1
|
Lee D, Kozurek EC, Abdullah M, Wong EJ, Li R, Liu ZS, Nguyen HD, Dickerson EB, Kim JH. PIK3CA mutation fortifies molecular determinants for immune signaling in vascular cancers. Cancer Gene Ther 2024:10.1038/s41417-024-00867-4. [PMID: 39709507 DOI: 10.1038/s41417-024-00867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Angiosarcomas are a group of vascular cancers that form malignant blood vessels. These malignancies are seemingly inflamed primarily due to their pathognomonic nature, which consists of irregular endothelium and tortuous blood channels. PIK3CA mutations are oncogenic and disrupt the PI3K pathway. In this study, we aimed to define the molecular and functional consequences of oncogenic PIK3CA mutations in angiosarcoma. We first generated two isogenic hemangiosarcoma cell lines harboring the H1047R hotspot mutations in PIK3CA gene using CRISPR/Cas9. We found PIK3CA-mutant cells established distinct molecular signatures in global gene expression and chromatin accessibility, which were associated with enrichment of immune cytokine signaling, including IL-6, IL-8, and MCP-1. These molecular processes were disrupted by the PI3K-α specific inhibitor, alpelisib. We also observed that the molecular distinctions in PIK3CA-mutant cells were linked to metabolic reprogramming in glycolytic activity and mitochondrial respiration. Our multi-omics analysis revealed that activating PIK3CA mutations regulate molecular machinery that contributes to phenotypic alterations and resistance to alpelisib. Furthermore, we identified potential therapeutic vulnerabilities of PIK3CA mutations in response to PI3K-α inhibition mediated by MAPK signaling. In summary, we demonstrate that PIK3CA mutations perpetuate PI3K activation and reinforce immune enrichment to promote drug resistance in vascular cancers.
Collapse
Affiliation(s)
- Donghee Lee
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Emma C Kozurek
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, MN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Md Abdullah
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Ethan J Wong
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, MN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Rong Li
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Zhiyan Silvia Liu
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Hai Dang Nguyen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Erin B Dickerson
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, MN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jong Hyuk Kim
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
- Artificial Intelligence Academic Initiative (AI2) Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Khor GMS, Haghani S, Tan TRE, Lee ECY, Kannan B, Lim BY, Lee JY, Guo Z, Ko TK, Chan JY. High-Throughput Transcriptomics Identifies Chemoresistance-Associated Gene Expression Signatures in Human Angiosarcoma. Int J Mol Sci 2024; 25:10863. [PMID: 39409192 PMCID: PMC11476974 DOI: 10.3390/ijms251910863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Angiosarcomas, clinically aggressive cancers of endothelial origin, are a rare subtype of soft-tissue sarcomas characterized by resistance to chemotherapy and dismal prognosis. In this study, we aim to identify the transcriptomic biomarkers of chemoresistance in angiosarcoma. We examined 72 cases of Asian angiosarcomas, including 35 cases treated with palliative chemotherapy, integrating information from NanoString gene expression profiling, whole transcriptome profiling (RNA-seq), immunohistochemistry, cell line assays, and clinicopathological data. In the chemoresistant cohort (defined as stable disease or progression), we observed the significant overexpression of genes, including SPP1 (log2foldchange 3.49, adj. p = 0.0112), CXCL13, CD48, and CLEC5A, accompanied by the significant enrichment of myeloid compartment and cytokine and chemokine signaling pathways, as well as neutrophils and macrophages. RNA-seq data revealed higher SPP1 expression (p = 0.0008) in tumor tissues over adjacent normal compartments. Immunohistochemistry showed a significant moderate positive correlation between SPP1 protein and gene expression (r = 0.7016; p < 0.00110), while higher SPP1 protein expression correlated with lower chemotherapeutic sensitivity in patient-derived angiosarcoma cell lines MOLAS and ISOHAS. In addition, SPP1 mRNA overexpression positively correlated with epithelioid histology (p = 0.007), higher tumor grade (p = 0.0023), non-head and neck location (p = 0.0576), and poorer overall survival outcomes (HR 1.84, 95% CI 1.07-3.18, p = 0.0288). There was no association with tumor mutational burden, tumor inflammation signature, the presence of human herpesvirus-7, ultraviolet exposure signature, and metastatic state at diagnosis. In conclusion, SPP1 overexpression may be a biomarker of chemoresistance and poor prognosis in angiosarcoma. Further investigation is needed to uncover the precise roles and underlying mechanisms of SPP1.
Collapse
Affiliation(s)
- Glenys Mai Shia Khor
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
- Raffles Institution, 1 Raffles Institution Ln, Singapore 575954, Singapore
| | - Sara Haghani
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Tiffany Rui En Tan
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Elizabeth Chun Yong Lee
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Bavani Kannan
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Boon Yee Lim
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Jing Yi Lee
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Zexi Guo
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Tun Kiat Ko
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Jason Yongsheng Chan
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
- Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore
| |
Collapse
|
3
|
Cheung KC, Ma J, Wang L, Chen X, Fanti S, Li M, Azevedo LR, Gosselet F, Shen H, Zheng X, Lu A, Jia W. CD31 orchestrates metabolic regulation in autophagy pathways of rheumatoid arthritis. Pharmacol Res 2024; 207:107346. [PMID: 39127263 DOI: 10.1016/j.phrs.2024.107346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/18/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Synovitis is characterized by a distinctmetabolic profile featuring the accumulation of lactate, a byproduct of cellular metabolism within inflamed joints. This study reveals that the activation of the CD31 signal by lactate instigates a metabolic shift, specifically initiating endothelial cell autophagy. This adaptive process plays a pivotal role in fulfilling the augmented energy and biomolecule demands associated with the formation of new blood vessels in the synovium of Rheumatoid Arthritis (RA). Additionally, the amino acid substitutions in the CD31 cytoplasmic tail at the Y663F and Y686F sites of the immunoreceptor tyrosine-based inhibitory motifs (ITIM) alleviate RA. Mechanistically, this results in the downregulation of glycolysis and autophagy pathways. These findings significantly advance our understanding of potential therapeutic strategies for modulating these processes in synovitis and, potentially, other autoimmune diseases.
