1
|
Huang C, Shen Y, Galgano SJ, Goenka AH, Hecht EM, Kambadakone A, Wang ZJ, Chu LC. Advancements in early detection of pancreatic cancer: the role of artificial intelligence and novel imaging techniques. Abdom Radiol (NY) 2024:10.1007/s00261-024-04644-7. [PMID: 39467913 DOI: 10.1007/s00261-024-04644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Early detection is crucial for improving survival rates of pancreatic ductal adenocarcinoma (PDA), yet current diagnostic methods can often fail at this stage. Recently, there has been significant interest in improving risk stratification and developing imaging biomarkers, through novel imaging techniques, and most notably, artificial intelligence (AI) technology. This review provides an overview of these advancements, with a focus on deep learning methods for early detection of PDA.
Collapse
Affiliation(s)
| | - Yiqiu Shen
- New York University Langone Health, New York, USA
| | | | | | | | | | - Zhen Jane Wang
- University of California, San Francisco, San Francisco, USA
| | - Linda C Chu
- Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
2
|
van den Broek MRP, Versluis M, van den Berg A, Segers T. Functionalized monodisperse microbubble production: microfluidic method for fast, controlled, and automated removal of excess coating material. MICROSYSTEMS & NANOENGINEERING 2024; 10:120. [PMID: 39214967 PMCID: PMC11364838 DOI: 10.1038/s41378-024-00760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/24/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Functionalized monodisperse microbubbles have the potential to boost the sensitivity and efficacy of molecular ultrasound imaging and targeted drug delivery using bubbles and ultrasound. Monodisperse bubbles can be produced in a microfluidic flow focusing device. However, their functionalization and sequential use require removal of the excess lipids from the bubble suspension to minimize the use of expensive ligands and to avoid competitive binding and blocking of the receptor molecules. To date, excess lipid removal is performed by centrifugation, which is labor intensive and challenging to automate. More importantly, as we show, the increased hydrostatic pressure during centrifugation can reduce bubble monodispersity. Here, we introduce a novel automated microfluidic 'washing' method. First, bubbles are injected in a microfluidic chamber 1 mm in height where they are left to float against the top wall. Second, lipid-free medium is pumped through the chamber to remove excess lipids while the bubbles remain located at the top wall. Third, the washed bubbles are resuspended and removed from the device into a collection vial. We demonstrate that the present method can (i) reduce the excess lipid concentration by 4 orders of magnitude, (ii) be fully automated, and (iii) be performed in minutes while the size distribution, functionality, and acoustic response of the bubbles remain unaffected. Thus, the presented method is a gateway to the fully automated production of functionalized monodisperse microbubbles.
Collapse
Affiliation(s)
- M R P van den Broek
- BIOS/Lab on a Chip Group, Max Planck Center Twente for Complex Fluid Dynamics, University of Twente, Enschede, The Netherlands
| | - M Versluis
- Physics of Fluids Group, University of Twente, Enschede, The Netherlands
| | - A van den Berg
- BIOS/Lab on a Chip Group, Max Planck Center Twente for Complex Fluid Dynamics, University of Twente, Enschede, The Netherlands
| | - T Segers
- BIOS/Lab on a Chip Group, Max Planck Center Twente for Complex Fluid Dynamics, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
3
|
Gezehagn Kussia G, Tessema TS. The Potential of Single-Chain Variable Fragment Antibody: Role in Future Therapeutic and Diagnostic Biologics. J Immunol Res 2024; 2024:1804038. [PMID: 39156005 PMCID: PMC11329312 DOI: 10.1155/2024/1804038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/09/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
The advancement of genetic engineering has revolutionized the field of immunology by allowing the utilization of intrinsic antibody structures. One of the biologics that are being produced by recombinant antibody technology is single-chain fragments variable (scFv). Genes of variable regions, the heavy and light chains that are genetically linked into a single transcript by a short flexible linker peptide, are used to generate this fragment from cellular and synthetic libraries. The specificity and affinity of these molecules are comparable to those of parental antibodies. Fusion with marker proteins and other potent molecules improves their stability, circulation half-life, activity, and efficient purification. Besides, this review comprises construction protocols, therapeutics, and diagnostic applications of scFv, as well as related challenges. Nonetheless, there are still issues with efficacy, stability, safety, intracellular administration, and production costs that need to be addressed.
Collapse
Affiliation(s)
- Getachew Gezehagn Kussia
- Genomics and BioinformaticsBio and Emerging Technology Institute, Addis Ababa 5954, Ethiopia
- Institute of BiotechnologyAddis Ababa University, Addis Ababa 1176, Ethiopia
| | | |
Collapse
|
4
|
Bam R, Natarajan A, Tabesh F, Paulmurugan R, Dahl JJ. Synthesis and Evaluation of Clinically Translatable Targeted Microbubbles Using a Microfluidic Device for In Vivo Ultrasound Molecular Imaging. Int J Mol Sci 2023; 24:9048. [PMID: 37240396 PMCID: PMC10219500 DOI: 10.3390/ijms24109048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The main aim of this study is to synthesize contrast microbubbles (MB) functionalized with engineered protein ligands using a microfluidic device to target breast cancer specific vascular B7-H3 receptor in vivo for diagnostic ultrasound imaging. We used a high-affinity affibody (ABY) selected against human/mouse B7-H3 receptor for engineering targeted MBs (TMBs). We introduced a C-terminal cysteine residue to this ABY ligand for facilitating site-specific conjugation to DSPE-PEG-2K-maleimide (M. Wt = 2.9416 kDa) phospholipid for MB formulation. We optimized the reaction conditions of bioconjugations and applied it for microfluidic based synthesis of TMBs using DSPE-PEG-ABY and DPPC liposomes (5:95 mole %). The binding affinity of TMBs to B7-H3 (MBB7-H3) was tested in vitro in MS1 endothelial cells expressing human B7-H3 (MS1B7-H3) by flow chamber assay, and by ex vivo in the mammary tumors of a transgenic mouse model (FVB/N-Tg (MMTV-PyMT)634Mul/J), expressing murine B7-H3 in the vascular endothelial cells by immunostaining analyses. We successfully optimized the conditions needed for generating TMBs using a microfluidic system. The synthesized MBs showed higher affinity to MS1 cells engineered to express higher level of hB7-H3, and in the endothelial cells of mouse tumor tissue upon injecting TMBs in a live animal. The average number (mean ± SD) of MBB7-H3 binding to MS1B7-H3 cells was estimated to be 354.4 ± 52.3 per field of view (FOV) compared to wild-type control cells (MS1WT; 36.2 ± 7.5/FOV). The non-targeted MBs did not show any selective binding affinity to both the cells (37.7 ± 7.8/FOV for MS1B7-H3 and 28.3 ± 6.7/FOV for MS1WT cells). The fluorescently labeled MBB7-H3 upon systemic injection in vivo co-localized to tumor vessels, expressing B7-H3 receptor, as validated by ex vivo immunofluorescence analyses. We have successfully synthesized a novel MBB7-H3 via microfluidic device, which allows us to produce on demand TMBs for clinical applications. This clinically translatable MBB7-H3 showed significant binding affinity to vascular endothelial cells expressing B7-H3 both in vitro and in vivo, which shows its potential for clinical translation as a molecular ultrasound contrast agent for human applications.
