1
|
Pan Y, Wang M, Wang P, Wei H, Wei X, Wang D, Hao Y, Wang Y, Chen H. Effects of a semi-interpenetrating network hydrogel loaded with oridonin and DNase-I on the healing of chemoradiotherapy-induced oral mucositis. Biomater Sci 2024; 12:4452-4470. [PMID: 39052032 DOI: 10.1039/d4bm00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The aim of this study was to develop a semi-interpenetrating network (IPN) hydrogel system suitable for the oral environment, capable of controlled release of DNase-I and oridonin (ORI), to exert antimicrobial, anti-inflammatory, and reparative effects on chemoradiotherapy-induced oral mucositis (OM). This IPN was based on the combination of ε-polylysine (PLL) and hetastarch (HES), loaded with DNase-I and ORI (ORI/DNase-I/IPN) for OM treatment. In vitro studies were conducted to evaluate degradation, adhesion, release analysis, and bioactivity including cell proliferation and wound healing assays using epidermal keratinocyte and fibroblast cell lines. Furthermore, the therapeutic effects of ORI/DNase-I/IPN were investigated in vivo using Sprague-Dawley (SD) rats with chemoradiotherapy-induced OM. The results demonstrated that the IPN exhibited excellent adhesion to wet mucous membranes, and the two drugs co-encapsulated in the hydrogel were released in a controlled manner, exerting inhibitory effects on bacteria and degrading NETs in wound tissues. The in vivo wound repair effect, microbiological assays, H&E and Masson staining supported the non-toxicity of ORI/DNase-I/IPN, as well as its ability to accelerate the healing of oral ulcers and reduce inflammation. Overall, ORI/DNase-I/IPN demonstrated a therapeutic effect on OM in rats by significantly accelerating the healing process. These findings provide new insights into possible therapies for OM.
Collapse
Affiliation(s)
- Yuxue Pan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China.
| | - Mengyuan Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China.
| | - Peng Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China.
| | - Hongliang Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Xiangjuan Wei
- Clinical Medical Center of Tissue Engineering and Regeneration, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, PR China
| | - Dongmei Wang
- Clinical Medical Center of Tissue Engineering and Regeneration, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, PR China
| | - Yongwei Hao
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China.
| | - Yongxue Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China.
| | - Hongli Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China.
| |
Collapse
|
2
|
Xie B, Zhou X, Luo C, Fang Y, Wang Y, Wei J, Cai L, Chen T. Reversal of Platinum-based Chemotherapy Resistance in Ovarian Cancer by Naringin Through Modulation of The Gut Microbiota in a Humanized Nude Mouse Model. J Cancer 2024; 15:4430-4447. [PMID: 38947385 PMCID: PMC11212103 DOI: 10.7150/jca.96448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/08/2024] [Indexed: 07/02/2024] Open
Abstract
As a chemotherapy agent, cisplatin (DDP) is often associated with drug resistance and gastrointestinal toxicity, factors that severely limit therapeutic efficacy in patients with ovarian cancer (OC). Naringin has been shown to increase sensitivity to cisplatin, but whether the intestinal microbiota is associated with this effect has not been reported so far. In this study, we applied a humanized mouse model for the first time to evaluate the reversal of cisplatin resistance by naringin, as well as naringin combined with the microbiota in ovarian cancer. The results showed that naringin combined with Bifidobacterium animalis subsp. lactis NCU-01 had an inhibitory effect on the tumor, significantly reducing tumor size (p<0.05), as well as the concentrations of serum tumor markers CA125 and HE4, increased the relative abundance of Bifidobacterium and Bacteroides, inhibit Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB)-induced intestinal inflammation and increase the expression of intestinal permeability-associated proteins ZO-1 (p<0.001) and occludin (p<0.01). In conclusion, the above data demonstrate how naringin combined with Bifidobacterium animalis subsp. lactis NCU-01 reverses cisplatin resistance in ovarian cancer by modulating the intestinal microbiota, inhibiting the TLR4/NF-κB signaling pathway and modulating the p38MAPK signaling pathway.