Collapse
Affiliation(s)
- Kenneth Cp Cheung
- Phenome Research Center, Hong Kong Baptist University School of Chinese Medicine, Hong Kong, China.
| | - Jiao Ma
- Phenome Research Center, Hong Kong Baptist University School of Chinese Medicine, Hong Kong, China
| | - Lu Wang
- Phenome Research Center, Hong Kong Baptist University School of Chinese Medicine, Hong Kong, China
| | - Xingxuan Chen
- Phenome Research Center, Hong Kong Baptist University School of Chinese Medicine, Hong Kong, China
| | - Silvia Fanti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Mingzhang Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Loiola Rodrigo Azevedo
- Faculté de Sciences Jean Perrin, Blood-brain barrier laboratory, Université d'Artois, France
| | - Fabien Gosselet
- Faculté de Sciences Jean Perrin, Blood-brain barrier laboratory, Université d'Artois, France
| | - Hao Shen
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiaojiao Zheng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Aiping Lu
- Phenome Research Center, Hong Kong Baptist University School of Chinese Medicine, Hong Kong, China
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Tan G, Hou G, Qian J, Wang Y, Xu W, Luo W, Chen X, Suo A. Hyaluronan-decorated copper-doxorubicin-anlotinib nanoconjugate for targeted synergistic chemo/chemodynamic/antiangiogenic tritherapy against hepatocellular carcinoma. J Colloid Interface Sci 2024; 662:857-869. [PMID: 38382370 DOI: 10.1016/j.jcis.2024.02.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Copper-based nanomaterials show considerable potential in the chemodynamic therapy of cancers. However, their clinical application is restricted by low catalytic activity in tumor microenvironment and copper-induced tumor angiogenesis. Herein, a novel copper-doxorubicin-anlotinib (CDA) nanoconjugate was constructed by the combination of copper-hydrazide coordination, hydrazone linkage and Schiff base bond. The CDA nanoconjugate consists of a copper-3,3'-dithiobis(propionohydrazide)-doxorubicin core and an anlotinib-hyaluronan shell. Benefiting from hyaluronan camouflage and abundant disulfide bonds and Cu2+, the CDA nanoconjugate possessed excellent tumor-targeting and glutathione-depleting abilities and enhanced chemodynamic efficacy. Released doxorubicin significantly improved copper-mediated chemodynamic therapy by upregulating nicotinamide adenine dinucleotide phosphate oxidase 4 expression to increase intracellular H2O2 level. Furthermore, the nanoconjugate produced excessive •OH to induce lipid peroxidation and mitochondrial dysfunction, thus greatly elevating doxorubicin-mediated chemotherapy. Importantly, anlotinib effectively inhibited the angiogenic potential of copper ions. In a word, the CDA nanoconjugate is successfully constructed by combined coordination and pH-responsive linkages, and displays the great potential of copper-drug conjugate for targeted synergistic chemo/chemodynamic/antiangiogenic triple therapy against cancers.
Collapse
Affiliation(s)
- Gang Tan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guanghui Hou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yaping Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenjuan Luo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaobing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Aili Suo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
5
|
Kobayashi S, Cox AG, Harvey KF, Hogan BM. Vasculature is getting Hip(po): Hippo signaling in vascular development and disease. Dev Cell 2023; 58:2627-2640. [PMID: 38052179 DOI: 10.1016/j.devcel.2023.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/29/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023]
Abstract
The Hippo signaling pathway regulates developmental organ growth, regeneration, and cell fate decisions. Although the role of the Hippo pathway, and its transcriptional effectors YAP and TAZ, has been well documented in many cell types and species, only recently have the roles for this pathway come to light in vascular development and disease. Experiments in mice, zebrafish, and in vitro have uncovered roles for the Hippo pathway, YAP, and TAZ in vasculogenesis, angiogenesis, and lymphangiogenesis. In addition, the Hippo pathway has been implicated in vascular cancers and cardiovascular diseases, thus identifying it as a potential therapeutic target for the treatment of these conditions. However, despite recent advances, Hippo's role in the vasculature is still underappreciated compared with its role in epithelial tissues. In this review, we appraise our current understanding of the Hippo pathway in blood and lymphatic vessel development and highlight the current knowledge gaps and opportunities for further research.
Collapse
Affiliation(s)
- Sakurako Kobayashi
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew G Cox
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kieran F Harvey
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin M Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
6
|
Wang R, Qu J, Tang X, Zhang J, Ou A, Li Q, Chen G, Zheng C, Muhitdinov B, Huang Y. Lactoferrin-Modified Gambogic Acid Liposomes for Colorectal Cancer Treatment. Mol Pharm 2023; 20:3925-3936. [PMID: 37505210 DOI: 10.1021/acs.molpharmaceut.3c00052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Colorectal cancer (CRC) therapy is a big challenge, and seeking an effective and safe drug is a pressing clinical need. Gambogic acid is a potent antineoplastic agent without the drawback of bone marrow suppression. To improve its druggability (e.g., poor water solubility and tumor delivery), a lactoferrin-modified gambogic acid liposomal delivery system (LF-lipo) was developed to enhance the treatment efficacy of CRC. The LF-lipo can specifically bind LRP-1 expressed on colorectal cancer cells to enhance drug delivery to the tumor cells and yield enhanced therapeutic efficacy. The LF-lipo promoted tumor cell apoptosis and autophagy, reduced reactive oxygen species (ROS) levels in tumor cells, and inhibited angiogenesis; moreover, it could also repolarize tumor-associated macrophages from the M2 to M1 phenotype and induce ICD to activate T cells, exhibiting the capability of remodeling the tumor immune microenvironment. The liposomal formulation yielded an efficient and safe treatment outcome and has potential for clinical translation.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Nanchang University College of Pharmacy, Nanchang 330006, China
| | - Jingkun Qu
- School of Chinese Materia Medical, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Xueping Tang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510450, China
| | - Jiaxin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ante Ou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qianqian Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Nanchang University College of Pharmacy, Nanchang 330006, China
| | - Guihua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510450, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Bahtiyor Muhitdinov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Institute of Bioorganic Chemistry, Uzbekistan Academy of Sciences, 83 M. Ulughbek Street, Tashkent 100125, Uzbekistan
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medical, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
| |
Collapse
|
7
|
Szumera-Ciećkiewicz A, Bobak K, Spałek MJ, Sokół K, Wągrodzki M, Owczarek D, Kawecka M, Puton B, Koseła-Paterczyk H, Rutkowski P, Czarnecka AM. Predictive Biomarkers of Pathological Response to Neoadjuvant Chemoradiotherapy for Locally Advanced Soft Tissue Sarcomas. Cancers (Basel) 2023; 15:cancers15112960. [PMID: 37296922 DOI: 10.3390/cancers15112960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/14/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Marginally resectable and unresectable soft tissue sarcomas (STS) remain a therapy challenge due to the lack of highly active treatment. The aim of the study was to identify a biomarker to predict the pathological response (PR) to preplanned treatment of these STSs. METHODS In the phase II clinical trial (NCT03651375), locally advanced STS patients received preoperative treatment with a combination of doxorubicin-ifosfamide chemotherapy and 5 × 5 Gy radiotherapy. PR to the treatment was classified using the European Organization for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group recommendations. We have chosen HIF-1α, CD163, CD68, CD34, CD105, and γH2AFX proteins, rendering different biological phenomena, for biomarker study. RESULTS Nineteen patients were enrolled and in four cases a good PR was reported. The high expression of HIF-1α before surgery showed a negative correlation with PR, which means a poor response to therapy. Furthermore, the samples after surgery had decreased expression of HIF-1α, which confirmed the correlation with PR. However, high expression of γH2AFX positively correlated with PR, which provides better PR. The high number of positive-staining TAMs and the high IMVD did not correlate with PR. CONCLUSIONS HIF1α and γH2AFX could be potential biomarkers for PR prediction after neoadjuvant treatment in STS.
