in healthy volunteers to monitor events of progression from normal tissue to pre-cancerous and cancerous condition. Yet, cell-free DNA (cfDNA) analysis in healthy individuals comes with substantial challenges such as the lack of large cohort studies addressing the impact of mutations in healthy individuals or the low abundance of cfDNA in plasma. In this study, we aimed to investigate the technical feasibility of cfDNA analysis in a collection of 114 clinically healthy individuals. We first addressed the impact of pre-analytical factors such as cfDNA yield and quality on sequencing performance and compared healthy to cancer donor samples. We then confirmed the validity of our testing strategy by evaluating the mutational status concordance in matched tissue and plasma specimens collected from cancer patients. Finally, we screened our group of healthy donors for genetic alterations, comparing individuals who did not develop any tumor to patients who developed either a benign neoplasm or cancer during 1-10 years of follow-up time. To conclude, we have established a rapid and reliable liquid biopsy workflow that allowed us to study genomic alterations with a limit of detection as low as 0.08% of variant allelic frequency in healthy individuals. We detected pathogenic cancer mutations in four healthy donors that later developed a benign neoplasm or invasive breast cancer up to 10 years after blood collection. Even though larger prospective studies are needed to address the specificity and sensitivity of liquid biopsy as a clinical tool for early cancer detection, systematic screening of healthy individuals will help understanding early events of tumor formation.
Collapse
Affiliation(s)
- Ilaria Alborelli
- Institute of Pathology, University Hospital Basel, 4031, Basel, Switzerland.
| | - Daniele Generali
- Breast Cancer Unit and Translational Research Unit, ASST Cremona, Viale Concordia 1, 26100, Cremona, Italy
- Department of Medical Surgery and Health Sciences, University of Trieste, 34129, Trieste, Italy
| | - Philip Jermann
- Institute of Pathology, University Hospital Basel, 4031, Basel, Switzerland
| | - Maria Rosa Cappelletti
- Breast Cancer Unit and Translational Research Unit, ASST Cremona, Viale Concordia 1, 26100, Cremona, Italy
| | - Giuseppina Ferrero
- Breast Cancer Unit and Translational Research Unit, ASST Cremona, Viale Concordia 1, 26100, Cremona, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Giorgeri, 1, 34127, Trieste, Italy
| | - Marina Bortul
- Department of Medical Surgery and Health Sciences, University of Trieste, 34129, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical Surgery and Health Sciences, University of Trieste, 34129, Trieste, Italy
| | - Stefan Nicolet
- Institute of Pathology, University Hospital Basel, 4031, Basel, Switzerland
| | - Jasmin Haegele
- Institute of Pathology, University Hospital Basel, 4031, Basel, Switzerland
- Novartis Institutes for BioMedical Research, 4056, Basel, Switzerland
| | - Lukas Bubendorf
- Institute of Pathology, University Hospital Basel, 4031, Basel, Switzerland
| | - Nicola Aceto
- Cancer Metastasis Laboratory, Department of Biomedicine, University of Basel, 4058, Basel, Switzerland
| | - Maurizio Scaltriti
- Human Oncology & Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York, NY, USA
| | - Giuseppe Mucci
- Bioscience Institute, Via Rovereta 42, Falciano, 47891, San Marino, Italy
| | - Luca Quagliata
- Institute of Pathology, University Hospital Basel, 4031, Basel, Switzerland
- Thermo Fisher Scientific, 6300, Zug, Switzerland
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
25
|
Premalignant lesions of squamous cell carcinoma of the lung: The molecular make-up and factors affecting their progression. Lung Cancer 2019; 135:21-28. [PMID: 31446997 DOI: 10.1016/j.lungcan.2019.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/23/2019] [Accepted: 07/01/2019] [Indexed: 01/06/2023]
Abstract
Squamous cell carcinoma (SCC), one of the most common forms of lung cancer, shows accelerated progression and aggressive growth and usually is observed at advanced stages. SCC originates from morphological changes in the bronchial epithelium that occur during chronic inflammation: basal cell hyperplasia, squamous metaplasia, and dysplasia I-III. However, the process is not inevitable; it can be stopped at any stage, remain in the stable state indefinitely and either progress or regress. The reasons and mechanisms of different scenarios of the evolution of premalignant lesions in the respiratory epithelium are not fully understood. In this review, we summarized the literature data (including our own data) regarding genetic, epigenetic, transcriptomic and proteomic profiles of the premalignant lesions and highlighted factors (environmental causes, inflammation, and gene polymorphism) that may govern their progression or regression. In conclusion, we reviewed strategies for lung cancer prevention and proposed new models and research directions for studying premalignant lesions and developing new tools to predict the risk of their malignant transformation.