Collapse
Affiliation(s)
- Bingqing Xie
- Department of Obstetrics & Gynecology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xiaoni Zhou
- Department of Obstetrics & Gynecology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chuanlin Luo
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yilin Fang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yufei Wang
- Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Liping Cai
- Department of Obstetrics & Gynecology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Tingtao Chen
- Department of Obstetrics & Gynecology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang,330031, Jiangxi, China
| |
Collapse
|
3
|
Ly KL, Rajtboriraks M, Elgerbi A, Luo X, Raub CB. Recombinant Human Keratinocyte Growth Factor Ameliorates Cancer Treatment-Induced Oral Mucositis on a Chip. Adv Healthc Mater 2024; 13:e2302970. [PMID: 38351394 PMCID: PMC11144107 DOI: 10.1002/adhm.202302970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Oral mucositis (OM) is a severe complication of cancer therapies caused by off-target cytotoxicity. Palifermin, which is recombinant human keratinocyte growth factor (KGF), is currently the only mitigating treatment available to a subset of OM patients. This study used a previously established model of oral mucositis on a chip (OM-OC) comprised of a confluent human gingival keratinocytes (GIE) layer attached to a basement membrane-lined subepithelial layer consisting of human gingival fibroblasts (HGF) and human dermal microvascular endothelial cells (HMEC) on a stable collagen I gel. Cisplatin, radiation, and combined treatments are followed by a recovery period in the OM-OC to determine possible cellular and molecular mechanisms of OM under effects of KGF. Cancer treatments affected the keratinocyte layer, causing death and epithelial barrier loss. Both keratinocytes and subepithelial cells died rapidly, as evidenced by propidium iodide staining. In response to radiation exposure, cell death occurred in the apical epithelial layer, predominantly, within 24h. Cisplatin exposure predominantly promoted death of basal epithelial cells within 32-36h. Presence of KGF in OM-OC protected tissues from damage caused by cancer treatments in a dose-dependent manner, being more effective at 10 ng/mL. As verified by F-actin staining and the Alamar Blue assay, KGF contributed to epithelial survival and induced proliferation of GIE and HGF as well as HMEC within 120h. When the expression of eighty inflammatory cytokines is evaluated at OM induction (Day 12) and resolution (Day 18) stages in OM-OC, some cytokines are identified as potential novel therapeutic targets. In comparison with chemoradiation exposure, KGF treatment showed a trend to decrease IL-8 and TNF-a expression at Day 12 and 18, and TGF-β1 at Day 18 in OM-OC. Taken together, these findings support the utility of OM-OC as a platform to model epithelial damage and evaluate molecular mechanisms following OM treatment.
Collapse
Affiliation(s)
- Khanh L Ly
- Department of Biomedical Engineering, School of Engineering, The Catholic University of America, Washington, DC, 20064, USA
| | - May Rajtboriraks
- Department of Biomedical Engineering, School of Engineering, The Catholic University of America, Washington, DC, 20064, USA
| | - Ahmed Elgerbi
- Department of Biology, School of Arts and Sciences, The Catholic University of America, Washington, DC, 20064, USA
| | - Xiaolong Luo
- Department of Mechanical Engineering, School of Engineering, The Catholic University of America, Washington, DC, 20064, USA
| | - Christopher B Raub
- Department of Biomedical Engineering, School of Engineering, The Catholic University of America, Washington, DC, 20064, USA
| |
Collapse
|
4
|
Liu Y, Sun Y, Yang J, Wu D, Yu S, Liu J, Hu T, Luo J, Zhou H. DNMT1-targeting remodeling global DNA hypomethylation for enhanced tumor suppression and circumvented toxicity in oral squamous cell carcinoma. Mol Cancer 2024; 23:104. [PMID: 38755637 PMCID: PMC11097543 DOI: 10.1186/s12943-024-01993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND The faithful maintenance of DNA methylation homeostasis indispensably requires DNA methyltransferase 1 (DNMT1) in cancer progression. We previously identified DNMT1 as a potential candidate target for oral squamous cell carcinoma (OSCC). However, how the DNMT1- associated global DNA methylation is exploited to regulate OSCC remains unclear. METHODS The shRNA-specific DNMT1 knockdown was employed to target DNMT1 on oral cancer cells in vitro, as was the use of DNMT1 inhibitors. A xenografted OSCC mouse model was established to determine the effect on tumor suppression. High-throughput microarrays of DNA methylation, bulk and single-cell RNA sequencing analysis, multiplex immunohistochemistry, functional sphere formation and protein immunoblotting were utilized to explore the molecular mechanism involved. Analysis of human samples revealed associations between DNMT1 expression, global DNA methylation and collaborative molecular signaling with oral malignant transformation. RESULTS We investigated DNMT1 expression boosted steadily during oral malignant transformation in human samples, and its inhibition considerably minimized the tumorigenicity in vitro and in a xenografted OSCC model. DNMT1 overexpression was accompanied by the accumulation of cancer-specific DNA hypomethylation during oral carcinogenesis; conversely, DNMT1 knockdown caused atypically extensive genome-wide DNA hypomethylation in cancer cells and xenografted tumors. This novel DNMT1-remodeled DNA hypomethylation pattern hampered the dual activation of PI3K-AKT and CDK2-Rb and inactivated GSK3β collaboratively. When treating OSCC mice, targeting DNMT1 achieved greater anticancer efficacy than the PI3K inhibitor, and reduced the toxicity of blood glucose changes caused by the PI3K inhibitor or combination of PI3K and CDK inhibitors as well as adverse insulin feedback. CONCLUSIONS Targeting DNMT1 remodels a novel global DNA hypomethylation pattern to facilitate anticancer efficacy and minimize potential toxic effects via balanced signaling synergia. Our study suggests DNMT1 is a crucial gatekeeper regarding OSCC destiny and treatment outcome.