Collapse
Affiliation(s)
- Anna Szumera-Ciećkiewicz
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, 00791 Warsaw, Poland
| | - Klaudia Bobak
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
| | - Mateusz J Spałek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
- 1st Department of Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
| | - Kamil Sokół
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, 00791 Warsaw, Poland
| | - Michał Wągrodzki
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
| | - Daria Owczarek
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
| | - Monika Kawecka
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, 00791 Warsaw, Poland
| | - Beata Puton
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
| | - Hanna Koseła-Paterczyk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
| | - Anna M Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02781 Warsaw, Poland
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02106 Warsaw, Poland
| |
Collapse
|
8
|
Chu KT, Nekouei O, Sandy JR. Histopathological Grading, Clinical Staging and CD 31 Expression of Canine Splenic Hemangiosarcoma. Vet Sci 2023; 10:vetsci10030190. [PMID: 36977229 PMCID: PMC10054225 DOI: 10.3390/vetsci10030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Canine hemangiosarcoma is a common, highly fatal tumor of older dogs, and predictors of survivability may provide clinically useful information. The objectives of this case series were to determine if a previously published tumor histological grading scheme, the level of tumor cellular atypia, clinical staging, or the level of CD 31 expression were useful for predicting the survival time in dogs with splenic hemangiosarcoma. Canine splenic hemangiosarcomas from 16 dogs were histologically graded, clinically staged, and assessed for CD 31 expression. Medical records were reviewed, the date of death was obtained, and survival data were analyzed statistically. Histopathological grading and clinical staging of canine splenic hemangiosarcomas, and the expression of CD 31 by the tumor cells were not significantly associated with the median survival time of the dogs in this study. However, strong expression of CD 31 by canine splenic hemangiosarcoma tumor cells was observed in dogs with short survival times, which warrants further studies to evaluate the potential prognostic value of CD 31 expression for the survival of dogs with splenic hemangiosarcoma.
Collapse
|
9
|
Zheng S, Li T, Qiu L. Identification of novel potential genes in testicular germ cell tumors: A transcriptome analysis. Cancer Biomark 2023; 38:261-272. [PMID: 37599523 DOI: 10.3233/cbm-230095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
OBJECTIVE Testicular germ cell tumors (TGCTs), containing pure seminoma and non-seminoma, occupy the most majority of testicular cancers in adolescents and young men, which has increased dramatically in recent decades. Therefore, it is important to find crucial genes for improving diagnosis and prognosis in TGCTs. However, the diagnostic and prognostic markers of TGCTs are limited. METHODS In this study, our main objective is to explore novel potential genes that can be used as diagnostic and prognostic biomarkers in TGCTs. Our study detected 732 differentially expressed genes (DEGs) using three microarray expression profiling datasets from Gene Expression Omnibus (GEO). Multiple analysis was performed to identify the roles of DEGs, including pathway and functional enrichment analysis, protein-protein interaction (PPI) network analysis, module analysis, and survival analysis. RESULT In total, 322 upregulated genes and 406 downregulated genes were identified as DEGs The functional and pathway enrichment analysis shows that DEGs were highly enriched in multiple biological attributes such as T cell activation, reproduction in multicellular organism, sperm flagellum, antigen processing and presentation Then, seven potential crucial genes were identified via PPI network analysis, module analysis, and survival analysis. Furthermore, 7 potential crucial genes had shown to play a key role in regulating immune cell infiltration level in patients with TGCTs. CONCLUSION We identified seven potential crucial genes (LAPTM5, NCF2, PECAM1, CD14, COL4A2, ANPEP and RGS1), which may be molecular markers in improving the way of diagnosis and prognosis in TGCTs.
Collapse
|
10
|
Liu Q, Liu H, Griveau A, Li X, Eyer J, Arib C, Spadavecchia J. NFL-TBS.40-63 Peptide Gold Complex Nanovector: A Novel Therapeutic Approach to Increase Anticancer Activity by Breakdown of Microtubules in Pancreatic Adenocarcinoma (PDAC). ACS Pharmacol Transl Sci 2022; 5:1267-1278. [PMID: 36524008 PMCID: PMC9745895 DOI: 10.1021/acsptsci.2c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 11/28/2022]
Abstract
The role of the NFL-TBS.40-63 peptide is to destroy the microtubule network of target glioma cancer cells. Recently, we have conceived a gold-complex biotinylated NFL-TBS.40-63 (BIOT-NFL) to form a hybrid gold nanovector (BIOT-NFL-PEG-AuNPs). This methodology showed, for the first time, the ability of the BIOT-NFL-PEG-AuNPs to target the destruction of pancreatic cancer cells (PDAC) under experimental conditions, as well as detoxification and preclinical therapeutic efficacy regulated by the steric and chemical configuration of the peptide. For this aim, a mouse transplantation tumor model induced by MIA-PACA-2 cells was applied to estimate the therapeutic efficacy of BIOT-NFL-PEG-AuNPs as a nanoformulation. Our relevant results display that BIOT-NFL-PEG-AuNPs slowed the tumor growth and decreased the tumor index without effects on the body weight of mice with an excellent antiangiogenic effect, mediated by the ability of BIOT-NFL-PEG-AuNPs to alter the metabolic profiles of these MIA-PACA-2 cells. The cytokine levels were detected to evaluate the behavior of serum inflammatory factors and the power of BIOT-NFL-PEG-AuNPs to boost the immune system.
Collapse
Affiliation(s)
- Qiqian Liu
- CNRS,
UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et
d′Agents Thérapeutiques Université Paris 13, Sorbonne Paris Nord, Bobigny93000, France
| | - Hui Liu
- Department
of Hepatobiliary Surgery, Guangdong Provincial Key Laboratory of Regional
Immunity and Diseases & Carson International Cancer Center, Shenzhen
University General Hospital & Shenzhen University Clinical Medical
Academy Center, Shenzhen University, Shenzhen518083China
| | - Audrey Griveau
- Laboratoire
Micro et Nanomedecines Translationnelles, Inserm 1066, CNRS 6021,
Institut de Recherche en Ingénierie de la Sante, Bâtiment
IBS Institut de Biologie de la Sante, Université′
Angers, Centre Hospitalier Universitaire, Angers49100France
| | - Xiaowu Li
- Department
of Hepatobiliary Surgery, Guangdong Provincial Key Laboratory of Regional
Immunity and Diseases & Carson International Cancer Center, Shenzhen
University General Hospital & Shenzhen University Clinical Medical
Academy Center, Shenzhen University, Shenzhen518083China
| | - Joel Eyer
- Laboratoire
Micro et Nanomedecines Translationnelles, Inserm 1066, CNRS 6021,
Institut de Recherche en Ingénierie de la Sante, Bâtiment
IBS Institut de Biologie de la Sante, Université′
Angers, Centre Hospitalier Universitaire, Angers49100France
| | - Celia Arib
- CNRS,
UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et
d′Agents Thérapeutiques Université Paris 13, Sorbonne Paris Nord, Bobigny93000, France
| | - Jolanda Spadavecchia
- CNRS,
UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et
d′Agents Thérapeutiques Université Paris 13, Sorbonne Paris Nord, Bobigny93000, France
| |
Collapse
|
11
|
Deep Learning-Based Image Analysis for the Quantification of Tumor-Induced Angiogenesis in the 3D In Vivo Tumor Model—Establishment and Addition to Laser Speckle Contrast Imaging (LSCI). Cells 2022; 11:cells11152321. [PMID: 35954165 PMCID: PMC9367525 DOI: 10.3390/cells11152321] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: angiogenesis plays an important role in the growth and metastasis of tumors. We established the CAM assay application, an image analysis software of the IKOSA platform by KML Vision, for the quantification of blood vessels with the in ovo chorioallantoic membrane (CAM) model. We added this proprietary deep learning algorithm to the already established laser speckle contrast imaging (LSCI). (2) Methods: angiosarcoma cell line tumors were grafted onto the CAM. Angiogenesis was measured at the beginning and at the end of tumor growth with both measurement methods. The CAM assay application was trained to enable the recognition of in ovo CAM vessels. Histological stains of the tissue were performed and gluconate, an anti-angiogenic substance, was applied to the tumors. (3) Results: the angiosarcoma cells formed tumors on the CAM that appeared to stay vital and proliferated. An increase in perfusion was observed using both methods. The CAM assay application was successfully established in the in ovo CAM model and anti-angiogenic effects of gluconate were observed. (4) Conclusions: the CAM assay application appears to be a useful method for the quantification of angiogenesis in the CAM model and gluconate could be a potential treatment of angiosarcomas. Both aspects should be evaluated in further research.
