1
|
Pan Y, Ma T, Chen D, Wang Y, Peng Y, Lu T, Yin X, Li H, Zhang G, Wang X. Scutellaria barbata D.Don and Scleromitrion diffusum (Willd.) R.J.Wang inhibits the progression of triple negative breast cancer though the activation inhibition of NF-κB triggered by CAFs-derived IL6. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118656. [PMID: 39121924 DOI: 10.1016/j.jep.2024.118656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The treatment options for triple-negative breast cancer (TNBC) are limited. Traditional Chinese Medicine (TCM) plays an important role in the treatment of TNBC. The herb pair Scutellaria barbata D.Don and Scleromitrion diffusum (Willd.) R.J.Wang (SH) is commonly used in clinical practice for its anti-tumor properties. It has been proven to have good therapeutic effects on tumor-related diseases, but the underlying molecular mechanisms are not yet fully explained. AIM OF STUDY Through bioinformatics, it was validated that IL6, primarily derived from cancer-associated fibroblasts (CAFs), is associated with poor prognosis. Additionally, cell and animal experiments confirmed that SH inhibits tumor proliferation, migration, and growth in an orthotopic tumor model by suppressing the IL6/NF-κB pathway. MATERIALS AND METHODS GEO, TCGA and HPA databases were used to analyze the prognostic value of CAFs and IL6, then IL6 resource was detected. After the bioinformatics, the influence of CAFs and CAFs-derived IL6 on TNBC was verified by experiments both in vitro and in vivo. Cell clone formation assay, wound-Healing assay, and Transwell assay were used to detect the promotion of CAFs and CAFs-derived IL6 and the inhibition of SH in vitro. TNBC model in mice was used to prove the promotion of CAFs and CAFs-derived IL6 and the inhibition of SH in vivo. The biological pathway of NF-κB was explored by western blotting through detecting unique molecules. RESULTS Bioinformatics analysis revealed that higher proportion of CAFs and elevated level of IL6 were significantly associated with poor prognosis in TNBC. At the same time, IL6 was proved predominantly derived from CAFs. After the indication of bioinformatics, experiments in vitro demonstrated that both CAFs and IL6 could enhance the clone formation and migration ability of MDA-MD-231 cells (231), furthermore, the promotion of CAFs was related with the level of IL6. Based on these data, mechanism was detected that CAFs-derived IL6 enhancement was closely related to the activation of NF-κB signaling pathway, while the activation can be reduced by SH. In the end, the promotion of CAFs/CAFs-derived IL6/NF-κB and the efficacy of SH inhibition were both confirmed by experiments in vivo. CONCLUSIONS Bioinformatics data indicates that higher proportion of CAFs and higher level of CAFs-derived IL6 are significantly related to poorer survival of TNBC. CAFs and CAFs-derived IL6 were proved to promote the progression of TNBC both in vitro and in vivo, and the process of which was significantly related to the activation of NF-κB. SH inhibited the progress of TNBC, which was proved to be closely related to CAFs/CAFs-derived IL6/NF-κB.
Collapse
Affiliation(s)
- Yuancan Pan
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Tingting Ma
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Dong Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yue Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yu Peng
- Shandong University of Traditional Chinese Medicine, Shandong, 250355, China
| | - Taicheng Lu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Xiaohui Yin
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Haiming Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ganlin Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Xiaomin Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
2
|
Xu P, Yuan J, Li K, Wang Y, Wu Z, Zhao J, Li T, Wu T, Miao X, He D, Cheng X. Development and validation of a novel endoplasmic reticulum stress-related lncRNAs signature in osteosarcoma. Sci Rep 2024; 14:25590. [PMID: 39462063 PMCID: PMC11513957 DOI: 10.1038/s41598-024-76841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Osteosarcoma (OS) is a cancerous tumor, and its development is greatly influenced by long non-coding RNA (lncRNA). Endoplasmic reticulum stress (ERS) is an essential biological defense process in cells and contributes to the progression of tumors. However, the exact mechanisms remain elusive. This study aims to develop a signature of lncRNAs associated with ERS in OS. This signature will guide the prognosis prediction and the determination of appropriate treatment strategies. The UCSC Xena database collected transcriptional and clinical data of OS and muscle, after identifying ERS differentially expressed genes, we utilized correlation analysis to determine the endoplasmic reticulum stress lncRNAs (ERLs). The Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression analysis were utilized to develop an ERLs signature. To clarify the fundamental mechanisms controlling gene expression in low and high-risk groups, Gene Set Variation Analysis (GSVA) were conducted. In addition, the distinction between the two groups regarding drug sensitivity and immune-related activity was investigated to determine the immunotherapy effects. Utilizing RT-qPCR, the expression of model lncRNAs in OS cell lines was ascertained. The functional analysis of LINC02298 was carried out through in vitro experiments and pan-cancer analysis. This study successfully constructed an ERLs prognostic signature for OS, which comprised 5 lncRNAs (AC023157.3, AL031673.1, LINC02298, LINC02328, SNHG26). The risk signature predicted overall survival in patients with OS and was confirmed by assessing the validation and whole cohorts. Further, it was discovered that individuals classified as high-risk displayed suppressed immune activation, decreased infiltration of immune cells, and decreased responsiveness to immunotherapy. The RT-qPCR showed that the constructed risk prognosis model is reliable. Experimental validation has demonstrated that LINC02298 can promote OS cells' invasion, migration, and proliferation. In addition, LINC02298 exhibited significant differential expression in many types of cancer. Moreover, LINC02298 is an important biomarker in a variety of tumors. This study established a novel ERLs signature, which successfully predicted the prognosis of OS. The function of LINC02298 in OS was elucidated via in vitro experiments. Therefore, it offers new opportunities for predicting the clinical prognosis of OS and establishes the basis for targeted therapy in OS.
Collapse
Affiliation(s)
- Peichuan Xu
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Jinghong Yuan
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Kaihui Li
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Yameng Wang
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Zhiwen Wu
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Jiangminghao Zhao
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Tao Li
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Tianlong Wu
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Xinxin Miao
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Dingwen He
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Xigao Cheng
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China.
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China.
| |
Collapse
|
3
|
Cui S, Yang Y, Lou S, Huang R, Wang J, Chen Z, Xie J. Establish a novel immune-related gene prognostic risk index (IRGPRI) associated with CD8+ cytotoxic T lymphocytes in non-small-cell lung cancer (NSCLC). Heliyon 2024; 10:e38324. [PMID: 39397989 PMCID: PMC11466668 DOI: 10.1016/j.heliyon.2024.e38324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024] Open
Abstract
Background The aim of this study is to create an index called IRGPRI (immune-related gene prognostic risk index) that can be utilized for predicting the prognosis and assessing the efficacy of immune checkpoint inhibitors (ICIs) therapy in patients with non-small-cell lung cancer (NSCLC). Methods Distinguishing gene expression patterns (DEGs) were detected in CD8+ cytotoxic T lymphocytes (CTLs) compared to other cellular types such as CD4 T cells, B cells, plasma cells, and CD8 Tex using the advanced technology of Single-cell RNA Sequencing (scRNA-seq). The construction of IRGPRI was accomplished by employing LASSO Cox regression analysis. We conducted a comparative analysis on clinical characteristics and molecular features, such as pathway enrichment and gene mutation, among the distinct subgroups of IRGPRI. Furthermore, we explored the correlation between immunological characteristics and IRGPRI subgroups to comprehensively assess the effectiveness of ICIs in NSCLC patients. Results A total of 109 genes were identified by intersecting immune-related genes with DEGs obtained from single-cell RNA sequencing data (GSE131907), specifically comparing CTLs to other cell types. From these, we selected 7 prognosis-related genes, namely TRBC1, HLA-DMA, CTSH, RAC1, CTSL, ANXA2, and CEBPB. These genes were used to construct the IRGPRI. The prognosis of patients diagnosed with NSCLC was found to be significantly better in the low-risk group compared to the high-risk group, as demonstrated by Kaplan-Meier (K-M) survival analysis. This observation was further confirmed through the utilization of data from the GEO cohort. The low-risk group demonstrated an increase in pathways linked with immune response, whereas the high-risk group exhibited a higher prevalence of pathways related to cancer. Furthermore, it was noted in the TCGA cohort that there existed a significant rise in the mutation frequency of every gene within the high-risk group as opposed to the low-risk group. Missense variation emerged as the most prevalent form of mutation. According to the analysis of immune cell infiltration and function, the comprehensive findings suggest that the group with a low risk is characterized by an increased presence of plasma cells, CTLs, T cells follicular helper, Tregs, and Dendritic cell resting. Additionally, they exhibit a higher score in terms of immune function for B cells, CD8+ T cells, checkpoint activity, T cell inhibition and stimulation. Moreover, this low-risk group demonstrates greater efficacy when treated with ICIs therapy compared to the high-risk group. Conclusions Our research effectively developed and verified a unique IRGPRI, showcasing its association with immune-related characteristics. As a result, the potential of IRGPRI as a valuable biomarker for predicting prognosis and evaluating the effectiveness of ICIs treatment in cancer is evident.
Collapse
Affiliation(s)
- Shenjing Cui
- Department of Clinical Laboratory, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yikun Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Shuang Lou
- Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Rong Huang
- Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jing Wang
- Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhongbiao Chen
- Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jingjing Xie
- Department of Medical Administration, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
4
|
Wang J, Zheng C, Lu J, Xu X, Xiang G, Li J, Zhang J, Mu X, Lu Q. The mechanism of MMP14-positive tumor-associated fibroblast subsets in inhibiting PD-1 immunotherapy for esophageal cancer through exosomal tsRNA-10522. Funct Integr Genomics 2024; 24:186. [PMID: 39377944 PMCID: PMC11461773 DOI: 10.1007/s10142-024-01447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
Esophageal cancer (EC) continues to pose a significant health risk. Cancer-associated fibroblasts (CAFs), an essential part of the tumor microenvironment (TME), are viewed as potential therapeutic targets. However, their role in tumor mechanisms specific to esophageal cancer remains to be elucidated. This study identified MMP14+ CAFs and MMP14- CAFs using immunofluorescence staining. The cytotoxic activity of CD8 T cells was assessed via western blot and ELISA. Using a transwell test, the migratory potential of MMP14+ CAFs was evaluated. Using flow cytometry, apoptosis was found in the esophageal squamous cell carcinoma cell line KYSE30. To determine the important tsRNAs released by MMP14+ CAFs, tsRNA-seq was used. Two subgroups of EC receiving PD-1 immunotherapy were identified by our research: MMP14+ CAFs and MMP14- CAFs. MMP14+ CAFs showed improved migratory capacity and released more inflammatory factors linked to cancer. Through exosomes, these CAFs may prevent anti-PD-1-treated CD8 T cells from being cytotoxic. Furthermore, exosomal tsRNA from MMP14+ CAFs primarily targeted signaling pathways connected with cancer. Notably, it was discovered that tsRNA-10522 plays a critical role within inhibiting CD8 T cell tumor cell death. The tumor cell killing of CD8 T cells by exosomal tsRNA-10522 is inhibited by a subgroup of cells called MMP14+ CAFs inside the EC microenvironment during PD-1 immunotherapy. This reduces the effectiveness of PD-1 immunotherapy for EC. Our findings demonstrate the inhibitory function of MMP14+ CAFs within EC receiving PD-1 immunotherapy, raising the prospect that MMP14+ CAFs might serve as predictive indicators in EC receiving PD-1 immunotherapy.
Collapse
Affiliation(s)
- Juzheng Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Department of Thoracic Surgery, The First People's Hospital of Xianyang, Xianyang, 712000, Shaanxi, China
| | - Chunlong Zheng
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, NO. 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Jiayu Lu
- Basic Medical College, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Xinyao Xu
- College of Life Sciences, Northwest University, 229 Taibai North Road, Beilin District, Xi'an, 710069, Shaanxi, China
| | - Guangyu Xiang
- Basic Medical College, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiahe Li
- Basic Medical College, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jipeng Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, NO. 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Xiaorong Mu
- Department of Pathology, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710039, Shaanxi, China.
| | - Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, NO. 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
5
|
Arpinati L, Carradori G, Scherz-Shouval R. CAF-induced physical constraints controlling T cell state and localization in solid tumours. Nat Rev Cancer 2024; 24:676-693. [PMID: 39251836 DOI: 10.1038/s41568-024-00740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
Solid tumours comprise cancer cells that engage in continuous interactions with non-malignant cells and with acellular components, forming the tumour microenvironment (TME). The TME has crucial and diverse roles in tumour progression and metastasis, and substantial efforts have been dedicated into understanding the functions of different cell types within the TME. These efforts highlighted the importance of non-cell-autonomous signalling in cancer, mediating interactions between the cancer cells, the immune microenvironment and the non-immune stroma. Much of this non-cell-autonomous signalling is mediated through acellular components of the TME, known as the extracellular matrix (ECM), and controlled by the cells that secrete and remodel the ECM - the cancer-associated fibroblasts (CAFs). In this Review, we delve into the complex crosstalk among cancer cells, CAFs and immune cells, highlighting the effects of CAF-induced ECM remodelling on T cell functions and offering insights into the potential of targeting ECM components to improve cancer therapies.
