1
|
Colombo R, Tarantino P, Rich JR, LoRusso PM, de Vries EGE. The Journey of Antibody-Drug Conjugates: Lessons Learned from 40 Years of Development. Cancer Discov 2024; 14:2089-2108. [PMID: 39439290 DOI: 10.1158/2159-8290.cd-24-0708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/16/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Abstract
Antibody-drug conjugates (ADC) represent one of the most rapidly expanding treatment modalities in oncology, with 11 ADCs approved by the FDA and more than 210 currently being tested in clinical trials. Spanning over 40 years, ADC clinical development has enhanced our understanding of the multifaceted mechanisms of action for this class of therapeutics. In this article, we discuss key insights into the toxicity, efficacy, stability, distribution, and fate of ADCs. Furthermore, we highlight ongoing challenges related to their clinical optimization, the development of rational sequencing strategies, and the identification of predictive biomarkers. Significance: The development and utilization of ADCs have allowed for relevant improvements in the prognosis of multiple cancer types. Concomitantly, the rise of ADCs in oncology has produced several challenges, including the prediction of their activity, their utilization in sequence, and minimization of their side effects, that still too often resemble those of the cytotoxic molecule that they carry. In this review, we retrace 40 years of development in the field of ADCs and delve deep into the mechanisms of action of these complex therapeutics and reasons behind the many achievements and failures observed in the field to date.
Collapse
Affiliation(s)
| | - Paolo Tarantino
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Jamie R Rich
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, Canada
| | - Patricia M LoRusso
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
He J, Zeng X, Wang C, Wang E, Li Y. Antibody-drug conjugates in cancer therapy: mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e671. [PMID: 39070179 PMCID: PMC11283588 DOI: 10.1002/mco2.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Antibody-drug conjugates (ADCs) consist of monoclonal antibodies that target tumor cells and cytotoxic drugs linked through linkers. By leveraging antibodies' targeting properties, ADCs deliver cytotoxic drugs into tumor cells via endocytosis after identifying the tumor antigen. This precise method aims to kill tumor cells selectively while minimizing harm to normal cells, offering safe and effective therapeutic benefits. Recent years have seen significant progress in antitumor treatment with ADC development, providing patients with new and potent treatment options. With over 300 ADCs explored for various tumor indications and some already approved for clinical use, challenges such as resistance due to factors like antigen expression, ADC processing, and payload have emerged. This review aims to outline the history of ADC development, their structure, mechanism of action, recent composition advancements, target selection, completed and ongoing clinical trials, resistance mechanisms, and intervention strategies. Additionally, it will delve into the potential of ADCs with novel markers, linkers, payloads, and innovative action mechanisms to enhance cancer treatment options. The evolution of ADCs has also led to the emergence of combination therapy as a new therapeutic approach to improve drug efficacy.
Collapse
Affiliation(s)
- Jun He
- Department of General Surgery Jiande Branch of the Second Affiliated Hospital, School of Medicine, Zhejiang University Jiande Zhejiang China
| | - Xianghua Zeng
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Chunmei Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Enwen Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Yongsheng Li
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| |
Collapse
|
3
|
Peters S, Loi S, André F, Chandarlapaty S, Felip E, Finn SP, Jänne PA, Kerr KM, Munzone E, Passaro A, Pérol M, Smit EF, Swanton C, Viale G, Stahel RA. Antibody-drug conjugates in lung and breast cancer: current evidence and future directions-a position statement from the ETOP IBCSG Partners Foundation. Ann Oncol 2024; 35:607-629. [PMID: 38648979 DOI: 10.1016/j.annonc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Following the approval of the first antibody-drug conjugates (ADCs) in the early 2000s, development has increased dramatically, with 14 ADCs now approved and >100 in clinical development. In lung cancer, trastuzumab deruxtecan (T-DXd) is approved in human epidermal growth factor receptor 2 (HER2)-mutated, unresectable or metastatic non-small-cell lung cancer, with ADCs targeting HER3 (patritumab deruxtecan), trophoblast cell-surface antigen 2 [datopotamab deruxtecan and sacituzumab govitecan (SG)] and mesenchymal-epithelial transition factor (telisotuzumab vedotin) in late-stage clinical development. In breast cancer, several agents are already approved and widely used, including trastuzumab emtansine, T-DXd and SG, and multiple late-stage trials are ongoing. Thus, in the coming years, we are likely to see significant changes to treatment algorithms. As the number of available ADCs increases, biomarkers (of response and resistance) to better select patients are urgently needed. Biopsy sample collection at the time of treatment selection and incorporation of translational research into clinical trial designs are therefore critical. Biopsy samples taken peri- and post-ADC treatment combined with functional genomics screens could provide insights into response/resistance mechanisms as well as the impact of ADCs on tumour biology and the tumour microenvironment, which could improve understanding of the mechanisms underlying these complex molecules. Many ADCs are undergoing evaluation as combination therapy, but a high bar should be set to progress clinical evaluation of any ADC-based combination, particularly considering the high cost and potential toxicity implications. Efforts to optimise ADC dosing/duration, sequencing and the potential for ADC rechallenge are also important, especially considering sustainability aspects. The ETOP IBCSG Partners Foundation are driving strong collaborations in this field and promoting the generation/sharing of databases, repositories and registries to enable greater access to data. This will allow the most important research questions to be identified and prioritised, which will ultimately accelerate progress and help to improve patient outcomes.