Collapse
Affiliation(s)
| | | | | | - Ramasamy Paulmurugan
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Jeremy J. Dahl
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
5
|
Goncin U, Curiel L, Geyer CR, Machtaler S. Aptamer-Functionalized Microbubbles Targeted to P-selectin for Ultrasound Molecular Imaging of Murine Bowel Inflammation. Mol Imaging Biol 2023; 25:283-293. [PMID: 35851673 DOI: 10.1007/s11307-022-01755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/01/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Our objectives were to develop a targeted microbubble with an anti-P-selectin aptamer and assess its ability to detect bowel inflammation in two murine models of acute colitis. PROCEDURES Lipid-shelled microbubbles were prepared using mechanical agitation. A rapid copper-free click chemistry approach (azide-DBCO) was used to conjugate the fluorescent anti-P-selectin aptamer (Fluor-P-Ap) to the microbubble surface. Bowel inflammation was chemically induced using 2,4,6-trinitrobenzenesulfonic acid (TNBS) in both Balb/C and interleukin-10-deficient (IL-10 KO) mice. Mouse bowels were imaged using non-linear contrast mode following an i.v. bolus of 1 × 108 microbubbles. Each mouse received a bolus of aptamer-functionalized and non-targeted microbubbles. Mouse phenotypes and the presence of P-selectin were validated using histology and immunostaining, respectively. RESULTS Microbubble labelling of Fluor-P-Ap was complete after 20 min at 37 ̊C. We estimate approximately 300,000 Fluor-P-Ap per microbubble and confirmed fluorescence using confocal microscopy. There was a significant increase in ultrasound molecular imaging signal from both Balb/C (p = 0.003) and IL-10 KO (p = 0.02) mice with inflamed bowels using aptamer-functionalized microbubbles in comparison to non-targeted microbubbles. There was no signal in healthy mice (p = 0.4051) using either microbubble. CONCLUSIONS We constructed an aptamer-functionalized microbubble specific for P-selectin using a clinically relevant azide-DBCO click reaction, which could detect bowel inflammation in vivo. Aptamers have potential as a next generation targeting agent for developing cost-efficient and clinically translatable targeted microbubbles.
Collapse
Affiliation(s)
- Una Goncin
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Laura Curiel
- Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N 4V8, Canada
| | - C Ronald Geyer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Steven Machtaler
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
6
|
Microbubbles for human diagnosis and therapy. Biomaterials 2023; 294:122025. [PMID: 36716588 DOI: 10.1016/j.biomaterials.2023.122025] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Microbubbles (MBs) were observed for the first time in vivo as a curious consequence of quick saline injection during ultrasound (US) imaging of the aortic root, more than 50 years ago. From this serendipitous event, MBs are now widely used as contrast enhancers for US imaging. Their intrinsic properties described in this review, allow a multitude of designs, from shell to gas composition but also from grafting targeting agents to drug payload encapsulation. Indeed, the versatile MBs are deeply studied for their dual potential in imaging and therapy. As presented in this paper, new generations of MBs now opens perspectives for targeted molecular imaging along with the development of new US imaging systems. This review also presents an overview of the different therapeutic strategies with US and MBs for cancer, cardiovascular diseases, and inflammation. The overall aim is to overlap those fields in order to find similarities in the MBs application for treatment enhancement associated with US. To conclude, this review explores the new scales of MBs technologies with nanobubbles development, and along concurrent advances in the US imaging field. This review ends by discussing perspectives for the booming future uses of MBs.
Collapse
|
7
|
Li CH, Chang YC, Hsiao M, Chan MH. Ultrasound and Nanomedicine for Cancer-Targeted Drug Delivery: Screening, Cellular Mechanisms and Therapeutic Opportunities. Pharmaceutics 2022; 14:1282. [PMID: 35745854 PMCID: PMC9229768 DOI: 10.3390/pharmaceutics14061282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer is a disease characterized by abnormal cell growth. According to a report published by the World Health Organization (WHO), cancer is the second leading cause of death globally, responsible for an estimated 9.6 million deaths in 2018. It should be noted that ultrasound is already widely used as a diagnostic procedure for detecting tumorigenesis. In addition, ultrasound energy can also be utilized effectively for treating cancer. By filling the interior of lipospheres with gas molecules, these particles can serve both as contrast agents for ultrasonic imaging and as delivery systems for drugs such as microbubbles and nanobubbles. Therefore, this review aims to describe the nanoparticle-assisted drug delivery system and how it can enhance image analysis and biomedicine. The formation characteristics of nanoparticles indicate that they will accumulate at the tumor site upon ultrasonic imaging, in accordance with their modification characteristics. As a result of changing the accumulation of materials, it is possible to examine the results by comparing images of other tumor cell lines. It is also possible to investigate ultrasound images for evidence of cellular effects. In combination with a precision ultrasound imaging system, drug-carrying lipospheres can precisely track tumor tissue and deliver drugs to tumor cells to enhance the ability of this nanocomposite to treat cancer.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| |
Collapse
|
8
|
Goncin U, Bernhard W, Curiel L, Geyer CR, Machtaler S. Rapid Copper-free Click Conjugation to Lipid-Shelled Microbubbles for Ultrasound Molecular Imaging of Murine Bowel Inflammation. Bioconjug Chem 2022; 33:848-857. [DOI: 10.1021/acs.bioconjchem.2c00104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Una Goncin
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Wendy Bernhard
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Laura Curiel
- Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 4V8, Canada
| | - C. Ronald Geyer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Steven Machtaler
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
9
|
Langeveld SAG, Meijlink B, Beekers I, Olthof M, van der Steen AFW, de Jong N, Kooiman K. Theranostic Microbubbles with Homogeneous Ligand Distribution for Higher Binding Efficacy. Pharmaceutics 2022; 14:pharmaceutics14020311. [PMID: 35214044 PMCID: PMC8878664 DOI: 10.3390/pharmaceutics14020311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/05/2023] Open
Abstract
Phospholipid-coated targeted microbubbles are used for ultrasound molecular imaging and locally enhanced drug delivery, with the binding efficacy being an important trait. The use of organic solvent in microbubble production makes the difference between a heterogeneous or homogeneous ligand distribution. This study demonstrates the effect of ligand distribution on the binding efficacy of phospholipid-coated ανβ3-targeted microbubbles in vitro using a monolayer of human umbilical-vein endothelial cells and in vivo using chicken embryos. Microbubbles with a homogeneous ligand distribution had a higher binding efficacy than those with a heterogeneous ligand distribution both in vitro and in vivo. In vitro, 1.55× more microbubbles with a homogeneous ligand distribution bound under static conditions, while this was 1.49× more under flow with 1.25 dyn/cm2, 1.56× more under flow with 2.22 dyn/cm2, and 1.25× more in vivo. The in vitro dissociation rate of bound microbubbles with homogeneous ligand distribution was lower at low shear stresses (1–5 dyn/cm2). The internalized depth of bound microbubbles was influenced by microbubble size, not by ligand distribution. In conclusion, for optimal binding the use of organic solvent in targeted microbubble production is preferable over directly dispersing phospholipids in aqueous medium.