Collapse
Affiliation(s)
- Yangfan Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- School of Stomatology, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Jin Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Deyang Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shuang Yu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jingjing Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Gao J, Li P. Targeting eIF5A2 reduces invasion and reverses chemoresistance in SCC-9 cells in vitro. Histol Histopathol 2024; 39:463-470. [PMID: 37334930 DOI: 10.14670/hh-18-637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
BACKGROUND AND AIMS Eukaryotic translation initiation factor 5A2 (EIF5A2) has been reported to be involved in metastasis and chemotherapy resistance in many human cancers. However, the effect and mechanism of EIF5A2 in oral cancer cells are unknown. Here, we investigated the effects of targeting EIF5A2 on chemotherapy resistance in oral cancer cells in vitro. METHODS By using a lentiviral system, we investigated the effects of targeting EIF5A2 on the invasion, migration, growth, and chemosensitivity of SCC-9 cells to CDDP in vitro. Through the method of gene intervention, we explore the role of pro-apoptotic Bim and epithelial and mesenchymal marker E-cadherin protein in this process and the regulation of EIF5A2 on Bim and E-cadherin. RESULTS Targeting EIF5A2 reduces invasion and migration in SCC-9 cells partly through upregulation of E-cadherin expression; Targeting EIF5A2 promotes cell apoptosis and inhibits cell survival as well as increasing chemosensitivity in SCC-9 cells through upregulation of Bim expression. CONCLUSION EIF5A2 may be a novel potential therapeutic target for oral cancer by upregulation of Bim and E-cadherin.
Collapse
Affiliation(s)
- Jinbo Gao
- Department of Stomatology, Tianjin Third Central Hospital, Hedong District, Tianjin, PR China.
| | - Peng Li
- Department of Stomatology, Tianjin Third Central Hospital, Hedong District, Tianjin, PR China
| |
Collapse
|
6
|
Khayatan D, Hussain A, Tebyaniyan H. Exploring animal models in oral cancer research and clinical intervention: A critical review. Vet Med Sci 2023. [PMID: 37196179 DOI: 10.1002/vms3.1161] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Cancer is a leading cause of death worldwide, but advances in treatment, early detection, and prevention have helped to reduce its impact. To translate cancer research findings into clinical interventions for patients, appropriate animal experimental models, particularly in oral cancer therapy, can be helpful. In vitro experiments using animal or human cells can provide insight into cancer's biochemical pathways. This review discusses the various animal models used in recent years for research and clinical intervention in oral cancer, along with their advantages and disadvantages. We highlight the advantages and limitations of the used animal models in oral cancer research and therapy by searching the terms of animal models, oral cancer, oral cancer therapy, oral cancer research, and animals to find all relevant publications during 2010-2023. Mouse models, widely used in cancer research, can help us understand protein and gene functions in vivo and molecular pathways more deeply. To induce cancer in rodents, xenografts are often used, but companion animals with spontaneous tumours are underutilized for rapid advancement in human and veterinary cancer treatments. Like humans with cancer, companion animals exhibit biological behaviour, treatment responses, and cytotoxic agent responses similar to humans. In companion animal models, disease progression is more rapid, and the animals have a shorter lifespan. Animal models allow researchers to study how immune cells interact with cancer cells and how they can be targeted specifically. Additionally, animal models have been extensively used in research on oral cancers, so researchers can use existing knowledge and tools to better understand oral cancers using animal models.
Collapse
Affiliation(s)
- Danial Khayatan
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy (ECHA), University of Alberta, Edmonton, Canada
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
7
|
Liu Y, Wu Y, Yang M, Yang J, Tong R, Zhao W, Wu F, Tian Y, Li X, Luo J, Zhou H. Ionizing radiation-induced "zombie" carcinoma-associated fibroblasts with suppressed pro-radioresistance on OSCC cells. Oral Dis 2023; 29:563-573. [PMID: 34324756 DOI: 10.1111/odi.13979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES This study was to investigate the effect of ionizing radiation (IR) on oral carcinoma-associated fibroblasts (CAFs) and to further explore subsequent effects of IR-induced "zombie" CAFs on oral squamous cell carcinoma (OSCC) cells. MATERIALS AND METHODS Three primary CAFs and one primary normal-associated fibroblasts (NAFs) were separated from human OSCC and normal oral mucosa tissues, identified by immunocytochemistry. Cells were exposed to IR by X-ray irradiator under different doses. The DNA damage, proliferation, and migration of irradiated CAFs were, respectively, detected by immunofluorescence and wound healing assay, while senescence was detected by β-galactosidase staining. Finally, the effect of irradiated CAFs on biological behavior and radioresistance of Cal-27 cells were determined via assays mentioned above. RESULTS Oral CAFs were sensitive to IR with DNA damage increasing and proliferation decreasing. 18 Gy IR could not kill oral CAFs but induce them to "zombies," with arrested proliferation, increased senescence, and reduced migration. "Zombie" CAFs (zCAFs) could enhance proliferation, migration, and invasion of Cal-27 cells, and show suppressed pro-radioresistance by reducing DNA damage and facilitating survival. CONCLUSIONS IR-induced zCAFs could continuously promote radioresistance of OSCC cells though being suppressed, suggesting the potential promoting effect on tumor relapse post-radiotherapy that needed further exploring.