Collapse
|
12
|
Alcohol-Induced Alterations in the Vascular Basement Membrane in the Substantia Nigra of the Adult Human Brain. Biomedicines 2022; 10:biomedicines10040830. [PMID: 35453580 PMCID: PMC9028457 DOI: 10.3390/biomedicines10040830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/10/2022] Open
Abstract
The blood–brain barrier (BBB) represents a highly specialized interface that acts as the first line of defense against toxins. Herein, we investigated the structural and ultrastructural changes in the basement membrane (BM), which is responsible for maintaining the integrity of the BBB, in the context of chronic alcoholism. Human post-mortem tissues from the Substantia Nigra (SN) region were obtained from 44 individuals, then grouped into controls, age-matched alcoholics, and non-age-matched alcoholics and assessed using light and electron microscopy. We found significantly less CD31+ vessels in alcoholic groups compared to controls in both gray and white matter samples. Alcoholics showed increased expression levels of collagen-IV, laminin-111, and fibronectin, which were coupled with a loss of BM integrity in comparison with controls. The BM of the gray matter was found to be more disintegrated than the white matter in alcoholics, as demonstrated by the expression of both collagen-IV and laminin-111, thereby indicating a breakdown in the BM’s structural composition. Furthermore, we observed that the expression of fibronectin was upregulated in the BM of the white matter vasculature in both alcoholic groups compared to controls. Taken together, our findings highlight some sort of aggregation or clumping of BM proteins that occurs in response to chronic alcohol consumption.
Collapse
|
13
|
Liu Z, Wang P, Xie F, Chen J, Cai M, Li Y, Yan J, Lin Q, Luo F. Virus-Inspired Hollow Mesoporous Gadolinium-Bismuth Nanotheranostics for Magnetic Resonance Imaging-Guided Synergistic Photodynamic-Radiotherapy. Adv Healthc Mater 2022; 11:e2102060. [PMID: 34894092 DOI: 10.1002/adhm.202102060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/23/2021] [Indexed: 12/25/2022]
Abstract
The anti-tumor efficacy of single photodynamic therapy (PDT) and radiotherapy (RT) has been greatly affected by inadequate tumor uptake of photo/radiation sensitizers, limited laser penetration depth, and radiation sickness caused by high doses of X-rays. Here, the authors report a biomimetic coronavirus-inspired hollow mesoporous gadolinium/bismuth nanocarrier loaded with a new NIR photosensitizer HB (termed as HB@VHMBi-Gd) for magnetic resonance imaging (MRI)-guided synergistic photodynamic-RT. HB@VHMBi-Gd displayed a faster cellular uptake rate than the conventional spherical HMBi-Gd loaded with HB (HB@SHMBi-Gd) because of rough surface-enhanced adhesion. After intravenous injection, HB@VHMBi-Gd is efficiently delivered to the tumor and rapidly invades the tumor cells by surface spikes. Interestingly, lysosomal acidity can trigger the degradation of VHMBi-Gd to produce ultrasmall nanoparticles to amplify the X-ray attenuation ability and enhance MRI contrast and radiosensitization. Under laser and X-ray irradiation, HB@VHMBi-Gd significantly enhances 1 O2 generation from HB to induce activation of caspase 9/3 and inhibition of C-myc, while enhancing hydroxyl radical generation from Bi2 O3 to induce intense DNA breakage. By synergistically inducing cell apoptosis by distinct reactive oxygen species (ROS), HB@VHMBi-Gd exhibits superior anticancer efficacy with ≈90% tumor inhibition. They envision that biomimetic virus-inspired hollow hybrid metal nanoparticles can provide a promising strategy for imaging-guided synergistic photodynamic-RT.
Collapse
Affiliation(s)
- Zongjunlin Liu
- Cancer Research Center School of Medicine Xiamen University Xiamen 361000 P. R. China
| | - Peiyuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350007 P. R. China
- Xiamen Institute of Rare Earth Materials Institute of Haixi Chinese Academy of Sciences Xiamen 361000 P. R. China
| | - Fang Xie
- Department of Radiation Oncology Xiamen Cancer Center Xiamen Key Laboratory of Radiation Oncology The First Affiliated Hospital of Xiamen University School of Medicine Xiamen University Xiamen 361000 P. R. China
| | - Jianhao Chen
- Department of Radiation Oncology Xiamen Cancer Center Xiamen Key Laboratory of Radiation Oncology The First Affiliated Hospital of Xiamen University School of Medicine Xiamen University Xiamen 361000 P. R. China
| | - Meimei Cai
- Department of Radiation Oncology Xiamen Cancer Center Xiamen Key Laboratory of Radiation Oncology The First Affiliated Hospital of Xiamen University School of Medicine Xiamen University Xiamen 361000 P. R. China
| | - Yang Li
- Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350007 P. R. China
- Xiamen Institute of Rare Earth Materials Institute of Haixi Chinese Academy of Sciences Xiamen 361000 P. R. China
| | - Jianghua Yan
- Cancer Research Center School of Medicine Xiamen University Xiamen 361000 P. R. China
| | - Qin Lin
- Department of Radiation Oncology Xiamen Cancer Center Xiamen Key Laboratory of Radiation Oncology The First Affiliated Hospital of Xiamen University School of Medicine Xiamen University Xiamen 361000 P. R. China
| | - Fanghong Luo
- Cancer Research Center School of Medicine Xiamen University Xiamen 361000 P. R. China
| |
Collapse
|
14
|
You HJ, Kim HK, Kim MS, Lee YH, Chung JH, Hwang NH, Kim DW, Choi JW, Lee JH. Establishment and characterization of two human cutaneous angiosarcoma cell lines, KU-CAS3 and KU-CAS5. Head Neck 2021; 44:7-17. [PMID: 34693591 DOI: 10.1002/hed.26886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/31/2021] [Accepted: 09/21/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Cutaneous angiosarcoma (CAS) is a rare but fatal cancer. Established CAS cell lines are necessary for the investigation of their properties and treatment options. METHODS Two cell lines, KU-CAS3 and KU-CAS5, were established from human angiosarcoma specimens obtained from the scalp. Flow cytometric assay, tube formation assay, low-density lipoprotein (LDL) uptake assay, immunofluorescence analysis, real-time PCR, tumorigenesis assay, and STR analysis were conducted. RESULTS The cells showed endothelial cell properties, based on the cobblestone appearance upon reaching confluence, CD31 positivity, tube-formation activity, active uptake of acetylated LDL, and vWF expression. The two cell lines expressed relatively high levels of adrenergic β2 receptor, and the VEGF1 and VEGF2 receptors. In the in vivo study, the growing neoplasms, confirmed as CAS, were identified as subcutaneous dark papules. KU-CAS cell lines were considered authentic based on STR profiling. CONCLUSIONS KU-CAS3 and KU-CAS5 are the first human CAS cell lines having tumorigenic potential in vivo.