Collapse
Affiliation(s)
- S Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University, Lausanne, Switzerland
| | - S Loi
- Department of Clinical Medicine and Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - F André
- Breast Cancer Unit, Medical Oncology Department, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - S Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - E Felip
- Medical Oncology Department, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - S P Finn
- Department of Histopathology and Cancer Molecular Diagnostics, St James's Hospital and Trinity College, Dublin, Ireland
| | - P A Jänne
- Department of Medical Oncology, Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - K M Kerr
- Department of Pathology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - E Munzone
- Division of Medical Senology, European Institute of Oncology IRCCS, Milan
| | - A Passaro
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - M Pérol
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - E F Smit
- Department of Pulmonary Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - C Swanton
- Cancer Research UK (CRUK) Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
| | - G Viale
- Department of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - R A Stahel
- Coordinating Center, ETOP IBCSG Partners Foundation, Bern, Switzerland.
| |
Collapse
|
4
|
Jiang M, Li Q, Xu B. Spotlight on ideal target antigens and resistance in antibody-drug conjugates: Strategies for competitive advancement. Drug Resist Updat 2024; 75:101086. [PMID: 38677200 DOI: 10.1016/j.drup.2024.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a novel and promising approach in targeted therapy, uniting the specificity of antibodies that recognize specific antigens with payloads, all connected by the stable linker. These conjugates combine the best targeted and cytotoxic therapies, offering the killing effect of precisely targeting specific antigens and the potent cell-killing power of small molecule drugs. The targeted approach minimizes the off-target toxicities associated with the payloads and broadens the therapeutic window, enhancing the efficacy and safety profile of cancer treatments. Within precision oncology, ADCs have garnered significant attention as a cutting-edge research area and have been approved to treat a range of malignant tumors. Correspondingly, the issue of resistance to ADCs has gradually come to the fore. Any dysfunction in the steps leading to the ADCs' action within tumor cells can lead to the development of resistance. A deeper understanding of resistance mechanisms may be crucial for developing novel ADCs and exploring combination therapy strategies, which could further enhance the clinical efficacy of ADCs in cancer treatment. This review outlines the brief historical development and mechanism of ADCs and discusses the impact of their key components on the activity of ADCs. Furthermore, it provides a detailed account of the application of ADCs with various target antigens in cancer therapy, the categorization of potential resistance mechanisms, and the current state of combination therapies. Looking forward, breakthroughs in overcoming technical barriers, selecting differentiated target antigens, and enhancing resistance management and combination therapy strategies will broaden the therapeutic indications for ADCs. These progresses are anticipated to advance cancer treatment and yield benefits for patients.