Collapse
Affiliation(s)
- Ludovica Arpinati
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Giulia Carradori
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Li X, Li Y, Tuerxun H, Zhao Y, Liu X, Zhao Y. Firing up "cold" tumors: Ferroptosis causes immune activation by improving T cell infiltration. Biomed Pharmacother 2024; 179:117298. [PMID: 39151313 DOI: 10.1016/j.biopha.2024.117298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
Immune checkpoint blocking (ICB), a tumor treatment based on the mechanism of T-cell activation, has shown high efficacy in clinical trials, but not all patients benefit from it. Immune checkpoint inhibitors (ICIs) do not respond to cold tumors that lack effective T-cell infiltration but respond well to hot tumors with sufficient T-cell infiltration. How to convert an unresponsive cold tumor into a responsive hot tumor is an important topic in cancer immunotherapy. Ferroptosis, a newly discovered immunogenic cell death (ICD) form, has great potential in cancer therapy. In the process of deeply understanding the mechanism of cold tumor formation, it was found that ferroptosis showed a powerful immune-activating effect by improving T-cell infiltration, and the combination of ICB therapy significantly enhanced the anti-tumor efficacy. This paper reviews the complex relationship between T cells and ferroptosis, as well as summarizes the various mechanisms by which ferroptosis enhances T cell infiltration: reactivation of T cells and reversal of immunosuppressive tumor microenvironment (TME), as well as recent advances of ICI in combination with targeted ferroptosis therapies, which provides guidance for better improving the ICB efficacy of cold tumors.
Collapse
Affiliation(s)
- Xinru Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yawen Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Halahati Tuerxun
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yixin Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xingyu Liu
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
7
|
Sun Y, Yinwang E, Wang S, Wang Z, Wang F, Xue Y, Zhang W, Zhao S, Mou H, Chen S, Jin L, Li B, Ye Z. Phenotypic and spatial heterogeneity of CD8 + tumour infiltrating lymphocytes. Mol Cancer 2024; 23:193. [PMID: 39251981 PMCID: PMC11382426 DOI: 10.1186/s12943-024-02104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
CD8+ T cells are the workhorses executing adaptive anti-tumour response, and targets of various cancer immunotherapies. Latest advances have unearthed the sheer heterogeneity of CD8+ tumour infiltrating lymphocytes, and made it increasingly clear that the bulk of the endogenous and therapeutically induced tumour-suppressive momentum hinges on a particular selection of CD8+ T cells with advantageous attributes, namely the memory and stem-like exhausted subsets. A scrutiny of the contemporary perception of CD8+ T cells in cancer and the subgroups of interest along with the factors arbitrating their infiltration contextures, presented herein, may serve as the groundwork for future endeavours to probe further into the regulatory networks underlying their differentiation and migration, and optimise T cell-based immunotherapies accordingly.
Collapse
Affiliation(s)
- Yikan Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shengdong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Lingxiao Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Binghao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
8
|
Zhou D, Li M, Wu W, Wu Y, Nong Q, Wang S, Hong R. Distribution characteristics of immune infiltration and lymphovascular invasion in patients with breast cancer skin recurrence. Cancer Immunol Immunother 2024; 73:223. [PMID: 39235656 PMCID: PMC11377393 DOI: 10.1007/s00262-024-03783-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/17/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND To assess the distribution characteristics of immune infiltration and lymphovascular invasion in breast cancer skin recurrence patients. METHODS We retrospectively analyzed the clinicopathological data of patients who underwent radical surgery for primary breast cancer and experienced skin recurrence between January 2001 and April 2019. Immune and lymphovascular biomarkers were quantified in primary breast cancers, skin lesions and visceral metastatic lesions. Differences in biomarkers distribution between matched tissues were statistically analyzed using the Wilcoxon signed-rank test and Kruskal-Wallis one-way ANOVA. RESULTS A total of 71 female breast cancer patients were reviewed in this study. Our study found that the expression levels of various lymphocyte immune markers in primary tumor specimens were higher than those in skin recurrences. The expression of CD8, CD57 and CD31 in primary breast cancer was higher than those in the skin. Compared to visceral metastatic lesions, D2-40 was highly expressed in the skin, while CD8 tended to decrease. In the skin specimens, the expression of CD8 (P < 0.001), FOXP3 (P = 0.006) and CD68 (P < 0.001) in the intratumoral area was higher, while the expression of CD57 (P < 0.001) was higher in the peritumoral area. Analyzing specimens from the same patient at different time points of skin progression, it was found that the expression of peritumoral CD4 decreased (P = 0.044) as the disease progressed. The low expression of D2-40 and CD163 in the skin lesions suggested a decrease in DFS. CONCLUSION The immune microenvironment of breast cancer skin recurrence may be in a state of suppression, and this suppression may intensify with disease progression. The pattern of skin recurrence may be more inclined toward lymphatic invasion. Our study provides new insights into the biological behaviors of this disease and its response to immunotherapy.
Collapse
Affiliation(s)
- Danyang Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510000, China
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Mei Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510000, China
| | - Wei Wu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510000, China
| | - Ying Wu
- Department of Interventional Therapy, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qiaohong Nong
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Shusen Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510000, China.
| | - Ruoxi Hong
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510000, China.
| |
Collapse
|
9
|
Guo T, Xu J. Cancer-associated fibroblasts: a versatile mediator in tumor progression, metastasis, and targeted therapy. Cancer Metastasis Rev 2024; 43:1095-1116. [PMID: 38602594 PMCID: PMC11300527 DOI: 10.1007/s10555-024-10186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
Tumor microenvironment (TME) has been demonstrated to play a significant role in tumor initiation, progression, and metastasis. Cancer-associated fibroblasts (CAFs) are the major component of TME and exhibit heterogeneous properties in their communication with tumor cells. This heterogeneity of CAFs can be attributed to various origins, including quiescent fibroblasts, mesenchymal stem cells (MSCs), adipocytes, pericytes, endothelial cells, and mesothelial cells. Moreover, single-cell RNA sequencing has identified diverse phenotypes of CAFs, with myofibroblastic CAFs (myCAFs) and inflammatory CAFs (iCAFs) being the most acknowledged, alongside newly discovered subtypes like antigen-presenting CAFs (apCAFs). Due to these heterogeneities, CAFs exert multiple functions in tumorigenesis, cancer stemness, angiogenesis, immunosuppression, metabolism, and metastasis. As a result, targeted therapies aimed at the TME, particularly focusing on CAFs, are rapidly developing, fueling the promising future of advanced tumor-targeted therapy.
Collapse
Affiliation(s)
- Tianchen Guo
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
10
|
Ke M, Zhu H, Lin Y, Zhang Y, Tang T, Xie Y, Chen ZS, Wang X, Shen Y. Actin-related protein 2/3 complex subunit 1B promotes ovarian cancer progression by regulating the AKT/PI3K/mTOR signaling pathway. J Transl Int Med 2024; 12:406-423. [PMID: 39360160 PMCID: PMC11444474 DOI: 10.2478/jtim-2024-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Background and Objectives Actin-related protein 2/3 complex subunit 1B (ARPC1B) is an essential subunit of the actin-related protein 2/3 (Arp2/3) complex. While there have been numerous research reports on Arp2/3 in relation to tumors, there needs to be more research on ARPC1B and its role in tumors, particularly at the pan-cancer level. Methods Utilizing data from the cancer genome atlas (TCGA) and genotype-tissue expression (GTEx) databases, we analyzed ARPC1B expression differences in normal, tumor, and adjacent tissues, investigating its correlation with prognosis and clinical stages in various cancers. We conducted gene enrichment analysis and explored ARPC1B's connection to the tumor immune microenvironment and its impact on anti-tumor drug resistance. In addition, in vivo and in vitro experiments have also been carried out to find the mechanism of ARPC1B on ovarian cancer (OV) proliferation and invasion. Results ARPC1B was highly expressed in 33 tumor types, suggesting its role as a tumor-promoting factor. Its expression correlated with poor prognosis and served as a clinical staging marker in over 10 tumor types. ARPC1B is implicated in various biological processes and signaling pathways, uniquely associated with tumor immunity, indicating immunosuppressive conditions in high-expression cases. High ARPC1B expression was linked to resistance to six anti-tumor drugs. Further experiments showed that ARPC1B can affect the proliferation, apoptosis, migration, and invasion of OV cells through the AKT/PI3K/mTOR pathway. Conclusion ARPC1B is a biomarker for immune suppression, prognosis, clinical staging, and drug resistance, providing new insights for cancer therapeutics.
Collapse
Affiliation(s)
- Miao Ke
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Huimin Zhu
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzho 510630, Guangdong Province, China
| | - Yu Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Tao Tang
- Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 518172, China
| | - Yuhao Xie
- College of Pharmacy and Health Sciences, St. John's University, New York 11439, New York, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, New York 11439, New York, USA
| | - Xiaoyu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Yuan Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
11
|
Yan C, Yang G, Zhang C, Chen K, Sun Y, Liang Z, Lai L, Li L, Qu S, Zhu XD. A nomogram based on circulating CD8 + T cell and platelet-to-lymphocyte ratio to predict overall survival of patients with locally advanced nasopharyngeal carcinoma. Radiat Oncol 2024; 19:108. [PMID: 39138513 PMCID: PMC11323451 DOI: 10.1186/s13014-024-02500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE To explore the influence of circulating lymphocyte subsets, serum markers, clinical factors, and their impact on overall survival (OS) in locally advanced nasopharyngeal carcinoma (LA-NPC). Additionally, to construct a nomogram predicting OS for LA-NPC patients using independent prognostic factors. METHODS A total of 530 patients with LA-NPC were included in this study. In the training cohort, Cox regression analysis was utilized to identify independent prognostic factors, which were then integrated into the nomogram. The concordance index (C-index) was calculated for both training and validation cohorts. Schoenfeld residual analysis, calibration curves, and decision curve analysis (DCA) were employed to evaluate the nomogram. Kaplan-Meier methods was performed based on risk stratification using the nomogram. RESULTS A total of 530 LA-NPC patients were included. Multivariate Cox regression analysis revealed that the circulating CD8+T cell, platelet-to-lymphocyte ratio (PLR), lactate dehydrogenase (LDH), albumin (ALB), gender, and clinical stage were independent prognostic factors for LA-NPC (p < 0.05). Schoenfeld residual analysis indicated overall satisfaction of the proportional hazards assumption for the Cox regression model. The C-index of the nomogram was 0.724 (95% CI: 0.669-0.779) for the training cohort and 0.718 (95% CI: 0.636-0.800) for the validation cohort. Calibration curves demonstrated good correlation between the model and actual survival outcomes. DCA confirmed the clinical utility enhancement of the nomogram over the TNM staging system. Significant differences were observed in OS among different risk stratifications. CONCLUSION Circulating CD8+ T cell, PLR, LDH, ALB, gender and clinical stage are independent prognostic factors for LA-NPC. The nomogram and risk stratification constructed in this study effectively predict OS in LA-NPC.
Collapse
Affiliation(s)
- Chang Yan
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Guohai Yang
- Department of Gastrointestinal Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Chaojun Zhang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - KaiHua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Yongchu Sun
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Zhongguo Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Lin Lai
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Ling Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Song Qu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China.
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, 530199, People's Republic of China.
| |
Collapse
|
12
|
Zhou Y, Ma Y, Sheng J, Ma Y, Ding J, Zhou W. Breaking Down Barriers in Drug Delivery by Stromal Remodeling Approaches in Pancreatic Cancer. Mol Pharm 2024; 21:3764-3776. [PMID: 39049481 DOI: 10.1021/acs.molpharmaceut.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Pancreatic cancer remains a formidable challenge in oncology due to its aggressive nature and limited treatment options. The dense stroma surrounding pancreatic tumors not only provides structural support but also presents a formidable barrier to effective therapy, hindering drug penetration and immune cell infiltration. This review delves into the intricate interplay between stromal components and cancer cells, highlighting their impact on treatment resistance and prognosis. Strategies for stromal remodeling, including modulation of cancer-associated fibroblasts (CAFs), pancreatic stellate cells (PSCs) activation states, and targeting extracellular matrix (ECM) components, are examined for their potential to enhance drug penetration and improve therapeutic efficacy. Integration of stromal remodeling with conventional therapies, such as chemotherapy and immunotherapy, is discussed along with the emerging field of intelligent nanosystems for targeted drug delivery. This comprehensive overview underscores the importance of stromal remodeling in pancreatic cancer treatment and offers insights into promising avenues for future research and clinical translation.
