1
|
Maruyama D, Jacobsen E, Porcu P, Allen P, Ishitsuka K, Kusumoto S, Narita T, Tobinai K, Foss F, Tsukasaki K, Feldman T, Imaizumi Y, Izutsu K, Morishima S, Yamauchi N, Yuda J, Brammer JE, Kawamata T, Ruan J, Nosaka K, Utsunomiya A, Wang J, Zain J, Kakurai Y, Yamauchi H, Hizukuri Y, Biserna N, Tachibana M, Inoue A, Horwitz SM. Valemetostat monotherapy in patients with relapsed or refractory non-Hodgkin lymphoma: a first-in-human, multicentre, open-label, single-arm, phase 1 study. Lancet Oncol 2024:S1470-2045(24)00502-3. [PMID: 39486432 DOI: 10.1016/s1470-2045(24)00502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Few treatment options exist for patients with non-Hodgkin lymphoma, and outcomes remain poor for relapsed or refractory disease. We evaluated the safety and preliminary clinical activity of valemetostat, a novel inhibitor of EZH2 and EZH1, in patients with relapsed or refractory non-Hodgkin lymphomas. METHODS This first-in-human, multicentre, open-label, single-arm, phase 1, dose-escalation and dose-expansion trial was done in 19 hospitals across Japan and the USA. Patients were included if they were aged 18 years or older in the USA or 20 years or older in Japan with a primary diagnosis of relapsed or refractory non-Hodgkin lymphoma and an Eastern Cooperative Oncology Group performance status of 0 or 1. In the dose-escalation part, patients received oral valemetostat at doses of 150 mg per day, 200 mg per day, 250 mg per day, and 300 mg per day continuously in 28-day cycles until progressive disease or unacceptable toxicities. All patients received 200 mg per day in the dose-expansion part. The primary endpoints were safety, pharmacokinetics, and the recommended phase 2 dose; the secondary endpoints were the maximum tolerated dose and the antitumour activity of valemetostat. Responses were assessed in patients who received at least one dose, with measurable lesions at baseline according to the International Working Group 2007 revised criteria for malignant lymphoma (peripheral T-cell lymphoma and B-cell non-Hodgkin lymphoma) and the modified 2009 criteria for adult T-cell leukaemia/lymphoma. The trial is registered with ClinicalTrials.gov, NCT02732275, and is currently active, but not recruiting. FINDINGS Between April 7, 2016, and June 10, 2021, 90 patients (53 [59%] males and 37 [41%] females; 49 [54%] Asian, 33 [37%] White, and eight [9%] Black) were enrolled and treated with valemetostat and included in the safety analysis set. 57 (63%) patients had peripheral T-cell lymphoma, 14 (16%) had adult T-cell leukaemia/lymphoma, and 19 (21%) had B-cell non-Hodgkin lymphoma. Seven (8%) patients received valemetostat 150 mg per day, 74 (82%) received 200 mg per day, seven received 250 mg per day, and two received 300 mg per day. Median follow-up was 7·4 months (IQR 3·4-17·6). All patients had at least one treatment-emergent adverse event; the most common treatment-emergent adverse events of any grade were decreased platelet count (52 [58%] of 90 patients), dysgeusia (45 [50%]), and anaemia (38 [42%]). The most common grade 3-4 adverse events were decreased neutrophil count (21 [23%]), decreased platelet count (18 [20%]), and decreased lymphocyte count (17 [19%]). The most common serious adverse event of any grade was Pneumocystis jirovecii pneumonia (four [4%]). No treatment-related deaths occurred. The overall response rate was 54·5% (48 of 88; 95% CI 43·6-65·2) for patients in the efficacy analysis set. The maximum tolerated dose was not reached; the recommended phase 2 dose of 200 mg per day was determined. Valemetostat exposure was variable between patients and was overlapped over the dose range of 150-250 mg per day. INTERPRETATION The safety profile of valemetostat monotherapy was acceptable in these patients with relapsed or refractory non-Hodgkin lymphoma. Favourable clinical activity was observed. These findings support a new indication for valemetostat in this setting. FUNDING Daiichi Sankyo.
Collapse
Affiliation(s)
- Dai Maruyama
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan; Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Eric Jacobsen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pierluigi Porcu
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Pamela Allen
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Kenji Ishitsuka
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Shigeru Kusumoto
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tomoko Narita
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kensei Tobinai
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Francine Foss
- Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Kunihiro Tsukasaki
- Department of Hematology, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Tatyana Feldman
- John Theurer Cancer Center at Hackensack Meridian Health School of Medicine, Hackensack, NJ, USA
| | - Yoshitaka Imaizumi
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan; Department of Hematology, National Hospital Organization Nagasaki Medical Center, Nagasaki, Japan
| | - Koji Izutsu
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Satoko Morishima
- Graduate School of Medicine, University of the Ryukyus Hospital, Okinawa, Japan
| | - Nobuhiko Yamauchi
- Department of Hematology, National Cancer Center Hospital East, Chiba, Japan
| | - Junichiro Yuda
- Department of Hematology, National Cancer Center Hospital East, Chiba, Japan
| | - Jonathan E Brammer
- Division of Hematology, Department of Internal Medicine, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Toyotaka Kawamata
- Department of Hematology/Oncology, The Institute of Medical Science, University of Tokyo, Tokyo, Japan; Department of Hematology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Jia Ruan
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Kisato Nosaka
- Department of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University, Kumamoto, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Jie Wang
- Department of Medicine, Duke Cancer Institute, Durham, NC, USA
| | - Jasmine Zain
- Department of Hematology and Hematopoietic Stem Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | | | | | | | | | | | - Ai Inoue
- Daiichi Sankyo, Basking Ridge, NJ, USA
| | - Steven M Horwitz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
2
|
Alimohammadi M, Rahimzadeh P, Khorrami R, Bonyadi M, Daneshi S, Nabavi N, Raesi R, Farani MR, Dehkhoda F, Taheriazam A, Hashemi M. A comprehensive review of the PTEN/PI3K/Akt axis in multiple myeloma: From molecular interactions to potential therapeutic targets. Pathol Res Pract 2024; 260:155401. [PMID: 38936094 DOI: 10.1016/j.prp.2024.155401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Phosphatase and tensin homolog (PTEN), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) signaling pathways contribute to the development of several cancers, including multiple myeloma (MM). PTEN is a tumor suppressor that influences the PI3K/Akt/mTOR pathway, which in turn impacts vital cellular processes like growth, survival, and treatment resistance. The current study aims to present the role of PTEN and PI3K/Akt/mTOR signaling in the development of MM and its response to treatment. In addition, the molecular interactions in MM that underpin the PI3K/Akt/mTOR pathway and address potential implications for the development of successful treatment plans are also discussed in detail. We investigate their relationship to both upstream and downstream regulators, highlighting new developments in combined therapies that target the PTEN/PI3K/Akt axis to overcome drug resistance, including the use of PI3K and mitogen-activated protein kinase (MAPK) inhibitors. We also emphasize that PTEN/PI3K/Akt pathway elements may be used in MM diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Islamic Republic of Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Farshid Dehkhoda
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| |
Collapse
|
3
|
Lu Q, Yang D, Li H, Niu T, Tong A. Multiple myeloma: signaling pathways and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:25. [PMID: 38961036 PMCID: PMC11222366 DOI: 10.1186/s43556-024-00188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy of plasma cells, characterized by osteolytic bone lesions, anemia, hypercalcemia, renal failure, and the accumulation of malignant plasma cells. The pathogenesis of MM involves the interaction between MM cells and the bone marrow microenvironment through soluble cytokines and cell adhesion molecules, which activate various signaling pathways such as PI3K/AKT/mTOR, RAS/MAPK, JAK/STAT, Wnt/β-catenin, and NF-κB pathways. Aberrant activation of these pathways contributes to the proliferation, survival, migration, and drug resistance of myeloma cells, making them attractive targets for therapeutic intervention. Currently, approved drugs targeting these signaling pathways in MM are limited, with many inhibitors and inducers still in preclinical or clinical research stages. Therapeutic options for MM include non-targeted drugs like alkylating agents, corticosteroids, immunomodulatory drugs, proteasome inhibitors, and histone deacetylase inhibitors. Additionally, targeted drugs such as monoclonal antibodies, chimeric antigen receptor T cells, bispecific T-cell engagers, and bispecific antibodies are being used in MM treatment. Despite significant advancements in MM treatment, the disease remains incurable, emphasizing the need for the development of novel or combined targeted therapies based on emerging theoretical knowledge, technologies, and platforms. In this review, we highlight the key role of signaling pathways in the malignant progression and treatment of MM, exploring advances in targeted therapy and potential treatments to offer further insights for improving MM management and outcomes.
Collapse
Affiliation(s)
- Qizhong Lu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Donghui Yang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hexian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
4
|
Chen Y, Zhu H, Luo Y, Tong S, Liu Y. EZH2: The roles in targeted therapy and mechanisms of resistance in breast cancer. Biomed Pharmacother 2024; 175:116624. [PMID: 38670045 DOI: 10.1016/j.biopha.2024.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Drug resistance presents a formidable challenge in the realm of breast cancer therapy. Accumulating evidence suggests that enhancer of zeste homolog 2 (EZH2), a component of the polycomb repressive complex 2 (PRC2), may serve as a key regulator in controlling drug resistance. EZH2 overexpression has been observed in breast cancer and many other malignancies, showing a strong correlation with poor outcomes. This review aims to summarize the mechanisms by which EZH2 regulates drug resistance, with a specific focus on breast cancer, in order to provide a comprehensive understanding of the underlying molecular processes. Additionally, we will discuss the current strategies and outcomes of targeting EZH2 using both single agents and combination therapies, with the goal of offering improved guidance for the clinical treatment of breast cancer patients who have developed drug resistance.
Collapse
Affiliation(s)
- Yun Chen
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Hongyan Zhu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Yi Luo
- Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Biotheus Inc., Guangdong Province, Zhuhai 519080, PR China.