Collapse
Affiliation(s)
- Simone A. G. Langeveld
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
- Correspondence:
| | - Bram Meijlink
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Inés Beekers
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
- Department of Health, ORTEC B.V., 2719 EA Zoetermeer, The Netherlands
| | - Mark Olthof
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Antonius F. W. van der Steen
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Nico de Jong
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
- Imaging Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Klazina Kooiman
- Thorax Center, Biomedical Engineering, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (B.M.); (I.B.); (M.O.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| |
Collapse
|
10
|
Jugniot N, Bam R, Paulmurugan R. Expression and purification of a native Thy1-single-chain variable fragment for use in molecular imaging. Sci Rep 2021; 11:23026. [PMID: 34845270 PMCID: PMC8630227 DOI: 10.1038/s41598-021-02445-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
Molecular imaging using singlechain variable fragments (scFv) of antibodies targeting cancer specific antigens have been considered a non-immunogenic approach for early diagnosis in the clinic. Usually, production of proteins is performed within Escherichia coli. Recombinant proteins are either expressed in E. coli cytoplasm as insoluble inclusion bodies, that often need cumbersome denaturation and refolding processes, or secreted toward the periplasm as soluble proteins that highly reduce the overall yield. However, production of active scFvs in their native form, without any heterologous fusion, is required for clinical applications. In this study, we expressed an anti-thymocyte differentiation antigen-scFv (Thy1-scFv) as a fusion protein with a N-terminal sequence including 3 × hexa-histidines, as purification tags, together with a Trx-tag and a S-tag for enhanced-solubility. Our strategy allowed to recover ~ 35% of Thy1-scFv in the soluble cytoplasmic fraction. An enterokinase cleavage site in between Thy1-scFv and the upstream tags was used to regenerate the protein with 97.7 ± 2.3% purity without any tags. Thy1-scFv showed functionality towards its target on flow cytometry assays. Finally, in vivo molecular imaging using Thy1-scFv conjugated to an ultrasound contrast agent (MBThy1-scFv) demonstrated signal enhancement on a transgenic pancreatic ductal adenocarcinoma (PDAC) mouse model (3.1 ± 1.2 a.u.) compared to non-targeted control (0.4 ± 0.4 a.u.) suggesting potential for PDAC early diagnosis. Overall, our strategy facilitates the expression and purification of Thy1-scFv while introducing its ability for diagnostic molecular imaging of pancreatic cancer. The presented methodology could be expanded to other important eukaryotic proteins for various applications, including but not limited to molecular imaging.
Collapse
Affiliation(s)
- Natacha Jugniot
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Canary Center for Cancer Early Detection at Stanford, Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Rakesh Bam
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Canary Center for Cancer Early Detection at Stanford, Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Canary Center for Cancer Early Detection at Stanford, Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA.
| |
Collapse
|
11
|
Song HW, Lee HS, Kim SJ, Kim HY, Choi YH, Kang B, Kim CS, Park JO, Choi E. Sonazoid-Conjugated Natural Killer Cells for Tumor Therapy and Real-Time Visualization by Ultrasound Imaging. Pharmaceutics 2021; 13:pharmaceutics13101689. [PMID: 34683982 PMCID: PMC8537855 DOI: 10.3390/pharmaceutics13101689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Various cell therapy strategies, including chimeric antigen receptor-expressing T or natural killer (NK) cells and cell-mediated drug delivery, have been developed for tumor eradication. However, the efficiency of these strategies against solid tumors remains unclear. We hypothesized that real-time control and visualization of therapeutic cells, such as NK cells, would improve their therapeutic efficacy against solid tumors. In this study, we engineered Sonazoid microbubble-conjugated NK (NK_Sona) cells and demonstrated that they were detectable by ultrasound imaging in real-time and maintained their functions. The Sonazoid microbubbles on the cell membrane did not affect the cytotoxicity and viability of the NK cells in vitro. Additionally, the NK_Sona cells could be visualized by ultrasound imaging and inhibited tumor growth in vivo. Taken together, our findings demonstrate the feasibility of this new approach in the use of therapeutic cells, such as NK cells, against solid tumors.
Collapse
Affiliation(s)
- Hyeong-Woo Song
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
| | - Han-Sol Lee
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
| | - Seok-Jae Kim
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
| | - Ho Yong Kim
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
| | - You Hee Choi
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
| | - Byungjeon Kang
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- College of AI Convergence, Chonnam National University, Gwangju 61186, Korea
| | - Chang-Sei Kim
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
- Correspondence: (J.-O.P.); (E.C.)
| | - Eunpyo Choi
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
- Correspondence: (J.-O.P.); (E.C.)
| |
Collapse
|
12
|
杨 健, 曾 妍, 吴 小, 王 志. [Effect of DR5-mediated docetaxel-loaded lipid microbubble combined with ultrasoundtargeted microbubble destruction on HepG2 cell proliferation and apoptosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1220-1225. [PMID: 34549714 PMCID: PMC8527229 DOI: 10.12122/j.issn.1673-4254.2021.08.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the effect of DR5-mediated docetaxel-targeted lipid microbubbles (MBs) combined with ultrasound-targeted microbubble destruction on apoptosis and expressions of Bcl-2, nuclear factor-κB(NF-κB), caspase-8, and DR5 in human HepG2 cells. METHODS HepG2 cells were treated with docetaxel at its 50% inhibitory concentration (IC50) of 5 nmol/L, docetaxel combined with ultrasound, blank MBs, blank MBs combined with ultrasound (0.5 W/cm2 for 45 s), drugloaded lipid MBs (DLLM), DLLM combined with ultrasound, DR5-mediated DLLM (DR5-DLLM), or DR5-DLLM combined with ultrasound.After the treatments, the cells were further cultured for 24 h, and CCK-8 assay, TUNEL staining and flow cytometry were used to assess cell proliferation, apoptosis, and cell cycle changes; the changes in mRNA and protein expression levels of Bcl-2, NF-κB, caspase-8, and DR5 were detected with RT-qPCR and Western blotting. RESULTS Among all the treatments, DR5-DLLM combined with ultrasound produced the strongest effects to inhibit the proliferation (P < 0.001), promote apoptosis (P < 0.001), and cause G2/M cell cycle arrest (P < 0.001) in HepG2 cells.The combined treatment with DR5-DLLM and ultrasound also significantly downregulated Bcl-2 and NF-κB (P < 0.001) and upregulated DR5 and caspase-8 expressions (P < 0.001) at both the mRNA and protein levels. CONCLUSION DR5-DLLM combined with ultrasound-targeted microbubble destruction can induce G2/M cell cycle arrest, proliferation inhibition and apoptosis in HepG2 cells by downregulating Bcl-2 and NF-κB and upregulating DR5 and caspase-8 expressions, indicating its value as a novel ultrasoundtargeted therapy for liver cancer.