Collapse
Affiliation(s)
- Ying Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yunxiao Ma
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jianwei Sheng
- China Quality Mark Certification (Shandong) Co., LTD, Jinan, Shandong 250100, China
| | - Yiran Ma
- Hunan Bainianyiren Chinese Traditional Medical Institute Co., LTD, Changsha, Hunan 410221, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha, Hunan 410008, China
| |
Collapse
|
13
|
Zhang Z, Chen X, Gao S, Fang X, Ren S. 3D bioprinted tumor model: a prompt and convenient platform for overcoming immunotherapy resistance by recapitulating the tumor microenvironment. Cell Oncol (Dordr) 2024; 47:1113-1126. [PMID: 38520648 PMCID: PMC11322267 DOI: 10.1007/s13402-024-00935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Cancer immunotherapy is receiving worldwide attention for its induction of an anti-tumor response. However, it has had limited efficacy in some patients who acquired resistance. The dynamic and sophisticated complexity of the tumor microenvironment (TME) is the leading contributor to this clinical dilemma. Through recapitulating the physiological features of the TME, 3D bioprinting is a promising research tool for cancer immunotherapy, which preserves in vivo malignant aggressiveness, heterogeneity, and the cell-cell/matrix interactions. It has been reported that application of 3D bioprinting holds potential to address the challenges of immunotherapy resistance and facilitate personalized medication. CONCLUSIONS AND PERSPECTIVES In this review, we briefly summarize the contributions of cellular and noncellular components of the TME in the development of immunotherapy resistance, and introduce recent advances in 3D bioprinted tumor models that served as platforms to study the interactions between tumor cells and the TME. By constructing multicellular 3D bioprinted tumor models, cellular and noncellular crosstalk is reproduced between tumor cells, immune cells, fibroblasts, adipocytes, and the extracellular matrix (ECM) within the TME. In the future, by quickly preparing 3D bioprinted tumor models with patient-derived components, information on tumor immunotherapy resistance can be obtained timely for clinical reference. The combined application with tumoroid or other 3D culture technologies will also help to better simulate the complexity and dynamics of tumor microenvironment in vitro. We aim to provide new perspectives for overcoming cancer immunotherapy resistance and inspire multidisciplinary research to improve the clinical application of 3D bioprinting technology.
Collapse
Affiliation(s)
- Zhanyi Zhang
- Bethune Third Clinical Medical College, Jilin University, Changchun, 130021, China
| | - Xuebo Chen
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, NO. 126, Xiantai Street, Changchun, 130033, China
| | - Sujie Gao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xuedong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, NO. 126, Xiantai Street, Changchun, 130033, China.
| | - Shengnan Ren
- Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, NO. 519, Kunzhou Street, Kunming, 650118, China.
| |
Collapse
|
14
|
Kobayashi T, Noma K, Nishimura S, Kato T, Nishiwaki N, Ohara T, Kunitomo T, Kawasaki K, Akai M, Komoto S, Kashima H, Kikuchi S, Tazawa H, Shirakawa Y, Choyke PL, Kobayashi H, Fujiwara T. Near-infrared Photoimmunotherapy Targeting Cancer-Associated Fibroblasts in Patient-Derived Xenografts Using a Humanized Anti-Fibroblast Activation Protein Antibody. Mol Cancer Ther 2024; 23:1031-1042. [PMID: 38638034 DOI: 10.1158/1535-7163.mct-23-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/10/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Esophageal cancer remains a highly aggressive malignancy with a poor prognosis, despite ongoing advancements in treatments such as immunotherapy. The tumor microenvironment, particularly cancer-associated fibroblasts (CAF), plays a crucial role in driving the aggressiveness of esophageal cancer. In a previous study utilizing human-derived xenograft models, we successfully developed a novel cancer treatment that targeted CAFs with near-infrared photoimmunotherapy (NIR-PIT), as an adjuvant therapy. In this study, we sought to translate our findings toward clinical practice by employing patient-derived xenograft (PDX) models and utilizing humanized mAbs, specifically sibrotuzumab, which is an antihuman fibroblast activation protein (FAP) Ab and already being investigated in clinical trials as monotherapy. PDX models derived from patients with esophageal cancer were effectively established, preserving the expression of key biomarkers such as EGFR and FAP, as observed in primary tumors. The application of FAP-targeted NIR-PIT using sibrotuzumab, conjugated with the photosensitizer IR700DX, exhibited precise binding and selective elimination of FAP-expressing fibroblasts in vitro. Notably, in our in vivo investigations using both cell line-derived xenograft and PDX models, FAP-targeted NIR-PIT led to significant inhibition of tumor progression compared with control groups, all without inducing adverse events such as weight loss. Immunohistologic assessments revealed a substantial reduction in CAFs exclusively within the tumor microenvironment of both models, further supporting the efficacy of our approach. Thus, our study demonstrates the potential of CAF-targeted NIR-PIT employing sibrotuzumab as a promising therapeutic avenue for the clinical treatment of patients with esophageal cancer.
Collapse
Affiliation(s)
- Teruki Kobayashi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Seitaro Nishimura
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Takuya Kato
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Noriyuki Nishiwaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Toshiaki Ohara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Tomoyoshi Kunitomo
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Kento Kawasaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Masaaki Akai
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Satoshi Komoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Hajime Kashima
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Yasuhiro Shirakawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
- Department of Surgery, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| |
Collapse
|
15
|
Zhu H, Jin RU. The role of the fibroblast in Barrett's esophagus and esophageal adenocarcinoma. Curr Opin Gastroenterol 2024; 40:319-327. [PMID: 38626060 PMCID: PMC11155289 DOI: 10.1097/mog.0000000000001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
PURPOSE OF REVIEW Barrett's esophagus (BE) is the number one risk factor for developing esophageal adenocarcinoma (EAC), a deadly cancer with limited treatment options that has been increasing in incidence in the US. In this report, we discuss current studies on the role of mesenchyme and cancer-associated fibroblasts (CAFs) in BE and EAC, and we highlight translational prospects of targeting these cells. RECENT FINDINGS New insights through studies using single-cell RNA sequencing (sc-RNA seq) have revealed an important emerging role of the mesenchyme in developmental signaling and cancer initiation. BE and EAC share similar stromal gene expression, as functional classifications of nonepithelial cells in BE show a remarkable similarity to EAC CAFs. Several recent sc-RNA seq studies and novel organoid fibroblast co-culture systems have characterized the subgroups of fibroblasts in BE and EAC, and have shown that these cells can directly influence the epithelium to induce BE development and cancer progression. Targeting the CAFs in EAC with may be a promising novel therapeutic strategy. SUMMARY The fibroblasts in the surrounding mesenchyme may have a direct role in influencing altered epithelial plasticity during BE development and progression to EAC.
Collapse
Affiliation(s)
- Huili Zhu
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
16
|
Meng X, Liu Z, Deng L, Yang Y, Zhu Y, Sun X, Hao Y, He Y, Fu J. Hydrogen Therapy Reverses Cancer-Associated Fibroblasts Phenotypes and Remodels Stromal Microenvironment to Stimulate Systematic Anti-Tumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401269. [PMID: 38757665 PMCID: PMC11267370 DOI: 10.1002/advs.202401269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/02/2024] [Indexed: 05/18/2024]
Abstract
Tumor microenvironment (TME) plays an important role in the tumor progression. Among TME components, cancer-associated fibroblasts (CAFs) show multiple tumor-promoting effects and can induce tumor immune evasion and drug-resistance. Regulating CAFs can be a potential strategy to augment systemic anti-tumor immunity. Here, the study observes that hydrogen treatment can alleviate intracellular reactive oxygen species of CAFs and reshape CAFs' tumor-promoting and immune-suppressive phenotypes. Accordingly, a controllable and TME-responsive hydrogen therapy based on a CaCO3 nanoparticles-coated magnesium system (Mg-CaCO3) is developed. The hydrogen therapy by Mg-CaCO3 can not only directly kill tumor cells, but also inhibit pro-tumor and immune suppressive factors in CAFs, and thus augment immune activities of CD4+ T cells. As implanted in situ, Mg-CaCO3 can significantly suppress tumor growth, turn the "cold" primary tumor into "hot", and stimulate systematic anti-tumor immunity, which is confirmed by the bilateral tumor transplantation models of "cold tumor" (4T1 cells) and "hot tumor" (MC38 cells). This hydrogen therapy system reverses immune suppressive phenotypes of CAFs, thus providing a systematic anti-tumor immune stimulating strategy by remodeling tumor stromal microenvironment.
Collapse
Affiliation(s)
- Xiaoyan Meng
- Department of Oral Maxillofacial & Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- College of StomatologyNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Jiao Tong UniversityShanghai200011P. R. China
| | - Zhonglong Liu
- Department of Oral Maxillofacial & Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- College of StomatologyNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Jiao Tong UniversityShanghai200011P. R. China
| | - Liang Deng
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Clinical and Translational Research Center for 3D Printing TechnologyShanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized MedicineShanghai200011P. R. China
| | - Yangzi Yang
- Department of Orthopedic SurgerySpine CenterChangzheng HospitalNavy Medical UniversityNo. 415 Fengyang RoadShanghai200003P. R. China
| | - Yingchun Zhu
- Key Laboratory of Inorganic Coating MaterialsShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Xiaoying Sun
- College of SciencesShanghai UniversityShanghai200444P. R. China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Clinical and Translational Research Center for 3D Printing TechnologyShanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized MedicineShanghai200011P. R. China
| | - Yue He
- Department of Oral Maxillofacial & Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- College of StomatologyNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Jiao Tong UniversityShanghai200011P. R. China
| | - Jingke Fu
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Clinical and Translational Research Center for 3D Printing TechnologyShanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized MedicineShanghai200011P. R. China
| |
Collapse
|
17
|
Yang L, Hu Q, Huang T. Breast Cancer Treatment Strategies Targeting the Tumor Microenvironment: How to Convert "Cold" Tumors to "Hot" Tumors. Int J Mol Sci 2024; 25:7208. [PMID: 39000314 PMCID: PMC11241188 DOI: 10.3390/ijms25137208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Breast cancer characterized as "cold tumors" exhibit low levels of immune cell infiltration, which limits the efficacy of conventional immunotherapy. Recent studies have focused on strategies using nanotechnology combined with tumor microenvironment modulation to transform "cold tumors" into "hot tumors". This approach involves the use of functionalized nanoparticles that target and modify the tumor microenvironment to promote the infiltration and activation of antitumor immune cells. By delivering immune activators or blocking immunosuppressive signals, these nanoparticles activate otherwise dormant immune responses, enhancing tumor immunogenicity and the therapeutic response. These strategies not only promise to increase the response rate of breast cancer patients to existing immunotherapies but also may pave new therapeutic avenues, providing a new direction for the immunotherapy of breast cancer.
Collapse
Affiliation(s)
- Liucui Yang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingyi Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
18
|
Chen X, Sun H, Yang C, Wang W, Lyu W, Zou K, Zhang F, Dai Z, He X, Dong H. Bioinformatic analysis and experimental validation of six cuproptosis-associated genes as a prognostic signature of breast cancer. PeerJ 2024; 12:e17419. [PMID: 38912044 PMCID: PMC11192027 DOI: 10.7717/peerj.17419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/28/2024] [Indexed: 06/25/2024] Open
Abstract
Background Breast carcinoma (BRCA) is a life-threatening malignancy in women and shows a poor prognosis. Cuproptosis is a novel mode of cell death but its relationship with BRCA is unclear. This study attempted to develop a cuproptosis-relevant prognostic gene signature for BRCA. Methods Cuproptosis-relevant subtypes of BRCA were obtained by consensus clustering. Differential expression analysis was implemented using the 'limma' package. Univariate Cox and multivariate Cox analyses were performed to determine a cuproptosis-relevant prognostic gene signature. The signature was constructed and validated in distinct datasets. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were also conducted using the prognostic signature to uncover the underlying molecular mechanisms. ESTIMATE and CIBERSORT algorithms were applied to probe the linkage between the gene signature and tumor microenvironment (TME). Immunotherapy responsiveness was assessed using the Tumor Immune Dysfunction and Exclusion (TIDE) web tool. Real-time quantitative PCR (RT-qPCR) was performed to detect the expressions of cuproptosis-relevant prognostic genes in breast cancer cell lines. Results Thirty-eight cuproptosis-associated differentially expressed genes (DEGs) in BRCA were mined by consensus clustering and differential expression analysis. Based on univariate Cox and multivariate Cox analyses, six cuproptosis-relevant prognostic genes, namely SAA1, KRT17, VAV3, IGHG1, TFF1, and CLEC3A, were mined to establish a corresponding signature. The signature was validated using external validation sets. GSVA and GSEA showed that multiple cell cycle-linked and immune-related pathways along with biological processes were associated with the signature. The results ESTIMATE and CIBERSORT analyses revealed significantly different TMEs between the two Cusig score subgroups. Finally, RT-qPCR analysis of cell lines further confirmed the expressional trends of SAA1, KRT17, IGHG1, and CLEC3A. Conclusion Taken together, we constructed a signature for projecting the overall survival of BRCA patients and our findings authenticated the cuproptosis-relevant prognostic genes, which are expected to provide a basis for developing prognostic molecular biomarkers and an in-depth understanding of the relationship between cuproptosis and BRCA.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Hening Sun
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Changcheng Yang
- Department of The First Affiliated Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Wei Wang
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Wenzhi Lyu
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Kejian Zou
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Fan Zhang
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Zhijun Dai
- Department of The First Affiliated Hospital, Zhejiang University, Hangzhou City, Zhejiang Province, China
| | - Xionghui He
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Huaying Dong
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| |
Collapse
|
19
|
Zhong H, Zhou S, Yin S, Qiu Y, Liu B, Yu H. Tumor microenvironment as niche constructed by cancer stem cells: Breaking the ecosystem to combat cancer. J Adv Res 2024:S2090-1232(24)00251-0. [PMID: 38866179 DOI: 10.1016/j.jare.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are a distinct subpopulation of cancer cells with the capacity to constantly self-renew and differentiate, and they are the main driver in the progression of cancer resistance and relapse. The tumor microenvironment (TME) constructed by CSCs is the "soil" adapted to tumor growth, helping CSCs evade immune killing, enhance their chemical resistance, and promote cancer progression. AIM OF REVIEW We aim to elaborate the tight connection between CSCs and immunosuppressive components of the TME. We attempt to summarize and provide a therapeutic strategy to eradicate CSCs based on the destruction of the tumor ecological niche. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three main key concepts. First, we highlight that CSCs recruit and transform normal cells to construct the TME, which further provides ecological niche support for CSCs. Second, we describe the main characteristics of the immunosuppressive components of the TME, targeting strategies and summarize the progress of corresponding drugs in clinical trials. Third, we explore the multilevel insights of the TME to serve as an ecological niche for CSCs.