| | - Shuangmei Tong
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
5
|
Hashemi M, Nazdari N, Gholamiyan G, Paskeh MDA, Jafari AM, Nemati F, Khodaei E, Abyari G, Behdadfar N, Raei B, Raesi R, Nabavi N, Hu P, Rashidi M, Taheriazam A, Entezari M. EZH2 as a potential therapeutic target for gastrointestinal cancers. Pathol Res Pract 2024; 253:154988. [PMID: 38118215 DOI: 10.1016/j.prp.2023.154988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023]
Abstract
Gastrointestinal (GI) cancers continue to be a major cause of mortality and morbidity globally. Understanding the molecular pathways associated with cancer progression and severity is essential for creating effective cancer treatments. In cancer research, there is a notable emphasis on Enhancer of zeste homolog 2 (EZH2), a key player in gene expression influenced by its irregular expression and capacity to attach to promoters and alter methylation status. This review explores the impact of EZH2 signaling on various GI cancers, such as colorectal, gastric, pancreatic, hepatocellular, esophageal, and cholangiocarcinoma. The primary function of EZH2 signaling is to facilitate the accelerated progression of cancer cells. Additionally, EZH2 has the capacity to modulate the reaction of GI cancers to chemotherapy and radiotherapy. Numerous pathways, including long non-coding RNAs and microRNAs, serve as upstream regulators of EZH2 in these types of cancer. EZH2's enzymatic activity enables it to attach to target gene promoters, resulting in methylation that modifies their expression. EZH2 could be considered as an independent prognostic factor, with increased expression correlating with a worse disease prognosis. Additionally, a range of gene therapies including small interfering RNA, and anti-tumor agents are being explored to target EZH2 for cancer treatment. This comprehensive review underscores the current insights into EZH2 signaling in gastrointestinal cancers and examines the prospect of therapies targeting EZH2 to enhance patient outcomes.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Naghmeh Nazdari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazaleh Gholamiyan
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fateme Nemati
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Khodaei
- Department of Dermatology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazal Abyari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Behdadfar
- Young Researchers and Elite Club, Buinzahra Branch, Islamic Azad University, Buinzahra, Iran
| | - Behnaz Raei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Peng Hu
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Bandini C, Mereu E, Paradzik T, Labrador M, Maccagno M, Cumerlato M, Oreglia F, Prever L, Manicardi V, Taiana E, Ronchetti D, D’Agostino M, Gay F, Larocca A, Besse L, Merlo GR, Hirsch E, Ciarrocchi A, Inghirami G, Neri A, Piva R. Lysin (K)-specific demethylase 1 inhibition enhances proteasome inhibitor response and overcomes drug resistance in multiple myeloma. Exp Hematol Oncol 2023; 12:71. [PMID: 37563685 PMCID: PMC10413620 DOI: 10.1186/s40164-023-00434-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is an incurable plasma cell malignancy, accounting for approximately 1% of all cancers. Despite recent advances in the treatment of MM, due to the introduction of proteasome inhibitors (PIs) such as bortezomib (BTZ) and carfilzomib (CFZ), relapses and disease progression remain common. Therefore, a major challenge is the development of novel therapeutic approaches to overcome drug resistance, improve patient outcomes, and broaden PIs applicability to other pathologies. METHODS We performed genetic and drug screens to identify new synthetic lethal partners to PIs, and validated candidates in PI-sensitive and -resistant MM cells. We also tested best synthetic lethal interactions in other B-cell malignancies, such as mantle cell, Burkitt's and diffuse large B-cell lymphomas. We evaluated the toxicity of combination treatments in normal peripheral blood mononuclear cells (PBMCs) and bone marrow stromal cells (BMSCs). We confirmed the combo treatment' synergistic effects ex vivo in primary CD138+ cells from MM patients, and in different MM xenograft models. We exploited RNA-sequencing and Reverse-Phase Protein Arrays (RPPA) to investigate the molecular mechanisms of the synergy. RESULTS We identified lysine (K)-specific demethylase 1 (LSD1) as a top candidate whose inhibition can synergize with CFZ treatment. LSD1 silencing enhanced CFZ sensitivity in both PI-resistant and -sensitive MM cells, resulting in increased tumor cell death. Several LSD1 inhibitors (SP2509, SP2577, and CC-90011) triggered synergistic cytotoxicity in combination with different PIs in MM and other B-cell neoplasms. CFZ/SP2509 treatment exhibited a favorable cytotoxicity profile toward PBMCs and BMSCs. We confirmed the clinical potential of LSD1-proteasome inhibition in primary CD138+ cells of MM patients, and in MM xenograft models, leading to the inhibition of tumor progression. DNA damage response (DDR) and proliferation machinery were the most affected pathways by CFZ/SP2509 combo treatment, responsible for the anti-tumoral effects. CONCLUSIONS The present study preclinically demonstrated that LSD1 inhibition could provide a valuable strategy to enhance PI sensitivity and overcome drug resistance in MM patients and that this combination might be exploited for the treatment of other B-cell malignancies, thus extending the therapeutic impact of the project.
Collapse
Affiliation(s)
- Cecilia Bandini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elisabetta Mereu
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Tina Paradzik
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Department of Physical Chemistry, Rudjer Boskovic Insitute, Zagreb, Croatia
| | - Maria Labrador
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Monica Maccagno
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Michela Cumerlato
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federico Oreglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Lorenzo Prever
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Veronica Manicardi
- Laboratory of Translational Research, Azienda USL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Elisa Taiana
- Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Domenica Ronchetti
- Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mattia D’Agostino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Città Della Salute e della Scienza Hospital, Turin, Italy
| | - Francesca Gay
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Città Della Salute e della Scienza Hospital, Turin, Italy
| | - Alessandra Larocca
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Città Della Salute e della Scienza Hospital, Turin, Italy
| | - Lenka Besse
- Experimental Oncology and Hematology, Department of Oncology and Hematology, St. Gallen Cantonal Hospital, St. Gallen, Switzerland
- Scientific Directorate, Azienda-USL IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giorgio Roberto Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Giorgio Inghirami
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Antonino Neri
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY USA
| | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Città Della Salute e della Scienza Hospital, Turin, Italy
| |
Collapse
|
7
|
Milan TM, Eskenazi APE, de Oliveira LD, da Silva G, Bighetti-Trevisan RL, Freitas GP, de Almeida LO. Interplay between EZH2/β-catenin in stemness of cisplatin-resistant HNSCC and their role as therapeutic targets. Cell Signal 2023:110773. [PMID: 37331417 DOI: 10.1016/j.cellsig.2023.110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
The Wnt/β-catenin signaling pathway is associated with the regulation of cancer stem cells, and it can be driven by epigenetic modifications. Here, we aim to identify epigenetic modifications involved in the control of the Wnt/β-catenin signaling and investigate the role of this pathway in the accumulation of cancer stem cells (CSC) and chemoresistance of Head and Neck Squamous Cell Carcinoma (HNSCC). Quantitative-PCR, western blot, shRNA assay, viability assay, flow cytometry assay, spheres formation, xenograft model, and chromatin immunoprecipitation were employed to evaluate the Wnt/β-catenin pathway and EZH2 in wild-type and chemoresistant oral carcinoma cell lines, and in the populations of CSC and non-stem cells. We demonstrated that β-catenin and EZH2 were accumulated in cisplatin-resistant and CSC population. The upstream genes of the Wnt/β-catenin signaling (APC and GSK3β) were decreased, and the downstream gene MMP7 was increased in the chemoresistant cell lines. The inhibition of β-catenin and EZH2 combined effectively decreased the CSC population in vitro and reduced the tumor volume and CSC population in vivo. EZH2 inhibition increased APC and GSK3β, and the Wnt/β-catenin inhibition reduced MMP7 levels. In contrast, EZH2 overexpression decreased APC and GSK3β and increased MMP7. EZH2 and β-catenin inhibitors sensitized chemoresistant cells to cisplatin. EZH2 and H3K27me3 bounded the promoter of APC, leading to its repression. These results suggest that EZH2 regulates β-catenin by inhibiting the upstream gene APC contributing to the accumulation of cancer stem cells and chemoresistance. Moreover, the pharmacological inhibition of the Wnt/β-catenin combined with EZH2 can be an effective strategy for treating HNSCC.
Collapse
Affiliation(s)
- Thaís Moré Milan
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Ana Patrícia Espaladori Eskenazi
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Lucas Dias de Oliveira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gabriel da Silva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Rayana Longo Bighetti-Trevisan
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Gileade Pereira Freitas
- Departament of Oral and Maxillofacial Surgery, School of Dentistry, Federal University of Goiás, Goiás, Brazil.
| | - Luciana Oliveira de Almeida
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
8
|
Abstract
The enhancer of zeste homolog 2 (EZH2) and its highly related homolog EZH1 are considered to be epigenetic silencing factors, and they play key roles in the growth and differentiation of cells as the core components of polycomb repressive complex 2 (PRC2). EZH1 and EZH2 are known to have a role in human malignancies, and alterations in these two genes have been implicated in transformation of human malignancies. Inhibition of EZH1/2 has been shown to result in tumor regression in humans and has been studied and evaluated in the preclinical setting and in multiple clinical trials at various levels. Our work thus contributes to the understanding of the relationship between regulatory molecules associated with EZH1/2 proteins and tumor progression, and may provide new insights for mechanism-based EZH1/2-targeted therapy in tumors.
Collapse
|
9
|
Role of NF-κB Signaling in the Interplay between Multiple Myeloma and Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:ijms24031823. [PMID: 36768145 PMCID: PMC9916119 DOI: 10.3390/ijms24031823] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Nuclear factor-κB (NF-κB) transcription factors play a key role in the pathogenesis of multiple myeloma (MM). The survival, proliferation and chemoresistance of malignant plasma cells largely rely on the activation of canonical and noncanonical NF-κB pathways. They are triggered by cancer-associated mutations or by the autocrine and paracrine production of cytokines and growth factors as well as direct interaction with cellular and noncellular components of bone marrow microenvironment (BM). In this context, NF-κB also significantly affects the activity of noncancerous cells, including mesenchymal stromal cells (MSCs), which have a critical role in disease progression. Indeed, NF-κB transcription factors are involved in inflammatory signaling that alters the functional properties of these cells to support cancer evolution. Moreover, they act as regulators and/or effectors of pathways involved in the interplay between MSCs and MM cells. The aim of this review is to analyze the role of NF-κB in this hematologic cancer, focusing on NF-κB-dependent mechanisms in tumor cells, MSCs and myeloma-mesenchymal stromal cell crosstalk.
Collapse
|
10
|
Han F, Cao D, Zhu X, Shen L, Wu J, Chen Y, Xu Y, Xu L, Cheng X, Zhang Y. Construction and validation of a prognostic model for hepatocellular carcinoma: Inflammatory ferroptosis and mitochondrial metabolism indicate a poor prognosis. Front Oncol 2023; 12:972434. [PMID: 36686830 PMCID: PMC9850107 DOI: 10.3389/fonc.2022.972434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Background An increasing number of innovations have been discovered for treating hepatocellular carcinoma (HCC or commonly called HCC) therapy, Ferroptosis and mitochondrial metabolism are essential mechanisms of cell death. These pathways may act as functional molecular biomarkers that could have important clinical significance for determining individual differences and the prognosis of HCC. The aim of this study was to construct a stable and reliable comprehensive model of genetic features and clinical factors associated with HCC prognosis. Methods In this study, we used RNA-sequencing (fragments per kilobase of exon model per million reads mapped value) data from the Cancer Genome Atlas (TCGA) database to establish a prognostic model. We enrolled 104 patients for further validation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment analyses (KEGG) analysis were used for the functional study of differentially expressed genes. Pan-cancer analysis was performed to evaluate the function of the Differentially Expressed Genes (DEGs). Thirteen genes were identified by univariate and least absolute contraction and selection operation (LASSO) Cox regression analysis. The prognostic model was visualized using a nomogram. Results We found that eight genes, namely EZH2, GRPEL2, PIGU, PPM1G, SF3B4, TUBG1, TXNRD1 and NDRG1, were hub genes for HCC and differentially expressed in most types of cancer. EZH2, GRPEL2 and NDRG1 may indicate a poor prognosis of HCC as verified by tissue samples. Furthermore, a gene set variation analysis algorithm was created to analyze the relationship between these eight genes and oxidative phosphorylation, mitophagy, and FeS-containing proteins, and it showed that ferroptosis might affect inflammatory-related pathways in HCC. Conclusion EZH2, GRPEL2, NDRG1, and the clinical factor of tumor size, were included in a nomogram for visualizing a prognostic model of HCC. This nomogram based on a functional study and verification by clinical samples, shows a reliable performance of patients with HCC.
Collapse
Affiliation(s)
- Fang Han
- Hepatobiliary and Pancreatic Surgery Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Dan Cao
- Hepatobiliary and Pancreatic Surgery Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China,College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xin Zhu
- Hepatobiliary and Pancreatic Surgery Department, Shaoxing Peoples’s Hospital, Shaoxing, Zhejiang, China
| | - Lianqiang Shen
- Department of General Surgery, The First People’s Hospital of Linping District, Hangzhou, Hangzhou, Zhejiang, China
| | - Jia Wu
- Hepatobiliary and Pancreatic Surgery Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yizhen Chen
- Hepatobiliary and Pancreatic Surgery Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China,Clincal Dept. Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Youyao Xu
- Hepatobiliary and Pancreatic Surgery Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China,Clincal Dept. Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Linwei Xu
- Hepatobiliary and Pancreatic Surgery Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiangdong Cheng
- Hepatobiliary and Pancreatic Surgery Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yuhua Zhang
- Hepatobiliary and Pancreatic Surgery Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China,Clincal Dept. Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China,*Correspondence: Yuhua Zhang,
| |
Collapse
|
11
|
Gandhi M, Bakhai V, Trivedi J, Mishra A, De Andrés F, LLerena A, Sharma R, Nair S. Current perspectives on interethnic variability in multiple myeloma: Single cell technology, population pharmacogenetics and molecular signal transduction. Transl Oncol 2022; 25:101532. [PMID: 36103755 PMCID: PMC9478452 DOI: 10.1016/j.tranon.2022.101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022] Open
Abstract
This review discusses the emerging single cell technologies and applications in Multiple myeloma (MM), population pharmacogenetics of MM, resistance to chemotherapy, genetic determinants of drug-induced toxicity, molecular signal transduction. The role(s) of epigenetics and noncoding RNAs including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) that influence the risk and severity of MM are also discussed. It is understood that ethnic component acts as a driver of variable response to chemotherapy in different sub-populations globally. This review augments our understanding of genetic variability in ‘myelomagenesis’ and drug-induced toxicity, myeloma microenvironment at the molecular and cellular level, and developing precision medicine strategies to combat this malignancy. The emerging single cell technologies hold great promise for enhancing our understanding of MM tumor heterogeneity and clonal diversity.