Collapse
Affiliation(s)
- Yangfan Liu
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Wu
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of General Dentistry, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Miao Yang
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Yang
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruizhan Tong
- Department of Thoracic Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhao
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Tian
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyu Li
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingjing Luo
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Nguyen H, Sangha S, Pan M, Shin DH, Park H, Mohammed AI, Cirillo N. Oxidative Stress and Chemoradiation-Induced Oral Mucositis: A Scoping Review of In Vitro, In Vivo and Clinical Studies. Int J Mol Sci 2022; 23:4863. [PMID: 35563254 PMCID: PMC9101413 DOI: 10.3390/ijms23094863] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/06/2023] Open
Abstract
Chemoradiation-induced mucositis is a debilitating condition of the gastrointestinal tract eventuating from antineoplastic treatment. It is believed to occur primarily due to oxidative stress mechanisms, which generate Reactive Oxygen Species (ROS). The aim of this scoping review was to assess the role of oxidative stress in the development of Oral Mucositis (OM). Studies from the literature, published in MEDLINE and SCOPUS, that evaluated the oxidative stress pathways or antioxidant interventions for OM, were retrieved to elucidate the current understanding of their relationship. Studies failing inclusion criteria were excluded, and those suitable underwent data extraction, using a predefined data extraction table. Eighty-nine articles fulfilled criteria, and these were sub-stratified into models of study (in vitro, in vivo, or clinical) for evaluation. Thirty-five clinical studies evaluated antioxidant interventions on OM's severity, duration, and pain, amongst other attributes. A number of clinical studies sought to elucidate the protective or therapeutic effects of compounds that had been pre-determined to have antioxidant properties, without directly assessing oxidative stress parameters (these were deemed "indirect evidence"). Forty-seven in vivo studies assessed the capacity of various compounds to prevent OM. Findings were mostly consistent, reporting reduced OM severity associated with a reduction in ROS, malondialdehyde (MDA), myeloperoxidase (MPO), but higher glutathione (GSH) and superoxide dismutase (SOD) activity or expression. Twenty-one in vitro studies assessed potential OM therapeutic interventions. The majority demonstrated successful a reduction in ROS, and in select studies, secondary molecules were assessed to identify the mechanism. In summary, this review highlighted numerous oxidative stress pathways involved in OM pathogenesis, which may inform the development of novel therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (H.N.); (S.S.); (M.P.); (D.H.S.); (H.P.); (A.I.M.)
| |
Collapse
|
9
|
Liu Y, Qi X, Wang Y, Li M, Yuan Q, Zhao Z. Inflammation-targeted cannabidiol-loaded nanomicelles for enhanced oral mucositis treatment. Drug Deliv 2022; 29:1272-1281. [PMID: 35467472 PMCID: PMC9045765 DOI: 10.1080/10717544.2022.2027572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
One of the most common complications of cancer chemotherapy is oral mucositis (OM), a serious kind of oral ulceration, but its effective treatment remains a serious challenge. In this study, we used deoxycholic acid and fucoidan to prepare inflammation-targeting nanomicelles (FD), because fucoidan can target inflammation due to its high binding affinity for P-selectin. The hydrophobic anti-inflammatory drug cannabidiol (CBD) was then loaded into the hydrophobic core of FD. The resulting CBD-loaded FD micelles (CBD/FD) had uniform particle size and morphology, as well as favorable serum stability. Moreover, administration of the FD micelles via intravenous injection or in situ dripping in an OM mouse model enhanced the accumulation and retention of CBD. CBD/FD also showed a better anti-inflammatory effect compared to free CBD after local or systemic administration in vivo, while they accelerated OM healing and inhibited Ly6G inflammatory cell infiltration and NF-κB nuclear transcription. Our results show that CBD/FD nanomicelles are a promising agent for OM treatment.
Collapse
Affiliation(s)
- Yingke Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingying Qi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yashi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Boss MK, Ke Y, Bian L, Harrison LG, Lee BI, Prebble A, Martin T, Trageser E, Hall S, Wang DD, Wang S, Chow L, Holwerda B, Raben D, Regan D, Karam SD, Dow S, Young CD, Wang XJ. Therapeutic Intervention Using a Smad7-Based Tat Protein to Treat Radiation-Induced Oral Mucositis. Int J Radiat Oncol Biol Phys 2022; 112:759-770. [PMID: 34610386 PMCID: PMC8810686 DOI: 10.1016/j.ijrobp.2021.09.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Recent studies reported therapeutic effects of Smad7 on oral mucositis in mice without compromising radiation therapy-induced cancer cell killing in neighboring oral cancer. This study aims to assess whether a Smad7-based biologic can treat oral mucositis in a clinically relevant setting by establishing an oral mucositis model in dogs and analyzing molecular targets. METHODS AND MATERIALS We created a truncated human Smad7 protein fused with the cell-penetrating Tat tag (Tat-PYC-Smad7). We used intensity modulated radiation therapy to induce oral mucositis in dogs and applied Tat-PYC-Smad7 to the oral mucosa in dose-finding studies after intensity modulated radiation therapy. Clinical outcomes were evaluated. Molecular targets were analyzed in biopsies and serum samples. RESULTS Tat-PYC-Smad7 treatment significantly shortened the duration of grade 3 oral mucositis based on double-blinded Veterinary Radiation Therapy Oncology Group scores and histopathology evaluations. Topically applied Tat-PYC-Smad7 primarily penetrated epithelial cells and was undetectable in serum. NanoString nCounter Canine IO Panel identified that, compared to the vehicle samples, top molecular changes in Tat-PYC-Smad7 treated samples include reductions in inflammation and cell death and increases in cell growth and DNA repair. Consistently, immunostaining shows that Tat-PYC-Smad7 reduced DNA damage and neutrophil infiltration with attenuated TGF-β and NFκB signaling. Furthermore, IL-1β and TNF-α were lower in Tat-PYC-Smad7 treated mucosa and serum samples compared to those in vehicle controls. CONCLUSIONS Topical Tat-PYC-Smad7 application demonstrated therapeutic effects on oral mucositis induced by intensity modulated radiation therapy in dogs. The local effects of Tat-PYC-Smad7 targeted molecules involved in oral mucositis pathogenesis as well as reduced systemic inflammatory cytokines.