Collapse
Affiliation(s)
- Hao Zhong
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shiyue Zhou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shuangshuang Yin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Haiyang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, China.
| |
Collapse
|
20
|
Akai M, Noma K, Kato T, Nishimura S, Matsumoto H, Kawasaki K, Kunitomo T, Kobayashi T, Nishiwaki N, Kashima H, Kikuchi S, Ohara T, Tazawa H, Choyke PL, Kobayashi H, Fujiwara T. Fibroblast activation protein-targeted near-infrared photoimmunotherapy depletes immunosuppressive cancer-associated fibroblasts and remodels local tumor immunity. Br J Cancer 2024; 130:1647-1658. [PMID: 38555315 PMCID: PMC11091110 DOI: 10.1038/s41416-024-02639-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) play a critical role in tumor immunosuppression. However, targeted depletion of CAFs is difficult due to their diverse cells of origin and the resulting lack of specific surface markers. Near-infrared photoimmunotherapy (NIR-PIT) is a novel cancer treatment that leads to rapid cell membrane damage. METHODS In this study, we used anti-mouse fibroblast activation protein (FAP) antibody to target FAP+ CAFs (FAP-targeted NIR-PIT) and investigated whether this therapy could suppress tumor progression and improve tumor immunity. RESULTS FAP-targeted NIR-PIT induced specific cell death in CAFs without damaging adjacent normal cells. Furthermore, FAP-targeted NIR-PIT treated mice showed significant tumor regression in the CAF-rich tumor model accompanied by an increase in CD8+ tumor infiltrating lymphocytes (TILs). Moreover, treated tumors showed increased levels of IFN-γ, TNF-α, and IL-2 in CD8+ TILs compared with non-treated tumors, suggesting enhanced antitumor immunity. CONCLUSIONS Cancers with FAP-positive CAFs in their TME grow rapidly and FAP-targeted NIR-PIT not only suppresses their growth but improves tumor immunosuppression. Thus, FAP-targeted NIR-PIT is a potential therapeutic strategy for selectively targeting the TME of CAF+ tumors.
Collapse
Affiliation(s)
- Masaaki Akai
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Takuya Kato
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seitaro Nishimura
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hijiri Matsumoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kento Kawasaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoyoshi Kunitomo
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Teruki Kobayashi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Noriyuki Nishiwaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hajime Kashima
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiaki Ohara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Pathology & Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Center for Gene and Cell Therapy, Okayama University Hospital, Okayama, Japan
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
21
|
Qin Q, Yu R, Eriksson JE, Tsai HI, Zhu H. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma therapy: Challenges and opportunities. Cancer Lett 2024; 591:216859. [PMID: 38615928 DOI: 10.1016/j.canlet.2024.216859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid organ malignancy with a high mortality rate. Statistics indicate that its incidence has been increasing as well as the associated deaths. Most patients with PDAC show poor response to therapies making the clinical management of this cancer difficult. Stromal cells in the tumor microenvironment (TME) contribute to the development of resistance to therapy in PDAC cancer cells. Cancer-associated fibroblasts (CAFs), the most prevalent stromal cells in the TME, promote a desmoplastic response, produce extracellular matrix proteins and cytokines, and directly influence the biological behavior of cancer cells. These multifaceted effects make it difficult to eradicate tumor cells from the body. As a result, CAF-targeting synergistic therapeutic strategies have gained increasing attention in recent years. However, due to the substantial heterogeneity in CAF origin, definition, and function, as well as high plasticity, majority of the available CAF-targeting therapeutic approaches are not effective, and in some cases, they exacerbate disease progression. This review primarily elucidates on the effect of CAFs on therapeutic efficiency of various treatment modalities, including chemotherapy, radiotherapy, immunotherapy, and targeted therapy. Strategies for CAF targeting therapies are also discussed.
Collapse
Affiliation(s)
- Qin Qin
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - Rong Yu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI-20520 Finland
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
22
|
Wei R, Song J, Pan H, Liu X, Gao J. CPT1C-positive cancer-associated fibroblast facilitates immunosuppression through promoting IL-6-induced M2-like phenotype of macrophage. Oncoimmunology 2024; 13:2352179. [PMID: 38746869 PMCID: PMC11093039 DOI: 10.1080/2162402x.2024.2352179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) exhibit remarkable phenotypic heterogeneity, with specific subsets implicated in immunosuppression in various malignancies. However, whether and how they attenuate anti-tumor immunity in gastric cancer (GC) remains elusive. CPT1C, a unique isoform of carnitine palmitoyltransferase pivotal in regulating fatty acid oxidation, is briefly indicated as a protumoral metabolic mediator in the tumor microenvironment (TME) of GC. In the present study, we initially identified specific subsets of fibroblasts exclusively overexpressing CPT1C, hereby termed them as CPT1C+CAFs. Subsequent findings indicated that CPT1C+CAFs fostered a stroma-enriched and immunosuppressive TME as they correlated with extracellular matrix-related molecular features and enrichment of both immunosuppressive subsets, especially M2-like macrophages, and multiple immune-related pathways. Next, we identified that CPT1C+CAFs promoted the M2-like phenotype of macrophage in vitro. Bioinformatic analyses unveiled the robust IL-6 signaling between CPT1C+CAFs and M2-like phenotype of macrophage and identified CPT1C+CAFs as the primary source of IL-6. Meanwhile, suppressing CPT1C expression in CAFs significantly decreased IL-6 secretion in vitro. Lastly, we demonstrated the association of CPT1C+CAFs with therapeutic resistance. Notably, GC patients with high CPT1C+CAFs infiltration responded poorly to immunotherapy in clinical cohort. Collectively, our data not only present the novel identification of CPT1C+CAFs as immunosuppressive subsets in TME of GC, but also reveal the underlying mechanism that CPT1C+CAFs impair tumor immunity by secreting IL-6 to induce the immunosuppressive M2-like phenotype of macrophage in GC.
Collapse
Affiliation(s)
- Rongyuan Wei
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junquan Song
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongda Pan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaowen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianpeng Gao
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Lou M, Iwatsuki M, Wu X, Zhang W, Matsumoto C, Baba H. Cancer-Associated Fibroblast-Derived IL-8 Upregulates PD-L1 Expression in Gastric Cancer Through the NF-κB Pathway. Ann Surg Oncol 2024; 31:2983-2995. [PMID: 38006530 DOI: 10.1245/s10434-023-14586-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/29/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND The expression of programmed death-ligand 1 (PD-L1) in tumor cells is a leading cause of tumor immune escape; however, the precise mechanism underlying the regulation of PD-L1 expression in gastric cancer (GC) cells remains unknown. In this study, we aimed to investigate the potential mechanism of cancer-associated fibroblasts (CAFs) regulating PD-L1 expression in GC cells. METHODS We evaluated the immunomodulatory effects of CAFs in GC cells in vitro via the transwell co-culture system, cytometric bead array, and Western blotting. We detected the role of interleukin (IL)-8 in affecting underlying pathways in GC cells via transfecting IL-8 small-interfering RNA (siRNA), and the protection effects of CAFs on GC cells exposed to CD8+ T cells via cytotoxicity assays. RESULTS The results revealed that CAFs upregulated PD-L1 expression of GC cells. IL-8 expression was increased after KATO III or MKN45 cells co-cultured with CAF. Additionally, CAF-derived IL-8 promoted PD-L1 expression in GC cells through the P38, JNK, and NF-κB pathways. Besides, repertaxin, an IL-8 receptors (CXCR1/2) inhibitor, reduced PD-L1 expression in GC cells by blocking the P38, JNK, and NF-κB pathways. Furthermore, the expressions of p-P38, p-JNK, and p-NF-κB decreased after GC cells co-cultured with siIL-8-treated CAF. Moreover, repertaxin attenuated the protection of CAFs to cancer cells that were resistant to CD8+ T-cell cytotoxicity, and improved the antibody effects of anti-PD-L1 facilitating CD8+ T-cell cytotoxicity by targeting IL-8. CONCLUSION Targeting CAF-derived IL-8 may defeat PD-L1 upregulation-mediated immune resistance in GC cells, which provides a novel approach to improve the immunotherapeutic efficacies of patients with GC.
Collapse
Affiliation(s)
- Meiyue Lou
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Xiyu Wu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Weiliyun Zhang
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Chihiro Matsumoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
24
|
Mai Z, Lin Y, Lin P, Zhao X, Cui L. Modulating extracellular matrix stiffness: a strategic approach to boost cancer immunotherapy. Cell Death Dis 2024; 15:307. [PMID: 38693104 PMCID: PMC11063215 DOI: 10.1038/s41419-024-06697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
The interplay between extracellular matrix (ECM) stiffness and the tumor microenvironment is increasingly recognized as a critical factor in cancer progression and the efficacy of immunotherapy. This review comprehensively discusses the key factors regulating ECM remodeling, including the activation of cancer-associated fibroblasts and the accumulation and crosslinking of ECM proteins. Furthermore, it provides a detailed exploration of how ECM stiffness influences the behaviors of both tumor and immune cells. Significantly, the impact of ECM stiffness on the response to various immunotherapy strategies, such as immune checkpoint blockade, adoptive cell therapy, oncolytic virus therapy, and therapeutic cancer vaccines, is thoroughly examined. The review also addresses the challenges in translating research findings into clinical practice, highlighting the need for more precise biomaterials that accurately mimic the ECM and the development of novel therapeutic strategies. The insights offered aim to guide future research, with the potential to enhance the effectiveness of cancer immunotherapy modalities.
Collapse
Affiliation(s)
- Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
25
|
Wang Y, Chen K, Liu G, Du C, Cheng Z, Wei D, Li F, Li C, Yang Y, Zhao Y, Nie G. Disruption of Super-Enhancers in Activated Pancreatic Stellate Cells Facilitates Chemotherapy and Immunotherapy in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308637. [PMID: 38417121 DOI: 10.1002/advs.202308637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/27/2024] [Indexed: 03/01/2024]
Abstract
One major obstacle in the drug treatment of pancreatic ductal adenocarcinoma (PDAC) is its highly fibrotic tumor microenvironment, which is replete with activated pancreatic stellate cells (a-PSCs). These a-PSCs generate abundant extracellular matrix and secrete various cytokines to form biophysical and biochemical barriers, impeding drug access to tumor tissues. Therefore, it is imperative to develop a strategy for reversing PSC activation and thereby removing the barriers to facilitate PDAC drug treatment. Herein, by integrating chromatin immunoprecipitation (ChIP)-seq, Assays for Transposase-Accessible Chromatin (ATAC)-seq, and RNA-seq techniques, this work reveals that super-enhancers (SEs) promote the expression of various genes involved in PSC activation. Disruption of SE-associated transcription with JQ1 reverses the activated phenotype of a-PSCs and decreases stromal fibrosis in both orthotopic and patient-derived xenograft (PDX) models. More importantly, disruption of SEs by JQ1 treatments promotes vascularization, facilitates drug delivery, and alters the immune landscape in PDAC, thereby improving the efficacies of both chemotherapy (with gemcitabine) and immunotherapy (with IL-12). In summary, this study not only elucidates the contribution of SEs of a-PSCs in shaping the PDAC tumor microenvironment but also highlights that targeting SEs in a-PSCs may become a gate-opening strategy that benefits PDAC drug therapy by removing stromal barriers.