Multiple myeloma (MM) is an aggressive cancer characterised by malignancy of the plasma cells and a rising global incidence. The gold standard for optimum response is aggressive chemotherapy followed by autologous stem cell transplantation (ASCT). However, majority of the patients are above 60 years and this presents the clinician with complications such as ineligibility for ASCT, frailty, drug-induced toxicity and differential/partial response to treatment. The latter is partly driven by heterogenous genotypes of the disease in different subpopulations. In this review, we discuss emerging single cell technologies and applications in MM, population pharmacogenetics of MM, resistance to chemotherapy, genetic determinants of drug-induced toxicity, molecular signal transduction, as well as the role(s) played by epigenetics and noncoding RNAs including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) that influence the risk and severity of the disease. Taken together, our discussions further our understanding of genetic variability in ‘myelomagenesis’ and drug-induced toxicity, augment our understanding of the myeloma microenvironment at the molecular and cellular level and provide a basis for developing precision medicine strategies to combat this malignancy.
Collapse
Affiliation(s)
- Manav Gandhi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA
| | - Viral Bakhai
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS University, V. L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| | - Jash Trivedi
- University of Mumbai, Santa Cruz, Mumbai 400055, India
| | - Adarsh Mishra
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS University, V. L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| | - Fernando De Andrés
- INUBE Extremadura Biosanitary Research Institute, Badajoz, Spain; Faculty of Medicine, University of Extremadura, Badajoz, Spain; CICAB Clinical Research Center, Pharmacogenetics and Personalized Medicine Unit, Badajoz University Hospital, Extremadura Health Service, Badajoz, Spain
| | - Adrián LLerena
- INUBE Extremadura Biosanitary Research Institute, Badajoz, Spain; Faculty of Medicine, University of Extremadura, Badajoz, Spain; CICAB Clinical Research Center, Pharmacogenetics and Personalized Medicine Unit, Badajoz University Hospital, Extremadura Health Service, Badajoz, Spain
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Sujit Nair
- University of Mumbai, Santa Cruz, Mumbai 400055, India.
| |
Collapse
|
12
|
Hou C, Xiao L, Ren X, Cheng L, Guo B, Zhang M, Yan N. EZH2-mediated H3K27me3 is a predictive biomarker and therapeutic target in uveal melanoma. Front Genet 2022; 13:1013475. [PMID: 36276954 PMCID: PMC9582331 DOI: 10.3389/fgene.2022.1013475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Although gene mutations and aberrant chromosomes are associated with the pathogenesis and prognosis of uveal melanoma (UM), potential therapeutic targets still need to be explored. We aim to determine the predictive value and potential therapeutic target of EZH2 in uveal melanoma. Eighty-five uveal melanoma samples were recruited in our study, including 19 metastatic and 66 nonmetastatic samples. qRT-PCR, immunohistochemistry staining, and western blotting were applied to detect the expression of EZH2 and H3K27me3. We found that EZH2 (41/85, 48.24%) and H3K27me3 (49/85, 57.65%) were overexpressed in uveal melanoma. The expression of EZH2 was not significantly associated with metastasis. High H3K27me3 expression was correlated with poor patient prognosis. UNC 1999, an EZH2 inhibitor, can downregulate H3K27me3 expression and has the most potency to inhibit OMM1 cell growth by the cell cycle and ferroptosis pathway. These results indicate that H3K27me3 can be a biomarker predicting a poor prognosis of UM. EZH2 is the potential therapeutic target for UM.
Collapse
Affiliation(s)
- Chen Hou
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Lirong Xiao
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Ren
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Cheng
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Bo Guo
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Naihong Yan
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Naihong Yan,
| |
Collapse
|
13
|
Liver group 2 innate lymphoid cells regulate blood glucose levels through IL-13 signaling and suppression of gluconeogenesis. Nat Commun 2022; 13:5408. [PMID: 36109558 PMCID: PMC9478157 DOI: 10.1038/s41467-022-33171-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 09/04/2022] [Indexed: 12/12/2022] Open
Abstract
The liver stores glycogen and releases glucose into the blood upon increased energy demand. Group 2 innate lymphoid cells (ILC2) in adipose and pancreatic tissues are known for their involvement in glucose homeostasis, but the metabolic contribution of liver ILC2s has not been studied in detail. Here we show that liver ILC2s are directly involved in the regulation of blood glucose levels. Mechanistically, interleukin (IL)-33 treatment induces IL-13 production in liver ILC2s, while directly suppressing gluconeogenesis in a specific Hnf4a/G6pc-high primary hepatocyte cluster via Stat3. These hepatocytes significantly interact with liver ILC2s via IL-13/IL-13 receptor signaling. The results of transcriptional complex analysis and GATA3-ChIP-seq, ATAC-seq, and scRNA-seq trajectory analyses establish a positive regulatory role for the transcription factor GATA3 in IL-13 production by liver ILC2s, while AP-1 family members are shown to suppress IL-13 release. Thus, we identify a regulatory role and molecular mechanism by which liver ILC2s contribute to glucose homeostasis. Besides hepatocytes, resident immune cells of the liver are also contributing to the body’s energy homeostasis. Here authors show that group 2 innate lymphoid cells interact with a specific set of hepatocytes in suppressing gluconeogenesis and regulate blood glucose levels via Interleukin-13 signalling.
Collapse
|
14
|
Chemical biology and pharmacology of histone lysine methylation inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194840. [PMID: 35753676 DOI: 10.1016/j.bbagrm.2022.194840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/20/2022]
Abstract
Histone lysine methylation is a post-translational modification that plays a key role in the epigenetic regulation of a broad spectrum of biological processes. Moreover, the dysregulation of histone lysine methyltransferases (KMTs) has been implicated in the pathogenesis of several diseases particularly cancer. Due to their pathobiological importance, KMTs have garnered immense attention over the last decade as attractive therapeutic targets. These endeavors have culminated in tens of chemical probes that have been used to interrogate many aspects of histone lysine methylation. Besides, over a dozen inhibitors have been advanced to clinical trials, including the EZH2 inhibitor tazemetostat approved for the treatment of follicular lymphoma and advanced epithelioid sarcoma. In this Review, we highlight the chemical biology and pharmacology of KMT inhibitors and targeted protein degraders focusing on the clinical development of EZH1/2, DOT1L, Menin-MLL, and WDR5-MLL inhibitors. We also briefly discuss the pharmacologic targeting of other KMTs.
Collapse
|
15
|
Peng W, Tang W, Li JD, He RQ, Luo JY, Chen ZX, Zeng JH, Hu XH, Zhong JC, Li Y, Ma FC, Xie TY, Huang SN, Ge LY. Downregulation of the enhancer of zeste homolog 1 transcriptional factor predicts poor prognosis of triple-negative breast cancer patients. PeerJ 2022; 10:e13708. [PMID: 35846880 PMCID: PMC9285492 DOI: 10.7717/peerj.13708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/19/2022] [Indexed: 01/17/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer and lacks effective biomarkers. This study seeks to unravel the expression status and the prospective transcriptional mechanisms of EZH1/EZH2 in TNBC tissue samples. Moreover, another objective of this study is to reveal the prognostic molecular signatures for risk stratification in TNBC patients. Methods To determine the expression status of EZH1/EZH2 in TNBC tissue samples, microarray analysis and immunohistochemistry were performed on in house breast cancer tissue samples. External mRNA expression matrices were used to verify its expression patterns. Furthermore, the prospective transcriptional mechanisms of EZH1/EZH2 in TNBC were explored by performing differential expression analysis, co-expression analysis, and chromatin immunoprecipitation sequencing analysis. Kaplan-Meier survival analysis and univariate Cox regression analysis were utilized to detect the prognostic molecular signatures in TNBC patients. Nomogram and time-dependent receiver operating characteristic curves were plotted to predict the risk stratification ability of the prognostic-signatures-based Cox model. Results In-house TMAs (66 TNBC vs. 106 non-TNBC) and external gene microarrays, as well as RNA-seq datasets (1,135 TNBC vs. 6,198 non-TNBC) results, confirmed the downregulation of EZH1 at both the protein and mRNA levels (SMD = -0.59 [-0.80, -0.37]), as is opposite to that of EZH2 (SMD = 0.74 [0.40, 1.08]). The upregulated transcriptional target genes of EZH1 were significantly aggregated in the cell cycle pathway, where CCNA2, CCNB1, MAD2L1, and PKMYT1 were determined as key transcriptional targets. Additionally, the downregulated transcriptional targets of EZH2 were enriched in response to the hormone, where ESR1 was identified as the hub gene. The six-signature-based prognostic model produced an impressive performance in this study, with a training AUC of 0.753, 0.981, and 0.977 at 3-, 5-, and 10-year survival probability, respectively. Conclusion EZH1 downregulation may be a key modulator in the progression of TNBC through negative transcriptional regulation by targeting CCNA2, CCNB1, MAD2L1, and PKMYT1.
Collapse
Affiliation(s)
- Wei Peng
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Tang
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jian-Di Li
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jia-Yuan Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zu-Xuan Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiang-Hui Zeng
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People’s Hospital, Nanning, Guangxi, China
| | - Xiao-Hua Hu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jin-Cai Zhong
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yang Li
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fu-Chao Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tian-Yi Xie
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Lian-Ying Ge
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| |
Collapse
|
16
|
Xia J, Li J, Tian L, Ren X, Liu C, Liang C. Targeting Enhancer of Zeste Homolog 2 for the Treatment of Hematological Malignancies and Solid Tumors: Candidate Structure–Activity Relationships Insights and Evolution Prospects. J Med Chem 2022; 65:7016-7043. [DOI: 10.1021/acs.jmedchem.2c00047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Juan Xia
- Laboratory of Hematologic Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, P. R. China
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Lei Tian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, P. R. China
| | - Chang Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Zhuhai 519030, P. R. China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| |
Collapse
|
17
|
Wang J, Zhu X, Dang L, Jiang H, Xie Y, Li X, Guo J, Wang Y, Peng Z, Wang M, Wang J, Wang S, Li Q, Wang Y, Wang Q, Ye L, Zhang L, Liu Z. Epigenomic reprogramming via HRP2-MINA dictates response to proteasome inhibitors in multiple myeloma with t(4;14) translocation. J Clin Invest 2022; 132:149526. [PMID: 35166240 PMCID: PMC8843744 DOI: 10.1172/jci149526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
The chromosomal t(4;14) (p16;q32) translocation drives high expression of histone methyltransferase nuclear SET domain–containing 2 (NSD2) and plays vital roles in multiple myeloma (MM) evolution and progression. However, the mechanisms of NSD2-driven epigenomic alterations in chemoresistance to proteasome inhibitors (PIs) are not fully understood. Using a CRISPR/Cas9 sgRNA library in a bone marrow–bearing MM model, we found that hepatoma-derived growth factor 2 (HRP2) was a suppressor of chemoresistance to PIs and that its downregulation correlated with a poor response and worse outcomes in the clinic. We observed suppression of HRP2 in bortezomib-resistant MM cells, and knockdown of HRP2 induced a marked tolerance to PIs. Moreover, knockdown of HRP2 augmented H3K27me3 levels, consequentially intensifying transcriptome alterations promoting cell survival and restriction of ER stress. Mechanistically, HRP2 recognized H3K36me2 and recruited the histone demethylase MYC-induced nuclear antigen (MINA) to remove H3K27me3. Tazemetostat, a highly selective epigenetic inhibitor that reduces H3K27me3 levels, synergistically sensitized the anti-MM effects of bortezomib both in vitro and in vivo. Collectively, these results provide a better understanding of the origin of chemoresistance in patients with MM with the t(4;14) translocation and a rationale for managing patients with MM who have different genomic backgrounds.