Collapse
Affiliation(s)
- 健 杨
- 重庆医科大学附属第一医院消化内科, 重庆 400016Department of Gastroenterology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - 妍 曾
- 重庆医科大学附属第二医院精神心理科, 重庆 400010Department of Psychology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 小翎 吴
- 重庆医科大学附属第二医院消化内科, 重庆 400010Department of Gastroenterology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 志刚 王
- 重庆医科大学超声影像学研究所, 重庆 400010Institue of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
13
|
Guo B, Li Z, Tu P, Tang H, Tu Y. Molecular Imaging and Non-molecular Imaging of Atherosclerotic Plaque Thrombosis. Front Cardiovasc Med 2021; 8:692915. [PMID: 34291095 PMCID: PMC8286992 DOI: 10.3389/fcvm.2021.692915] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Thrombosis in the context of atherosclerosis typically results in life-threatening consequences, including acute coronary events and ischemic stroke. As such, early detection and treatment of thrombosis in atherosclerosis patients is essential. Clinical diagnosis of thrombosis in these patients is typically based upon a combination of imaging approaches. However, conventional imaging modalities primarily focus on assessing the anatomical structure and physiological function, severely constraining their ability to detect early thrombus formation or the processes underlying such pathology. Recently, however, novel molecular and non-molecular imaging strategies have been developed to assess thrombus composition and activity at the molecular and cellular levels more accurately. These approaches have been successfully used to markedly reduce rates of atherothrombotic events in patients suffering from acute coronary syndrome (ACS) by facilitating simultaneous diagnosis and personalized treatment of thrombosis. Moreover, these modalities allow monitoring of plaque condition for preventing plaque rupture and associated adverse cardiovascular events in such patients. Sustained developments in molecular and non-molecular imaging technologies have enabled the increasingly specific and sensitive diagnosis of atherothrombosis in animal studies and clinical settings, making these technologies invaluable to patients' health in the future. In the present review, we discuss current progress regarding the non-molecular and molecular imaging of thrombosis in different animal studies and atherosclerotic patients.
Collapse
Affiliation(s)
- Bingchen Guo
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoyue Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peiyang Tu
- College of Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Hao Tang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingfeng Tu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Phospholipid-coated targeted microbubbles for ultrasound molecular imaging and therapy. Curr Opin Chem Biol 2021; 63:171-179. [PMID: 34102582 DOI: 10.1016/j.cbpa.2021.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/24/2023]
Abstract
Phospholipid-coated microbubbles are ultrasound contrast agents that, when functionalized, adhere to specific biomarkers on cells. In this concise review, we highlight recent developments in strategies for targeting the microbubbles and their use for ultrasound molecular imaging (UMI) and therapy. Recently developed novel targeting strategies include magnetic functionalization, triple targeting, and the use of several new ligands. UMI is a powerful technique for studying disease progression, diagnostic imaging, and monitoring of therapeutic responses. Targeted microbubbles (tMBs) have been used for the treatment of cardiovascular diseases and cancer, with therapeutics either coadministered or loaded onto the tMBs. Regardless of which disease was treated, the use of tMBs always resulted in a better therapeutic outcome than non-tMBs when compared in vitro or in vivo.
Collapse
|
15
|
Wang H, Li X, Lai LA, Brentnall TA, Dawson DW, Kelly KA, Chen R, Pan S. X-aptamers targeting Thy-1 membrane glycoprotein in pancreatic ductal adenocarcinoma. Biochimie 2021; 181:25-33. [PMID: 33242496 PMCID: PMC7863625 DOI: 10.1016/j.biochi.2020.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/26/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
Modified DNA aptamers incorporated with amino-acid like side chains or drug-like ligands can offer unique advantages and enhance specificity as affinity ligands. Thy-1 membrane glycoprotein (THY1 or CD90) was previously identified as a biomarker candidate of neovasculature in pancreatic ductal adenocarcinoma (PDAC). The current study developed and evaluated modified DNA X-aptamers targeting THY1 in PDAC. The expression and glycosylation of THY1 in PDAC tumor tissues were assessed using immunohistochemistry and quantitative proteomics. Bead-based X-aptamer library that contains 108 different sequences was used to screen for high affinity THY1 X-aptamers. The sequences of the X-aptamers were analyzed with the next-generation sequencing. The affinities of the selected X-aptamers to THY1 were quantitatively evaluated with flow cytometry. Three high affinity THY1 X-aptamers, including XA-B217, XA-B216 and XA-A9, were selected after library screening and affinity binding evaluation. These three X-aptamers demonstrated a high binding affinity and specificity to THY1 protein and the THY1 expressing cell lines, using THY1 antibody as a comparison. The development of these X-aptamers provides highly specific and non-immunogenic affinity ligands for THY1 binding in the context of biomarker development and clinical applications. They could be further exploited to assist molecular imaging of PDAC targeting THY1.
Collapse
Affiliation(s)
- Hongyu Wang
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Xin Li
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Lisa A Lai
- Division of Gastroenterology, Department of Medicine, The University of Washington, Seattle, WA, 98195, USA
| | - Teresa A Brentnall
- Division of Gastroenterology, Department of Medicine, The University of Washington, Seattle, WA, 98195, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Kimberly A Kelly
- Department of Biomedical Engineering, University of Virginia School of Engineering and Applied Sciences, Charlottesville, VA, 22908, USA
| | - Ru Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Jugniot N, Bam R, Meuillet EJ, Unger EC, Paulmurugan R. Current status of targeted microbubbles in diagnostic molecular imaging of pancreatic cancer. Bioeng Transl Med 2021; 6:e10183. [PMID: 33532585 PMCID: PMC7823123 DOI: 10.1002/btm2.10183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often associated with a poor prognosis due to silent onset, resistance to therapies, and rapid spreading. Most patients are ineligible for curable surgery as they present with advanced disease at the time of diagnosis. Present diagnostic methods relying on anatomical changes have various limitations including difficulty to discriminate between benign and malignant conditions, invasiveness, the ambiguity of imaging results, or the inability to detect molecular biomarkers of PDAC initiation and progression. Therefore, new imaging technologies with high sensitivity and specificity are critically needed for accurately detecting PDAC and noninvasively characterizing molecular features driving its pathogenesis. Contrast enhanced targeted ultrasound (CETUS) is an upcoming molecular imaging modality that specifically addresses these issues. Unlike anatomical imaging modalities such as CT and MRI, molecular imaging using CETUS is promising for early and accurate detection of PDAC. The use of molecularly targeted microbubbles that bind to neovascular targets can enhance the ultrasound signal specifically from malignant PDAC tissues. This review discusses the current state of diagnostic imaging modalities for pancreatic cancer and places a special focus on ultrasound targeted-microbubble technology together with its clinical translatability for PDAC detection.