Collapse
|
26
|
Shearston K, Fateh B, Tai S, Hove D, Farah CS. Malignant transformation rate of oral leukoplakia in an Australian population. J Oral Pathol Med 2019; 48:530-537. [DOI: 10.1111/jop.12899] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Kate Shearston
- UWA Dental School University of Western Australia Nedlands Western Australia Australia
| | - Behrooz Fateh
- UWA Dental School University of Western Australia Nedlands Western Australia Australia
| | - Shixiong Tai
- UWA Dental School University of Western Australia Nedlands Western Australia Australia
| | - Dzikamai Hove
- UWA Dental School University of Western Australia Nedlands Western Australia Australia
| | - Camile S. Farah
- UWA Dental School University of Western Australia Nedlands Western Australia Australia
- Australian Centre for Oral Oncology Research & Education Nedlands Western Australia Australia
| |
Collapse
|
27
|
Fan X, Wang Y, Tang XQ. Extracting predictors for lung adenocarcinoma based on Granger causality test and stepwise character selection. BMC Bioinformatics 2019; 20:197. [PMID: 31074380 PMCID: PMC6509866 DOI: 10.1186/s12859-019-2739-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Lung adenocarcinoma is the most common type of lung cancer, with high mortality worldwide. Its occurrence and development were thoroughly studied by high-throughput expression microarray, which produced abundant data on gene expression, DNA methylation, and miRNA quantification. However, the hub genes, which can be served as bio-markers for discriminating cancer and healthy individuals, are not well screened. Result Here we present a new method for extracting gene predictors, aiming to obtain the least predictors without losing the efficiency. We firstly analyzed three different expression microarrays and constructed multi-interaction network, since the individual expression dataset is not enough for describing biological behaviors dynamically and systematically. Then, we transformed the undirected interaction network to directed network by employing Granger causality test, followed by the predictors screened with the use of the stepwise character selection algorithm. Six predictors, including TOP2A, GRK5, SIRT7, MCM7, EGFR, and COL1A2, were ultimately identified. All the predictors are the cancer-related, and the number is very small fascinating diagnosis. Finally, the validation of this approach was verified by robustness analyses applied to six independent datasets; the precision is up to 95.3% ∼ 100%. Conclusion Although there are complicated differences between cancer and normal cells in gene functions, cancer cells could be differentiated in case that a group of special genes expresses abnormally. Here we presented a new, robust, and effective method for extracting gene predictors. We identified as low as 6 genes which can be taken as predictors for diagnosing lung adenocarcinoma.
Collapse
Affiliation(s)
- Xuemeng Fan
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Yaolai Wang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Xu-Qing Tang
- School of Science, Jiangnan University, Wuxi, 214122, China. .,Wuxi Engineering Research Center for Biocomputing, Wuxi, 214122, China.
| |
Collapse
|
28
|
Beane JE, Mazzilli SA, Campbell JD, Duclos G, Krysan K, Moy C, Perdomo C, Schaffer M, Liu G, Zhang S, Liu H, Vick J, Dhillon SS, Platero SJ, Dubinett SM, Stevenson C, Reid ME, Lenburg ME, Spira AE. Molecular subtyping reveals immune alterations associated with progression of bronchial premalignant lesions. Nat Commun 2019; 10:1856. [PMID: 31015447 PMCID: PMC6478943 DOI: 10.1038/s41467-019-09834-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
Bronchial premalignant lesions (PMLs) are precursors of lung squamous cell carcinoma, but have variable outcome, and we lack tools to identify and treat PMLs at risk for progression to cancer. Here we report the identification of four molecular subtypes of PMLs with distinct differences in epithelial and immune processes based on RNA-Seq profiling of endobronchial biopsies from high-risk smokers. The Proliferative subtype is enriched with bronchial dysplasia and exhibits up-regulation of metabolic and cell cycle pathways. A Proliferative subtype-associated gene signature identifies subjects with Proliferative PMLs from normal-appearing uninvolved large airway brushings with high specificity. In progressive/persistent Proliferative lesions expression of interferon signaling and antigen processing/presentation pathways decrease and immunofluorescence indicates a depletion of innate and adaptive immune cells compared with regressive lesions. Molecular biomarkers measured in PMLs or the uninvolved airway can enhance histopathological grading and suggest immunoprevention strategies for intercepting the progression of PMLs to lung cancer.