Collapse
Affiliation(s)
- Hi-Jin You
- Department of Plastic and Reconstructive Surgery, Korea University Medicine, Ansan, South Korea
| | - Hyung-Kyu Kim
- Department of Plastic and Reconstructive Surgery, Korea University Medicine, Ansan, South Korea
| | - Min-Sook Kim
- Department of Plastic and Reconstructive Surgery, Korea University Medicine, Ansan, South Korea
| | - Yun-Hwan Lee
- Department of Plastic and Reconstructive Surgery, Korea University Medicine, Ansan, South Korea
| | - Jae-Ho Chung
- Department of Plastic and Reconstructive Surgery, Korea University Medicine, Ansan, South Korea
| | - Na-Hyun Hwang
- Department of Plastic and Reconstructive Surgery, Korea University Medicine, Ansan, South Korea
| | - Deok-Woo Kim
- Department of Plastic and Reconstructive Surgery, Korea University Medicine, Ansan, South Korea
| | - Jung-Woo Choi
- Department of Pathology, Korea University Medicine, Ansan, South Korea
| | - Ju-Han Lee
- Department of Pathology, Korea University Medicine, Ansan, South Korea
| |
Collapse
|
15
|
Neininger AC, Dai X, Liu Q, Burnette DT. The Hippo pathway regulates density-dependent proliferation of iPSC-derived cardiac myocytes. Sci Rep 2021; 11:17759. [PMID: 34493746 PMCID: PMC8423799 DOI: 10.1038/s41598-021-97133-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Inducing cardiac myocytes to proliferate is considered a potential therapy to target heart disease, however, modulating cardiac myocyte proliferation has proven to be a technical challenge. The Hippo pathway is a kinase signaling cascade that regulates cell proliferation during the growth of the heart. Inhibition of the Hippo pathway increases the activation of the transcription factors YAP/TAZ, which translocate to the nucleus and upregulate transcription of pro-proliferative genes. The Hippo pathway regulates the proliferation of cancer cells, pluripotent stem cells, and epithelial cells through a cell-cell contact-dependent manner, however, it is unclear if cell density-dependent cell proliferation is a consistent feature in cardiac myocytes. Here, we used cultured human iPSC-derived cardiac myocytes (hiCMs) as a model system to investigate this concept. hiCMs have a comparable transcriptome to the immature cardiac myocytes that proliferate during heart development in vivo. Our data indicate that a dense syncytium of hiCMs can regain cell cycle activity and YAP expression and activity when plated sparsely or when density is reduced through wounding. We found that combining two small molecules, XMU-MP-1 and S1P, increased YAP activity and further enhanced proliferation of low-density hiCMs. Importantly, these compounds had no effect on hiCMs within a dense syncytium. These data add to a growing body of literature that link Hippo pathway regulation with cardiac myocyte proliferation and demonstrate that regulation is restricted to cells with reduced contact inhibition.
Collapse
Affiliation(s)
- Abigail C Neininger
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Xiaozhaun Dai
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
16
|
Savorani C, Malinverno M, Seccia R, Maderna C, Giannotta M, Terreran L, Mastrapasqua E, Campaner S, Dejana E, Giampietro C. A dual role of YAP in driving TGFβ-mediated endothelial-to-mesenchymal transition. J Cell Sci 2021; 134:271139. [PMID: 34338295 PMCID: PMC8353525 DOI: 10.1242/jcs.251371] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) is the biological process through which endothelial cells transdifferentiate into mesenchymal cells. During embryo development, EndMT regulates endocardial cushion formation via TGFβ/BMP signaling. In adults, EndMT is mainly activated during pathological conditions. Hence, it is necessary to characterize molecular regulators cooperating with TGFβ signaling in driving EndMT, to identify potential novel therapeutic targets to treat these pathologies. Here, we studied YAP, a transcriptional co-regulator involved in several biological processes, including epithelial-to-mesenchymal transition (EMT). As EndMT is the endothelial-specific form of EMT, and YAP (herein referring to YAP1) and TGFβ signaling cross-talk in other contexts, we hypothesized that YAP contributes to EndMT by modulating TGFβ signaling. We demonstrate that YAP is required to trigger TGFβ-induced EndMT response, specifically contributing to SMAD3-driven EndMT early gene transcription. We provide novel evidence that YAP acts as SMAD3 transcriptional co-factor and prevents GSK3β-mediated SMAD3 phosphorylation, thus protecting SMAD3 from degradation. YAP is therefore emerging as a possible candidate target to inhibit pathological TGFβ-induced EndMT at early stages. Summary: A new crucial role for YAP as a co-activator of early pathological TGFβ-mediated endothelial-to-mesenchymal transition program and characterization of the underlying molecular mechanism.
Collapse
Affiliation(s)
- Cecilia Savorani
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy
| | - Matteo Malinverno
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy
| | - Roberta Seccia
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy
| | - Claudio Maderna
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy
| | - Monica Giannotta
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy
| | - Linda Terreran
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy
| | - Eleonora Mastrapasqua
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan 20139, Italy
| | - Elisabetta Dejana
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy.,Department of Immunology, Genetics and Pathology, Vascular Biology, Uppsala University, Uppsala 751 85, Sweden
| | - Costanza Giampietro
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy.,Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dübendorf 8600, Switzerland.,Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
17
|
Strainienė S, Jauniškis K, Savlan I, Pamedys J, Stundienė I, Liakina V, Valantinas J. Paraneoplastic Phenomena of Disseminated Intravascular Coagulopathy in Hepatic Angiosarcoma – Rare, Challenging and Fatal. Case Report and Literature Review. Acta Med Litu 2021; 28:330-343. [PMID: 35474934 PMCID: PMC8958659 DOI: 10.15388/amed.2021.28.2.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Background. Hepatic angiosarcoma is an uncommon, malignant, primary liver tumor, comprising 2% of liver cancers and accounting for < 1% of all sarcomas. Patients usually present with nonspecific symptoms, such as fatigue, weight loss, right upper quadrant pain, anemia, which leads to late diagnosis of an advanced stage tumor. The median life expectancy after the diagnosis of hepatic angiosarcoma is about 6 months, with only 3% of patients surviving more than 2 years. Liver failure and hemoperitoneum are the leading causes of death in patients with liver angiosarcoma. In rarer cases, it might cause paraneoplastic syndromes such as disseminated intravascular coagulopathy. The treatment of angiosarcomas is complicated as there are no established and effective treatment guidelines due to the tumor’s low frequency and aggressive nature. Case summary. We present the case of a 68-year old woman who was admitted to the hospital due to fatigue and severe anemia (hemoglobin 65 g/l). Laboratory results also revealed high-grade thrombocytopenia (8 × 109/l). The abdominal ultrasound and computed tomography scan showed multiple lesions throughout the liver, spleen and kidneys. After the histological examination of the liver biopsy, the patient was diagnosed with hepatic angiosarcoma. The treatment with first-line chemotherapy (doxorubicin) was initiated despite ongoing paraneoplastic syndrome – disseminative intravascular coagulopathy. However, the disease was terminal, and the patient died 2 months since diagnosed. Conclusions. Hepatic angiosarcoma is a rare and terminal tumor. Therefore, knowledge about its manifestations and effective treatment methods is lacking. Disseminative intravascular coagulopathy is a unique clinical characteristic of angiosarcoma seen in a subset of patients.