Collapse
Affiliation(s)
- Jingjing Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Xu Zhu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lin Dang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hongmei Jiang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Ying Xie
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Xin Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Jing Guo
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Yixuan Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Ziyi Peng
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Mengqi Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Jingya Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Sheng Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Qian Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin, China
| | - Yafei Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin, China
| | - Qiang Wang
- Center for Translational Research in Hematological Malignancies, Cancer Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Lingqun Ye
- Center for Translational Research in Hematological Malignancies, Cancer Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Lirong Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhiqiang Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
18
|
Chan CW, Yong CY, Chang HM, Ng PY, Davamani F, Chitra E, Lee VS, Tan KW, Maah MJ, Ng CH. Anticancer chiral and racemic ternary copper(II) complexes: Multiple mechanisms and epigenetic histone methyltransferase enzymes as novel targets. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Zhang Q, Deng X, Tang X, You Y, Mei M, Liu D, Gui L, Cai Y, Xin X, He X, Huang J. MicroRNA-20a Suppresses Tumor Proliferation and Metastasis in Hepatocellular Carcinoma by Directly Targeting EZH1. Front Oncol 2022; 11:737986. [PMID: 34976797 PMCID: PMC8716374 DOI: 10.3389/fonc.2021.737986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose Hepatocellular carcinoma (HCC), a worldwide leading cause of morbidity and mortality, is the most frequent primary liver tumor. Most HCC patients are diagnosed with advanced liver cancer, resulting in a very low 5-year survival rate. Thus, there is an urgent need for the development of targeted therapies. In this study, we aimed to investigate the effect and mechanism of the miR-20a/EZH1 axis on the proliferation and metastasis of HCC and the inhibitory effect of the EZH1/EZH2 inhibitor UNC1999 on HCC. Materials and Methods The expression of miR-20a in human HCC tissues and cell lines was detected using quantitative real-time PCR (qRT-PCR). The expressions of proteins were analyzed with immunohistochemistry and Western blotting. Luciferase assay was used to verify whether miR-20a targets EZH1 or EZH2. The effect of miR-20a on HCC progression was studied in vivo and in vitro. The tumor inhibitory effect of UNC1999 was confirmed in vivo. CCK8 assay, wound healing assay, cell migration and invasion assay were used to evaluate the synergistic effect of UNC1999 with sorafenib. RNA sequencing (RNA-seq) was performed to screen the differentially expressed genes in the Huh7 and SMMC7721 cell lines after UNC1999, sorafenib, and combination treatments. Results In this study, miR-20a showed a lower expression in both HCC tissues and cell lines. MiR-20a inhibited the proliferation and migration of SMMC7721 and Huh7 cells. The results of the luciferase assay and Western blot analysis revealed that miR-20a directly targeted EZH1, a histone methyltransferase. We demonstrated that miR-20a negatively regulated the expression of EZH1 and inhibited the proliferation and metastasis of HCC by reducing H3K27 methylation. We found UNC1999 inhibited tumor cells proliferation and enhanced the inhibitory effect of sorafenib. Conclusion We demonstrated that miR-20a suppresses the tumor proliferation and metastasis in HCC by directly targeting EZH1. UNC1999 can inhibit tumor proliferation in vivo and increase the sensitivity of hepatoma cell lines to sorafenib.
Collapse
Affiliation(s)
- Qianqian Zhang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xiaohong Deng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuxin Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying You
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meihua Mei
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danping Liu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lian Gui
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Cai
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Xin
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junqi Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Ghamlouch H, Boyle EM, Blaney P, Wang Y, Choi J, Williams L, Bauer M, Auclair D, Bruno B, Walker BA, Davies FE, Morgan GJ. Insights into high-risk multiple myeloma from an analysis of the role of PHF19 in cancer. J Exp Clin Cancer Res 2021; 40:380. [PMID: 34857028 PMCID: PMC8638425 DOI: 10.1186/s13046-021-02185-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/13/2021] [Indexed: 02/07/2023] Open
Abstract
Despite improvements in outcome, 15-25% of newly diagnosed multiple myeloma (MM) patients have treatment resistant high-risk (HR) disease with a poor survival. The lack of a genetic basis for HR has focused attention on the role played by epigenetic changes. Aberrant expression and somatic mutations affecting genes involved in the regulation of tri-methylation of the lysine (K) 27 on histone 3 H3 (H3K27me3) are common in cancer. H3K27me3 is catalyzed by EZH2, the catalytic subunit of the Polycomb Repressive Complex 2 (PRC2). The deregulation of H3K27me3 has been shown to be involved in oncogenic transformation and tumor progression in a variety of hematological malignancies including MM. Recently we have shown that aberrant overexpression of the PRC2 subunit PHD Finger Protein 19 (PHF19) is the most significant overall contributor to HR status further focusing attention on the role played by epigenetic change in MM. By modulating both the PRC2/EZH2 catalytic activity and recruitment, PHF19 regulates the expression of key genes involved in cell growth and differentiation. Here we review the expression, regulation and function of PHF19 both in normal and the pathological contexts of solid cancers and MM. We present evidence that strongly implicates PHF19 in the regulation of genes important in cell cycle and the genetic stability of MM cells making it highly relevant to HR MM behavior. A detailed understanding of the normal and pathological functions of PHF19 will allow us to design therapeutic strategies able to target aggressive subsets of MM.
Collapse
Affiliation(s)
- Hussein Ghamlouch
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA.
| | - Eileen M Boyle
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Patrick Blaney
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
- Applied Bioinformatics Laboratories (ABL), NYU Langone Medical Center, New York, NY, USA
| | - Yubao Wang
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Jinyoung Choi
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Louis Williams
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Michael Bauer
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Daniel Auclair
- The Multiple Myeloma Research Foundation (MMRF), Norwalk, CT, USA
| | - Benedetto Bruno
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Brian A Walker
- Division of Hematology Oncology, Indiana University, Indianapolis, IN, USA
| | - Faith E Davies
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Gareth J Morgan
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA.
| |
Collapse
|
21
|
Development of a UPLC-MS/MS method for determination of a dual EZH1/2 inhibitor UNC1999 in rat plasma. Bioanalysis 2021; 14:67-74. [PMID: 34841882 DOI: 10.4155/bio-2021-0227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: We aimed to establish and validate a simple and sensitive UPLC-MS/MS method for the determination of UNC1999, a dual inhibitor against EZH1 and EZH2 in plasma samples. Materials & methods: UNC1999 in rat plasma was processed with protein precipitation method and then separated on a C18 column and detected under positive ionization mode. The method presented good linearity over the range of 1.0-2000 ng/ml with good accuracy and precision. UNC1999 was absorbed slowly and achieved a maximum concentration of 118.8 ± 12.0 ng/ml 1.5 h after oral administration. Conclusion: The method provides a favorable character in selectivity, linearity, accuracy, precision, recovery, matrix effects and stabilities and was suitable for describing the pharmacokinetic profile of UNC1999.
Collapse
|
22
|
Estrada FGA, Miccoli S, Aniceto N, García-Sosa AT, Guedes RC. Exploring EZH2-Proteasome Dual-Targeting Drug Discovery through a Computational Strategy to Fight Multiple Myeloma. Molecules 2021; 26:5574. [PMID: 34577052 PMCID: PMC8468724 DOI: 10.3390/molecules26185574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022] Open
Abstract
Multiple myeloma is an incurable plasma cell neoplastic disease representing about 10-15% of all haematological malignancies diagnosed in developed countries. Proteasome is a key player in multiple myeloma and proteasome inhibitors are the current first-line of treatment. However, these are associated with limited clinical efficacy due to acquired resistance. One of the solutions to overcome this problem is a polypharmacology approach, namely combination therapy and multitargeting drugs. Several polypharmacology avenues are currently being explored. The simultaneous inhibition of EZH2 and Proteasome 20S remains to be investigated, despite the encouraging evidence of therapeutic synergy between the two. Therefore, we sought to bridge this gap by proposing a holistic in silico strategy to find new dual-target inhibitors. First, we assessed the characteristics of both pockets and compared the chemical space of EZH2 and Proteasome 20S inhibitors, to establish the feasibility of dual targeting. This was followed by molecular docking calculations performed on EZH2 and Proteasome 20S inhibitors from ChEMBL 25, from which we derived a predictive model to propose new EZH2 inhibitors among Proteasome 20S compounds, and vice versa, which yielded two dual-inhibitor hits. Complementarily, we built a machine learning QSAR model for each target but realised their application to our data is very limited as each dataset occupies a different region of chemical space. We finally proceeded with molecular dynamics simulations of the two docking hits against the two targets. Overall, we concluded that one of the hit compounds is particularly promising as a dual-inhibitor candidate exhibiting extensive hydrogen bonding with both targets. Furthermore, this work serves as a framework for how to rationally approach a dual-targeting drug discovery project, from the selection of the targets to the prediction of new hit compounds.
Collapse
Affiliation(s)
- Filipe G. A. Estrada
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (F.G.A.E.); (S.M.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Silvia Miccoli
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (F.G.A.E.); (S.M.)
- Department of Drug Science and Technology, University of Turin, Via Verdi 8, 10124 Torino, Italy
| | - Natália Aniceto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (F.G.A.E.); (S.M.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | | | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (F.G.A.E.); (S.M.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
23
|
Li X, Gera L, Zhang S, Chen Y, Lou L, Wilson LM, Xie ZR, Sautto G, Liu D, Danaher A, Mamouni K, Yang Y, Du Y, Fu H, Kucuk O, Osunkoya AO, Zhou J, Wu D. Pharmacological inhibition of noncanonical EED-EZH2 signaling overcomes chemoresistance in prostate cancer. Theranostics 2021; 11:6873-6890. [PMID: 34093859 PMCID: PMC8171087 DOI: 10.7150/thno.49235] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 04/22/2021] [Indexed: 12/25/2022] Open
Abstract
Rationale: Chemoresistance is a major obstacle in prostate cancer (PCa) treatment. We sought to understand the underlying mechanism of PCa chemoresistance and discover new treatments to overcome docetaxel resistance. Methods: We developed a novel phenotypic screening platform for the discovery of specific inhibitors of chemoresistant PCa cells. The mechanism of action of the lead compound was investigated using computational, molecular and cellular approaches. The in vivo toxicity and efficacy of the lead compound were evaluated in clinically-relevant animal models. Results: We identified LG1980 as a lead compound that demonstrates high selectivity and potency against chemoresistant PCa cells. Mechanistically, LG1980 binds embryonic ectoderm development (EED), disrupts the interaction between EED and enhancer of zeste homolog 2 (EZH2), thereby inducing the protein degradation of EZH2 and inhibiting the phosphorylation and activity of EZH2. Consequently, LG1980 targets a survival signaling cascade consisting of signal transducer and activator of transcription 3 (Stat3), S-phase kinase-associated protein 2 (SKP2), ATP binding cassette B 1 (ABCB1) and survivin. As a lead compound, LG1980 is well tolerated in mice and effectively suppresses the in vivo growth of chemoresistant PCa and synergistically enhances the efficacy of docetaxel in xenograft models. Conclusions: These results indicate that pharmacological inhibition of EED-EZH2 interaction is a novel strategy for the treatment of chemoresistant PCa. LG1980 and its analogues have the potential to be integrated into standard of care to improve clinical outcomes in PCa patients.
Collapse
Affiliation(s)
- Xin Li
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lajos Gera
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, School of Medicine, Aurora, CO, USA
| | - Shumin Zhang
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Yanhua Chen
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Lou
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Lauren Marie Wilson
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Zhong-Ru Xie
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Giuseppe Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | | | - Alira Danaher
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Kenza Mamouni
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yang Yang
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Omer Kucuk
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Adeboye O. Osunkoya
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Departments of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daqing Wu
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- MetCure Therapeutics LLC, Atlanta, GA, USA
| |
Collapse
|
24
|
Polycomb-group proteins in the initiation and progression of cancer. J Genet Genomics 2021; 48:433-443. [PMID: 34266781 DOI: 10.1016/j.jgg.2021.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 12/13/2022]
Abstract
The Polycomb group (PcG) proteins are a family of chromatin regulators and critical for the maintenance of cellular identity. The PcG machinery can be categorized into at least three multi-protein complexes, namely Polycomb Repressive Complex 1 (PRC1), PRC2, and Polycomb Repressive DeUBiquitinase (PR-DUB). Their deregulation has been associated with human cancer initiation and progression. Here we review the updated understanding for PcG proteins in transcription regulation and DNA damage repair and highlight increasing links to the hallmarks in cancer. Accordingly, we discuss some of the recent advances in drug development or strategies against cancers caused by the gain or loss of PcG functions.