Collapse
Affiliation(s)
- Mary-Keara Boss
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado.
| | - Yao Ke
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Li Bian
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Allander Biotechnologies, LLC, Aurora, Colorado
| | - Lauren G Harrison
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Ber-In Lee
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Amber Prebble
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Tiffany Martin
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Erin Trageser
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Spencer Hall
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Allander Biotechnologies, LLC, Aurora, Colorado
| | - Donna D Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Allander Biotechnologies, LLC, Aurora, Colorado
| | - Suyan Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Allander Biotechnologies, LLC, Aurora, Colorado
| | - Lyndah Chow
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | | | - David Raben
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Daniel Regan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Steven Dow
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - Christian D Young
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Allander Biotechnologies, LLC, Aurora, Colorado.
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Allander Biotechnologies, LLC, Aurora, Colorado.
| |
Collapse
|
11
|
Cao YN, Wang Y, Zhang L, Hou Y, Shan J, Li M, Chen C, Zhou Y, Shan E, Wang J. Protective effect of endoplasmic reticulum stress inhibition on 5-fluorouracil-induced oral mucositis. Eur J Pharmacol 2022; 919:174810. [DOI: 10.1016/j.ejphar.2022.174810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022]
|
12
|
Petroni G, Cantley LC, Santambrogio L, Formenti SC, Galluzzi L. Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nat Rev Clin Oncol 2022; 19:114-131. [PMID: 34819622 PMCID: PMC9004227 DOI: 10.1038/s41571-021-00579-w] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 02/03/2023]
Abstract
A variety of targeted anticancer agents have been successfully introduced into clinical practice, largely reflecting their ability to inhibit specific molecular alterations that are required for disease progression. However, not all malignant cells rely on such alterations to survive, proliferate, disseminate and/or evade anticancer immunity, implying that many tumours are intrinsically resistant to targeted therapies. Radiotherapy is well known for its ability to activate cytotoxic signalling pathways that ultimately promote the death of cancer cells, as well as numerous cytoprotective mechanisms that are elicited by cellular damage. Importantly, many cytoprotective mechanisms elicited by radiotherapy can be abrogated by targeted anticancer agents, suggesting that radiotherapy could be harnessed to enhance the clinical efficacy of these drugs. In this Review, we discuss preclinical and clinical data that introduce radiotherapy as a tool to elicit or amplify clinically actionable signalling pathways in patients with cancer.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lewis C Cantley
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
13
|
The science of mucositis. Support Care Cancer 2022; 30:2915-2917. [PMID: 35067733 DOI: 10.1007/s00520-022-06840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
|
14
|
Shi X, Luo J, Weigel KJ, Hall SC, Du D, Wu F, Rudolph MC, Zhou H, Young CD, Wang XJ. Cancer-Associated Fibroblasts Facilitate Squamous Cell Carcinoma Lung Metastasis in Mice by Providing TGFβ-Mediated Cancer Stem Cell Niche. Front Cell Dev Biol 2021; 9:668164. [PMID: 34527666 PMCID: PMC8435687 DOI: 10.3389/fcell.2021.668164] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/21/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) have been shown to enhance squamous cell carcinoma (SCC) growth, but it is unclear whether they promote SCC lung metastasis. We generated CAFs from K15.KrasG12D.Smad4-/- mouse SCCs. RNA expression analyses demonstrated that CAFs had enriched transforming growth factor-beta (TGFβ) signaling compared to normal tissue-associated fibroblasts (NAFs), therefore we assessed how TGFβ-enriched CAFs impact SCC metastasis. We co-injected SCC cells with CAFs to the skin, tail vein, or the lung to mimic sequential steps of lung metastasis. CAFs increased SCC volume only in lung co-transplantations, characterized with increased proliferation and angiogenesis and decreased apoptosis compared to NAF co-transplanted SCCs. These CAF effects were attenuated by a clinically relevant TGFβ receptor inhibitor, suggesting that CAFs facilitated TGFβ-dependent SCC cell seeding and survival in the lung. CAFs also increased tumor volume when co-transplanted to the lung with limiting numbers of SCC cancer stem cells (CSCs). In vitro, CSC sphere formation and invasion were increased either with co-cultured CAFs or with CAF conditioned media (which contains the highest TGFβ1 concentration) and these CAF effects were blocked by TGFβ inhibition. Further, TGFβ activation was higher in primary human oral SCCs with lung metastasis than SCCs without lung metastasis. Similarly, TGFβ activation was detected in the lungs of mice with micrometastasis. Our data suggest that TGFβ-enriched CAFs play a causal role in CSC seeding and expansion in the lung during SCC metastasis, providing a prognostic marker and therapeutic target for SCC lung metastasis.