Collapse
Affiliation(s)
- Mingxia Jiang
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Binghe Xu
- Department of Medical Oncology, State Key Laboratory of Mocelular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Yeung J, Liao A, Shaw M, Silva S, Vetharoy W, Rico DL, Kirby I, Zammarchi F, Havenith K, de Haan L, van Berkel PH, Sebire N, Ogunbiyi OK, Booth C, Gaspar HB, Thrasher AJ, Chester KA, Amrolia PJ. Anti-CD45 PBD-based antibody-drug conjugates are effective targeted conditioning agents for gene therapy and stem cell transplant. Mol Ther 2024; 32:1672-1686. [PMID: 38549377 PMCID: PMC11184310 DOI: 10.1016/j.ymthe.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/21/2023] [Accepted: 03/26/2024] [Indexed: 04/15/2024] Open
Abstract
Stem cell gene therapy and hematopoietic stem cell transplantation (SCT) require conditioning to ablate the recipient's hematopoietic stem cells (HSCs) and create a niche for gene-corrected/donor HSCs. Conventional conditioning agents are non-specific, leading to off-target toxicities and resulting in significant morbidity and mortality. We developed tissue-specific anti-human CD45 antibody-drug conjugates (ADCs), using rat IgG2b anti-human CD45 antibody clones YTH24.5 and YTH54.12, conjugated to cytotoxic pyrrolobenzodiazepine (PBD) dimer payloads with cleavable (SG3249) or non-cleavable (SG3376) linkers. In vitro, these ADCs internalized to lysosomes for drug release, resulting in potent and specific killing of human CD45+ cells. In humanized NSG mice, the ADCs completely ablated human HSCs without toxicity to non-hematopoietic tissues, enabling successful engraftment of gene-modified autologous and allogeneic human HSCs. The ADCs also delayed leukemia onset and improved survival in CD45+ tumor models. These data provide proof of concept that conditioning with anti-human CD45-PBD ADCs allows engraftment of donor/gene-corrected HSCs with minimal toxicity to non-hematopoietic tissues. Our anti-CD45-PBDs or similar agents could potentially shift the paradigm in transplantation medicine that intensive chemo/radiotherapy is required for HSC engraftment after gene therapy and allogeneic SCT. Targeted conditioning both improve the safety and minimize late effects of these procedures, which would greatly increase their applicability.
Collapse
Affiliation(s)
- Jenny Yeung
- UCL Great Ormond Street Institute of Child Health, Zayed Centre of Research, 20 Guilford Street, London WC1N 1DZ, UK; UCL Cancer Institute, 72 Huntley Street, London, UK
| | - Aiyin Liao
- UCL Great Ormond Street Institute of Child Health, Zayed Centre of Research, 20 Guilford Street, London WC1N 1DZ, UK
| | - Matthew Shaw
- UCL Great Ormond Street Institute of Child Health, Zayed Centre of Research, 20 Guilford Street, London WC1N 1DZ, UK
| | - Soraia Silva
- UCL Great Ormond Street Institute of Child Health, Zayed Centre of Research, 20 Guilford Street, London WC1N 1DZ, UK
| | - Winston Vetharoy
- UCL Great Ormond Street Institute of Child Health, Zayed Centre of Research, 20 Guilford Street, London WC1N 1DZ, UK
| | - Diego Leon Rico
- UCL Great Ormond Street Institute of Child Health, Zayed Centre of Research, 20 Guilford Street, London WC1N 1DZ, UK
| | - Ian Kirby
- ADC Therapeutics UK (Ltd), Imperial College White City Campus, 84 Wood Lane, London W12 0BZ, UK
| | - Francesca Zammarchi
- ADC Therapeutics UK (Ltd), Imperial College White City Campus, 84 Wood Lane, London W12 0BZ, UK
| | - Karin Havenith
- ADC Therapeutics UK (Ltd), Imperial College White City Campus, 84 Wood Lane, London W12 0BZ, UK
| | - Lolke de Haan
- ADC Therapeutics UK (Ltd), Imperial College White City Campus, 84 Wood Lane, London W12 0BZ, UK
| | - Patrick H van Berkel
- ADC Therapeutics UK (Ltd), Imperial College White City Campus, 84 Wood Lane, London W12 0BZ, UK
| | - Neil Sebire
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 1JH, UK
| | - Olumide K Ogunbiyi
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 1JH, UK
| | - Claire Booth
- UCL Great Ormond Street Institute of Child Health, Zayed Centre of Research, 20 Guilford Street, London WC1N 1DZ, UK; Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 1JH, UK
| | - H Bobby Gaspar
- UCL Great Ormond Street Institute of Child Health, Zayed Centre of Research, 20 Guilford Street, London WC1N 1DZ, UK
| | - Adrian J Thrasher
- UCL Great Ormond Street Institute of Child Health, Zayed Centre of Research, 20 Guilford Street, London WC1N 1DZ, UK
| | | | - Persis J Amrolia
- UCL Great Ormond Street Institute of Child Health, Zayed Centre of Research, 20 Guilford Street, London WC1N 1DZ, UK; Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 1JH, UK.