Collapse
|
25
|
Raspin K, FitzGerald LM, Marthick JR, Field MA, Malley RC, Banks A, Donovan S, Thomson RJ, Foley GR, Stanford JL, Dickinson JL. A rare variant in EZH2 is associated with prostate cancer risk. Int J Cancer 2021; 149:1089-1099. [PMID: 33821477 DOI: 10.1002/ijc.33584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 11/11/2022]
Abstract
Prostate cancer (PrCa) is highly heritable, and although rare variants contribute significantly to PrCa risk, few have been identified to date. Herein, whole-genome sequencing was performed in a large PrCa family featuring multiple affected relatives spanning several generations. A rare, predicted splice site EZH2 variant, rs78589034 (G > A), was identified as segregating with disease in all but two individuals in the family, one of whom was affected with lymphoma and bowel cancer and a female relative. This variant was significantly associated with disease risk in combined familial and sporadic PrCa datasets (n = 1551; odds ratio [OR] = 3.55, P = 1.20 × 10-5 ). Transcriptome analysis was performed on prostate tumour needle biopsies available for two rare variant carriers and two wild-type cases. Although no allele-dependent differences were detected in EZH2 transcripts, a distinct differential gene expression signature was observed when comparing prostate tissue from the rare variant carriers with the wild-type samples. The gene expression signature comprised known downstream targets of EZH2 and included the top-ranked genes, DUSP1, FOS, JUNB and EGR1, which were subsequently validated by qPCR. These data provide evidence that rs78589034 is associated with increased PrCa risk in Tasmanian men and further, that this variant may be associated with perturbed EZH2 function in prostate tissue. Disrupted EZH2 function is a driver of tumourigenesis in several cancers, including prostate, and is of significant interest as a therapeutic target.
Collapse
Affiliation(s)
- Kelsie Raspin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Liesel M FitzGerald
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - James R Marthick
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Matt A Field
- Australian Institute of Tropical Health and Medicine and Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, Queensland, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Roslyn C Malley
- Hobart Pathology, Hobart, Tasmania, Australia.,Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Annette Banks
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Russell J Thomson
- Centre for Research in Mathematics and Data Science, Western Sydney University, Sydney, New South Wales, Australia
| | - Georgea R Foley
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Janet L Stanford
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
26
|
Paradzik T, Bandini C, Mereu E, Labrador M, Taiana E, Amodio N, Neri A, Piva R. The Landscape of Signaling Pathways and Proteasome Inhibitors Combinations in Multiple Myeloma. Cancers (Basel) 2021; 13:1235. [PMID: 33799793 PMCID: PMC8000754 DOI: 10.3390/cancers13061235] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma is a malignancy of terminally differentiated plasma cells, characterized by an extreme genetic heterogeneity that poses great challenges for its successful treatment. Due to antibody overproduction, MM cells depend on the precise regulation of the protein degradation systems. Despite the success of PIs in MM treatment, resistance and adverse toxic effects such as peripheral neuropathy and cardiotoxicity could arise. To this end, the use of rational combinatorial treatments might allow lowering the dose of inhibitors and therefore, minimize their side-effects. Even though the suppression of different cellular pathways in combination with proteasome inhibitors have shown remarkable anti-myeloma activities in preclinical models, many of these promising combinations often failed in clinical trials. Substantial progress has been made by the simultaneous targeting of proteasome and different aspects of MM-associated immune dysfunctions. Moreover, targeting deranged metabolic hubs could represent a new avenue to identify effective therapeutic combinations with PIs. Finally, epigenetic drugs targeting either DNA methylation, histone modifiers/readers, or chromatin remodelers are showing pleiotropic anti-myeloma effects alone and in combination with PIs. We envisage that the positive outcome of patients will probably depend on the availability of more effective drug combinations and treatment of early MM stages. Therefore, the identification of sensitive targets and aberrant signaling pathways is instrumental for the development of new personalized therapies for MM patients.
Collapse
Affiliation(s)
- Tina Paradzik
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Cecilia Bandini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Elisabetta Mereu
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Maria Labrador
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Elisa Taiana
- Department of Oncology and Hemato-oncology, University of Milano, 20122 Milano, Italy; (E.T.); (A.N.)
- Hematology Unit, Fondazione Cà Granda IRCCS, Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milano, 20122 Milano, Italy; (E.T.); (A.N.)
- Hematology Unit, Fondazione Cà Granda IRCCS, Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
- Città Della Salute e della Scienza Hospital, 10126 Torino, Italy
| |
Collapse
|
27
|
Nylund P, Atienza Párraga A, Haglöf J, De Bruyne E, Menu E, Garrido-Zabala B, Ma A, Jin J, Öberg F, Vanderkerken K, Kalushkova A, Jernberg-Wiklund H. A distinct metabolic response characterizes sensitivity to EZH2 inhibition in multiple myeloma. Cell Death Dis 2021; 12:167. [PMID: 33579905 PMCID: PMC7881125 DOI: 10.1038/s41419-021-03447-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Multiple myeloma (MM) is a heterogeneous haematological disease that remains clinically challenging. Increased activity of the epigenetic silencer EZH2 is a common feature in patients with poor prognosis. Previous findings have demonstrated that metabolic profiles can be sensitive markers for response to treatment in cancer. While EZH2 inhibition (EZH2i) has proven efficient in inducing cell death in a number of human MM cell lines, we hereby identified a subset of cell lines that despite a global loss of H3K27me3, remains viable after EZH2i. By coupling liquid chromatography-mass spectrometry with gene and miRNA expression profiling, we found that sensitivity to EZH2i correlated with distinct metabolic signatures resulting from a dysregulation of genes involved in methionine cycling. Specifically, EZH2i resulted in a miRNA-mediated downregulation of methionine cycling-associated genes in responsive cells. This induced metabolite accumulation and DNA damage, leading to G2 arrest and apoptosis. Altogether, we unveiled that sensitivity to EZH2i in human MM cell lines is associated with a specific metabolic and gene expression profile post-treatment.
Collapse
Affiliation(s)
- Patrick Nylund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alba Atienza Párraga
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Jakob Haglöf
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Elke De Bruyne
- Department of Haematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Eline Menu
- Department of Haematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Berta Garrido-Zabala
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anqi Ma
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Fredrik Öberg
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Vanderkerken
- Department of Haematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Antonia Kalushkova
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| | - Helena Jernberg-Wiklund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
28
|
The combination of the tubulin binding small molecule PTC596 and proteasome inhibitors suppresses the growth of myeloma cells. Sci Rep 2021; 11:2074. [PMID: 33483574 PMCID: PMC7822878 DOI: 10.1038/s41598-021-81577-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
The novel small molecule PTC596 inhibits microtubule polymerization and its clinical development has been initiated for some solid cancers. We herein investigated the preclinical efficacy of PTC596 alone and in combination with proteasome inhibitors in the treatment of multiple myeloma (MM). PTC596 inhibited the proliferation of MM cell lines as well as primary MM samples in vitro, and this was confirmed with MM cell lines in vivo. PTC596 synergized with bortezomib or carfilzomib to inhibit the growth of MM cells in vitro. The combination treatment of PTC596 with bortezomib exerted synergistic effects in a xenograft model of human MM cell lines in immunodeficient mice and exhibited acceptable tolerability. Mechanistically, treatment with PTC596 induced cell cycle arrest at G2/M phase followed by apoptotic cell death, associated with the inhibition of microtubule polymerization. RNA sequence analysis also revealed that PTC596 and the combination with bortezomib affected the cell cycle and apoptosis in MM cells. Importantly, endoplasmic reticulum stress induced by bortezomib was enhanced by PTC596, providing an underlying mechanism of action of the combination therapy. Our results indicate that PTC596 alone and in combination with proteasome inhibition are potential novel therapeutic options to improve outcomes in patients with MM.
Collapse
|
29
|
Kaito S, Iwama A. Pathogenic Impacts of Dysregulated Polycomb Repressive Complex Function in Hematological Malignancies. Int J Mol Sci 2020; 22:ijms22010074. [PMID: 33374737 PMCID: PMC7793497 DOI: 10.3390/ijms22010074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Polycomb repressive complexes (PRCs) are epigenetic regulators that mediate repressive histone modifications. PRCs play a pivotal role in the maintenance of hematopoietic stem cells through repression of target genes involved in cell proliferation and differentiation. Next-generation sequencing technologies have revealed that various hematologic malignancies harbor mutations in PRC2 genes, such as EZH2, EED, and SUZ12, and PRC1.1 genes, such as BCOR and BCORL1. Except for the activating EZH2 mutations detected in lymphoma, most of these mutations compromise PRC function and are frequently associated with resistance to chemotherapeutic agents and poor prognosis. Recent studies have shown that mutations in PRC genes are druggable targets. Several PRC2 inhibitors, including EZH2-specific inhibitors and EZH1 and EZH2 dual inhibitors have shown therapeutic efficacy for tumors with and without activating EZH2 mutations. Moreover, EZH2 loss-of-function mutations appear to be attractive therapeutic targets for implementing the concept of synthetic lethality. Further understanding of the epigenetic dysregulation associated with PRCs in hematological malignancies should improve treatment outcomes.
Collapse
Affiliation(s)
| | - Atsushi Iwama
- Correspondence: ; Tel.: +81-3-6409-2181; Fax: +81-3-6409-2182
| |
Collapse
|
30
|
Involvement of Hdac3-mediated inhibition of microRNA cluster 17-92 in bronchopulmonary dysplasia development. Mol Med 2020; 26:99. [PMID: 33143661 PMCID: PMC7640435 DOI: 10.1186/s10020-020-00237-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/27/2020] [Indexed: 11/10/2022] Open
Abstract
Background The incidence of bronchopulmonary dysplasia (BPD), a chronic lung disease of newborns, has been paradoxically rising despite medical advances. Histone deacetylase 3 (Hdac3) has been reported to be a crucial regulator in alveologenesis. Hence, this study aims to investigate the mechanism of Hdac3 in the abnormal pulmonary angiogenesis and alveolarization of BPD. Methods A hyperoxia-induced BPD model of was developed in newborn mice, and primary lung fibroblasts were isolated from adult mice. Hdac3 was knocked out in vivo and knocked down in vitro, while microRNA (miR)-17 was downregulated in vivo and in vitro to clarify their roles in abnormal pulmonary angiogenesis and alveolarization. Mechanistic investigations were performed on the interplay of Hdac3, miR-17-92 cluster, enhancer of zeste homolog 1 (EZH1), p65 and placental growth factor (Pgf). Results Hdac3 was involved in abnormal alveolarization and angiogenesis in BPD mice. Further, the expression of the miR-17-92 cluster in BPD mice was downregulated by Hdac3. miR-17 was found to target EZH1, and Hdac3 rescued the inhibited EZH1 expression by miR-17 in lung fibroblasts. Additionally, EZH1 augmented Pgf expression by recruiting p65 thus enhancing the progression of BPD. Hdac3 augmented the recruitment of p65 in the Pgf promoter region through the miR-17/EZH1 axis, thus enhancing the transcription and expression of Pgf, which elicited abnormal angiogenesis and alveolarization of BPD mice. Conclusions Altogether, the present study revealed that Hdac3 activated the EZH1-p65-Pgf axis through inhibiting miR-17 in the miR-17-92 cluster, leading to accelerated abnormal pulmonary angiogenesis and alveolarization of BPD mice.