Collapse
Affiliation(s)
- Natacha Jugniot
- Department of RadiologyMolecular Imaging Program at Stanford, Stanford UniversityPalo AltoCaliforniaUSA
| | - Rakesh Bam
- Department of RadiologyMolecular Imaging Program at Stanford, Stanford UniversityPalo AltoCaliforniaUSA
| | | | | | - Ramasamy Paulmurugan
- Department of RadiologyMolecular Imaging Program at Stanford, Stanford UniversityPalo AltoCaliforniaUSA
| |
Collapse
|
17
|
Bam R, Daryaei I, Abou-Elkacem L, Vilches-Moure JG, Meuillet EJ, Lutz A, Marinelli ER, Unger EC, Gambhir SS, Paulmurugan R. Toward the Clinical Development and Validation of a Thy1-Targeted Ultrasound Contrast Agent for the Early Detection of Pancreatic Ductal Adenocarcinoma. Invest Radiol 2020; 55:711-721. [PMID: 32569010 PMCID: PMC7541735 DOI: 10.1097/rli.0000000000000697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Early detection of pancreatic ductal adenocarcinoma (PDAC) represents the most significant step toward the treatment of this aggressive lethal disease. Previously, we engineered a preclinical Thy1-targeted microbubble (MBThy1) contrast agent that specifically recognizes Thy1 antigen overexpressed in the vasculature of murine PDAC tissues by ultrasound (US) imaging. In this study, we adopted a single-chain variable fragment (scFv) site-specific bioconjugation approach to construct clinically translatable MBThy1-scFv and test for its efficacy in vivo in murine PDAC imaging, and functionally evaluated the binding specificity of scFv ligand to human Thy1 in patient PDAC tissues ex vivo. MATERIALS AND METHODS We recombinantly expressed the Thy1-scFv with a carboxy-terminus cysteine residue to facilitate its thioether conjugation to the PEGylated MBs presenting with maleimide functional groups. After the scFv-MB conjugations, we tested binding activity of the MBThy1-scFv to MS1 cells overexpressing human Thy1 (MS1Thy1) under liquid shear stress conditions in vitro using a flow chamber setup at 0.6 mL/min flow rate, corresponding to a wall shear stress rate of 100 seconds, similar to that in tumor capillaries. For in vivo Thy1 US molecular imaging, MBThy1-scFv was tested in the transgenic mouse model (C57BL/6J - Pdx1-Cre; KRas; Ink4a/Arf) of PDAC and in control mice (C57BL/6J) with L-arginine-induced pancreatitis or normal pancreas. To facilitate its clinical feasibility, we further produced Thy1-scFv without the bacterial fusion tags and confirmed its recognition of human Thy1 in cell lines by flow cytometry and in patient PDAC frozen tissue sections of different clinical grades by immunofluorescence staining. RESULTS Under shear stress flow conditions in vitro, MBThy1-scFv bound to MS1Thy1 cells at significantly higher numbers (3.0 ± 0.8 MB/cell; P < 0.01) compared with MBNontargeted (0.5 ± 0.5 MB/cell). In vivo, MBThy1-scFv (5.3 ± 1.9 arbitrary units [a.u.]) but not the MBNontargeted (1.2 ± 1.0 a.u.) produced high US molecular imaging signal (4.4-fold vs MBNontargeted; n = 8; P < 0.01) in the transgenic mice with spontaneous PDAC tumors (2-6 mm). Imaging signal from mice with L-arginine-induced pancreatitis (n = 8) or normal pancreas (n = 3) were not significantly different between the two MB constructs and were significantly lower than PDAC Thy1 molecular signal. Clinical-grade scFv conjugated to Alexa Fluor 647 dye recognized MS1Thy1 cells but not the parental wild-type cells as evaluated by flow cytometry. More importantly, scFv showed highly specific binding to VEGFR2-positive vasculature and fibroblast-like stromal components surrounding the ducts of human PDAC tissues as evaluated by confocal microscopy. CONCLUSIONS Our findings summarize the development and validation of a clinically relevant Thy1-targeted US contrast agent for the early detection of human PDAC by US molecular imaging.
Collapse
Affiliation(s)
- Rakesh Bam
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Palo Alto, CA
| | | | - Lotfi Abou-Elkacem
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Palo Alto, CA
| | | | | | - Amelie Lutz
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Palo Alto, CA
| | | | | | - Sanjiv S. Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Palo Alto, CA
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Palo Alto, CA
| |
Collapse
|
18
|
Huang R, Shen YW, Guan YY, Jiang YX, Wu Y, Rahman K, Zhang LJ, Liu HJ, Luan X. Mesoporous silica nanoparticles: facile surface functionalization and versatile biomedical applications in oncology. Acta Biomater 2020; 116:1-15. [PMID: 32911102 DOI: 10.1016/j.actbio.2020.09.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) have received increasing interest due to their tunable particle size, large surface area, stable framework, and easy surface modification. They are increasingly being used in varying applications as delivery vehicles including bio-imaging, drug delivery, biosensors and tissue engineering etc. Precise structure control and the ability to modify surface properties of MSNs are important for their applications. This review summarises the different synthetic methods for the preparation of well-ordered MSNs with tunable pore volume as well as the approaches of drugs loading, especially highlighting the facile surface functionalization for various purposes and versatile biomedical applications in oncology. Finally, the challenges of clinical transformation of MSNs-based nanomedicines are further discussed.
Collapse
|
19
|
Montoya Mira J, Wu L, Sabuncu S, Sapre A, Civitci F, Ibsen S, Esener S, Yildirim A. Gas-Stabilizing Sub-100 nm Mesoporous Silica Nanoparticles for Ultrasound Theranostics. ACS OMEGA 2020; 5:24762-24772. [PMID: 33015494 PMCID: PMC7528327 DOI: 10.1021/acsomega.0c03377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/28/2020] [Indexed: 05/22/2023]
Abstract
Recent studies have demonstrated that gas-stabilizing particles can generate cavitating micron-sized bubbles when exposed to ultrasound, offering excellent application potential, including ultrasound imaging, drug delivery, and tumor ablation. However, the majority of the reported gas-stabilizing particles are relatively large (>200 nm), and smaller particles require high acoustic pressures to promote cavitation. Here, this paper reports the preparation of sub-100 nm gas-stabilizing nanoparticles (GSNs) that can initiate cavitation at low acoustic intensities, which can be delivered using a conventional medical ultrasound imaging system. The highly echogenic GSNs (F127-hMSN) were prepared by carefully engineering the surfaces of ∼50 nm mesoporous silica nanoparticles. It was demonstrated that the F127-hMSNs could be continuously imaged with ultrasound in buffer or biological solutions or agarose phantoms for up to 20 min. Also, the F127-hMSN can be stored in phosphate-buffered saline for at least a month with no loss in ultrasound responsiveness. The particles significantly degraded when diluted in simulated body fluids, indicating possible biodegradation of the F127-hMSNs in vivo. Furthermore, at ultrasound imaging conditions, F127-hMSNs did not cause detectable cell death, supporting the potential safety of these particles. Finally, strong cavitation activity generation by the F127-hMSNs under high-intensity focused ultrasound insonation was demonstrated and applied to effectively ablate cancer cells.