Collapse
MESH Headings
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Biopsy
- Bronchi/diagnostic imaging
- Bronchi/immunology
- Bronchi/pathology
- Bronchoscopy
- Carcinoma, Bronchogenic/genetics
- Carcinoma, Bronchogenic/immunology
- Carcinoma, Bronchogenic/pathology
- Carcinoma, Bronchogenic/prevention & control
- Cohort Studies
- Datasets as Topic
- Disease Progression
- Early Detection of Cancer/methods
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/immunology
- Gene Regulatory Networks/genetics
- Gene Regulatory Networks/immunology
- Humans
- Immunity, Cellular/drug effects
- Immunity, Cellular/genetics
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/prevention & control
- Mass Screening/methods
- Middle Aged
- Precancerous Conditions/diagnostic imaging
- Precancerous Conditions/genetics
- Precancerous Conditions/immunology
- Precancerous Conditions/pathology
- RNA, Messenger/genetics
- Respiratory Mucosa/cytology
- Respiratory Mucosa/diagnostic imaging
- Respiratory Mucosa/immunology
- Respiratory Mucosa/pathology
- Sequence Analysis, RNA
- T-Lymphocytes/immunology
- Tomography, X-Ray Computed
- Up-Regulation
Collapse
Affiliation(s)
| | | | | | - Grant Duclos
- Boston University School of Medicine, Boston, MA, 02118, USA
| | - Kostyantyn Krysan
- David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | | | | | | | - Gang Liu
- Boston University School of Medicine, Boston, MA, 02118, USA
| | - Sherry Zhang
- Boston University School of Medicine, Boston, MA, 02118, USA
| | - Hanqiao Liu
- Boston University School of Medicine, Boston, MA, 02118, USA
| | - Jessica Vick
- Boston University School of Medicine, Boston, MA, 02118, USA
| | | | | | - Steven M Dubinett
- David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | | | - Mary E Reid
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Marc E Lenburg
- Boston University School of Medicine, Boston, MA, 02118, USA
| | - Avrum E Spira
- Boston University School of Medicine, Boston, MA, 02118, USA
- Johnson and Johnson Innovation, Cambridge, MA, 02142, USA
| |
Collapse
|
29
|
Merrick DT, Edwards MG, Franklin WA, Sugita M, Keith RL, Miller YE, Friedman MB, Dwyer-Nield LD, Tennis MA, O'Keefe MC, Donald EJ, Malloy JM, van Bokhoven A, Wilson S, Koch PJ, O'Shea C, Coldren C, Orlicky DJ, Lu X, Baron AE, Hickey G, Kennedy TC, Powell R, Heasley L, Bunn PA, Geraci M, Nemenoff RA. Altered Cell-Cycle Control, Inflammation, and Adhesion in High-Risk Persistent Bronchial Dysplasia. Cancer Res 2018; 78:4971-4983. [PMID: 29997230 PMCID: PMC6147150 DOI: 10.1158/0008-5472.can-17-3822] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/16/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
Persistent bronchial dysplasia is associated with increased risk of developing invasive squamous cell carcinoma (SCC) of the lung. In this study, we hypothesized that differences in gene expression profiles between persistent and regressive bronchial dysplasia would identify cellular processes that underlie progression to SCC. RNA expression arrays comparing baseline biopsies from 32 bronchial sites that persisted/progressed to 31 regressive sites showed 395 differentially expressed genes [ANOVA, FDR ≤ 0.05). Thirty-one pathways showed significantly altered activity between the two groups, many of which were associated with cell-cycle control and proliferation, inflammation, or epithelial differentiation/cell-cell adhesion. Cultured persistent bronchial dysplasia cells exhibited increased expression of Polo-like kinase 1 (PLK1), which was associated with multiple cell-cycle pathways. Treatment with PLK1 inhibitor induced apoptosis and G2-M arrest and decreased proliferation compared with untreated cells; these effects were not seen in normal or regressive bronchial dysplasia cultures. Inflammatory pathway activity was decreased in persistent bronchial dysplasia, and the presence of an inflammatory infiltrate was more common in regressive bronchial dysplasia. Regressive bronchial dysplasia was also associated with trends toward overall increases in macrophages and T lymphocytes and altered polarization of these inflammatory cell subsets. Increased desmoglein 3 and plakoglobin expression was associated with higher grade and persistence of bronchial dysplasia. These results identify alterations in the persistent subset of bronchial dysplasia that are associated with high risk for progression to invasive SCC. These alterations may serve as strong markers of risk and as effective targets for lung cancer prevention.Significance: Gene expression profiling of high-risk persistent bronchial dysplasia reveals changes in cell-cycle control, inflammatory activity, and epithelial differentiation/cell-cell adhesion that may underlie progression to invasive SCC. Cancer Res; 78(17); 4971-83. ©2018 AACR.
Collapse
Affiliation(s)