| |
Collapse
|
6
|
Garaudé S, Marone R, Lepore R, Devaux A, Beerlage A, Seyres D, Dell' Aglio A, Juskevicius D, Zuin J, Burgold T, Wang S, Katta V, Manquen G, Li Y, Larrue C, Camus A, Durzynska I, Wellinger LC, Kirby I, Van Berkel PH, Kunz C, Tamburini J, Bertoni F, Widmer CC, Tsai SQ, Simonetta F, Urlinger S, Jeker LT. Selective haematological cancer eradication with preserved haematopoiesis. Nature 2024; 630:728-735. [PMID: 38778101 PMCID: PMC11186773 DOI: 10.1038/s41586-024-07456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Haematopoietic stem cell (HSC) transplantation (HSCT) is the only curative treatment for a broad range of haematological malignancies, but the standard of care relies on untargeted chemotherapies and limited possibilities to treat malignant cells after HSCT without affecting the transplanted healthy cells1. Antigen-specific cell-depleting therapies hold the promise of much more targeted elimination of diseased cells, as witnessed in the past decade by the revolution of clinical practice for B cell malignancies2. However, target selection is complex and limited to antigens expressed on subsets of haematopoietic cells, resulting in a fragmented therapy landscape with high development costs2-5. Here we demonstrate that an antibody-drug conjugate (ADC) targeting the pan-haematopoietic marker CD45 enables the antigen-specific depletion of the entire haematopoietic system, including HSCs. Pairing this ADC with the transplantation of human HSCs engineered to be shielded from the CD45-targeting ADC enables the selective eradication of leukaemic cells with preserved haematopoiesis. The combination of CD45-targeting ADCs and engineered HSCs creates an almost universal strategy to replace a diseased haematopoietic system, irrespective of disease aetiology or originating cell type. We propose that this approach could have broad implications beyond haematological malignancies.
Collapse
Affiliation(s)
- Simon Garaudé
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Romina Marone
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Rosalba Lepore
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
- Cimeio Therapeutics, Basel, Switzerland
| | - Anna Devaux
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Astrid Beerlage
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
- Department of Hematology, Basel University Hospital, Basel, Switzerland
| | - Denis Seyres
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Alessandro Dell' Aglio
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Darius Juskevicius
- Department of Laboratory Medicine, Diagnostic Hematology, Basel University Hospital, Basel, Switzerland
| | - Jessica Zuin
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Thomas Burgold
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Sisi Wang
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Varun Katta
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Garret Manquen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yichao Li
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Clément Larrue
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | | | | | | | | | | | | | - Jérôme Tamburini
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Corinne C Widmer
- Department of Hematology, Basel University Hospital, Basel, Switzerland
- Department of Laboratory Medicine, Diagnostic Hematology, Basel University Hospital, Basel, Switzerland
| | - Shengdar Q Tsai
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Lukas T Jeker
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland.
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland.
- Innovation Focus Cell Therapy, Basel University Hospital, Basel, Switzerland.