Collapse
Affiliation(s)
- Jose Montoya Mira
- CEDAR, Knight Cancer
Institute, School of Medicine, Oregon Health
and Science University, Portland, Oregon 97201, United States
- Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Lucy Wu
- CEDAR, Knight Cancer
Institute, School of Medicine, Oregon Health
and Science University, Portland, Oregon 97201, United States
| | - Sinan Sabuncu
- CEDAR, Knight Cancer
Institute, School of Medicine, Oregon Health
and Science University, Portland, Oregon 97201, United States
| | - Ajay Sapre
- CEDAR, Knight Cancer
Institute, School of Medicine, Oregon Health
and Science University, Portland, Oregon 97201, United States
| | - Fehmi Civitci
- CEDAR, Knight Cancer
Institute, School of Medicine, Oregon Health
and Science University, Portland, Oregon 97201, United States
| | - Stuart Ibsen
- CEDAR, Knight Cancer
Institute, School of Medicine, Oregon Health
and Science University, Portland, Oregon 97201, United States
- Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Sadik Esener
- CEDAR, Knight Cancer
Institute, School of Medicine, Oregon Health
and Science University, Portland, Oregon 97201, United States
- Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Adem Yildirim
- CEDAR, Knight Cancer
Institute, School of Medicine, Oregon Health
and Science University, Portland, Oregon 97201, United States
| |
Collapse
|
20
|
Molecular Ultrasound Imaging. NANOMATERIALS 2020; 10:nano10101935. [PMID: 32998422 PMCID: PMC7601169 DOI: 10.3390/nano10101935] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
In the last decade, molecular ultrasound imaging has been rapidly progressing. It has proven promising to diagnose angiogenesis, inflammation, and thrombosis, and many intravascular targets, such as VEGFR2, integrins, and selectins, have been successfully visualized in vivo. Furthermore, pre-clinical studies demonstrated that molecular ultrasound increased sensitivity and specificity in disease detection, classification, and therapy response monitoring compared to current clinically applied ultrasound technologies. Several techniques were developed to detect target-bound microbubbles comprising sensitive particle acoustic quantification (SPAQ), destruction-replenishment analysis, and dwelling time assessment. Moreover, some groups tried to assess microbubble binding by a change in their echogenicity after target binding. These techniques can be complemented by radiation force ultrasound improving target binding by pushing microbubbles to vessel walls. Two targeted microbubble formulations are already in clinical trials for tumor detection and liver lesion characterization, and further clinical scale targeted microbubbles are prepared for clinical translation. The recent enormous progress in the field of molecular ultrasound imaging is summarized in this review article by introducing the most relevant detection technologies, concepts for targeted nano- and micro-bubbles, as well as their applications to characterize various diseases. Finally, progress in clinical translation is highlighted, and roadblocks are discussed that currently slow the clinical translation.
Collapse
|
21
|
Kim J, Yuan C, Babic A, Bao Y, Clish CB, Pollak MN, Amundadottir LT, Klein AP, Stolzenberg-Solomon RZ, Pandharipande PV, Brais LK, Welch MW, Ng K, Giovannucci EL, Sesso HD, Manson JE, Stampfer MJ, Fuchs CS, Wolpin BM, Kraft P. Genetic and Circulating Biomarker Data Improve Risk Prediction for Pancreatic Cancer in the General Population. Cancer Epidemiol Biomarkers Prev 2020; 29:999-1008. [PMID: 32321713 PMCID: PMC8020898 DOI: 10.1158/1055-9965.epi-19-1389] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pancreatic cancer is the third leading cause of cancer death in the United States, and 80% of patients present with advanced, incurable disease. Risk markers for pancreatic cancer have been characterized, but combined models are not used clinically to identify individuals at high risk for the disease. METHODS Within a nested case-control study of 500 pancreatic cancer cases diagnosed after blood collection and 1,091 matched controls enrolled in four U.S. prospective cohorts, we characterized absolute risk models that included clinical factors (e.g., body mass index, history of diabetes), germline genetic polymorphisms, and circulating biomarkers. RESULTS Model discrimination showed an area under ROC curve of 0.62 via cross-validation. Our final integrated model identified 3.7% of men and 2.6% of women who had at least 3 times greater than average risk in the ensuing 10 years. Individuals within the top risk percentile had a 4% risk of developing pancreatic cancer by age 80 years and 2% 10-year risk at age 70 years. CONCLUSIONS Risk models that include established clinical, genetic, and circulating factors improved disease discrimination over models using clinical factors alone. IMPACT Absolute risk models for pancreatic cancer may help identify individuals in the general population appropriate for disease interception.
Collapse
Affiliation(s)
- Jihye Kim
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ana Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ying Bao
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Clary B Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Michael N Pollak
- Cancer Prevention Research Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Rachael Z Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Pari V Pandharipande
- Department of Radiology and Institute for Technology Assessment, Massachusetts General Hospital, Boston, Massachusetts
| | - Lauren K Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marisa W Welch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Howard D Sesso
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Division of Prevention Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - JoAnn E Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Division of Prevention Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Meir J Stampfer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Charles S Fuchs
- Department of Medical Oncology, Yale Cancer Center, New Haven, Connecticut
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
- Department of Medical Oncology, Smilow Cancer Hospital, New Haven, Connecticut
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
22
|
Kosareva A, Abou-Elkacem L, Chowdhury S, Lindner JR, Kaufmann BA. Seeing the Invisible-Ultrasound Molecular Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:479-497. [PMID: 31899040 DOI: 10.1016/j.ultrasmedbio.2019.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Ultrasound molecular imaging has been developed in the past two decades with the goal of non-invasively imaging disease phenotypes on a cellular level not depicted on anatomic imaging. Such techniques already play a role in pre-clinical research for the assessment of disease mechanisms and drug effects, and are thought to in the future contribute to earlier diagnosis of disease, assessment of therapeutic effects and patient-tailored therapy in the clinical field. In this review, we first describe the chemical composition and structure as well as the in vivo behavior of the ultrasound contrast agents that have been developed for molecular imaging. We then discuss the strategies that are used for targeting of contrast agents to specific cellular targets and protocols used for imaging. Next we describe pre-clinical data on imaging of thrombosis, atherosclerosis and microvascular inflammation and in oncology, including the pathophysiological principles underlying the selection of targets in each area. Where applicable, we also discuss efforts that are currently underway for translation of this technique into the clinical arena.