- Daniel T Merrick
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Michael G Edwards
- Department of Medicine/Division of Pulmonary Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Wilbur A Franklin
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michio Sugita
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Robert L Keith
- Department of Medicine/Division of Pulmonary Medicine, Denver Veterans Affairs Medical Center, Aurora, Colorado
- Department of Medicine/Division of Pulmonary Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - York E Miller
- Department of Medicine/Division of Pulmonary Medicine, Denver Veterans Affairs Medical Center, Aurora, Colorado
- Department of Medicine/Division of Pulmonary Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Micah B Friedman
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lori D Dwyer-Nield
- Department of Medicine/Division of Pulmonary Medicine, Denver Veterans Affairs Medical Center, Aurora, Colorado
- School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Meredith A Tennis
- Department of Medicine/Division of Pulmonary Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mary C O'Keefe
- Department of Pathology, Denver Health Medical Center, Denver, Colorado
| | - Elizabeth J Donald
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jessica M Malloy
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Adrie van Bokhoven
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Storey Wilson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Peter J Koch
- Department of Regenerative Medicine and Stem Cell Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Charlene O'Shea
- Department of Regenerative Medicine and Stem Cell Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Xian Lu
- Department of Biostatistics and Informatics, Colorado School of Public Health, Denver, Colorado
| | - Anna E Baron
- Department of Biostatistics and Informatics, Colorado School of Public Health, Denver, Colorado
| | - Greg Hickey
- Department of Medicine/Division of Pulmonary Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Timothy C Kennedy
- Department of Medicine/Division of Pulmonary Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Roger Powell
- School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynn Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Paul A Bunn
- Department of Medicine/Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mark Geraci
- Department of Medicine, Indiana University, Bloomington, Indiana
| | - Raphael A Nemenoff
- Department of Medicine/Division of Pulmonary Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, Division of Renal Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
30
|
Billatos E, Vick JL, Lenburg ME, Spira AE. The Airway Transcriptome as a Biomarker for Early Lung Cancer Detection. Clin Cancer Res 2018; 24:2984-2992. [PMID: 29463557 PMCID: PMC7397497 DOI: 10.1158/1078-0432.ccr-16-3187] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/06/2017] [Accepted: 02/16/2018] [Indexed: 12/17/2022]
Abstract
Lung cancer remains the leading cause of cancer-related death due to its advanced stage at diagnosis. Early detection of lung cancer can be improved by better defining who should be screened radiographically and determining which imaging-detected pulmonary nodules are malignant. Gene expression biomarkers measured in normal-appearing airway epithelium provide an opportunity to use lung cancer-associated molecular changes in this tissue for early detection of lung cancer. Molecular changes in the airway may result from an etiologic field of injury and/or field cancerization. The etiologic field of injury reflects the aberrant physiologic response to carcinogen exposure that creates a susceptible microenvironment for cancer initiation. In contrast, field cancerization reflects effects of "first-hit" mutations in a clone of cells from which the tumor ultimately arises or the effects of the tumor on the surrounding tissue. These fields might have value both for assessing lung cancer risk and diagnosis. Cancer-associated gene expression changes in the bronchial airway have recently been used to develop and validate a 23-gene classifier that improves the diagnostic yield of bronchoscopy for lung cancer among intermediate-risk patients. Recent studies have demonstrated that these lung cancer-related gene expression changes extend to nasal epithelial cells that can be sampled noninvasively. While the bronchial gene expression biomarker is being adopted clinically, further work is necessary to explore the potential clinical utility of gene expression profiling in the nasal epithelium for lung cancer diagnosis, lung cancer risk assessment, and precision medicine for lung cancer treatment and chemoprevention. Clin Cancer Res; 24(13); 2984-92. ©2018 AACR.