Collapse
|
31
|
Varlet E, Ovejero S, Martinez AM, Cavalli G, Moreaux J. Role of Polycomb Complexes in Normal and Malignant Plasma Cells. Int J Mol Sci 2020; 21:ijms21218047. [PMID: 33126754 PMCID: PMC7662980 DOI: 10.3390/ijms21218047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 02/01/2023] Open
Abstract
Plasma cells (PC) are the main effectors of adaptive immunity, responsible for producing antibodies to defend the body against pathogens. They are the result of a complex highly regulated cell differentiation process, taking place in several anatomical locations and involving unique genetic events. Pathologically, PC can undergo tumorigenesis and cause a group of diseases known as plasma cell dyscrasias, including multiple myeloma (MM). MM is a severe disease with poor prognosis that is characterized by the accumulation of malignant PC within the bone marrow, as well as high clinical and molecular heterogeneity. MM patients frequently develop resistance to treatment, leading to relapse. Polycomb group (PcG) proteins are epigenetic regulators involved in cell fate and carcinogenesis. The emerging roles of PcG in PC differentiation and myelomagenesis position them as potential therapeutic targets in MM. Here, we focus on the roles of PcG proteins in normal and malignant plasma cells, as well as their therapeutic implications.
Collapse
Affiliation(s)
- Emmanuel Varlet
- Institute of Human Genetics, UMR 9002 Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, 34396 Montpellier, France; (E.V.); (S.O.); (A.-M.M.); (G.C.)
| | - Sara Ovejero
- Institute of Human Genetics, UMR 9002 Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, 34396 Montpellier, France; (E.V.); (S.O.); (A.-M.M.); (G.C.)
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002 Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, 34396 Montpellier, France; (E.V.); (S.O.); (A.-M.M.); (G.C.)
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002 Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, 34396 Montpellier, France; (E.V.); (S.O.); (A.-M.M.); (G.C.)
| | - Jerome Moreaux
- Institute of Human Genetics, UMR 9002 Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, 34396 Montpellier, France; (E.V.); (S.O.); (A.-M.M.); (G.C.)
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France
- UFR Medicine, University of Montpellier, 34003 Montpellier, France
- Institut Universitaire de France (IUF), 75005 Paris, France
- Correspondence: ; Tel.: +33-04-6733-7903
| |
Collapse
|
32
|
Wong AHH, Shin EM, Tergaonkar V, Chng WJ. Targeting NF-κB Signaling for Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12082203. [PMID: 32781681 PMCID: PMC7463546 DOI: 10.3390/cancers12082203] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy in the world. Even though survival rates have significantly risen over the past years, MM remains incurable, and is also far from reaching the point of being managed as a chronic disease. This paper reviews the evolution of MM therapies, focusing on anti-MM drugs that target the molecular mechanisms of nuclear factor kappa B (NF-κB) signaling. We also provide our perspectives on contemporary research findings and insights for future drug development.
Collapse
Affiliation(s)
- Ada Hang-Heng Wong
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (E.M.S.); (V.T.)
- AW Medical Company Limited, Macau, China
- Correspondence: (A.H.-H.W.); (W.-J.C.); Tel.: +65-6586-9709 (A.H.-H.W.); +65-6772-4612 (W.-J.C.)
| | - Eun Myoung Shin
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (E.M.S.); (V.T.)
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (E.M.S.); (V.T.)
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Department of Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 119074, Singapore
- Correspondence: (A.H.-H.W.); (W.-J.C.); Tel.: +65-6586-9709 (A.H.-H.W.); +65-6772-4612 (W.-J.C.)
| |
Collapse
|
33
|
Cossío FP, Esteller M, Berdasco M. Towards a more precise therapy in cancer: Exploring epigenetic complexity. Curr Opin Chem Biol 2020; 57:41-49. [PMID: 32480315 DOI: 10.1016/j.cbpa.2020.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
A plethora of preclinical evidences suggests that pharmacological targeting of epigenetic dysregulation is a potent strategy to combat human diseases. Nevertheless, the implementation of epidrugs in clinical practice is very scarce and mainly limited to haematological malignancies. In this review, we discuss cutting-edge strategies to foster the chemical design, the biological rationale and the clinical trial development of epidrugs. Specifically, we focus on the development of dual hybrids to exploit multitargeting of key epigenetic molecules deregulated in cancer; the study of epigenetic-synthetic lethality interactions as a mechanism to address loss-of-function mutations, and the combination of epidrugs with other therapies such as immunotherapy to avoid acquired chemoresistance and increase therapy sensitivity. By exploring these challenges, among others, the field of epigenetic chemical biology will increase its potential for clinical benefit, and more effective strategies targeting the aberrant epigenome in cancer are likely to be developed both in haematological and solid tumours.
Collapse
Affiliation(s)
- Fernando P Cossío
- Kimika Fakultatea, Kimika Organikoa I Saila, Universidad del País Vasco - Euskal Herriko Unibertsitaea, and Donostia International Physics Center (DIPC), San Sebastián-Donostia, Spain; Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer and Leukemia Epigenetics and Biology Program (PEBCL), Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - María Berdasco
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain; Epigenetic Therapies Group, Experimental and Clinical Hematology Program (PHEC), Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain.
| |
Collapse
|
34
|
MELK mediates the stability of EZH2 through site-specific phosphorylation in extranodal natural killer/T-cell lymphoma. Blood 2020; 134:2046-2058. [PMID: 31434700 DOI: 10.1182/blood.2019000381] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023] Open
Abstract
Oncogenic EZH2 is overexpressed and extensively involved in the pathophysiology of different cancers including extranodal natural killer/T-cell lymphoma (NKTL). However, the mechanisms regarding EZH2 upregulation is poorly understood, and it still remains untargetable in NKTL. In this study, we examine EZH2 protein turnover in NKTL and identify MELK kinase as a regulator of EZH2 ubiquitination and turnover. Using quantitative mass spectrometry analysis, we observed a MELK-mediated increase of EZH2 S220 phosphorylation along with a concomitant loss of EZH2 K222 ubiquitination, suggesting a phosphorylation-dependent regulation of EZH2 ubiquitination. MELK inhibition through both chemical and genetic means led to ubiquitination and destabilization of EZH2 protein. Importantly, we determine that MELK is upregulated in NKTL, and its expression correlates with EZH2 protein expression as determined by tissue microarray derived from NKTL patients. FOXM1, which connected MELK to EZH2 signaling in glioma, was not involved in mediating EZH2 ubiquitination. Furthermore, we identify USP36 as the deubiquitinating enzyme that deubiquitinates EZH2 at K222. These findings uncover an important role of MELK and USP36 in mediating EZH2 stability in NKTL. Moreover, MELK overexpression led to decreased sensitivity to bortezomib treatment in NKTL based on deprivation of EZH2 ubiquitination. Therefore, modulation of EZH2 ubiquitination status by targeting MELK may be a new therapeutic strategy for NKTL patients with poor bortezomib response.
Collapse
|
35
|
Wan Z, Jiang H, Li L, Zhu S, Hou J, Yu Y. Carcinogenic roles and therapeutic effects of EZH2 in gynecological cancers. Bioorg Med Chem 2020; 28:115379. [PMID: 32098708 DOI: 10.1016/j.bmc.2020.115379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Enhancer of Zeste Homolog 2 (EZH2) is highly expressed in kinds of malignant tumors and related to tumor occurrence, development, and prognosis. EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2), which promotes cell proliferation, migration, and invasion by epigenetic regulation of anti-tumor gene. It can activate numerous tumor-associated signaling pathways and interfere with DNA damage repair. In recent years, large amounts of studies have shown that EZH2 is closely related to gynecologic-related malignancies and can be used as a potential target gene for the treatment of gynecological-related malignancies. This review summarizes the oncogenic function of EZH2 and introduces the recent advances in the development of EZH2 inhibitors. On this basis, future research prospect of EZH2 is proposed.
Collapse
Affiliation(s)
- Zhong Wan
- Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huabo Jiang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Li
- Assisted Reproduction Technology Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuhui Zhu
- Department of Food and Drug Engineering, Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong, China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Institute of Gastrointestinal Oncology, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
36
|
Potjewyd F, Turner AMW, Beri J, Rectenwald JM, Norris-Drouin JL, Cholensky SH, Margolis DM, Pearce KH, Herring LE, James LI. Degradation of Polycomb Repressive Complex 2 with an EED-Targeted Bivalent Chemical Degrader. Cell Chem Biol 2019; 27:47-56.e15. [PMID: 31831267 DOI: 10.1016/j.chembiol.2019.11.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/04/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Protein degradation via the use of bivalent chemical degraders provides an alternative strategy to block protein function and assess the biological roles of putative drug targets. This approach capitalizes on the advantages of small-molecule inhibitors while moving beyond the restrictions of traditional pharmacology. Here, we report a chemical degrader (UNC6852) that targets polycomb repressive complex 2 (PRC2). UNC6852 contains an EED226-derived ligand and a ligand for VHL which bind to the WD40 aromatic cage of EED and CRL2VHL, respectively, to induce proteasomal degradation of PRC2 components, EED, EZH2, and SUZ12. Degradation of PRC2 with UNC6852 blocks the histone methyltransferase activity of EZH2, decreasing H3K27me3 levels in HeLa cells and diffuse large B cell lymphoma (DLBCL) cells containing EZH2 gain-of-function mutations. UNC6852 degrades both wild-type and mutant EZH2, and additionally displays anti-proliferative effects in this cancer model system.
Collapse
Affiliation(s)
- Frances Potjewyd
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anne-Marie W Turner
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua Beri
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Justin M Rectenwald
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jacqueline L Norris-Drouin
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie H Cholensky
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David M Margolis
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, School Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenneth H Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
37
|
Li B, Chng WJ. EZH2 abnormalities in lymphoid malignancies: underlying mechanisms and therapeutic implications. J Hematol Oncol 2019; 12:118. [PMID: 31752930 PMCID: PMC6868783 DOI: 10.1186/s13045-019-0814-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/27/2019] [Indexed: 02/08/2023] Open
Abstract
EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2), which along with other PRC2 components mediates gene expression suppression via the methylation of Histone H3 at lysine 27. Recent studies have revealed a dichotomous role of EZH2 in physiology and in the pathogenesis of cancer. While it plays an essential role in the development of the lymphoid system, its deregulation, whether due to genetic or non-genetic causes, promotes B cell- and T cell-related lymphoma or leukemia. These findings triggered a boom in the development of therapeutic EZH2 inhibitors in recent years. Here, we discuss physiologic and pathogenic function of EZH2 in lymphoid context, various internal causes of EZH2 aberrance and how EZH2 modulates lymphomagenesis through epigenetic silencing, post-translational modifications (PTMs), orchestrating with surrounding tumor micro-environment and associating with RNA or viral partners. We also summarize different strategies to directly inhibit PRC2-EZH2 or to intervene EZH2 upstream signaling.
Collapse
Affiliation(s)
- Boheng Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore, Singapore. .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
38
|
Rizk M, Rizq O, Oshima M, Nakajima-Takagi Y, Koide S, Saraya A, Isshiki Y, Chiba T, Yamazaki S, Ma A, Jin J, Iwama A, Mimura N. Akt inhibition synergizes with polycomb repressive complex 2 inhibition in the treatment of multiple myeloma. Cancer Sci 2019; 110:3695-3707. [PMID: 31571328 PMCID: PMC6890440 DOI: 10.1111/cas.14207] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) components, EZH2 and its homolog EZH1, and PI3K/Akt signaling pathway are focal points as therapeutic targets for multiple myeloma. However, the exact crosstalk between their downstream targets remains unclear. We herein elucidated some epigenetic interactions following Akt inhibition and demonstrated the efficacy of the combined inhibition of Akt and PRC2. We found that TAS-117, a potent and selective Akt inhibitor, downregulated EZH2 expression at the mRNA and protein levels via interference with the Rb-E2F pathway, while EZH1 was compensatively upregulated to maintain H3K27me3 modifications. Consistent with these results, the dual EZH2/EZH1 inhibitor, UNC1999, but not the selective EZH2 inhibitor, GSK126, synergistically enhanced TAS-117-induced cytotoxicity and provoked myeloma cell apoptosis. RNA-seq analysis revealed the activation of the FOXO signaling pathway after TAS-117 treatment. FOXO3/4 mRNA and their downstream targets were upregulated with the enhanced nuclear localization of FOXO3 protein after TAS-117 treatment. ChIP assays confirmed the direct binding of FOXO3 to EZH1 promoter, which was enhanced by TAS-117 treatment. Moreover, FOXO3 knockdown repressed EZH1 expression. Collectively, the present results reveal some molecular interactions between Akt signaling and epigenetic modulators, which emphasize the benefits of targeting PRC2 full activity and the Akt pathway as a therapeutic option for multiple myeloma.