Collapse
Affiliation(s)
- Alexandra Kosareva
- Cardiovascular Molecular Imaging, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lotfi Abou-Elkacem
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California, USA
| | - Sayan Chowdhury
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California, USA
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Portland, Oregon, USA; Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Beat A Kaufmann
- Cardiovascular Molecular Imaging, Department of Biomedicine, University of Basel, Basel, Switzerland; Department of Cardiology, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
23
|
Bam R, Lown PS, Stern LA, Sharma K, Wilson KE, Bean GR, Lutz AM, Paulmurugan R, Hackel BJ, Dahl J, Abou-Elkacem L. Efficacy of Affibody-Based Ultrasound Molecular Imaging of Vascular B7-H3 for Breast Cancer Detection. Clin Cancer Res 2020; 26:2140-2150. [PMID: 31924738 PMCID: PMC7196517 DOI: 10.1158/1078-0432.ccr-19-1655] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/25/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Human B7-H3 (hB7-H3) is a promising molecular imaging target differentially expressed on the neovasculature of breast cancer and has been validated for preclinical ultrasound (US) imaging with anti-B7-H3-antibody-functionalized microbubbles (MB). However, smaller ligands such as affibodies (ABY) are more suitable for the design of clinical-grade targeted MB. EXPERIMENTAL DESIGN Binding of ABYB7-H3 was confirmed with soluble and cell-surface B7-H3 by flow cytometry. MB were functionalized with ABYB7-H3 or anti-B7-H3-antibody (AbB7-H3). Control and targeted MB were tested for binding to hB7-H3-expressing cells (MS1hB7-H3) under shear stress conditions. US imaging was performed with MBABY-B7-H3 in an orthotopic mouse model of human MDA-MB-231 coimplanted with MS1hB7-H3 or control MS1WT cells and a transgenic mouse model of breast cancer development. RESULTS ABYB7-H3 specifically binds to MS1hB7-H3 and murine-B7-H3-expressing monocytes. MBABY-B7-H3 (8.5 ± 1.4 MB/cell) and MBAb-B7-H3 (9.8 ± 1.3 MB/cell) showed significantly higher (P < 0.0001) binding to the MS1hB7-H3 cells compared with control MBNon-targeted (0.5 ± 0.1 MB/cell) under shear stress conditions. In vivo, MBABY-B7-H3 produced significantly higher (P < 0.04) imaging signal in orthotopic tumors coengrafted with MS1hB7-H3 (8.4 ± 3.3 a.u.) compared with tumors with MS1WT cells (1.4 ± 1.0 a.u.). In the transgenic mouse tumors, MBABY-B7-H3 (9.6 ± 2.0 a.u.) produced higher (P < 0.0002) imaging signal compared with MBNon-targeted (1.3 ± 0.3 a.u.), whereas MBABY-B7-H3 signal in normal mammary glands and tumors with B7-H3 blocking significantly reduced (P < 0.02) imaging signal. CONCLUSIONS MBABY-B7-H3 enhances B7-H3 molecular signal in breast tumors, improving cancer detection, while offering the advantages of a small size ligand and easier production for clinical imaging.
Collapse
Affiliation(s)
- Rakesh Bam
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Patrick S Lown
- Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Lawrence A Stern
- Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Karina Sharma
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Katheryne E Wilson
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Gregory R Bean
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Amelie M Lutz
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Ramasamy Paulmurugan
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Benjamin J Hackel
- Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Jeremy Dahl
- Department of Radiology, Stanford University School of Medicine, Stanford, California.
| | - Lotfi Abou-Elkacem
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
24
|
Abbas M, Alqahtani M, Algahtani A, Kessentini A, Loukil H, Parayangat M, Ijyas T, Mohammed AW. Validation of Nanoparticle Response to the Sound Pressure Effect during the Drug-Delivery Process. Polymers (Basel) 2020; 12:polym12010186. [PMID: 31936759 PMCID: PMC7022494 DOI: 10.3390/polym12010186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 11/16/2022] Open
Abstract
Intravenous delivery is the fastest conventional method of delivering drugs to their targets in seconds, whereas intramuscular and subcutaneous injections provide a slower continuous delivery of drugs. In recent years, nanoparticle-based drug-delivery systems have gained considerable attention. During the progression of nanoparticles into the blood, the sound waves generated by the particles create acoustic pressure that affects the movement of nanoparticles. To overcome this issue, the impact of sound pressure levels on the development of nanoparticles was studied herein. In addition, a composite nanostructure was developed using different types of nanoscale substances to overcome the effect of sound pressure levels in the drug-delivery process. The results demonstrate the efficacy of the proposed nanostructure based on a group of different nanoparticles. This study suggests five materials, namely, polyimide, acrylic plastic, Aluminum 3003-H18, Magnesium AZ31B, and polysilicon for the design of the proposed structure. The best results were obtained in the case of the movement of these molecules at lower frequencies. The performance of acrylic plastic is better than other materials; the sound pressure levels reached minimum values at frequencies of 1, 10, 20, and 60 nHz. Furthermore, an experimental setup was designed to validate the proposed idea using advanced biomedical imaging technologies. The experimental results demonstrate the possibilities of detecting, tracking, and evaluating the movement behaviors of nanoparticles. The experimental results also demonstrate that the lowest sound pressure levels were observed at lower frequency levels, thus proving the validity of the proposed computational model assumptions. The outcome of this study will pave the way to understand the interaction behaviors of nanoparticles with the surrounding biological environments, including the sound pressure effect, which could lead to the useof such an effect in facilitating directional and tactic movements of the micro- and nano-motors.
Collapse
Affiliation(s)
- Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (H.L.); (M.P.); (T.I.); (A.W.M.)
- Computers and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
- Correspondence: ; Tel.: +966-5684-72896
| | - Mohammed Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| | - Ali Algahtani
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.K.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Amir Kessentini
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.K.)
- Laboratory of Electromechanical Systems (LASEM), National Engineering School of Sfax, University of Sfax, Route de Soukra km 4, Sfax 3038, Tunisia
- Nabeul’s Foundation Institute for Engineering Studies, University of Carthage, IPEIN, Nabeul 8000, Tunisia
| | - Hassen Loukil
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (H.L.); (M.P.); (T.I.); (A.W.M.)
- Electronics and Information Technology Laboratory, University of Sfax, National Engineering School of Sfax, Sfax 3038, Tunisia
| | - Muneer Parayangat
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (H.L.); (M.P.); (T.I.); (A.W.M.)
| | - Thafasal Ijyas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (H.L.); (M.P.); (T.I.); (A.W.M.)
| | - Abdul Wase Mohammed
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (H.L.); (M.P.); (T.I.); (A.W.M.)
| |
Collapse
|
25
|
Abstract
Contrast-enhanced ultrasound (CEUS) imaging is a valuable tool for preclinical and clinical diagnostics. The most frequently used ultrasound contrast agents are microbubbles. Besides them, novel nano-sized materials are under investigation, which are briefly discussed in this chapter. For molecular CEUS, the ultrasound contrast agents are modified to actively target disease-associated molecular markers with a site-specific ligand. The most common markers for tumor imaging are related to neoangiogenesis, like the vascular endothelial growth factor receptor-2 (VEGFR2) and αvβ3 integrin. In this chapter, applications of molecular ultrasound to longitudinally monitor receptor expression during tumor growth, to detect neovascularization, and to evaluate therapy responses are described. Furthermore, we report on first clinical trials of molecular CEUS with VEGFR2-targeted phospholipid microbubbles showing promising results regarding patient safety and its ability to detect tumors of prostate, breast, and ovary. The chapter closes with an outlook on ultrasound theranostics, where (targeted) ultrasound contrast agents are used to increase the permeability of tumor tissues and to support drug delivery.