Collapse
Affiliation(s)
- Ehab Billatos
- Section of Computational Biomedicine, Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, Massachusetts
| | - Jessica L Vick
- Section of Computational Biomedicine, Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, Massachusetts
| | - Marc E Lenburg
- Section of Computational Biomedicine, Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, Massachusetts
| | - Avrum E Spira
- Section of Computational Biomedicine, Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, Massachusetts.
| |
Collapse
|
31
|
Impact of an Interdisciplinary Computational Research Section in a Department of Medicine: An 8-Year Perspective. Am J Med 2018; 131:846-851. [PMID: 29601802 DOI: 10.1016/j.amjmed.2018.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/22/2018] [Indexed: 12/20/2022]
|
32
|
Hanash SM, Ostrin EJ, Fahrmann JF. Blood based biomarkers beyond genomics for lung cancer screening. Transl Lung Cancer Res 2018; 7:327-335. [PMID: 30050770 DOI: 10.21037/tlcr.2018.05.13] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
While there is considerable interest at the present time in the development of so-called liquid biopsy approaches for cancer detection based notably on circulating tumor DNA, there are other types of potential biomarkers that show promise for lung cancer screening and early detection. Here we review approaches and some of the promising markers based on proteomics, metabolomics and the immune response to tumor antigens in the form of autoantibodies.
Collapse
Affiliation(s)
- Samir M Hanash
- Department of Clinical Cancer Prevention, MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin Justin Ostrin
- Department of Pulmonary Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
33
|
Baker KT, Salk JJ, Brentnall TA, Risques RA. Precancer in ulcerative colitis: the role of the field effect and its clinical implications. Carcinogenesis 2018; 39:11-20. [PMID: 29087436 PMCID: PMC6248676 DOI: 10.1093/carcin/bgx117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/22/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Cumulative evidence indicates that a significant proportion of cancer evolution may occur before the development of histological abnormalities. While recent improvements in DNA sequencing technology have begun to reveal the presence of these early preneoplastic clones, the concept of 'premalignant field' was already introduced by Slaughter more than half a century ago. Also referred to as 'field effect', 'field defect' or 'field cancerization', these terms describe the phenomenon by which molecular alterations develop in normal-appearing tissue and expand to form premalignant patches with the potential to progress to dysplasia and cancer. Field effects have been well-characterized in ulcerative colitis, an inflammatory bowel disease that increases the risk of colorectal cancer. The study of the molecular alterations that define these fields is informative of mechanisms of tumor initiation and progression and has provided potential targets for early cancer detection. Herein, we summarize the current knowledge about the molecular alterations that comprise the field effect in ulcerative colitis and the clinical utility of these fields for cancer screening and prevention.
Collapse
Affiliation(s)
- Kathryn T Baker
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Jesse J Salk
- Division of Hematology and Oncology, Department of Medicine, University of
Washington, Seattle, WA, USA
- TwinStrand Biosciences Seattle, WA, USA
| | - Teresa A Brentnall
- Division of Gasteroenterology, Department of Medicine, University of
Washington, Seattle, WA, USA
| | - Rosa Ana Risques
- To whom correspondence should be addressed. Tel: +206-616-4976; Fax:
+206-543-1140;
| |
Collapse
|