Collapse
Affiliation(s)
- Mohamed Rizk
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ola Rizq
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Medical Oncology, LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Motohiko Oshima
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yaeko Nakajima-Takagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuhei Koide
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsunori Saraya
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yusuke Isshiki
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Hematology, Chiba University Hospital, Chiba, Japan.,Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Anqi Ma
- Department of Pharmacological Sciences, Mount Sinai Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Oncological Sciences, Mount Sinai Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Jin
- Department of Pharmacological Sciences, Mount Sinai Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Oncological Sciences, Mount Sinai Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naoya Mimura
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
39
|
Ren Z, Ahn JH, Liu H, Tsai YH, Bhanu NV, Koss B, Allison DF, Ma A, Storey AJ, Wang P, Mackintosh SG, Edmondson RD, Groen RWJ, Martens AC, Garcia BA, Tackett AJ, Jin J, Cai L, Zheng D, Wang GG. PHF19 promotes multiple myeloma tumorigenicity through PRC2 activation and broad H3K27me3 domain formation. Blood 2019; 134:1176-1189. [PMID: 31383640 PMCID: PMC6776795 DOI: 10.1182/blood.2019000578] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/24/2019] [Indexed: 12/31/2022] Open
Abstract
Dysregulation of polycomb repressive complex 2 (PRC2) promotes oncogenesis partly through its enzymatic function for inducing trimethylation of histone H3 lysine 27 (H3K27me3). However, it remains to be determined how PRC2 activity is regulated in normal and diseased settings. We here report a PRC2-associated cofactor, PHD finger protein 19 (PHF19; also known as polycomb-like 3), as a crucial mediator of tumorigenicity in multiple myeloma (MM). Overexpression and/or genomic amplification of PHF19 is found associated with malignant progression of MM and plasma cell leukemia, correlating to worse treatment outcomes. Using various MM models, we demonstrated a critical requirement of PHF19 for tumor growth in vitro and in vivo. Mechanistically, PHF19-mediated oncogenic effect relies on its PRC2-interacting and chromatin-binding functions. Chromatin immunoprecipitation followed by sequencing profiling showed a critical role for PHF19 in maintaining the H3K27me3 landscape. PHF19 depletion led to loss of broad H3K27me3 domains, possibly due to impaired H3K27me3 spreading from cytosine guanine dinucleotide islands, which is reminiscent to the reported effect of an "onco"-histone mutation, H3K27 to methionine (H3K27M). RNA-sequencing-based transcriptome profiling in MM lines also demonstrated a requirement of PHF19 for optimal silencing of PRC2 targets, which include cell cycle inhibitors and interferon-JAK-STAT signaling genes critically involved in tumor suppression. Correlation studies using patient sample data sets further support a clinical relevance of the PHF19-regulated pathways. Lastly, we show that MM cells are generally sensitive to PRC2 inhibitors. Collectively, this study demonstrates that PHF19 promotes MM tumorigenesis through enhancing H3K27me3 deposition and PRC2's gene-regulatory functions, lending support for PRC2 blockade as a means for MM therapeutics.
Collapse
Affiliation(s)
- Zhihong Ren
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Jeong Hyun Ahn
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Hequn Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| | | | - Natarajan V Bhanu
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Brian Koss
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - David F Allison
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Anqi Ma
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Richard W J Groen
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Anton C Martens
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
- Arkansas Children's Research Institute and UAMS Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Jian Jin
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ling Cai
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- Department of Neuroscience and
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY; and
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| |
Collapse
|
40
|
Juli G, Oliverio M, Bellizzi D, Gallo Cantafio ME, Grillone K, Passarino G, Colica C, Nardi M, Rossi M, Procopio A, Tagliaferri P, Tassone P, Amodio N. Anti-tumor Activity and Epigenetic Impact of the Polyphenol Oleacein in Multiple Myeloma. Cancers (Basel) 2019; 11:cancers11070990. [PMID: 31315220 PMCID: PMC6679356 DOI: 10.3390/cancers11070990] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
Olive oil contains different biologically active polyphenols, among which oleacein, the most abundant secoiridoid, has recently emerged for its beneficial properties in various disease contexts. By using in vitro models of human multiple myeloma (MM), we here investigated the anti-tumor potential of oleacein and the underlying bio-molecular sequelae. Within a low micromolar range, oleacein reduced the viability of MM primary samples and cell lines even in the presence of bone marrow stromal cells (BMSCs), while sparing healthy peripheral blood mononuclear cells. We also demonstrated that oleacein inhibited MM cell clonogenicity, prompted cell cycle blockade and triggered apoptosis. We evaluated the epigenetic impact of oleacein on MM cells, and observed dose-dependent accumulation of both acetylated histones and α-tubulin, along with down-regulation of several class I/II histone deacetylases (HDACs) both at the mRNA and protein level, providing evidence of the HDAC inhibitory activity of this compound; conversely, no effect on global DNA methylation was found. Mechanistically, HDACs inhibition by oleacein was associated with down-regulation of Sp1, the major transactivator of HDACs promoter, via Caspase 8 activation. Of potential translational significance, oleacein synergistically enhanced the in vitro anti-MM activity of the proteasome inhibitor carfilzomib. Altogether, these results indicate that oleacein is endowed with HDAC inhibitory properties, which associate with significant anti-MM activity both as single agent or in combination with carfilzomib. These findings may pave the way to novel potential anti-MM epi-therapeutic approaches based on natural agents.
Collapse
Affiliation(s)
- Giada Juli
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Manuela Oliverio
- Department of Health Science, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Arcavacata di Rende, Italy
| | | | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Carmela Colica
- CNR, IBFM UOS of Germaneto, Magna Graecia University of Catanzaro, 88100, Catanzaro Italy
| | - Monica Nardi
- Department of Health Science, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Procopio
- Department of Health Science, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy.
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy.
| |
Collapse
|
41
|
Di Pietro A, Good-Jacobson KL. Disrupting the Code: Epigenetic Dysregulation of Lymphocyte Function during Infectious Disease and Lymphoma Development. THE JOURNAL OF IMMUNOLOGY 2019; 201:1109-1118. [PMID: 30082273 DOI: 10.4049/jimmunol.1800137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/13/2018] [Indexed: 12/21/2022]
Abstract
Lymphocyte differentiation and identity are controlled by signals in the microenvironment that ultimately mediate gene expression in the nucleus. Although much focus has centered on the strategic and often unique roles transcription factors play within lymphocyte subsets, it is increasingly clear that another level of molecular regulation is crucial for regulating gene expression programs. In particular, epigenetic regulation is critical for appropriately regulated temporal and cell-type-specific gene expression during immune responses. As such, mutations in epigenetic modifiers are linked with lymphomagenesis. Furthermore, certain infections can remodel the epigenome in host cells, either through the microenvironment or by directly co-opting host epigenetic mechanisms, leading to inappropriate gene expression and/or ineffective cellular behavior. This review will focus on how histone modifications and DNA methylation, and the enzymes that regulate the epigenome, underpin lymphocyte differentiation and function in health and disease.
Collapse
Affiliation(s)
- Andrea Di Pietro
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
42
|
Adamik J, Roodman GD, Galson DL. Epigenetic-Based Mechanisms of Osteoblast Suppression in Multiple Myeloma Bone Disease. JBMR Plus 2019; 3:e10183. [PMID: 30918921 PMCID: PMC6419609 DOI: 10.1002/jbm4.10183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/29/2018] [Accepted: 02/03/2019] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) bone disease is characterized by the development of osteolytic lesions, which cause severe complications affecting the morbidity, mortality, and treatment of myeloma patients. Myeloma tumors seeded within the bone microenvironment promote hyperactivation of osteoclasts and suppression of osteoblast differentiation. Because of this prolonged suppression of bone marrow stromal cells’ (BMSCs) differentiation into functioning osteoblasts, bone lesions in patients persist even in the absence of active disease. Current antiresorptive therapy provides insufficient bone anabolic effects to reliably repair MM lesions. It has become widely accepted that myeloma‐exposed BMSCs have an altered phenotype with pro‐inflammatory, immune‐modulatory, anti‐osteogenic, and pro‐adipogenic properties. In this review, we focus on the role of epigenetic‐based modalities in the establishment and maintenance of myeloma‐induced suppression of osteogenic commitment of BMSCs. We will focus on recent studies demonstrating the involvement of chromatin‐modifying enzymes in transcriptional repression of osteogenic genes in MM‐BMSCs. We will further address the epigenetic plasticity in the differentiation commitment of osteoprogenitor cells and assess the involvement of chromatin modifiers in MSC‐lineage switching from osteogenic to adipogenic in the context of the inflammatory myeloma microenvironment. Lastly, we will discuss the potential of employing small molecule epigenetic inhibitors currently used in the MM research as therapeutics and bone anabolic agents in the prevention or repair of osteolytic lesions in MM. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Juraj Adamik
- Department of Medicine Division of Hematology/Oncology, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine University of Pittsburgh Pittsburgh PA USA
| | - G David Roodman
- Department of Medicine Division of Hematology-Oncology Indiana University Indianapolis IN USA.,Richard L Roudebush VA Medical Center Indianapolis IN USA
| | - Deborah L Galson
- Department of Medicine Division of Hematology/Oncology, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine University of Pittsburgh Pittsburgh PA USA
| |
Collapse
|
43
|
Dimopoulos K, Grønbæk K. Epigenetic therapy in hematological cancers. APMIS 2019; 127:316-328. [DOI: 10.1111/apm.12906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/22/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Konstantinos Dimopoulos
- Department of Hematology Rigshospitalet University Hospital Copenhagen Copenhagen Denmark
- Biotech Research and Innovation Centre (BRIC) Novo Nordisk Foundation Center for Stem Cell Biology DanStem Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Kirsten Grønbæk
- Department of Hematology Rigshospitalet University Hospital Copenhagen Copenhagen Denmark
- Biotech Research and Innovation Centre (BRIC) Novo Nordisk Foundation Center for Stem Cell Biology DanStem Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
44
|
Skourti-Stathaki K, Torlai Triglia E, Warburton M, Voigt P, Bird A, Pombo A. R-Loops Enhance Polycomb Repression at a Subset of Developmental Regulator Genes. Mol Cell 2019; 73:930-945.e4. [PMID: 30709709 PMCID: PMC6414425 DOI: 10.1016/j.molcel.2018.12.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 09/14/2018] [Accepted: 12/14/2018] [Indexed: 12/26/2022]
Abstract
R-loops are three-stranded nucleic acid structures that form during transcription, especially over unmethylated CpG-rich promoters of active genes. In mouse embryonic stem cells (mESCs), CpG-rich developmental regulator genes are repressed by the Polycomb complexes PRC1 and PRC2. Here, we show that R-loops form at a subset of Polycomb target genes, and we investigate their contribution to Polycomb repression. At R-loop-positive genes, R-loop removal leads to decreased PRC1 and PRC2 recruitment and Pol II activation into a productive elongation state, accompanied by gene derepression at nascent and processed transcript levels. Stable removal of PRC2 derepresses R-loop-negative genes, as expected, but does not affect R-loops, PRC1 recruitment, or transcriptional repression of R-loop-positive genes. Our results highlight that Polycomb repression does not occur via one mechanism but consists of different layers of repression, some of which are gene specific. We uncover that one such mechanism is mediated by an interplay between R-loops and RING1B recruitment. R-loops form at a subset of PcG target genes R-loops contribute to PcG recruitment genome-wide Loss of R-loops leads to transcriptional activation of R-loop-positive PcG targets R-loops and PRC1 contribute to transcriptional repression of PcG targets
Collapse
Affiliation(s)
- Konstantina Skourti-Stathaki
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK; Berlin Institute for Medical Systems Biology, Max Delbrueck Centre for Molecular Medicine, Berlin-Buch 13092, Germany.