Collapse
Affiliation(s)
- Xueke Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jingjing Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kelsey J. Weigel
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Spencer C. Hall
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Danfeng Du
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael C. Rudolph
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Christian D. Young
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO, United States
| |
Collapse
|
15
|
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S, Zhou H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther 2021; 6:218. [PMID: 34108441 PMCID: PMC8190181 DOI: 10.1038/s41392-021-00641-0] [Citation(s) in RCA: 307] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
To flourish, cancers greatly depend on their surrounding tumor microenvironment (TME), and cancer-associated fibroblasts (CAFs) in TME are critical for cancer occurrence and progression because of their versatile roles in extracellular matrix remodeling, maintenance of stemness, blood vessel formation, modulation of tumor metabolism, immune response, and promotion of cancer cell proliferation, migration, invasion, and therapeutic resistance. CAFs are highly heterogeneous stromal cells and their crosstalk with cancer cells is mediated by a complex and intricate signaling network consisting of transforming growth factor-beta, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin, mitogen-activated protein kinase, Wnt, Janus kinase/signal transducers and activators of transcription, epidermal growth factor receptor, Hippo, and nuclear factor kappa-light-chain-enhancer of activated B cells, etc., signaling pathways. These signals in CAFs exhibit their own special characteristics during the cancer progression and have the potential to be targeted for anticancer therapy. Therefore, a comprehensive understanding of these signaling cascades in interactions between cancer cells and CAFs is necessary to fully realize the pivotal roles of CAFs in cancers. Herein, in this review, we will summarize the enormous amounts of findings on the signals mediating crosstalk of CAFs with cancer cells and its related targets or trials. Further, we hypothesize three potential targeting strategies, including, namely, epithelial-mesenchymal common targets, sequential target perturbation, and crosstalk-directed signaling targets, paving the way for CAF-directed or host cell-directed antitumor therapy.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ye Wang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qingxiang Zeng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shuzhi Deng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
16
|
Expression and function of Smad7 in autoimmune and inflammatory diseases. J Mol Med (Berl) 2021; 99:1209-1220. [PMID: 34059951 PMCID: PMC8367892 DOI: 10.1007/s00109-021-02083-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022]
Abstract
Transforming growth factor-β (TGF-β) plays a critical role in the pathological processes of various diseases. However, the signaling mechanism of TGF-β in the pathological response remains largely unclear. In this review, we discuss advances in research of Smad7, a member of the I-Smads family and a negative regulator of TGF-β signaling, and mainly review the expression and its function in diseases. Smad7 inhibits the activation of the NF-κB and TGF-β signaling pathways and plays a pivotal role in the prevention and treatment of various diseases. Specifically, Smad7 can not only attenuate growth inhibition, fibrosis, apoptosis, inflammation, and inflammatory T cell differentiation, but also promotes epithelial cells migration or disease development. In this review, we aim to summarize the various biological functions of Smad7 in autoimmune diseases, inflammatory diseases, cancers, and kidney diseases, focusing on the molecular mechanisms of the transcriptional and posttranscriptional regulation of Smad7.
Collapse
|
17
|
Hupy ML, Pedler MG, Shieh B, Wang D, Wang XJ, Petrash JM. Suppression of epithelial to mesenchymal transition markers in mouse lens by a Smad7-based recombinant protein. Chem Biol Interact 2021; 344:109495. [PMID: 33961834 DOI: 10.1016/j.cbi.2021.109495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022]
Abstract
Cataracts, a clouding of the eye lens, are a leading cause of visual impairment and are responsible for one of the most commonly performed surgical procedures worldwide. Although generally safe and effective, cataract surgery can lead to a secondary lens abnormality due to transition of lens epithelial cells to a mesenchymal phenotype (EMT) and opacification of the posterior lens capsular bag. Occurring in up to 40% of cataract cases over time, posterior capsule opacification (PCO) introduces additional treatment costs and reduced quality of life for patients. Studies have shown that PCO pathogenesis is driven in part by TGF-β, signaling through the action of the family of Smad coactivators to effect changes in gene transcription. In the present study, we evaluated the ability of Smad-7, a well characterized inhibitor of TGF-β -mediated Smad signaling, to suppress the EMT response in lens epithelial cells associated with PCO pathogenesis. Treatment of lens epithelial cells with a cell-permeable form of Smad7 variant resulted in suppressed expression of EMT markers such as alpha smooth muscle actin and fibronectin. A single application of cell-permeable Smad7 variant in the capsular bag of a mouse cataract surgery model resulted in suppression of gene transcripts encoding alpha smooth muscle actin and fibronectin. These results point to Smad7 as a promising biotherapeutic agent for prevention or substantial reduction in the incidence of PCO following cataract surgery.