Collapse
Affiliation(s)
- Yazhou Wang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Kai Chen
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Gang Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Chong Du
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhaoxia Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Dan Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Fenfen Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chen Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Ying Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
26
|
Imodoye SO, Adedokun KA, Bello IO. From complexity to clarity: unravelling tumor heterogeneity through the lens of tumor microenvironment for innovative cancer therapy. Histochem Cell Biol 2024; 161:299-323. [PMID: 38189822 DOI: 10.1007/s00418-023-02258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/09/2024]
Abstract
Despite the tremendous clinical successes recorded in the landscape of cancer therapy, tumor heterogeneity remains a formidable challenge to successful cancer treatment. In recent years, the emergence of high-throughput technologies has advanced our understanding of the variables influencing tumor heterogeneity beyond intrinsic tumor characteristics. Emerging knowledge shows that drivers of tumor heterogeneity are not only intrinsic to cancer cells but can also emanate from their microenvironment, which significantly favors tumor progression and impairs therapeutic response. Although much has been explored to understand the fundamentals of the influence of innate tumor factors on cancer diversity, the roles of the tumor microenvironment (TME) are often undervalued. It is therefore imperative that a clear understanding of the interactions between the TME and other tumor intrinsic factors underlying the plastic molecular behaviors of cancers be identified to develop patient-specific treatment strategies. This review highlights the roles of the TME as an emerging factor in tumor heterogeneity. More particularly, we discuss the role of the TME in the context of tumor heterogeneity and explore the cutting-edge diagnostic and therapeutic approaches that could be used to resolve this recurring clinical conundrum. We conclude by speculating on exciting research questions that can advance our understanding of tumor heterogeneity with the goal of developing customized therapeutic solutions.
Collapse
Affiliation(s)
- Sikiru O Imodoye
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| | - Kamoru A Adedokun
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Ibrahim O Bello
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.
- Department of Pathology, University of Helsinki, Haartmaninkatu 3, 00014, Helsinki, Finland.
| |
Collapse
|
27
|
Freag MS, Mohammed MT, Kulkarni A, Emam HE, Maremanda KP, Elzoghby AO. Modulating tumoral exosomes and fibroblast phenotype using nanoliposomes augments cancer immunotherapy. SCIENCE ADVANCES 2024; 10:eadk3074. [PMID: 38416824 PMCID: PMC10901379 DOI: 10.1126/sciadv.adk3074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
Cancer cells program fibroblasts into cancer associated fibroblasts (CAFs) in a two-step manner. First, cancer cells secrete exosomes to program quiescent fibroblasts into activated CAFs. Second, cancer cells maintain the CAF phenotype via activation of signal transduction pathways. We rationalized that inhibiting this two-step process can normalize CAFs into quiescent fibroblasts and augment the efficacy of immunotherapy. We show that cancer cell-targeted nanoliposomes that inhibit sequential steps of exosome biogenesis and release from lung cancer cells block the differentiation of lung fibroblasts into CAFs. In parallel, we demonstrate that CAF-targeted nanoliposomes that block two distinct nodes in fibroblast growth factor receptor (FGFR)-Wnt/β-catenin signaling pathway can reverse activate CAFs into quiescent fibroblasts. Co-administration of both nanoliposomes significantly improves the infiltration of cytotoxic T cells and enhances the antitumor efficacy of αPD-L1 in immunocompetent lung cancer-bearing mice. Simultaneously blocking the tumoral exosome-mediated activation of fibroblasts and FGFR-Wnt/β-catenin signaling constitutes a promising approach to augment immunotherapy.
Collapse
Affiliation(s)
- May S. Freag
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Investigative Toxicology, Drug Safety Research and Evaluation, Takeda Pharmaceuticals, Cambridge, MA, USA
| | - Mostafa T. Mohammed
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Anatomical and Clinical Pathology Department, Tufts Medical Center, Boston, MA, USA
| | - Arpita Kulkarni
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Hagar E. Emam
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Krishna P. Maremanda
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Ahmed O. Elzoghby
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Chak PT, Kam NW, Choi TH, Dai W, Kwong DLW. Unfolding the Complexity of Exosome-Cellular Interactions on Tumour Immunity and Their Clinical Prospects in Nasopharyngeal Carcinoma. Cancers (Basel) 2024; 16:919. [PMID: 38473281 DOI: 10.3390/cancers16050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy situated in the posterolateral nasopharynx. NPC poses grave concerns in Southeast Asia due to its late diagnosis. Together with resistance to standard treatment combining chemo- and radiotherapy, NPC presents high metastatic rates and common recurrence. Despite advancements in immune-checkpoint inhibitors (ICIs) and cytotoxic-T-lymphocytes (CTLs)-based cellular therapy, the exhaustive T cell profile and other signs of immunosuppression within the NPC tumour microenvironment (TME) remain as concerns to immunotherapy response. Exosomes, extracellular vesicles of 30-150 nm in diameter, are increasingly studied and linked to tumourigenesis in oncology. These bilipid-membrane-bound vesicles are packaged with a variety of signalling molecules, mediating cell-cell communications. Within the TME, exosomes can originate from tumour, immune, or stromal cells. Although there are studies on tumour-derived exosomes (TEX) in NPC and their effects on tumour processes like angiogenesis, metastasis, therapeutic resistance, there is a lack of research on their involvement in immune evasion. In this review, we aim to enhance the comprehension of how NPC TEX contribute to cellular immunosuppression. Furthermore, considering the detectability of TEX in bodily fluids, we will also discuss the potential development of TEX-related biomarkers for liquid biopsy in NPC as this could facilitate early diagnosis and prognostication of the disease.
Collapse
Affiliation(s)
- Paak-Ting Chak
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ngar-Woon Kam
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, New Territories, Hong Kong 999077, China
| | - Tsz-Ho Choi
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Wei Dai
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
29
|
Liu Z, Sun B, Xu A, Tang J, Zhang H, Gao J, Wang L. MICAL2 implies immunosuppressive features and acts as an independent and adverse prognostic biomarker in pancreatic cancer. Sci Rep 2024; 14:3177. [PMID: 38326344 PMCID: PMC10850094 DOI: 10.1038/s41598-024-52729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
At present, clinical outcomes of pancreatic cancer patients are still poor. New therapeutic targets for pancreatic cancer are urgently needed. Previous studies have indicated that Microtubule Associated Monooxygenase, Calponin and LIM Domain Containing 2 (MICAL2) is highly expressed in many tumors and promotes tumor progression. However, the role played by MICAL2 in pancreatic cancer remains unclear. Based on gene expression and clinical information from multiple datasets, we used comprehensive bioinformatics analysis in combination with tissue microarray to explore the function and clinical value of MICAL2. The results showed that MICAL2 was highly expressed in pancreatic cancer tissue and exhibited potential diagnostic capability. High expression of MICAL2 was also associated with poor prognosis and acted as an independent prognostic factor. MICAL2, mainly expressed in fibroblasts of pancreatic cancer, was closely related to metastasis and immune-related features, such as epithelial-mesenchymal transformation, extracellular cell matrix degradation, and inflammatory response. Furthermore, higher MICAL2 expression in pancreatic cancer was also associated with an increase in cancer-associated fibroblasts as well as M2 macrophage infiltration, and a reduction in CD8 + T cell infiltration, thereby facilitating the formation of an immunosuppressive microenvironment. Our results helped elucidate the clinical value and function in metastasis and immunity of MICAL2 in pancreatic cancer. These findings provided potential clinical strategies for diagnosis, targeted therapy combination immunotherapy, and prognosis in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Zhicheng Liu
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People's Hospital of Lianyungang), Lianyungang, Jiangsu, China
| | - Bing Sun
- Jinzhou Medical University Postgraduate Training Base (The First People's Hospital of Lianyungang), Lianyungang, Jiangsu, China
| | - Aiguo Xu
- Department of Oncology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Jingjiao Tang
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People's Hospital of Lianyungang), Lianyungang, Jiangsu, China
| | - Huiqin Zhang
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People's Hospital of Lianyungang), Lianyungang, Jiangsu, China
| | - Jie Gao
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People's Hospital of Lianyungang), Lianyungang, Jiangsu, China
| | - Lei Wang
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People's Hospital of Lianyungang), Lianyungang, Jiangsu, China.
| |
Collapse
|
30
|
Du X, Gu B, Wang X, Wang X, Ji M, Zhang J, He S, Xu X, Yang Z, Song S. Preclinical Evaluation and a Pilot Clinical Positron Emission Tomography Imaging Study of [ 68Ga]Ga-FAPI-FUSCC-II. Mol Pharm 2024; 21:904-915. [PMID: 38179677 DOI: 10.1021/acs.molpharmaceut.3c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Fibroblast activation protein (FAP), a type II integral membrane serine protease, is a promising target for tumor diagnosis and therapy. OncoFAP has been recently discovered for PET imaging procedures for various solid malignancies. In this study, we presented the development of manual radiolabeling procedures for the preparation of OncoFAP-based radiopharmaceuticals for cancer imaging. A novel series of [68Ga/177Lu]Ga/Lu-FAPI-FUSCC-I/II were produced with high radiochemical yields. [68Ga]Ga-FAPI-FUSCC-I/II and [177Lu]Lu-FAPI-FUSCC-I/II were stable in phosphate-buffered saline, fetal bovine serum, and human serum for at least 3 h. In vitro cellular uptake and blocking experiments implied that they had specificity to FAP. Additionally, the low nanomolar IC50 values of FAPI-FUSCC-II indicated that it had a high target affinity to FAP. The in vivo biodistribution and blocking study in mice bearing HT-1080-FAP tumors showed that both exhibited specific tumor uptake. [68Ga]Ga-FAPI-FUSCC-II showed a higher tumor uptake and a higher tumor/nontarget ratio than [68Ga]Ga-FAPI-FUSCC-I and [68Ga]Ga-FAPI-04. The results of ex vivo biodistribution were in accordance with the biodistribution results. Clinical [68Ga]Ga-FAPI-FUSCC-II-PET/CT imaging further demonstrated its favorable biodistribution and kinetics with elevated and reliable uptake by primary tumors (maximum standardized uptake value (SUVmax), 12.17 ± 6.67) and distant metastases (SUVmax, 9.24 ± 4.28). In summary, [68Ga]Ga-FAPI-FUSCC-II displayed increased tumor uptake and retention compared to [68Ga]Ga-FAPI-04, giving it potential as a promising tracer for the diagnostic imaging of malignant tumors with positive FAP expression.
Collapse
Affiliation(s)
- Xinyue Du
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, P. R. China
| | - Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, P. R. China
| | - Xiao Wang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, P. R. China
| | - Xiangwei Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, P. R. China
| | - Mengjing Ji
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, P. R. China
| | - Jianping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, P. R. China
| | - Simin He
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, P. R. China
| | - Xiaoping Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, P. R. China
| | - Zhongyi Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, P. R. China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, P. R. China
| |
Collapse
|
31
|
Wang W, Li T, Xie Z, Zhao J, Zhang Y, Ruan Y, Han B. Integrating single-cell and bulk RNA sequencing data unveils antigen presentation and process-related CAFS and establishes a predictive signature in prostate cancer. J Transl Med 2024; 22:57. [PMID: 38221616 PMCID: PMC10789066 DOI: 10.1186/s12967-023-04807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/14/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are heterogeneous and can influence the progression of prostate cancer in multiple ways; however, their capacity to present and process antigens in PRAD has not been investigated. In this study, antigen presentation and process-related CAFs (APPCAFs) were identified using bioinformatics, and the clinical implications of APPCAF-related signatures in PRAD were investigated. METHODS SMART technology was used to sequence the transcriptome of primary CAFs isolated from patients undergoing different treatments. Differential expression gene (DEG) screening was conducted. A CD4 + T-cell early activation assay was used to assess the activation degree of CD4 + T cells. The datasets of PRAD were obtained from The Cancer Genome Atlas (TCGA) database and NCBI Gene Expression Omnibus (GEO), and the list of 431 antigen presentation and process-related genes was obtained from the InnateDB database. Subsequently, APP-related CAFs were identified by nonnegative matrix factorization (NMF) based on a single-cell seq (scRNA) matrix. GSVA functional enrichment analyses were performed to depict the biological functions. A risk signature based on APPCAF-related genes (APPCAFRS) was developed by least absolute shrinkage and selection operator (LASSO) regression analysis, and the independence of the risk score as a prognostic factor was evaluated by univariate and multivariate Cox regression analyses. Furthermore, a biochemical recurrence-free survival (BCRFS)-related nomogram was established, and immune-related characteristics were assessed using the ssGSEA function. The immune treatment response in PRAD was further analyzed by the Tumor Immune Dysfunction and Exclusion (TIDE) tool. The expression levels of hub genes in APPCAFRS were verified in cell models. RESULTS There were 134 upregulated and 147 downregulated genes, totaling 281 differentially expressed genes among the primary CAFs. The functions and pathways of 147 downregulated DEGs were significantly enriched in antigen processing and presentation processes, MHC class II protein complex and transport vesicle, MHC class II protein complex binding, and intestinal immune network for IgA production. Androgen withdrawal diminished the activation effect of CAFs on T cells. NMF clustering of CAFs was performed by APPRGs, and pseudotime analysis yielded the antigen presentation and process-related CAF subtype CTSK + MRC2 + CAF-C1. CTSK + MRC2 + CAF-C1 cells exhibited ligand‒receptor connections with epithelial cells and T cells. Additionally, we found a strong association between CTSK + MRC2 + CAF-C1 cells and inflammatory CAFs. Through differential gene expression analysis of the CTSK + MRC2 + CAF-C1 and NoneAPP-CAF-C2 subgroups, 55 significant DEGs were identified, namely, APPCAFRGs. Based on the expression profiles of APPCAFRGs, we divided the TCGA-PRAD cohort into two clusters using NMF consistent cluster analysis, with the genetic coefficient serving as the evaluation index. Four APPCAFRGs, THBS2, DPT, COL5A1, and MARCKS, were used to develop a prognostic signature capable of predicting BCR occurrence in PRAD patients. Subsequently, a nomogram with stability and accuracy in predicting BCR was constructed based on Gleason grade (p = n.s.), PSA (p < 0.001), T stage (p < 0.05), and risk score (p < 0.01). The analysis of immune infiltration showed a positive correlation between the abundance of resting memory CD4 + T cells, M1 macrophages, resting dendritic cells, and the risk score. In addition, the mRNA expression levels of THBS2, DPT, COL5A1, and MARCKS in the cell models were consistent with the results of the bioinformatics analysis. CONCLUSIONS APPCAFRS based on four potential APPCAFRGs was developed, and their interaction with the immune microenvironment may play a crucial role in the progression to castration resistance of PRAD. This novel approach provides valuable insights into the pathogenesis of PRAD and offers unexplored targets for future research.