| |
Collapse
|
7
|
Martín M, Pandiella A, Vargas-Castrillón E, Díaz-Rodríguez E, Iglesias-Hernangómez T, Martínez Cano C, Fernández-Cuesta I, Winkow E, Perelló MF. Trastuzumab deruxtecan in breast cancer. Crit Rev Oncol Hematol 2024; 198:104355. [PMID: 38621469 DOI: 10.1016/j.critrevonc.2024.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 02/06/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024] Open
Abstract
Trastuzumab deruxtecan (T-DXd) is an antibody-drug conjugate (ADC) consisting of a humanised, anti-human epidermal growth factor receptor 2 (HER2) monoclonal antibody covalently linked to a topoisomerase I inhibitor cytotoxic payload (DXd). The high drug-to-antibody ratio (8:1) ensures a high DXd concentration is delivered to target tumour cells, following internalisation of T-DXd and subsequent cleavage of its tetrapeptide-based linker. DXd's membrane-permeable nature enables it to cross cell membranes and potentially exert antitumour activity on surrounding tumour cells regardless of HER2 expression. T-DXd's unique mechanism of action is reflected in its efficacy in clinical trials in patients with HER2-positive advanced breast cancer (in heavily pretreated populations and in those previously treated with a taxane and trastuzumab), as well as HER2-low metastatic breast cancer. Thus, ADCs such as T-DXd have the potential to change the treatment paradigm of targeting HER2 in metastatic breast cancer, including eventually within the adjuvant/neoadjuvant setting.
Collapse
Affiliation(s)
- Miguel Martín
- Instituto de Investigación Sanitaria Hospital Gregorio Marañón, Universidad Complutense, CIBERONC, Calle Doctor Esquerdo, 46, Madrid 28007, Spain.
| | - Atanasio Pandiella
- Centro de Investigación del Cáncer, Universidad de Salamanca-CSIC-IBSAL and CIBERONC, Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - Emilio Vargas-Castrillón
- Servicio de Farmacología Clínica, Hospital Clínico San Carlos, Calle del Prof Martín Lagos, S/N, Madrid 28040, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, Madrid 28040, Spain
| | - Elena Díaz-Rodríguez
- Centro de Investigación del Cáncer, Universidad de Salamanca-CSIC-IBSAL and CIBERONC, Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - Teresa Iglesias-Hernangómez
- Servicio de Farmacología Clínica, Hospital Clínico San Carlos, Calle del Prof Martín Lagos, S/N, Madrid 28040, Spain
| | - Concha Martínez Cano
- Daiichi Sankyo, Paseo Club Deportivo, 1, Edificio 14, Madrid, Pozuelo de Alarcón 28223, Spain
| | | | - Elena Winkow
- Daiichi Sankyo, Paseo Club Deportivo, 1, Edificio 14, Madrid, Pozuelo de Alarcón 28223, Spain
| | - Maria Francesca Perelló
- Daiichi Sankyo, Paseo Club Deportivo, 1, Edificio 14, Madrid, Pozuelo de Alarcón 28223, Spain
| |
Collapse
|
8
|
Guo Y, Li X, Xie Y, Wang Y. What influences the activity of Degrader-Antibody conjugates (DACs). Eur J Med Chem 2024; 268:116216. [PMID: 38387330 DOI: 10.1016/j.ejmech.2024.116216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
The targeted protein degradation (TPD) technology employing proteolysis-targeting chimeras (PROTACs) has been widely applied in drug chemistry and chemical biology for the treatment of cancer and other diseases. PROTACs have demonstrated significant advantages in targeting undruggable targets and overcoming drug resistance. However, despite the efficient degradation of targeted proteins achieved by PROTACs, they still face challenges related to selectivity between normal and cancer cells, as well as issues with poor membrane permeability due to their substantial molecular weight. Additionally, the noteworthy toxicity resulting from off-target effects also needs to be addressed. To solve these issues, Degrader-Antibody Conjugates (DACs) have been developed, leveraging the targeting and internalization capabilities of antibodies. In this review, we elucidates the characteristics and distinctions between DACs, and traditional Antibody-drug conjugates (ADCs). Meanwhile, we emphasizes the significance of DACs in facilitating the delivery of PROTACs and delves into the impact of various components on DAC activity. These components include antibody targets, drug-antibody ratio (DAR), linker types, PROTACs targets, PROTACs connections, and E3 ligase ligands. The review also explores the suitability of different targets (antibody targets or PROTACs targets) for DACs, providing insights to guide the design of PROTACs better suited for antibody conjugation.