Collapse
Affiliation(s)
- Matthew L Hupy
- Department of Ophthalmology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Michelle G Pedler
- Department of Ophthalmology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Biehuoy Shieh
- Department of Ophthalmology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Dongyan Wang
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - J Mark Petrash
- Department of Ophthalmology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
18
|
Xia C, Jiang C, Li W, Wei J, Hong H, Li J, Feng L, Wei H, Xin H, Chen T. A Phase II Randomized Clinical Trial and Mechanistic Studies Using Improved Probiotics to Prevent Oral Mucositis Induced by Concurrent Radiotherapy and Chemotherapy in Nasopharyngeal Carcinoma. Front Immunol 2021; 12:618150. [PMID: 33841399 PMCID: PMC8024544 DOI: 10.3389/fimmu.2021.618150] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Earlier evidence has proven that probiotic supplements can reduce concurrent chemoradiotherapy (CCRT)-induced oral mucositis (OM) in nasopharyngeal cancer (NPC). The incidence of severe OM (grade 3 or higher) was the primary endpoint in this study. We first enrolled 85 patients with locally advanced NPC who were undergoing CCRT. Of them, 77 patients were finally selected and randomized (1:1) to receive either a probiotic cocktail or placebo. To investigate the protective effects and the mechanism of probiotic cocktail treatment on OM induced by radiotherapy and chemotherapy, we randomly divided the rats into the control (C) group, the model (M) group, and the probiotic (P) group. After treatment, samples from the tongue, blood, and fecal and proximal colon tissues on various days (7th, 14th, and 21st days) were collected and tested for the inflammatory response, cell apoptosis, intestinal permeability, and intestinal microbial changes. We found that patients taking the probiotic cocktail showed significantly lower OM. The values of the incidence of 0, 1, 2, 3, and 4 grades of OM in the placebo group and in the probiotic cocktail group were reported to be 0, 14.7, 38.2, 32.4, and 14.7% and 13.9, 36.1, 25, 22.2, and 2.8%, respectively. Furthermore, patients in the probiotic cocktail group showed a decrease in the reduction rate of CD3+ T cells (75.5% vs. 81%, p < 0.01), CD4+ T cells (64.53% vs. 79.53%, p < 0.01), and CD8+ T cells (75.59 vs. 62.36%, p < 0.01) compared to the placebo group. In the rat model, the probiotic cocktail could ameliorate the severity of OM, decrease the inflammatory response, cause cell apoptosis and intestinal permeability, and restore the structure of gut microbiota to normalcy. In conclusion, the modified probiotic cocktail significantly reduces the severity of OM by enhancing the immune response of patients with NPC and modifying the structure of gut microbiota. Clinical Trial Registration: The Clinical Trial Registration should be the NCT03112837.
Collapse
Affiliation(s)
- Chaofei Xia
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Chunling Jiang
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China.,NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Wenyu Li
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hu Hong
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Jingao Li
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China.,NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Liu Feng
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China.,NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongbo Xin
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Zheng Z, Zhao X, Zhao Q, Zhang Y, Liu S, Liu Z, Meng L, Xin Y, Jiang X. The Effects of Early Nutritional Intervention on Oral Mucositis and Nutritional Status of Patients With Head and Neck Cancer Treated With Radiotherapy. Front Oncol 2021; 10:595632. [PMID: 33598427 PMCID: PMC7882690 DOI: 10.3389/fonc.2020.595632] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Radiation-induced oral mucositis (RIOM) is a common side effect after radiotherapy (RT) in head and neck cancer (HNC) patients. RIOM patients with severe pain have difficulty in eating, which increases the incidence of malnutrition and affects patients' quality of life and the process of RT. The mechanism of RIOM is not fully understood, and inflammatory response and oxidative stress appear to be important for RIOM occurrence and development. The nutritional status of patients is very important for their RT tolerance and recovery. Malnutrition, which can lead to anemia, low protein, decreased immunity and other problems, is an important clinical factor affecting tumor progression and treatment. Recent studies have shown that early nutritional intervention can ameliorate oral mucositis and nutritional status of patients with HNC. However, in clinical practice, early nutritional intervention for patients with HNC is not a conventional intervention strategy. Therefore, this review summarized the possible pathogenesis of RIOM, commonly used assessment tools for malnutrition in patients, and recent studies on the effects of early nutritional interventions on RIOM and nutritional status of patients with HNC. We hope to provide the basis and reference for the clinical application of early nutritional intervention models.
Collapse
Affiliation(s)
- Zhuangzhuang Zheng
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Xin Zhao
- Department of Orthopedic, The Second Hospital of Jilin University, Changchun, China
| | - Qin Zhao
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yuyu Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Shiyu Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zijing Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
20
|
Liu Y, Yang M, Luo J, Zhou H. Radiotherapy targeting cancer stem cells "awakens" them to induce tumour relapse and metastasis in oral cancer. Int J Oral Sci 2020; 12:19. [PMID: 32576817 PMCID: PMC7311531 DOI: 10.1038/s41368-020-00087-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
Radiotherapy is one of the most common treatments for oral cancer. However, in the clinic, recurrence and metastasis of oral cancer occur after radiotherapy, and the underlying mechanism remains unclear. Cancer stem cells (CSCs), considered the “seeds” of cancer, have been confirmed to be in a quiescent state in most established tumours, with their innate radioresistance helping them survive more easily when exposed to radiation than differentiated cancer cells. There is increasing evidence that CSCs play an important role in recurrence and metastasis post-radiotherapy in many cancers. However, little is known about how oral CSCs cause tumour recurrence and metastasis post-radiotherapy. In this review article, we will first summarise methods for the identification of oral CSCs and then focus on the characteristics of a CSC subpopulation induced by radiation, hereafter referred to as “awakened” CSCs, to highlight their response to radiotherapy and potential role in tumour recurrence and metastasis post-radiotherapy as well as potential therapeutics targeting CSCs. In addition, we explore potential therapeutic strategies targeting these “awakened” CSCs to solve the serious clinical challenges of recurrence and metastasis in oral cancer after radiotherapy.