Collapse
|
18
|
The Effects of Cryogenic Storage on Human Dental Pulp Stem Cells. Int J Mol Sci 2021; 22:ijms22094432. [PMID: 33922674 PMCID: PMC8122943 DOI: 10.3390/ijms22094432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Dental pulp stem cells (DPSCs) are a type of easily accessible adult mesenchymal stem cell. Due to their ease of access, DPSCs show great promise in regenerative medicine. However, the tooth extractions from which DPSCs can be obtained are usually performed at a period of life when donors would have no therapeutic need of them. For this reason, it is imperative that successful stem cell storage techniques are employed so that these cells remain viable for future use. Any such techniques must result in high post-thaw stem cell recovery without compromising stemness, proliferation, or multipotency. Uncontrolled-rate freezing is not a technically or financially demanding technique compared to expensive and laborious controlled-rate freezing techniques. This study was aimed at observing the effect of uncontrolled-rate freezing on DPSCs stored for 6 and 12 months. Dimethyl sulfoxide at a concentration of 10% was used as a cryoprotective agent. Various features such as shape, proliferation capacity, phenotype, and multipotency were studied after DPSC thawing. The DPSCs did not compromise their stemness, viability, proliferation, or differentiating capabilities, even after one year of cryopreservation at −80 °C. After thawing, they retained their stemness markers and low-level expression of hematopoietic markers. We observed a size reduction in recovery DPSCs after one year of storage. This observation indicates that DPSCs can be successfully used in potential clinical applications, even after a year of uncontrolled cryopreservation.
Collapse
|
19
|
Hooglugt A, van der Stoel MM, Boon RA, Huveneers S. Endothelial YAP/TAZ Signaling in Angiogenesis and Tumor Vasculature. Front Oncol 2021; 10:612802. [PMID: 33614496 PMCID: PMC7890025 DOI: 10.3389/fonc.2020.612802] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Solid tumors are dependent on vascularization for their growth. The hypoxic, stiff, and pro-angiogenic tumor microenvironment induces angiogenesis, giving rise to an immature, proliferative, and permeable vasculature. The tumor vessels promote tumor metastasis and complicate delivery of anti-cancer therapies. In many types of tumors, YAP/TAZ activation is correlated with increased levels of angiogenesis. In addition, endothelial YAP/TAZ activation is important for the formation of new blood and lymphatic vessels during development. Oncogenic activation of YAP/TAZ in tumor cell growth and invasion has been studied in great detail, however the role of YAP/TAZ within the tumor endothelium remains insufficiently understood, which complicates therapeutic strategies aimed at targeting YAP/TAZ in cancer. Here, we overview the upstream signals from the tumor microenvironment that control endothelial YAP/TAZ activation and explore the role of their downstream targets in driving tumor angiogenesis. We further discuss the potential for anti-cancer treatments and vascular normalization strategies to improve tumor therapies.
Collapse
Affiliation(s)
- Aukie Hooglugt
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, Amsterdam, Netherlands
| | - Miesje M. van der Stoel
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Reinier A. Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, Amsterdam, Netherlands
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Berlin, Germany
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Xue D, Zhou X, Qiu J. Emerging role of NRF2 in ROS-mediated tumor chemoresistance. Biomed Pharmacother 2020; 131:110676. [PMID: 32858502 DOI: 10.1016/j.biopha.2020.110676] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022] Open
Abstract
Chemoresistance is a central cause for the tumor management failure. Cancer cells disrupt the redox homeostasis through reactive oxygen species (ROS) regulatory mechanisms, leading to tumor progression and chemoresistance. The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of neutralizing cellular ROS and restoring redox balance. Understanding the role of NRF2 in ROS-mediated chemoresistance can be helpful in the development of chemotherapy strategies with better efficiency. In this review, we sum up the roles of ROS in the development of chemoresistance to classical chemotherapy agents including cisplatin, 5-fluorouracil, gemcitabine, oxaliplatin, paclitaxel, and doxorubicin, and how to overcome ROS-mediated tumor chemoresistance by targeting NRF2. Finally, we propose that targeting NRF2 might be a promising strategy to resist ROS-driven chemoresistance and acquire better efficacy in cancer treatment.
Collapse
Affiliation(s)
- Danfeng Xue
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiongming Zhou
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jiaxuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
21
|
Zheng J, Yu H, Zhou A, Wu B, Liu J, Jia Y, Xiang L. It takes two to tango: coupling of Hippo pathway and redox signaling in biological process. Cell Cycle 2020; 19:2760-2775. [PMID: 33016196 DOI: 10.1080/15384101.2020.1824448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hippo pathway is a chain of kinases consists of a series of protein kinases and transcription factors. Meanwhile, oxidative stress is a condition of elevated concentrations of reactive oxygen species (ROS) that cause molecular damage to vital structures and functions. Both of them are key regulators in cell proliferation, survival, and development. These processes are strictly regulated by highly coordinated mechanisms, including c-Jun n-terminal kinase (JNK) pathway, mTOR pathway and a number of extrinsic and intrinsic factors. Recently, emerging evidence suggests that Hippo pathway is involved in the responses to cellular stresses, including mechanic stress, DNA damage, and oxidative stress, to mediate biological process, such as apoptosis, pyroptosis, and metastasis. But the exact mechanism remains to be further explored. Therefore, the purpose of this review is to summarize recent findings and discuss how Hippo pathway, oxidative stress, and the crosstalk between them regulate some biological process which determines cell fate.