Collapse
Affiliation(s)
- Yaolin Guo
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Xie
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
9
|
Chauhan P, V R, Kumar M, Molla R, Mishra SD, Basa S, Rai V. Chemical technology principles for selective bioconjugation of proteins and antibodies. Chem Soc Rev 2024; 53:380-449. [PMID: 38095227 DOI: 10.1039/d3cs00715d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proteins are multifunctional large organic compounds that constitute an essential component of a living system. Hence, control over their bioconjugation impacts science at the chemistry-biology-medicine interface. A chemical toolbox for their precision engineering can boost healthcare and open a gateway for directed or precision therapeutics. Such a chemical toolbox remained elusive for a long time due to the complexity presented by the large pool of functional groups. The precise single-site modification of a protein requires a method to address a combination of selectivity attributes. This review focuses on guiding principles that can segregate them to simplify the task for a chemical method. Such a disintegration systematically employs a multi-step chemical transformation to deconvolute the selectivity challenges. It constitutes a disintegrate (DIN) theory that offers additional control parameters for tuning precision in protein bioconjugation. This review outlines the selectivity hurdles faced by chemical methods. It elaborates on the developments in the perspective of DIN theory to demonstrate simultaneous regulation of reactivity, chemoselectivity, site-selectivity, modularity, residue specificity, and protein specificity. It discusses the progress of such methods to construct protein and antibody conjugates for biologics, including antibody-fluorophore and antibody-drug conjugates (AFCs and ADCs). It also briefs how this knowledge can assist in developing small molecule-based covalent inhibitors. In the process, it highlights an opportunity for hypothesis-driven routes to accelerate discoveries of selective methods and establish new targetome in the precision engineering of proteins and antibodies.
Collapse
Affiliation(s)
- Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Ragendu V
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Mohan Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Rajib Molla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Surya Dev Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Sneha Basa
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| |
Collapse
|
10
|
Kiyomiya K, Tomabechi R, Saito N, Watai K, Takada T, Shirasaka Y, Kishimoto H, Higuchi K, Inoue K. Macrolide and Ketolide Antibiotics Inhibit the Cytotoxic Effect of Trastuzumab Emtansine in HER2-Positive Breast Cancer Cells: Implication of a Potential Drug-ADC Interaction in Cancer Chemotherapy. Mol Pharm 2023; 20:6130-6139. [PMID: 37971309 DOI: 10.1021/acs.molpharmaceut.3c00490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Macrolides are widely used for the long-term treatment of infections and chronic inflammatory diseases. The pharmacokinetic features of macrolides include extensive tissue distribution because of favorable membrane permeability and accumulation within lysosomes. Trastuzumab emtansine (T-DM1), a HER2-targeting antibody-drug conjugate (ADC), is catabolized in the lysosomes, where Lys-SMCC-DM1, a potent cytotoxic agent, is processed by proteinase degradation and subsequently released from the lysosomes to the cytoplasm through the lysosomal membrane transporter SLC46A3, resulting in an antitumor effect. We recently demonstrated that erythromycin and clarithromycin inhibit SLC46A3 and attenuate the cytotoxicity of T-DM1; however, the effect of other macrolides and ketolides has not been determined. In this study, we evaluated the effect of macrolide and ketolide antibiotics on T-DM1 cytotoxicity in a human breast cancer cell line, KPL-4. Macrolides used in the clinic, such as roxithromycin, azithromycin, and josamycin, as well as solithromycin, a ketolide under clinical development, significantly attenuated T-DM1 cytotoxicity in addition to erythromycin and clarithromycin. Of these, azithromycin was the most potent inhibitor of T-DM1 efficacy. These antibiotics significantly inhibited the transport function of SLC46A3 in a concentration-dependent manner. Moreover, these compounds extensively accumulated in the lysosomes at the levels estimated to be 0.41-13.6 mM when cells were incubated with them at a 2 μM concentration. The immunofluorescence staining of trastuzumab revealed that azithromycin and solithromycin inhibit the degradation of T-DM1 in the lysosomes. These results suggest that the attenuation of T-DM1 cytotoxicity by macrolide and ketolide antibiotics involves their lysosomal accumulation and results in their greater lysosomal concentrations to inhibit the SLC46A3 function and T-DM1 degradation. This suggests a potential drug-ADC interaction during cancer chemotherapy.