Collapse
Affiliation(s)
- Wenhao Wang
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Tiewen Li
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zhiwen Xie
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Jing Zhao
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yu Zhang
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yuan Ruan
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Bangmin Han
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China.
| |
Collapse
|
32
|
Carretta M, Thorseth ML, Schina A, Agardy DA, Johansen AZ, Baker KJ, Khan S, Rømer AMA, Fjæstad KY, Linder H, Kuczek DE, Donia M, Grøntved L, Madsen DH. Dissecting tumor microenvironment heterogeneity in syngeneic mouse models: insights on cancer-associated fibroblast phenotypes shaped by infiltrating T cells. Front Immunol 2024; 14:1320614. [PMID: 38259467 PMCID: PMC10800379 DOI: 10.3389/fimmu.2023.1320614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Murine syngeneic tumor models have been used extensively for cancer research for several decades and have been instrumental in driving the discovery and development of cancer immunotherapies. These tumor models are very simplistic cancer models, but recent reports have, however, indicated that the different inoculated cancer cell lines can lead to the formation of unique tumor microenvironments (TMEs). To gain more knowledge from studies based on syngeneic tumor models, it is essential to obtain an in-depth understanding of the cellular and molecular composition of the TME in the different models. Additionally, other parameters that are important for cancer progression, such as collagen content and mechanical tissue stiffness across syngeneic tumor models have not previously been reported. Here, we compare the TME of tumors derived from six common syngeneic tumor models. Using flow cytometry and transcriptomic analyses, we show that strikingly unique TMEs are formed by the different cancer cell lines. The differences are reflected as changes in abundance and phenotype of myeloid, lymphoid, and stromal cells in the tumors. Gene expression analyses support the different cellular composition of the TMEs and indicate that distinct immunosuppressive mechanisms are employed depending on the tumor model. Cancer-associated fibroblasts (CAFs) also acquire very different phenotypes across the tumor models. These differences include differential expression of genes encoding extracellular matrix (ECM) proteins, matrix metalloproteinases (MMPs), and immunosuppressive factors. The gene expression profiles suggest that CAFs can contribute to the formation of an immunosuppressive TME, and flow cytometry analyses show increased PD-L1 expression by CAFs in the immunogenic tumor models, MC38 and CT26. Comparison with CAF subsets identified in other studies shows that CAFs are skewed towards specific subsets depending on the model. In athymic mice lacking tumor-infiltrating cytotoxic T cells, CAFs express lower levels of PD-L1 and lower levels of fibroblast activation markers. Our data underscores that CAFs can be involved in the formation of an immunosuppressive TME.
Collapse
Affiliation(s)
- Marco Carretta
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Marie-Louise Thorseth
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Aimilia Schina
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Dennis Alexander Agardy
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Astrid Zedlitz Johansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Kevin James Baker
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Shawez Khan
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Anne Mette Askehøj Rømer
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Klaire Yixin Fjæstad
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Hannes Linder
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Dorota Ewa Kuczek
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Daniel Hargbøl Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Li W, Xu T, Jin H, Li M, Jia Q. Emerging role of cancer-associated fibroblasts in esophageal squamous cell carcinoma. Pathol Res Pract 2024; 253:155002. [PMID: 38056131 DOI: 10.1016/j.prp.2023.155002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Esophageal carcinoma is the sixth leading cause of cancer death globally and the majority of global cases are esophageal squamous cell carcinoma (ESCC). Difficulty in diagnosis exists as more than 70% of ESCC patients are diagnosed at the intermediate or advanced stage. Cancer-associated fibroblasts (CAFs) have been considered one of the crucial components in the process of tumor growth, promoting communications between cancer cells and the tumor microenvironment (TME). CAFs grow alongside malignancies dynamically and interact with ESCC cells to promote their progression, proliferation, invasion, tumor escape, chemo- and radio-resistance, etc. It is believed that CAFs qualify as a promising direction for treatment. Analyzing CAFs' subtypes and functions will elucidate the involvement of CAFs in ESCC and aid in therapeutics. This review summarizes current information on CAFs in ESCC and focuses on the latest interaction between CAFs and ESCC cancer cell discoveries. The origin of CAFs and their communication with ESCC cells and TME are also demonstrated. On the foundation of a thorough analysis, we highlight the clinical prospects and CAFs-related therapies in ESCC in the future.
Collapse
Affiliation(s)
- Wenqing Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Tianqi Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Hai Jin
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| |
Collapse
|
34
|
Liu B, Liu Z, Gao C. Relationship Between CD8+ T Cells and Prognosis of Esophageal Cancer Patients: A Systematic Review and Meta-analysis. Mol Biotechnol 2024; 66:138-150. [PMID: 37060513 DOI: 10.1007/s12033-023-00733-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/22/2023] [Indexed: 04/16/2023]
Abstract
Tumor infiltrating lymphocytes (TILs), especially CD8+ T cells, play an important role in the process of anti-tumor immune response and are significantly correlated with the prognosis of esophageal cancer (EC), but there are also inconsistent conclusions. This study aimed to comprehensively evaluate the relationship between invasive CD8+ T cells and the prognosis in patients with EC through meta-analysis, and to provide a basis for prognosis and immunotherapy for EC. Articles related to CD8+ T cells and EC prognosis in PubMed, Cochrane Library, Embase, and CNKI were searched. Cancer specific survival (CSS), overall survival (OS) and disease-free survival (DFS) served as endpoint events. Besides, Stata15.0 was adopted for meta-analysis, and hazard ratio (HR) and 95% confidence interval (95%CI) for calculation of combined effect sizes. Total 547 articles were retrieved and 27 articles were finally enrolled, including 3988 cases of EC patients. Meta-analysis showed that high CD8 expression levels in tumor tissues, especially those in cancer nests, were associated with longer OS (HR = 0.74, 95% CI 0.67-0.81) and DFS (HR = 0.90, 95% CI 0.85-0.95) in EC patients (P < 0.05). CD8+ T cells play an important role in the prognosis of EC patients and are indispensable components for the immune score of EC.
Collapse
Affiliation(s)
- Ben Liu
- Department of Medical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Zeyuan Liu
- Department of Radiation Oncology, Nanjing Jiangning Hospital (The Affiliated Jiangning Hospital of Nanjing Medical University), Nanjing, 211000, Jiangsu, China
| | - Chao Gao
- Department of Medical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China.
| |
Collapse
|
35
|
Yuan WC, Zhang JX, Chen HB, Yuan Y, Zhuang YP, Zhou HL, Li MH, Qiu WL, Zhou HG. A bibliometric and visual analysis of cancer-associated fibroblasts. Front Immunol 2023; 14:1323115. [PMID: 38173726 PMCID: PMC10762783 DOI: 10.3389/fimmu.2023.1323115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) represent the predominant stromal component within the tumour microenvironment (TME), exhibiting considerable heterogeneity and plasticity that significantly impact immune response and metabolic reprogramming within the TME, thereby influencing tumour progression. Consequently, investigating CAFs is of utmost importance. The objective of this study is to employ bibliometric analysis in order to evaluate the current state of research on CAFs and predict future areas of research and emerging trends. Methods Conduct a comprehensive search for scholarly publications within the Web of Science Core Collection database, encompassing the time period from January 1, 2001, to December 31, 2022. Apply VOSviewer, CiteSpace, R software and Microsoft Excel for bibliometric analysis and visualisation. Results This study involved a comprehensive analysis of 5,925 publications authored by 33,628 individuals affiliated with 4,978 institutions across 79 countries/regions. These publications were published in 908 journals, covering 14,495 keywords and 203,947 references. Notably, there was a significant increase in articles published between 2019 and 2022. China had the highest count of articles, while the United States emerged as the most frequently cited country. The primary research institutions in this field were Shanghai Jiao Tong University, Harvard University, and the University of Texas MD Anderson Cancer Center. Sotgia, Federica and Lisanti, Michael P from the University of Manchester, and Martinet, Wim from the University of Antwerp were the most prolific and highly cited authors. The journal Cancers had the highest number of publications, while Cancer Research was the most frequently cited journal. Molecular, biology, immunology, medicine and genetics were the main research disciplines in the field of CAFs. Key directions in CAFs research encompassed the study of transforming growth factor-β, Fibroblast Activation Protein, breast cancer, as well as growth and metastasis. The findings from the analysis of keyword co-occurrence and literature co-citation have revealed several emerging hotspots and trends within the field of CAFs. These include STAT3, multidrug resistance, pancreatic ductal adenocarcinoma, pan-cancer analysis, preclinical evaluation, ionizing radiation, and gold nanoparticles. Conclusion Targeting CAFs is anticipated to be a novel and effective strategy for cancer treatment. This study provides a comprehensive overview of the existing research on CAFs from 2001 to 2022, utilizing bibliometric analysis. The study identified the prominent areas of investigation and anticipated future research directions, with the aim of providing valuable insights and recommendations for future studies in the field of CAFs.
Collapse
Affiliation(s)
- Wei-Chen Yuan
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie-Xiang Zhang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hai-Bin Chen
- Science and Technology Department, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Yuan
- Department of Otorhinolaryngology, Oral Plastic Surgery, Affiliated Hospital of Weifang Medical College, Weifang, China
| | - Yu-Pei Zhuang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-Li Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mu-Han Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen-Li Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-Guang Zhou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
36
|
Huang H, Yao Y, Shen L, Jiang J, Zhang T, Xiong J, Li J, Sun S, Zheng S, Jia F, Zhou J, Yu X, Chen W, Shen J, Xia W, Shao X, Wang Q, Huang J, Ni C. CD24hiCD27+ Bregs within Metastatic Lymph Nodes Promote Multidrug Resistance in Breast Cancer. Clin Cancer Res 2023; 29:5227-5243. [PMID: 37831062 DOI: 10.1158/1078-0432.ccr-23-1759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/31/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE Axillary lymph nodes (LN) are the primary and dominant metastatic sites in breast cancer. However, the interaction between tumor cells and immune cells within metastatic LNs (mLN) remains poorly understood. In our study, we explored the effect of CD24hiCD27+ regulatory B cells (Breg) within mLNs on orchestrating drug resistance of breast cancer cells. EXPERIMENTAL DESIGN We collected mLN samples from patients with breast cancer who had received standard neoadjuvant therapy (NAT) and analyzed the spatial features of CD24hiCD27+ Bregs through multicolor immunofluorescence staining. The effect of CD24hiCD27+ Bregs on drug resistance of breast cancer cells was evaluated via in vitro experiments. A mouse model with mLNs was used to evaluate the strategies with blocking the interactions between Bregs and breast cancer for improving tumor regression within mLNs. RESULTS In patients with breast cancer who had received NAT, there is a close spatial correlation between activated CD24hiCD27+ Bregs and residual tumor cells within mLNs. Mechanistically, CD24hiCD27+ Bregs greatly enhance the acquisition of multidrug resistance and stem-like features of breast cancer cells by secreting IL6 and TNFα. More importantly, breast cancer cells further promote the activation of CD24hiCD27+ Bregs via CD40L-dependent and PD-L1-dependent proximal signals, forming a positive feedback pattern. PD-L1 blockade significantly attenuates the drug resistance of breast cancer cells induced by CD24hiCD27+ Bregs, and addition of anti-PD-L1 antibody to chemotherapy improves tumor cell remission in mLNs. CONCLUSIONS Our study reveals the pivotal role of CD24hiCD27+ Bregs in promoting drug resistance by interacting with breast cancer cells in mLNs, providing novel evidence for an improved strategy of chemoimmunotherapy combination for patients with breast cancer with mLNs.