Collapse
Affiliation(s)
- Jianan Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Hui Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Anqi Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Bingfeng Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Jiayi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Yinan Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| |
Collapse
|
22
|
Serum CXCL13 and PECAM-1 can be used as diagnostic and prognostic markers in elderly patients with gastric cancer. Clin Transl Oncol 2020; 23:130-138. [PMID: 32500259 DOI: 10.1007/s12094-020-02403-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the application value of serum CXC Chemokine-13 (CXCL-13) and platelet endothelial cell adhesion molecule-1 (PECAM-1) in elderly patients with gastric cancer (GC). METHODS Ninety-eight elderly GC patients admitted to the Affiliated Hexian Memorial Hospital of Southern Medical University were selected as a research group, and 60 healthy subjects of the same age and in relatively good health who underwent physical examination at the same period were selected as a control group. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of CXCL13 and PECAM-1 in serum. The clinical diagnosis and prognostic value of serum CXCL13 and PECAM-1 in elderly GC patients were analyzed. RESULTS The levels of CXCL13 and PECAM-1 in serum of the research group were significantly higher than those of the control group (P < 0.001). The AUC value of combined diagnosis of elderly GC patients by serum CXCL13 and PECAM-1 was 0.950, and that of combined evaluation of prognosis of patients was 0.849. Serum CXCL13 and PECAM-1 were significantly related to TNM staging, differentiation degree and tumor diameter in elderly GC patients (P < 0.05). High levels of CXCL13 and PECAM-1 were significantly associated with lower 5-year OS (P < 0.05). CONCLUSION Elderly GC patients with higher TNM staging, longer tumor diameters, high levels of CXCL13 and PECAM-1 had an increased risk of poor prognosis. Serum CXCL13 and PECAM-1 can be used as effective indicators for diagnosis and prognosis of elderly patients with GC, and can predict the 5-year OS in patients.
Collapse
|
23
|
Wang L, Yang L, Han S, Zhu J, Li Y, Wang Z, Fan YH, Lin E, Zhang R, Sahoo N, Li Y, Zhang X, Wang X, Li T, Zhu XR, Zhu H, Heymach JV, Myers JN, Frank SJ. Patterns of protein expression in human head and neck cancer cell lines differ after proton vs photon radiotherapy. Head Neck 2020; 42:289-301. [PMID: 31710172 DOI: 10.1002/hed.26005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/26/2019] [Accepted: 10/18/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Proton radiotherapy (PRT) may be a less toxic alternative to photon radiotherapy (XRT) for patients with head and neck squamous cell carcinoma (HNSCC). However, the molecular responses of HNSCC cells to PRT vs XRT are unclear. METHODS Proteomics analyses of protein expression profiles by reverse-phase protein arrays were done for two human papillomavirus [HPV]-negative and two HPV+ cell lines. Expression patterns of 175 proteins involved in several signaling pathways were tested. RESULTS Compared with PRT, XRT tended to induce lower expression of DNA damage repair-and cell cycle arrest-related proteins and higher expression of cell survival- and proliferation-related proteins. CONCLUSIONS Under these experimental conditions, PRT and XRT induced different protein expression and activation profiles. Further preclinical verification is needed, as are studies of tumor pathway mutations as biomarkers for choice of treatment or as radiosensitization targets to improve the response of HNSCC to PRT or XRT.
Collapse
Affiliation(s)
- Li Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Liuqing Yang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shichao Han
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jinming Zhu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuting Li
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zeming Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - You-Hong Fan
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eric Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ruiping Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Narayan Sahoo
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yupeng Li
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaodong Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaochun Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tengfei Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaorong R Zhu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hongtu Zhu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey N Myers
- Department of Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
24
|
Development of A New Mouse Model for Intrahepatic Cholangiocellular Carcinoma: Accelerating Functions of Pecam-1. Cancers (Basel) 2019; 11:cancers11081045. [PMID: 31344919 PMCID: PMC6721446 DOI: 10.3390/cancers11081045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/09/2023] Open
Abstract
Due to the lack of suitable in-vivo models, the etiology of intrahepatic cholangiocellular carcinoma (ICC) is poorly understood. We previously showed the involvement of platelet endothelial cell adhesion molecule-1 (Pecam-1/CD31) in acute liver damage. Here, we developed a model of ICC using thioacetamide (TAA) in drinking water of wild-type (WT)-mice and Pecam-1-knock-out (KO)-mice. Gross inspection and microscopy revealed liver-cirrhosis and ICC in both groups after 22 weeks of TAA. The severity of cirrhosis and ICC (Ck-19-positive) was reduced in Pecam-1 KO mice (stage-4 cirrhosis in WT vs. stage-3 in KO mice). Tumor networks (accompanied by neutrophils) were predominantly located in portal areas, with signs of epithelial-to-mesenchymal transition (EMT). In serum, TAA induced an increase in hepatic damage markers, with lower levels in Pecam-1 null mice. With qPCR of liver, elevated expression of Pecam-1 mRNA was noted in WT mice, in addition to Icam-1, EpCam, cytokines, cMyc, and Mmp2. Thereby, levels of EpCAM, cytokines, cMyc, and Mmp2 were significantly lower in Pecam-1 null mice. Lipocalin-2 and Ccl5 were elevated significantly in both WT and Pecam-1 null mice after TAA administration. Also, EMT marker Wnt5a (not Twist-1) was increased in both groups after TAA. We present a highly reproducible mouse model for ICC and show protective effects of Pecam-1 deficiency.
Collapse
|
25
|
Zhou Y, Wang Y, Zhou W, Chen T, Wu Q, Chutturghoon VK, Lin B, Geng L, Yang Z, Zhou L, Zheng S. YAP promotes multi-drug resistance and inhibits autophagy-related cell death in hepatocellular carcinoma via the RAC1-ROS-mTOR pathway. Cancer Cell Int 2019; 19:179. [PMID: 31337986 PMCID: PMC6626386 DOI: 10.1186/s12935-019-0898-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/02/2019] [Indexed: 12/30/2022] Open
Abstract
Background Multi-drug resistance is the major cause of chemotherapy failure in hepatocellular carcinoma (HCC). YAP, a critical effector of the Hippo pathway, has been shown to contribute to the progression, metastasis and invasion of cancers. However, the potential role of YAP in mediating drug resistance remains obscure. Methods RT-qPCR and western blot were used to assess YAP expression in HCC cell lines. CCK-8 assays, flow cytometry, a xenograft tumour model, immunochemistry and GFP-mRFP-LC3 fusion proteins were utilized to evaluate the effect of YAP on multi-drug resistance, intracellular ROS production and the autophagy of HCC cells in vitro and in vivo. Autophagy inhibitor and rescue experiments were carried out to elucidate the mechanism by which YAP promotes chemoresistance in HCC cells. Results We found that BEL/FU, a typical HCC cell line with chemoresistance, exhibited overexpression of YAP. Moreover, the inhibition of YAP by shRNA or verteporfin conferred the sensitivity of BEL/FU cells to chemotherapeutic agents through autophagy-related cell death in vitro and in vivo. Mechanistically, YAP silencing significantly enhanced autophagic flux by increasing RAC1-driven ROS, which contributed to the inactivation of mTOR in HCC cells. In addition, the antagonist of autophagy reversed the enhanced effect of YAP silencing on cell death under treatment with chemotherapeutic agents. Conclusion Our findings suggested that YAP upregulation endowed HCC cells with multi-drug resistance via the RAC1-ROS-mTOR pathway, resulting in the repression of autophagy-related cell death. The blockade of YAP may serve as a promising novel therapeutic strategy for overcoming chemoresistance in HCC. Electronic supplementary material The online version of this article (10.1186/s12935-019-0898-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Zhou
- 1Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,2Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China.,3Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province China.,4Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,5Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Yubo Wang
- 1Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,2Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China.,3Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province China.,4Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,5Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Wuhua Zhou
- 1Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,2Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China.,3Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province China.,4Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,5Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,6Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Tianchi Chen
- 1Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,2Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China.,3Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province China.,4Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,5Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Qinchuan Wu
- 1Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,2Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China.,3Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province China.,4Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,5Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Vikram Kumar Chutturghoon
- 1Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,2Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China.,3Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province China.,4Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,5Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Bingyi Lin
- 1Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Geng
- 1Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhe Yang
- 1Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Zhou
- 1Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,2Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China.,3Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province China.,4Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,5Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Shusen Zheng
- 1Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,2Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China.,3Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province China.,4Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,5Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Weidema M, Versleijen-Jonkers Y, Flucke U, Desar I, van der Graaf W. Targeting angiosarcomas of the soft tissues: A challenging effort in a heterogeneous and rare disease. Crit Rev Oncol Hematol 2019; 138:120-131. [DOI: 10.1016/j.critrevonc.2019.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/08/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
|
27
|
Azad T, Ghahremani M, Yang X. The Role of YAP and TAZ in Angiogenesis and Vascular Mimicry. Cells 2019; 8:cells8050407. [PMID: 31052445 PMCID: PMC6562567 DOI: 10.3390/cells8050407] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is a physiological process that begins in utero and continues throughout life in both good health and disease. Understanding the underlying mechanism in angiogenesis could uncover a new therapeutic approach in pathological angiogenesis. Since its discovery, the Hippo signaling pathway has emerged as a key player in controlling organ size and tissue homeostasis. Recently, new studies have discovered that Hippo and two of its main effectors, Yes-associated protein (YAP) and its paralog transcription activator with PDZ binding motif (TAZ), play critical roles during angiogenesis. In this review, we summarize the mechanisms by which YAP/TAZ regulate endothelial cell shape, behavior, and function in angiogenesis. We further discuss how YAP/TAZ function as part of developmental and pathological angiogenesis. Finally, we review the role of YAP/TAZ in tumor vascular mimicry and propose directions for future work.