Collapse
Affiliation(s)
- Jasmin Baier
- Institute for Experimental Molecular Imaging Organization University Clinics, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Anne Rix
- Institute for Experimental Molecular Imaging Organization University Clinics, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging Organization University Clinics, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany.
| |
Collapse
|
26
|
Lau C, Rivas M, Dinalo J, King K, Duddalwar V. Scoping Review of Targeted Ultrasound Contrast Agents in the Detection of Angiogenesis. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:19-28. [PMID: 31237009 DOI: 10.1002/jum.15072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
A systematic search was conducted to categorize targeted ultrasound contrast agents (UCAs) used in cancer-related angiogenesis detection. We identified 15 unique contrast agents from 2008 to March 2018. Most primary research articles studied UCAs targeted to vascular endothelial growth factor receptor or αv β3 -integrin. Breast cancer and colon cancer are the most common neoplastic processes in which these agents were studied. BR55 (Bracco Research SA, Geneva, Switzerland), a vascular endothelial growth factor receptor-targeting UCA, is the first targeted UCA that has completed phase 0 trials. Our review identifies a gap in the literature regarding the application of targeted UCAs in cancer models beyond breast and colon cancers and identifies other promising UCAs.
Collapse
Affiliation(s)
- Christopher Lau
- Department of Radiology, Keck School of Medicine, California, Los Angeles, USA
| | - Marielena Rivas
- Department of Radiology, Keck School of Medicine, California, Los Angeles, USA
| | - Jennifer Dinalo
- Norris Medical Library, Keck School of Medicine, California, Los Angeles, USA
| | - Kevin King
- Department of Radiology, Keck School of Medicine, California, Los Angeles, USA
| | - Vinay Duddalwar
- Department of Radiology, Keck School of Medicine, California, Los Angeles, USA
| |
Collapse
|
27
|
Hameed S, Zhang M, Bhattarai P, Mustafa G, Dai Z. Enhancing cancer therapeutic efficacy through ultrasound‐mediated micro‐to‐nano conversion. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1604. [DOI: 10.1002/wnan.1604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/15/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering Peking University Beijing China
| | - Miaomiao Zhang
- Department of Biomedical Engineering, College of Engineering Peking University Beijing China
| | - Pravin Bhattarai
- Department of Biomedical Engineering, College of Engineering Peking University Beijing China
- Phutung Research Institute Kathmandu Nepal
| | - Ghulam Mustafa
- Department of Sciences Bahria University Lahore Lahore Pakistan
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering Peking University Beijing China
| |
Collapse
|
28
|
The Continuing Evolution of Molecular Functional Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part II). Mol Diagn Ther 2019; 23:27-51. [PMID: 30387041 DOI: 10.1007/s40291-018-0367-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present era of precision medicine sees "cancer" as a consequence of molecular derangements occurring at the commencement of the disease process, with morphological changes happening much later in the process of tumourigenesis. Conventional imaging techniques, such as computed tomography (CT), ultrasound (US) and magnetic resonance imaging (MRI) play an integral role in the detection of disease at the macroscopic level. However, molecular functional imaging (MFI) techniques entail the visualisation and quantification of biochemical and physiological processes occurring during tumourigenesis. MFI has the potential to play a key role in heralding the transition from the concept of "one-size-fits-all" treatment to "precision medicine". Integration of MFI with other fields of tumour biology such as genomics has spawned a novel concept called "radiogenomics", which could serve as an indispensable tool in translational cancer research. With recent advances in medical image processing, such as texture analysis, deep learning and artificial intelligence, the future seems promising; however, their clinical utility remains unproven at present. Despite the emergence of novel imaging biomarkers, the majority of these require validation before clinical translation is possible. In this two part review, we discuss the systematic collaboration across structural, anatomical and molecular imaging techniques that constitute MFI. Part I reviews positron emission tomography, radiogenomics, AI, and optical imaging, while part II reviews MRI, CT and ultrasound, their current status, and recent advances in the field of precision oncology.
Collapse
|
29
|
Dhyani M, Joshi N, Bemelman WA, Gee MS, Yajnik V, D’Hoore A, Traverso G, Donowitz M, Mostoslavsky G, Lu TK, Lineberry N, Niessen HG, Peer D, Braun J, Delaney CP, Dubinsky MC, Guillory AN, Pereira M, Shtraizent N, Honig G, Polk DB, Hurtado-Lorenzo A, Karp JM, Michelassi F. Challenges in IBD Research: Novel Technologies. Inflamm Bowel Dis 2019; 25:S24-S30. [PMID: 31095703 PMCID: PMC6787667 DOI: 10.1093/ibd/izz077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Indexed: 12/15/2022]
Abstract
Novel technologies is part of five focus areas of the Challenges in IBD research document, which also includes preclinical human IBD mechanisms, environmental triggers, precision medicine and pragmatic clinical research. The Challenges in IBD research document provides a comprehensive overview of current gaps in inflammatory bowel diseases (IBD) research and delivers actionable approaches to address them. It is the result of a multidisciplinary input from scientists, clinicians, patients, and funders, and represents a valuable resource for patient centric research prioritization. In particular, the novel technologies section is focused on prioritizing unmet clinical needs in IBD that will benefit from novel technologies applied to: 1) non-invasive detection and monitoring of active inflammation and assessment of treatment response; 2) mucosal targeted drug delivery systems; and 3) prevention of post-operative septic complications and treatment of fistulizing complications. Proposed approaches include development of multiparametric imaging modalities and biosensors, to enable non invasive or minimally invasive detection of pro-inflammatory signals to monitor disease activity and treatment responses. Additionally, technologies for local drug delivery to control unremitting disease and increase treatment efficacy while decreasing systemic exposure are also proposed. Finally, research on biopolymers and other sealant technologies to promote post-surgical healing; and devices to control anastomotic leakage and prevent post-surgical complications and recurrences are also needed.
Collapse
Affiliation(s)
- Manish Dhyani
- Lahey Hospital & Medical Center, Burlington, Massachusetts
| | - Nitin Joshi
- Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Michael S Gee
- Massachusetts General Hospital, Boston, Massachusetts
| | - Vijay Yajnik
- Takeda Pharmaceutical Company, Boston, Massachusetts
| | - André D’Hoore
- University Hospital Gasthuisberg and University of Leuven, Leuven, Belgium
| | - Giovanni Traverso
- Brigham and Women’s Hospital, Harvard Medical School and Massachusetts Institute of Technology, Boston, Massachusetts
| | - Mark Donowitz
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Timothy K Lu
- Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Heiko G Niessen
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Dan Peer
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan Braun
- Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai, Los Angeles, California
| | | | | | | | | | | | - Gerard Honig
- Crohn’s & Colitis Foundation, New York, New York
| | - David Brent Polk
- Department of Biochemistry and Molecular Biology, University of Southern California,Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, California
| | - Andrés Hurtado-Lorenzo
- Crohn’s & Colitis Foundation, New York, New York,Address correspondence to: Andrés Hurtado-Lorenzo, PhD, 733 3rd Ave Suite 510, New York, NY USA 10017 ()
| | - Jeffrey M Karp
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Broad Institute and Harvard Stem Cell Institute, Boston, Massachusetts
| | - Fabrizio Michelassi
- New York-Presbyterian Hospital and Weill Cornell School of Medicine, New York, New York
| |
Collapse
|
30
|
Vishal TMD, Ji-Bin LMD, John EP. Applications in Molecular Ultrasound Imaging: Present and Future. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2019. [DOI: 10.37015/audt.2019.190812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|