Collapse
Affiliation(s)
- Yangfan Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Miao Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingjing Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
21
|
Chen C, Zhang Q, Yu W, Chang B, Le AD. Oral Mucositis: An Update on Innate Immunity and New Interventional Targets. J Dent Res 2020; 99:1122-1130. [PMID: 32479139 DOI: 10.1177/0022034520925421] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oral mucositis (OM), a common debilitating toxicity associated with chemo- and radiation therapies, is a significant unmet clinical need for head and neck cancer patients. The biological complexities of chemoradiotherapy-induced OM involve interactions among disrupted tissue structures, inflammatory infiltrations, and oral microbiome, whereby several master inflammatory pathways constitute the complicated regulatory networks. Oral mucosal damages triggered by chemoradiotherapy-induced cell apoptosis were further exacerbated by the amplified inflammatory cascades dominantly governed by the innate immune responses. The coexistence of microbiome and innate immune components in oral mucosal barriers indicates that a signaling hub coordinates the interaction between environmental cues and host cells during tissue and immune homeostasis. Dysbiotic shifts in oral microbiota caused by cytotoxic cancer therapies may also contribute to the progression and severity of chemoradiotherapy-induced OM. In this review, we have updated the mechanisms involving innate immunity-governed inflammatory cascades in the pathobiology of chemoradiotherapy-induced OM and the development of new interventional targets for the management of this severe morbidity in head and neck cancer patients.
Collapse
Affiliation(s)
- C Chen
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center of Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Q Zhang
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - W Yu
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - B Chang
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - A D Le
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center of Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.,Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Gaillard D, Shechtman LA, Millar SE, Barlow LA. Fractionated head and neck irradiation impacts taste progenitors, differentiated taste cells, and Wnt/β-catenin signaling in adult mice. Sci Rep 2019; 9:17934. [PMID: 31784592 PMCID: PMC6884601 DOI: 10.1038/s41598-019-54216-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/10/2019] [Indexed: 12/13/2022] Open
Abstract
Head and neck cancer patients receiving conventional repeated, low dose radiotherapy (fractionated IR) suffer from taste dysfunction that can persist for months and often years after treatment. To understand the mechanisms underlying functional taste loss, we established a fractionated IR mouse model to characterize how taste buds are affected. Following fractionated IR, we found as in our previous study using single dose IR, taste progenitor proliferation was reduced and progenitor cell number declined, leading to interruption in the supply of new taste receptor cells to taste buds. However, in contrast to a single dose of IR, we did not encounter increased progenitor cell death in response to fractionated IR. Instead, fractionated IR induced death of cells within taste buds. Overall, taste buds were smaller and fewer following fractionated IR, and contained fewer differentiated cells. In response to fractionated IR, expression of Wnt pathway genes, Ctnnb1, Tcf7, Lef1 and Lgr5 were reduced concomitantly with reduced progenitor proliferation. However, recovery of Wnt signaling post-IR lagged behind proliferative recovery. Overall, our data suggest carefully timed, local activation of Wnt/β-catenin signaling may mitigate radiation injury and/or speed recovery of taste cell renewal following fractionated IR.
Collapse
Affiliation(s)
- Dany Gaillard
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
- Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| | - Lauren A Shechtman
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA
- Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA
| | - Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Linda A Barlow
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
- Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
23
|
Smad7 Ameliorates TGF-β-Mediated Skin Inflammation and Associated Wound Healing Defects but Not Susceptibility to Experimental Skin Carcinogenesis. J Invest Dermatol 2018; 139:940-950. [PMID: 30423327 DOI: 10.1016/j.jid.2018.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/19/2018] [Accepted: 10/29/2018] [Indexed: 01/13/2023]
Abstract
We assessed the roles of Smad7 in skin inflammation and wound healing using genetic and pharmacological approaches. In K5.TGFβ1/K5.Smad7 bigenic (double transgenic) mice, Smad7 transgene expression reversed transforming growth factor (TGF)-β1 transgene-induced inflammation, fibrosis, and subsequent epidermal hyperplasia and molecularly abolished TGF-β and NF-κB activation. Next, we produced recombinant human Smad7 protein with a Tat-tag (Tat-Smad7) that rapidly enters cells. Subcutaneous injection of Tat-Smad7 attenuated infiltration of F4/80+ and CD11b+ leukocytes and α-smooth muscle actin+ fibroblasts before attenuating epidermal hyperplasia in K5.TGFβ1 skin. Furthermore, topically applied Tat-Smad7 on K5.TGFβ1 skin wounds accelerated wound closure, with improved re-epithelialization and reductions in inflammation and fibrotic response. A short treatment with Tat-Smad7 was also sufficient to reduce TGF-β and NF-κB signaling in K5.TGFβ1 skin and wounds. Relevant to the clinic, we found that human diabetic wounds had elevated TGF-β and NF-κB signaling compared with normal skin. To assess the oncogenic risk of a potential Smad7-based therapy, we exposed K5.Smad7 skin to chemical carcinogenesis and found reduced myeloid leukocyte infiltration in tumors but not accelerated carcinogenesis compared with wild-type littermates. Our study suggests the feasibility of using exogenous Smad7 below an oncogenic level to alleviate skin inflammation and wound healing defects associated with excessive activation of TGF-β and NF-κB.
Collapse
|