Collapse
Affiliation(s)
- Keisuke Kiyomiya
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Ryuto Tomabechi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
- Laboratory of Pharmaceutics, Kitasato University School of Pharmacy, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Naoki Saito
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kenta Watai
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8655, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hisanao Kishimoto
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kei Higuchi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
11
|
Chen Y, Xu Y, Shao Z, Yu K. Resistance to antibody-drug conjugates in breast cancer: mechanisms and solutions. Cancer Commun (Lond) 2023; 43:297-337. [PMID: 36357174 PMCID: PMC10009672 DOI: 10.1002/cac2.12387] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a rapidly developing therapeutic approach in cancer treatment that has shown remarkable activity in breast cancer. Currently, there are two ADCs approved for the treatment of human epidermal growth factor receptor 2-positive breast cancer, one for triple-negative breast cancer, and multiple investigational ADCs in clinical trials. However, drug resistance has been noticed in clinical use, especially in trastuzumab emtansine. Here, the mechanisms of ADC resistance are summarized into four categories: antibody-mediated resistance, impaired drug trafficking, disrupted lysosomal function, and payload-related resistance. To overcome or prevent resistance to ADCs, innovative development strategies and combination therapy options are being investigated. Analyzing predictive biomarkers for optimal therapy selection may also help to prevent drug resistance.
Collapse
Affiliation(s)
- Yu‐Fei Chen
- Department of Breast SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Shanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Ying‐ying Xu
- Department of Breast SurgeryFirst Affiliated Hospital of China Medical UniversityShenyangLiaoning110001P. R. China
| | - Zhi‐Ming Shao
- Department of Breast SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Shanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Ke‐Da Yu
- Department of Breast SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Shanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| |
Collapse
|
12
|
Samantasinghar A, Sunildutt NP, Ahmed F, Soomro AM, Salih ARC, Parihar P, Memon FH, Kim KH, Kang IS, Choi KH. A comprehensive review of key factors affecting the efficacy of antibody drug conjugate. Biomed Pharmacother 2023; 161:114408. [PMID: 36841027 DOI: 10.1016/j.biopha.2023.114408] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
Antibody Drug Conjugate (ADC) is an emerging technology to overcome the limitations of chemotherapy by selectively targeting the cancer cells. ADC binds with an antigen, specifically over expressed on the surface of cancer cells, results decrease in bystander effect and increase in therapeutic index. The potency of an ideal ADC is entirely depending on several physicochemical factors such as site of conjugation, molecular weight, linker length, Steric hinderance, half-life, conjugation method, binding energy and so on. Inspite of the fact that there is more than 100 of ADCs are in clinical trial only 14 ADCs are approved by FDA for clinical use. However, to design an ideal ADC is still challenging and there is much more to be done. Here in this review, we have discussed the key components along with their significant role or contribution towards the efficacy of an ADC. Moreover, we also explained about the recent advancement in the conjugation method. Additionally, we spotlit the mode of action of an ADC, recent challenges, and future perspective regarding ADC. The profound knowledge regarding key components and their properties will help in the synthesis or production of different engineered ADCs. Therefore, contributes to develop an ADC with low safety concern and high therapeutic index. We hope this review will improve the understanding and encourage the practicing of research in anticancer ADCs development.
Collapse
Affiliation(s)
| | | | - Faheem Ahmed
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea
| | | | | | - Pratibha Parihar
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea
| | - Fida Hussain Memon
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea
| | | | - In Suk Kang
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea.
| |
Collapse
|
13
|
Antibody-drug conjugates in lung cancer: dawn of a new era? NPJ Precis Oncol 2023; 7:5. [PMID: 36631624 PMCID: PMC9834242 DOI: 10.1038/s41698-022-00338-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are one of fastest growing classes of oncology drugs in modern drug development. By harnessing the powers of both cytotoxic chemotherapy and targeted therapy, ADCs are unique in offering the potential to deliver highly potent cytotoxic agents to cancer cells which express a pre-defined cell surface target. In lung cancer, the treatment paradigm has shifted dramatically in recent years, and now ADCs are now joining the list as potential options for lung cancer patients. Since 2020, the first ADC for NSCLC patients has been FDA-approved (trastuzumab deruxtecan) and two ADCs have been granted FDA Breakthrough Therapy Designation, currently under evaluation (patritumab deruxtecan, telisotuzumab vedotin). Furthermore, several early-phase trials are assessing various novel ADCs, either as monotherapy or in combinations with advanced lung cancer, and more selective and potent ADCs are expected to become therapeutic options in clinic soon. In this review, we discuss the structure and mechanism of action of ADCs, including insights from pre-clinical work; we summarize the ADCs' recent progress in lung cancer, describe toxicity profiles of ADCs, and explore strategies designed to enhance ADC potency and overcome resistance. In addition, we discuss novel ADC strategies of interest in lung cancer, including non-cytotoxic payloads, such as immunomodulatory and anti-apoptotic agents.