Collapse
Affiliation(s)
- Huanhuan Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, P.R. China
| | - Yao Yao
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Lesang Shen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jingxin Jiang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Ting Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jia Xiong
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, P.R. China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, P.R. China
| | - Jiaxin Li
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Shanshan Sun
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Siwei Zheng
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Fang Jia
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jun Zhou
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Xiuyan Yu
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Wuzhen Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jun Shen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Wenjie Xia
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, P.R. China
| | - Xuan Shao
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, P.R. China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, P.R. China
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Chao Ni
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
37
|
Kou L, Xie X, Chen X, Li B, Li J, Li Y. The progress of research on immune checkpoint inhibitor resistance and reversal strategies for hepatocellular carcinoma. Cancer Immunol Immunother 2023; 72:3953-3969. [PMID: 37917364 PMCID: PMC10992589 DOI: 10.1007/s00262-023-03568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in humans, which is prone to recurrence and metastasis and has a poor prognosis. The occurrence and progression of HCC are closely related to immune elimination, immune homeostasis, and immune escape of the immune system. In recent years, immunotherapy, represented by immune checkpoint inhibitors (ICIs), has shown powerful anti-tumor capabilities in HCC patients. However, there are still some HCC patients who cannot benefit from ICIs treatment due to their innate or acquired drug resistance. Therefore, it is of great practical significance to explore the possible mechanisms of resistance to ICIs in HCC and to use them as a target to design strategies to reverse resistance, to overcome drug resistance in HCC and to improve the prognosis of patients. This article summarizes the possible primary (tumor microenvironment alteration, and signaling pathways, etc.) and acquired (immune checkpoint upregulation) resistance mechanisms in patients with HCC treated with ICIs, and based on this, discusses the status and effectiveness of combination drug strategy to reverse drug resistance, to provide a reference for subsequent related studies and decisions.
Collapse
Affiliation(s)
- Liqiu Kou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaolu Xie
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiu Chen
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Bo Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Li
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
38
|
Yuan D, Zheng BW, Zheng BY, Niu HQ, Zou MX, Liu SL, Liu FS. Global cluster analysis and network visualization in cancer-associated fibroblast: insights from Web of Science database from 1999 to 2021. Eur J Med Res 2023; 28:549. [PMID: 38031121 PMCID: PMC10685623 DOI: 10.1186/s40001-023-01527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND A scientific and comprehensive analysis of the current status and trends in the field of cancer-associated fibroblast (CAF) research is worth investigating. This study aims to investigate and visualize the development, research frontiers, and future trends in CAFs both quantitatively and qualitatively based on a bibliometric approach. METHODS A total of 5518 publications were downloaded from the Science Citation Index Expanded of Web of Science Core Collection from 1999 to 2021 and identified for bibliometric analysis. Visualized approaches, OriginPro (version 9.8.0.200) and R (version 4.2.0) software tools were used to perform bibliometric and knowledge-map analysis. RESULTS The number of publications on CAFs increased each year, and the same tendency was observed in the RRI. Apart from China, the countries with the largest number of publications and the most cited frequency were mainly Western developed countries, especially the USA. Cancers was the journal with the largest number of articles published in CAFs, and Oncology was the most popular research orientation. The most productive author was Lisanti MP, and the University of Texas System was ranked first in the institutions. In addition, the topics of CAFs could be divided into five categories, including tumor classification, prognostic study, oncologic therapies, tumor metabolism and tumor microenvironment. CONCLUSIONS This is the first thoroughly scientific bibliometric analysis and visualized study of the global research field on CAFs over the past 20 years. The study may provide benefits for researchers to master CAFs' dynamic evolution and research trends.
Collapse
Affiliation(s)
- Dun Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bo-Wen Zheng
- Musculoskeletal Tumor Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Bo-Yv Zheng
- Department of Orthopedics Surgery, General Hospital of the Central Theater Command, Wuhan, 430061, China
| | - Hua-Qing Niu
- Department of Ophthalmology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Ming-Xiang Zou
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
| | - Song-Lin Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Fu-Sheng Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
39
|
Al-Bzour NN, Al-Bzour AN, Ababneh OE, Al-Jezawi MM, Saeed A, Saeed A. Cancer-Associated Fibroblasts in Gastrointestinal Cancers: Unveiling Their Dynamic Roles in the Tumor Microenvironment. Int J Mol Sci 2023; 24:16505. [PMID: 38003695 PMCID: PMC10671196 DOI: 10.3390/ijms242216505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Gastrointestinal cancers are highly aggressive malignancies with significant mortality rates. Recent research emphasizes the critical role of the tumor microenvironment (TME) in these cancers, which includes cancer-associated fibroblasts (CAFs), a key component of the TME that have diverse origins, including fibroblasts, mesenchymal stem cells, and endothelial cells. Several markers, such as α-SMA and FAP, have been identified to label CAFs, and some specific markers may serve as potential therapeutic targets. In this review article, we summarize the literature on the multifaceted role of CAFs in tumor progression, including their effects on angiogenesis, immune suppression, invasion, and metastasis. In addition, we highlight the use of single-cell transcriptomics to understand CAF heterogeneity and their interactions within the TME. Moreover, we discuss the dynamic interplay between CAFs and the immune system, which contributes to immunosuppression in the TME, and the potential for CAF-targeted therapies and combination approaches with immunotherapy to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Noor N. Al-Bzour
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA; (N.N.A.-B.); (A.N.A.-B.)
| | - Ayah N. Al-Bzour
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA; (N.N.A.-B.); (A.N.A.-B.)
| | - Obada E. Ababneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (M.M.A.-J.)
| | - Moayad M. Al-Jezawi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (M.M.A.-J.)
| | - Azhar Saeed
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT 05401, USA;
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA; (N.N.A.-B.); (A.N.A.-B.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
40
|
Liu K, Yuan S, Wang C, Zhu H. Resistance to immune checkpoint inhibitors in gastric cancer. Front Pharmacol 2023; 14:1285343. [PMID: 38026944 PMCID: PMC10679741 DOI: 10.3389/fphar.2023.1285343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Gastric cancer (GC) is one of the most common gastrointestinal malignancies worldwide. In the past decade, with the development of early diagnostic techniques, a clear decline in GC incidence has been observed, but its mortality remains high. The emergence of new immunotherapies such as immune checkpoint inhibitors (ICIs) has changed the treatment of GC patients to some extent. However, only a small number of patients with advanced GC have a durable response to ICI treatment, and the efficacy of ICIs is very limited. Existing studies have shown that the failure of immunotherapy is mainly related to the development of ICI resistance in patients, but the understanding of the resistance mechanism is still insufficient. Therefore, clarifying the mechanism of GC immune resistance is critical to improve its treatment and clinical benefit. In this review, we focus on summarizing the mechanisms of primary or acquired resistance to ICI immunotherapy in GC from both internal and external aspects of the tumor. At the same time, we also briefly discuss some other possible resistance mechanisms in light of current studies.
Collapse
Affiliation(s)
- Kai Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Shiman Yuan
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Chenyu Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hong Zhu
- Cancer Center, Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Hazrati A, Malekpour K, Mirsanei Z, Khosrojerdi A, Rahmani-Kukia N, Heidari N, Abbasi A, Soudi S. Cancer-associated mesenchymal stem/stromal cells: role in progression and potential targets for therapeutic approaches. Front Immunol 2023; 14:1280601. [PMID: 38022534 PMCID: PMC10655012 DOI: 10.3389/fimmu.2023.1280601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Malignancies contain a relatively small number of Mesenchymal stem/stromal cells (MSCs), constituting a crucial tumor microenvironment (TME) component. These cells comprise approximately 0.01-5% of the total TME cell population. MSC differentiation potential and their interaction with the tumor environment enable these cells to affect tumor cells' growth, immune evasion, metastasis, drug resistance, and angiogenesis. This type of MSC, known as cancer-associated mesenchymal stem/stromal cells (CA-MSCs (interacts with tumor/non-tumor cells in the TME and affects their function by producing cytokines, chemokines, and various growth factors to facilitate tumor cell migration, survival, proliferation, and tumor progression. Considering that the effect of different cells on each other in the TME is a multi-faceted relationship, it is essential to discover the role of these relationships for targeting in tumor therapy. Due to the immunomodulatory role and the tissue repair characteristic of MSCs, these cells can help tumor growth from different aspects. CA-MSCs indirectly suppress antitumor immune response through several mechanisms, including decreasing dendritic cells (DCs) antigen presentation potential, disrupting natural killer (NK) cell differentiation, inducing immunoinhibitory subsets like tumor-associated macrophages (TAMs) and Treg cells, and immune checkpoint expression to reduce effector T cell antitumor responses. Therefore, if these cells can be targeted for treatment so that their population decreases, we can hope for the treatment and improvement of the tumor conditions. Also, various studies show that CA-MSCs in the TME can affect other vital aspects of a tumor, including cell proliferation, drug resistance, angiogenesis, and tumor cell invasion and metastasis. In this review article, we will discuss in detail some of the mechanisms by which CA-MSCs suppress the innate and adaptive immune systems and other mechanisms related to tumor progression.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Khosrojerdi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nasim Rahmani-Kukia
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Heidari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
42
|
Gao D, Fang L, Liu C, Yang M, Yu X, Wang L, Zhang W, Sun C, Zhuang J. Microenvironmental regulation in tumor progression: Interactions between cancer-associated fibroblasts and immune cells. Biomed Pharmacother 2023; 167:115622. [PMID: 37783155 DOI: 10.1016/j.biopha.2023.115622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
The tumor microenvironment (TME), the "soil" on which tumor cells grow, has an important role in regulating the proliferation and metastasis of tumor cells as well as their response to treatment. Cancer-associated fibroblasts (CAFs), as the most abundant stromal cells of the TME, can not only directly alter the immunosuppressive effect of the TME through their own metabolism, but also influence the aggregation and function of immune cells by secreting a large number of cytokines and chemokines, reducing the body's immune surveillance of tumor cells and making them more prone to immune escape. Our study provides a comprehensive review of fibroblast chemotaxis, malignant transformation, metabolic characteristics, and interactions with immune cells. In addition, the current small molecule drugs targeting CAFs have been summarized, including both natural small molecules and targeted drugs for current clinical therapeutic applications. A complete review of the role of fibroblasts in TME from an immune perspective is presented, which has important implications in improving the efficiency of immunotherapy by targeting fibroblasts.
Collapse
Affiliation(s)
- Dandan Gao
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Liguang Fang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Mengrui Yang
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Longyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Wenfeng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
43
|
Kawasaki K, Noma K, Kato T, Ohara T, Tanabe S, Takeda Y, Matsumoto H, Nishimura S, Kunitomo T, Akai M, Kobayashi T, Nishiwaki N, Kashima H, Maeda N, Kikuchi S, Tazawa H, Shirakawa Y, Fujiwara T. PD-L1-expressing cancer-associated fibroblasts induce tumor immunosuppression and contribute to poor clinical outcome in esophageal cancer. Cancer Immunol Immunother 2023; 72:3787-3802. [PMID: 37668710 PMCID: PMC10576702 DOI: 10.1007/s00262-023-03531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
The programmed cell death 1 protein (PD-1)/programmed cell death ligand 1 (PD-L1) axis plays a crucial role in tumor immunosuppression, while the cancer-associated fibroblasts (CAFs) have various tumor-promoting functions. To determine the advantage of immunotherapy, the relationship between the cancer cells and the CAFs was evaluated in terms of the PD-1/PD-L1 axis. Overall, 140 cases of esophageal cancer underwent an immunohistochemical analysis of the PD-L1 expression and its association with the expression of the α smooth muscle actin, fibroblast activation protein, CD8, and forkhead box P3 (FoxP3) positive cells. The relationship between the cancer cells and the CAFs was evaluated in vitro, and the effect of the anti-PD-L1 antibody was evaluated using a syngeneic mouse model. A survival analysis showed that the PD-L1+ CAF group had worse survival than the PD-L1- group. In vitro and in vivo, direct interaction between the cancer cells and the CAFs showed a mutually upregulated PD-L1 expression. In vivo, the anti-PD-L1 antibody increased the number of dead CAFs and cancer cells, resulting in increased CD8+ T cells and decreased FoxP3+ regulatory T cells. We demonstrated that the PD-L1-expressing CAFs lead to poor outcomes in patients with esophageal cancer. The cancer cells and the CAFs mutually enhanced the PD-L1 expression and induced tumor immunosuppression. Therefore, the PD-L1-expressing CAFs may be good targets for cancer therapy, inhibiting tumor progression and improving host tumor immunity.