| | - Elena Torlai Triglia
- Berlin Institute for Medical Systems Biology, Max Delbrueck Centre for Molecular Medicine, Berlin-Buch 13092, Germany
| | - Marie Warburton
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| | - Philipp Voigt
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| | - Ana Pombo
- Berlin Institute for Medical Systems Biology, Max Delbrueck Centre for Molecular Medicine, Berlin-Buch 13092, Germany; Berlin Institute of Health, Berlin, Germany; Institute for Biology, Humboldt-Universitat zu Berlin, Berlin, Germany.
| |
Collapse
|
45
|
Harding T, Baughn L, Kumar S, Van Ness B. The future of myeloma precision medicine: integrating the compendium of known drug resistance mechanisms with emerging tumor profiling technologies. Leukemia 2019; 33:863-883. [PMID: 30683909 DOI: 10.1038/s41375-018-0362-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/25/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
Abstract
Multiple myeloma (MM) is a hematologic malignancy that is considered mostly incurable in large part due to the inability of standard of care therapies to overcome refractory disease and inevitable drug-resistant relapse. The post-genomic era has been a productive period of discovery where modern sequencing methods have been applied to large MM patient cohorts to modernize our current perception of myeloma pathobiology and establish an appreciation for the vast heterogeneity that exists between and within MM patients. Numerous pre-clinical studies conducted in the last two decades have unveiled a compendium of mechanisms by which malignant plasma cells can escape standard therapies, many of which have potentially quantifiable biomarkers. Exhaustive pre-clinical efforts have evaluated countless putative anti-MM therapeutic agents and many of these have begun to enter clinical trial evaluation. While the palette of available anti-MM therapies is continuing to expand it is also clear that malignant plasma cells still have mechanistic avenues by which they can evade even the most promising new therapies. It is therefore becoming increasingly clear that there is an outstanding need to develop and employ precision medicine strategies in MM management that harness emerging tumor profiling technologies to identify biomarkers that predict efficacy or resistance within an individual's sub-clonally heterogeneous tumor. In this review we present an updated overview of broad classes of therapeutic resistance mechanisms and describe selected examples of putative biomarkers. We also outline several emerging tumor profiling technologies that have the potential to accurately quantify biomarkers for therapeutic sensitivity and resistance at genomic, transcriptomic and proteomic levels. Finally, we comment on the future of implementation for precision medicine strategies in MM and the clear need for a paradigm shift in clinical trial design and disease management.
Collapse
Affiliation(s)
- Taylor Harding
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, USA
| | - Linda Baughn
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
| | - Shaji Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic Rochester, Rochester, USA
| | - Brian Van Ness
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
46
|
De Smedt E, Lui H, Maes K, De Veirman K, Menu E, Vanderkerken K, De Bruyne E. The Epigenome in Multiple Myeloma: Impact on Tumor Cell Plasticity and Drug Response. Front Oncol 2018; 8:566. [PMID: 30619733 PMCID: PMC6297718 DOI: 10.3389/fonc.2018.00566] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/13/2018] [Indexed: 01/19/2023] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell malignancy that develops primarily in the bone marrow (BM), where reciprocal interactions with the BM niche foster MM cell survival, growth, and drug resistance. MM cells furthermore reshape the BM to their own needs by affecting the different BM stromal cell types resulting in angiogenesis, bone destruction, and immune suppression. Despite recent advances in treatment modalities, MM remains most often incurable due to the development of drug resistance to all standard of care agents. This underscores the unmet need for these heavily treated relapsed/refractory patients. Disruptions in epigenetic regulation are a well-known hallmark of cancer cells, contributing to both cancer onset and progression. In MM, sequencing and gene expression profiling studies have also identified numerous epigenetic defects, including locus-specific DNA hypermethylation of cancer-related and B cell specific genes, genome-wide DNA hypomethylation and genetic defects, copy number variations and/or abnormal expression patterns of various chromatin modifying enzymes. Importantly, these so-called epimutations contribute to genomic instability, disease progression, and a worse outcome. Moreover, the frequency of mutations observed in genes encoding for histone methyltransferases and DNA methylation modifiers increases following treatment, indicating a role in the emergence of drug resistance. In support of this, accumulating evidence also suggest a role for the epigenetic machinery in MM cell plasticity, driving the differentiation of the malignant cells to a less mature and drug resistant state. This review discusses the current state of knowledge on the role of epigenetics in MM, with a focus on deregulated histone methylation modifiers and the impact on MM cell plasticity and drug resistance. We also provide insight into the potential of epigenetic modulating agents to enhance clinical drug responses and avoid disease relapse.
Collapse
Affiliation(s)
- Eva De Smedt
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Lui
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ken Maes
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
47
|
Tremblay-LeMay R, Rastgoo N, Pourabdollah M, Chang H. EZH2 as a therapeutic target for multiple myeloma and other haematological malignancies. Biomark Res 2018; 6:34. [PMID: 30555699 PMCID: PMC6286605 DOI: 10.1186/s40364-018-0148-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that is of great interest in human cancer. It has been shown to have a dual nature, as it can act as a gene repressor or activator. Studies have highlighted the various roles of EZH2 in the pathophysiology of multiple myeloma (MM). It was also shown to have a role in the development of drug resistance in MM. There are several ongoing clinical trials of EZH2 inhibitors in haematological malignancies. Pre-clinical studies have provided a rationale for the therapeutic relevance of EZH2 inhibitors in MM. This paper reviews the evidence supporting the role of EZH2 in MM pathophysiology and drug resistance, with an emphasis on interactions between EZH2 and microRNAs, as well as the prognostic significance of EZH2 expression in MM. Furthermore, results from the pre-clinical studies of EZH2 inhibition in MM and currently available interim results from clinical trials of EZH2 inhibitors in haematological malignancies are presented. Preliminary data exploring anticipated mechanisms of resistance to EZH2 inhibitors are also reviewed. There is therefore strong evidence to support the relevance of targeting EZH2 for the treatment of MM.
Collapse
Affiliation(s)
- Rosemarie Tremblay-LeMay
- 1Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, 200 Elizabeth Street, 11th floor, Toronto, ON M5G 2C4 Canada
| | - Nasrin Rastgoo
- 2Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Canada
| | - Maryam Pourabdollah
- 1Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, 200 Elizabeth Street, 11th floor, Toronto, ON M5G 2C4 Canada
| | - Hong Chang
- 1Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, 200 Elizabeth Street, 11th floor, Toronto, ON M5G 2C4 Canada.,2Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Canada.,3Department of Talent Highland, First Affiliated Hospital of Xi'an Jiao Tong University, Xian, China
| |
Collapse
|
48
|
Nakagawa M, Fujita S, Katsumoto T, Yamagata K, Ogawara Y, Hattori A, Kagiyama Y, Honma D, Araki K, Inoue T, Kato A, Inaki K, Wada C, Ono Y, Yamamoto M, Miura O, Nakashima Y, Kitabayashi I. Dual inhibition of enhancer of zeste homolog 1/2 overactivates WNT signaling to deplete cancer stem cells in multiple myeloma. Cancer Sci 2018; 110:194-208. [PMID: 30343511 PMCID: PMC6317945 DOI: 10.1111/cas.13840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy caused by accumulation of abnormal clonal plasma cells. Despite the recent development of novel therapies, relapse of MM eventually occurs as a result of a remaining population of drug‐resistant myeloma stem cells. Side population (SP) cells show cancer stem cell‐like characteristics in MM; thus, targeting these cells is a promising strategy to completely cure this malignancy. Herein, we showed that SP cells expressed higher levels of enhancer of zeste homolog (EZH) 1 and EZH2, which encode the catalytic subunits of Polycomb repressive complex 2 (PRC2), than non‐SP cells, suggesting that EZH1 as well as EZH2 contributes to the stemness maintenance of the MM cells and that targeting both EZH1/2 is potentially a significant therapeutic approach for eradicating myeloma stem cells. A novel orally bioavailable EZH1/2 dual inhibitor, OR‐S1, effectively eradicated SP cells and had a greater antitumor effect than a selective EZH2 inhibitor in vitro and in vivo, including a unique patient‐derived xenograft model. Moreover, long‐term continuous dosing of OR‐S1 completely cured mice bearing orthotopic xenografts. Additionally, PRC2 directly regulated WNT signaling in MM, and overactivation of this signaling induced by dual inhibition of EZH1/2 eradicated myeloma stem cells and negatively affected tumorigenesis, suggesting that repression of WNT signaling by PRC2 plays an important role in stemness maintenance of MM cells. Our results show the role of EZH1/2 in the maintenance of myeloma stem cells and provide a preclinical rationale for therapeutic application of OR‐S1, leading to significant advances in the treatment of MM.
Collapse
Affiliation(s)
- Makoto Nakagawa
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shuhei Fujita
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Takuo Katsumoto
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazutsune Yamagata
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoko Ogawara
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Ayuna Hattori
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuki Kagiyama
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan.,Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Daisuke Honma
- Oncology Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Kazushi Araki
- Oncology Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Tatsuya Inoue
- Functional Genomics and Proteomics Research Group, Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Ayako Kato
- Functional Genomics and Proteomics Research Group, Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Koichiro Inaki
- Functional Genomics and Proteomics Research Group, Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Chisa Wada
- Functional Genomics and Proteomics Research Group, Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Yoshimasa Ono
- Functional Genomics and Proteomics Research Group, Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Masahide Yamamoto
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Osamu Miura
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Issay Kitabayashi
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
49
|
Abstract
The enhancer of zeste homolog 2 (EZH2) is the enzymatic subunit of the polycomb repressive complex 2 (PRC2) that exerts important functions during normal development as well as disease. PRC2 through EZH2 tri-methylates histone H3 lysine tail residue 27 (H3K27me3), a modification associated with repression of gene expression programs related to stem cell self-renewal, cell cycle, cell differentiation, and cellular transformation. EZH2 is deregulated and subjected to gain of function or loss of function mutations, and hence functions as an oncogene or tumor suppressor gene in a context-dependent manner. The development of highly selective inhibitors against the histone methyltransferase activity of EZH2 has also contributed to insight into the role of EZH2 and PRC2 in tumorigenesis, and their potential as therapeutic targets in cancer. EZH2 can function as an oncogene in multiple myeloma (MM) by repressing tumor suppressor genes that control apoptosis, cell cycle control and adhesion properties. Taken together these findings have raised the possibility that EZH2 inhibitors could be a useful therapeutic modality in MM alone or in combination with other targeted agents in MM. Therefore, we review the current knowledge on the regulation of EZH2 and its biological impact in MM, the anti-myeloma activity of EZH2 inhibitors and their potential as a targeted therapy in MM.
Collapse
Affiliation(s)
- Mohammad Alzrigat
- Division of Hematology and Oncology, Department of Medicine, University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA;
| | - Helena Jernberg-Wiklund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-75185 Uppsala, Sweden;
| | - Jonathan D Licht
- Division of Hematology and Oncology, Department of Medicine, University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
50
|
The biological significance of histone modifiers in multiple myeloma: clinical applications. Blood Cancer J 2018; 8:83. [PMID: 30190472 PMCID: PMC6127133 DOI: 10.1038/s41408-018-0119-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/20/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell disorder that is characterized by a variety of genetic alterations. Recent studies have highlighted not only the importance of these genetic events but also epigenetic aberrations including DNA methylation, histone modifications, and non-coding RNAs in the biology of MM. Post-translational modifications of histone, such as methylation and acetylation, contribute to chromatin dynamics, and are modulated by histone modifying enzymes, and dysregulation of these enzymes is implicated in the pathogenesis of cancers, including MM. Histone modifiers also have non-histone substrates and enzymatically independent roles, which are also involved in tumorigenesis. Here we review and provide comprehensive insight into the biologic significance of histone methyl- and acetyl-modifiers in MM, and further provide an overview of the clinical applications of histone modifier inhibitors, especially histone deacetylase inhibitors. These findings underline the emerging roles of histone modifiers in the pathogenesis of MM, and further highlight the possibility of novel epigenetic therapies in MM.
Collapse
|