Collapse
Affiliation(s)
- Taha Azad
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Mina Ghahremani
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
28
|
Molecular profiling of nonalcoholic fatty liver disease-associated hepatocellular carcinoma using SB transposon mutagenesis. Proc Natl Acad Sci U S A 2018; 115:E10417-E10426. [PMID: 30327349 PMCID: PMC6217425 DOI: 10.1073/pnas.1808968115] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the fastest rising cause of hepatocellular carcinoma (HCC) in Western countries; however, the molecular mechanisms driving NAFLD-HCC remain elusive. Using Sleeping Beauty transposon mutagenesis in two mouse models of NAFLD-HCC, we identified hundreds of NAFLD-HCC candidate cancer genes that were enriched in pathways often associated with NAFLD and HCC. We also showed that Sav1, which functions in the Hippo signaling pathway and was the most frequently mutated gene identified by SB in both screens, prevents progression of steatohepatitis and subsequent HCC development in coordination with PI3K signaling via suppression of Yap, a downstream effector of the Hippo pathway. Our forward genetic screens have thus identified pathways and genes driving the development of NAFLD-HCC. Nonalcoholic fatty liver disease (NAFLD) is the fastest rising cause of hepatocellular carcinoma (HCC) in Western countries; however, the molecular mechanisms that cause NAFLD-HCC remain elusive. To identify molecular drivers of NAFLD-HCC, we performed Sleeping Beauty (SB) transposon mutagenesis screens in liver-specific Pten knockout and in high-fat diet-fed mice, which are murine models of NAFLD-HCC. SB mutagenesis accelerated liver tumor formation in both models and identified 588 and 376 candidate cancer genes (CCGs), respectively; 257 CCGs were common to both screens and were enriched in signaling pathways known to be important for human HCC. Comparison of these CCGs with those identified in a previous SB screen of hepatitis B virus-induced HCC identified a core set of 141 CCGs that were mutated in all screens. Forty-one CCGs appeared specific for NAFLD-HCC, including Sav1, a component of the Hippo signaling pathway and the most frequently mutated gene identified in both NAFLD-HCC screens. Liver-specific deletion of Sav1 was found to promote hepatic lipid accumulation, apoptosis, and fibrogenesis, leading to the acceleration of hepatocarcinogenesis in liver-specific Pten mutant mice. Sav1/Pten double-mutant livers also showed a striking up-regulation of markers of liver progenitor cells (LPCs), along with synergistic activation of Yap, which is a major downstream effector of Hippo signaling. Lastly, Yap activation, in combination with Pten inactivation, was found to accelerate cell growth and sphere formation of LPCs in vitro and induce their malignant transformation in allografts. Our forward genetic screens in mice have thus identified pathways and genes driving the development of NAFLD-HCC.
Collapse
|
29
|
Scheil-Bertram S, Wardelmann E. [Minutes of the meeting of the working group on bone, joint, and soft tissue pathology : DGP Congress on 24 May 2018, Berlin]. DER PATHOLOGE 2018; 39:333-337. [PMID: 30229284 DOI: 10.1007/s00292-018-0499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- S Scheil-Bertram
- Institut für Pathologie und Zytologie, HELIOS HSK Wiesbaden, Ludwig-Erhard-Str. 100, 65199, Wiesbaden, Deutschland.
| | - E Wardelmann
- Gerhard-Domagk Institut für Pathologie, Universitätsklinikum Münster, Münster, Deutschland
| |
Collapse
|
30
|
Alimbetov D, Askarova S, Umbayev B, Davis T, Kipling D. Pharmacological Targeting of Cell Cycle, Apoptotic and Cell Adhesion Signaling Pathways Implicated in Chemoresistance of Cancer Cells. Int J Mol Sci 2018; 19:ijms19061690. [PMID: 29882812 PMCID: PMC6032165 DOI: 10.3390/ijms19061690] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
Chemotherapeutic drugs target a physiological differentiating feature of cancer cells as they tend to actively proliferate more than normal cells. They have well-known side-effects resulting from the death of highly proliferative normal cells in the gut and immune system. Cancer treatment has changed dramatically over the years owing to rapid advances in oncology research. Developments in cancer therapies, namely surgery, radiotherapy, cytotoxic chemotherapy and selective treatment methods due to better understanding of tumor characteristics, have significantly increased cancer survival. However, many chemotherapeutic regimes still fail, with 90% of the drug failures in metastatic cancer treatment due to chemoresistance, as cancer cells eventually develop resistance to chemotherapeutic drugs. Chemoresistance is caused through genetic mutations in various proteins involved in cellular mechanisms such as cell cycle, apoptosis and cell adhesion, and targeting those mechanisms could improve outcomes of cancer therapy. Recent developments in cancer treatment are focused on combination therapy, whereby cells are sensitized to chemotherapeutic agents using inhibitors of target pathways inducing chemoresistance thus, hopefully, overcoming the problems of drug resistance. In this review, we discuss the role of cell cycle, apoptosis and cell adhesion in cancer chemoresistance mechanisms, possible drugs to target these pathways and, thus, novel therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Dauren Alimbetov
- Laboratory of bioengineering and regenerative medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave, Z05H0P9 Astana, Kazakhstan.
| | - Sholpan Askarova
- Laboratory of bioengineering and regenerative medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave, Z05H0P9 Astana, Kazakhstan.
| | - Bauyrzhan Umbayev
- Laboratory of bioengineering and regenerative medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave, Z05H0P9 Astana, Kazakhstan.
| | - Terence Davis
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - David Kipling
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|