Collapse
Affiliation(s)
- Kento Kawasaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Takuya Kato
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Toshiaki Ohara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shunsuke Tanabe
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yasushige Takeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hijiri Matsumoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Seitaro Nishimura
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Tomoyoshi Kunitomo
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masaaki Akai
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Teruki Kobayashi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Noriyuki Nishiwaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hajime Kashima
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Naoaki Maeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Yasuhiro Shirakawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
- Department of Surgery, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
44
|
Cheng K, Jia Q, Batbatan C, Guo Z, Cheng F. TRPM2-L Participates in the Interleukin-6 Pathway to Enhance Tumor Growth in Prostate Cancer by Hypoxia-Inducible Factor-1α. J Interferon Cytokine Res 2023; 43:495-511. [PMID: 37906101 DOI: 10.1089/jir.2023.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Interleukin-6 (IL-6) can promote cell proliferation in prostate cancer (PCa). Full-length transient receptor potential melastatin 2 (TRPM2-L) is highly expressed in PCa. However, the association between IL-6 and TRPM2-L in PCa is unclear. Here, human PCa cell lines, PC-3 and DU-145, were treated with 10 μg/mL tocilizumab, an IL-6 receptor (IL-6R) inhibitor, and the TRPM2-L protein expression in cells was significantly decreased. Cells were stably transfected with TRPM2 short-interfering RNA (siRNA) and cell survival clearly declined. Recombinant IL-6 treatment weakened the effects of TRPM2-siRNA on cell survival. TRPM2-L binds directly to IL-6R in PC-3 and DU-145 cells. The protein expression of hypoxia-inducible factor-1α was suppressed by reduction with TRPM2-L in PC-3 and DU-145 cells. Human umbilical vein endothelial cells (HUVECs) were indirectly cocultured with PCa cells, and the invasion and angiogenic activity of HUVECs were enhanced after coculture with PCa cells. However, TRPM2-L reduction in PCa cells significantly decreased the invasion and angiogenic activity of HUVECs compared to the control coculture. In vivo, xenograft tumors were induced using PC-3 cells. Tocilizumab treatment or TRPM2-L reduction clearly suppressed tumor growth. Meanwhile, the injection of mouse recombinant IL-6 weakened the antitumor effects of TRPM2-L reduction. These data demonstrate that the IL-6/TRPM2-L axis in PCa tumor growth is important, and interference of the IL-6/TRPM2-L axis may be a novel approach for PCa therapy.
Collapse
Affiliation(s)
- Kai Cheng
- Department of Biology, College of Arts and Sciences, Central Mindanao University, Musuan, Philippines
- School of Pharmacy (School of Wine), Binzhou Medical University, Binzhou, China
| | - Qingmei Jia
- School of Public Health and Management, Binzhou Medical University, Binzhou, China
| | - Christopher Batbatan
- Department of Biology, College of Arts and Sciences, Central Mindanao University, Musuan, Philippines
| | - Zhihua Guo
- College of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Fengtao Cheng
- Department of Urology, Binzhou Central Hospital, Binzhou, China
| |
Collapse
|
45
|
Xue M, Tong Y, Xiong Y, Yu C. Role of cancer-associated fibroblasts in the progression, therapeutic resistance and targeted therapy of oesophageal squamous cell carcinoma. Front Oncol 2023; 13:1257266. [PMID: 37927475 PMCID: PMC10623436 DOI: 10.3389/fonc.2023.1257266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023] Open
Abstract
Oesophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignant tumours with high morbidity and mortality. Although surgery, radiotherapy and chemotherapy are common treatment options available for oesophageal cancer, the 5-year survival rate remains low after treatment. On the one hand, many oesophageal cancers are are discovered at an advanced stage and, on the other hand, treatment resistance is a major obstacle to treating locally advanced ESCC. Cancer-associated fibroblasts (CAFs), the main type of stromal cell in the tumour microenvironment, enhance tumour progression and treatment resistance and have emerged as a major focus of study on targeted therapy of oesophageal cancer.With the aim of providing potential, prospective targets for improving therapeutic efficacy, this review summarises the origin and activation of CAFs and their specific role in regulating tumour progression and treatment resistance in ESCC. We also emphasize the clinical potential and emerging trends of ESCC CAFs-targeted treatments.
Collapse
Affiliation(s)
| | | | | | - Changhua Yu
- Department of Radiotherapy, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
46
|
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, Luo P, Liu G. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: new opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer 2023; 22:159. [PMID: 37784082 PMCID: PMC10544417 DOI: 10.1186/s12943-023-01860-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
Despite centuries since the discovery and study of cancer, cancer is still a lethal and intractable health issue worldwide. Cancer-associated fibroblasts (CAFs) have gained much attention as a pivotal component of the tumor microenvironment. The versatility and sophisticated mechanisms of CAFs in facilitating cancer progression have been elucidated extensively, including promoting cancer angiogenesis and metastasis, inducing drug resistance, reshaping the extracellular matrix, and developing an immunosuppressive microenvironment. Owing to their robust tumor-promoting function, CAFs are considered a promising target for oncotherapy. However, CAFs are a highly heterogeneous group of cells. Some subpopulations exert an inhibitory role in tumor growth, which implies that CAF-targeting approaches must be more precise and individualized. This review comprehensively summarize the origin, phenotypical, and functional heterogeneity of CAFs. More importantly, we underscore advances in strategies and clinical trials to target CAF in various cancers, and we also summarize progressions of CAF in cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinghai Yue
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhe Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Peng Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
47
|
Xu Y, Li W, Lin S, Liu B, Wu P, Li L. Fibroblast diversity and plasticity in the tumor microenvironment: roles in immunity and relevant therapies. Cell Commun Signal 2023; 21:234. [PMID: 37723510 PMCID: PMC10506315 DOI: 10.1186/s12964-023-01204-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/22/2023] [Indexed: 09/20/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), enriched in the tumor stroma, have received increasing attention because of their multifaceted effects on tumorigenesis, development, metastasis, and treatment resistance in malignancies. CAFs contributed to suppressive microenvironment via different mechanisms, while CAFs also exerted some antitumor effects. Therefore, CAFs have been considered promising therapeutic targets for their remarkable roles in malignant tumors. However, patients with malignancies failed to benefit from current CAFs-targeted drugs in many clinical trials, which suggests that further in-depth investigation into CAFs is necessary. Here, we summarize and outline the heterogeneity and plasticity of CAFs mainly by exploring their origin and activation, highlighting the regulation of CAFs in the tumor microenvironment during tumor evolution, as well as the critical roles performed by CAFs in tumor immunity. In addition, we summarize the current immunotherapies targeting CAFs, and conclude with a brief overview of some prospects for the future of CAFs research in the end. Video Abstract.
Collapse
Affiliation(s)
- Yashi Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shitong Lin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binghan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Li Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
48
|
Li M, Wu B, Li L, Lv C, Tian Y. Reprogramming of cancer-associated fibroblasts combined with immune checkpoint inhibitors: A potential therapeutic strategy for cancers. Biochim Biophys Acta Rev Cancer 2023; 1878:188945. [PMID: 37356739 DOI: 10.1016/j.bbcan.2023.188945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Activated fibroblasts, namely cancer-associated fibroblasts (CAFs), are highly heterogeneous in phenotypes, functions, and origins. CAFs originated from varieties of cell types, including local resident fibroblasts, epithelial cells, mesenchymal stromal cells, or others. These cells participate in tumor angiogenesis, mechanics, drug access, and immune suppression, with the latter being particularly important. It was difficult to distinguish CAFs by subsets due to their complex origins until the use of scRNA-seq. Reprogramming CAFs with TGFβ-RI inhibitor, a CXCR4 blocker, or other methods increases T cells activation and infiltration, together with a decrease in CAFs recruitment, thus improving the prognosis. As depletion of CAFs can't bring clinical benefit, the combination of reprogramming CAFs and immune checkpoint inhibitors (ICIs) come into consideration. It has shown better outcomes compared with monotherapy respectively in basic/preclinical researches, and needs more data on clinical trials. Combination therapy may be a promising and expecting method for treatment of cancer.
Collapse
Affiliation(s)
- Min Li
- Department of Mammary Gland, Dalian Women and Children's Medical Center(Group), No. 1 Dunhuang Road, Dalian 116000, Liaoning Province, China; Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao Street, Shenyang 110004, Liaoning Province, China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao Street, Shenyang 110004, Liaoning Province, China
| | - Lunxu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao Street, Shenyang 110004, Liaoning Province, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao Street, Shenyang 110004, Liaoning Province, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao Street, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
49
|
Zhang D, Ni QQ, Liang QY, He LL, Qiu BW, Zhang LJ, Mou TY, Le CC, Huang Y, Li TT, Wang SY, Ding YQ, Jiao HL, Ye YP. ASCL2 induces an immune excluded microenvironment by activating cancer-associated fibroblasts in microsatellite stable colorectal cancer. Oncogene 2023; 42:2841-2853. [PMID: 37591954 PMCID: PMC10504082 DOI: 10.1038/s41388-023-02806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Proficient mismatch repair or microsatellite stable (pMMR/MSS) colorectal cancers (CRCs) are vastly outnumbered by deficient mismatch repair or microsatellite instability-high (dMMR/MSI-H) tumors and lack a response to immune checkpoint inhibitors (ICIs). In this study, we reported two distinct expression patterns of ASCL2 in pMMR/MSS and dMMR/MSI-H CRCs. ASCL2 is overexpressed in pMMR/MSS CRCs and maintains a stemness phenotype, accompanied by a lower density of tumor-infiltrating lymphocytes (TILs) than those in dMMR/MSI CRCs. In addition, coadministration of anti-PD-L1 antibodies facilitated T cell infiltration and provoked strong antitumor immunity and tumor regression in the MC38/shASCL2 mouse CRC model. Furthermore, overexpression of ASCL2 was associated with increased TGFB levels, which stimulate local Cancer-associated fibroblasts (CAFs) activation, inducing an immune-excluded microenvironment. Consistently, mice with deletion of Ascl2 specifically in the intestine (Villin-Cre+, Ascl2 flox/flox, named Ascl2 CKO) revealed fewer activated CAFs and higher proportions of infiltrating CD8+ T cells; We further intercrossed Ascl2 CKO with ApcMin/+ model suggesting that Ascl2-deficient expression in intestinal represented an immune infiltrating environment associated with a good prognosis. Together, our findings indicated ASCL2 induces an immune excluded microenvironment by activating CAFs through transcriptionally activating TGFB, and targeting ASCL2 combined with ICIs could present a therapeutic opportunity for MSS CRCs.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Pathology, School of Basic Medical Sciences and Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Qi-Qi Ni
- Department of Pathology, School of Basic Medical Sciences and Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Qiao-Yan Liang
- Department of Pathology, School of Basic Medical Sciences and Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Li-Ling He
- Department of Pathology, School of Basic Medical Sciences and Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Bo-Wen Qiu
- Department of Pathology, School of Basic Medical Sciences and Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Ling-Jie Zhang
- Department of Pathology, School of Basic Medical Sciences and Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Ting-Yu Mou
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chen-Chen Le
- Department of Pathology, School of Basic Medical Sciences and Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yuan Huang
- Department of Pathology, School of Basic Medical Sciences and Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Ting-Ting Li
- Department of Pathology, School of Basic Medical Sciences and Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Shu-Yang Wang
- Department of Pathology, School of Basic Medical Sciences and Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yan-Qing Ding
- Department of Pathology, School of Basic Medical Sciences and Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| | - Hong-Li Jiao
- Department of Pathology, School of Basic Medical Sciences and Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| | - Ya-Ping Ye
- Department of Pathology, School of Basic Medical Sciences and Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| |
Collapse
|
50
|
Huang J, Tsang WY, Li ZH, Guan XY. The Origin, Differentiation, and Functions of Cancer-Associated Fibroblasts in Gastrointestinal Cancer. Cell Mol Gastroenterol Hepatol 2023; 16:503-511. [PMID: 37451403 PMCID: PMC10462789 DOI: 10.1016/j.jcmgh.2023.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Emerging evidence has shown the importance of the tumor microenvironment in tumorigenesis and progression. Cancer-associated fibroblasts (CAFs) are one of the most infiltrated stroma cells of the tumor microenvironment in gastrointestinal tumors. CAFs play crucial roles in tumor development and therapeutic response by biologically secreting soluble factors or structurally remodeling the extracellular matrix. Conceivably, CAFs may become excellent targets for tumor prevention and treatment. However, the limited knowledge of the heterogeneity of CAFs represents a huge challenge for clinically targeting CAFs. In this review, we summarize the newest understanding of gastrointestinal CAFs, with a special focus on their origin, differentiation, and function. We also discuss the current understanding of CAF subpopulations as shown by single-cell technologies.
Collapse
Affiliation(s)
- Jiao Huang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wai-Ying Tsang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhi-Hong Li
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Clinical Oncology, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China.
| |
Collapse
|