Collapse
|
14
|
Tomabechi R, Miyasato M, Sato T, Takada T, Higuchi K, Kishimoto H, Shirasaka Y, Inoue K. Identification of 5-Carboxyfluorescein as a Probe Substrate of SLC46A3 and Its Application in a Fluorescence-Based In Vitro Assay Evaluating the Interaction with SLC46A3. Mol Pharm 2023; 20:491-499. [PMID: 36458938 DOI: 10.1021/acs.molpharmaceut.2c00741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The therapeutic modalities that involve the endocytosis pathway, including antibody-drug conjugates (ADCs), have recently been developed. Since the drug escape from endosomes/lysosomes is a determinant of their efficacy, it is important to optimize the escape, and the cellular evaluation system is needed. SLC46A3, a lysosomal membrane protein, has been implicated in the pharmacological efficacy of trastuzumab emtansine (T-DM1), a noncleavable ADC used for the treatment of breast cancer, and the cellular uptake efficacy of lipid-based nanoparticles. Recently, we identified the SLC46A3 function as a proton-coupled steroid conjugate and bile acid transporter, which can directly transport active catabolites of T-DM1. Thus, the rapid and convenient assay systems for evaluating the SLC46A3 function may help to facilitate ADC development and to clarify the physiological roles in endocytosis. Here, we show that SLC46A3 dC, which localizes to the plasma membrane owing to lacking a lysosomal-sorting motif, has a great ability to transport 5-carboxyfluorescein (5-CF), a fluorescent probe, in a pH-dependent manner. 5-CF uptake mediated by SLC46A3 was significantly inhibited by compounds reported to be SLC46A3 substrates/inhibitors and competitively inhibited by estrone 3-sulfate, a typical SLC46A3 substrate. The inhibition assays followed by uptake studies revealed that SG3199, a pyrrolobenzodiazepine dimer, which has been used as an ADC payload, is a substrate of SLC46A3. Accordingly, the fluorescence-based assay system for the SLC46A3 function using 5-CF can provide a valuable tool to evaluate the interaction of drugs/drug candidates with SLC46A3.
Collapse
Affiliation(s)
- Ryuto Tomabechi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| | - Miki Miyasato
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| | - Taeka Sato
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8655, Japan
| | - Kei Higuchi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| | - Hisanao Kishimoto
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa920-1192, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| |
Collapse
|
15
|
Antibody-Drug Conjugates in Non-Small Cell Lung Cancer: Emergence of a Novel Therapeutic Class. Curr Oncol Rep 2022; 24:1829-1841. [PMID: 36197593 DOI: 10.1007/s11912-022-01334-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Antibody-drug conjugates (ADCs) are a class of therapeutics that combine target-specific monoclonal antibodies with cytotoxic chemotherapy. Here, we describe the components of ADCs and review their promising activity, safety, and applicability in non-small cell lung cancer (NSCLC). RECENT FINDINGS Technological advancements have reinvigorated ADCs as a viable treatment strategy in advanced solid tumors. Several target-specific ADCs have shown promise in treatment-refractory NSCLC, including agents targeting HER2, HER3, TROP2, CEACAM5, and MET, among others, with multiple confirmatory phase 3 trials ongoing. Critically, ADCs have demonstrated efficacy signals in both driver mutation-positive and mutation-negative advanced NSCLC, reinforcing their potential as an efficacious treatment strategy that transcends diverse tumor biology in advanced NSCLC. ADCs are a promising class of anti-cancer therapeutics that have significant potential in advanced NSCLC. Beyond confirmatory phase 3 trials, several questions remain including optimal agent sequencing, combinatorial methods, and unique toxicity management.
Collapse
|
16
|
Quintana J, Arboleda D, Hu H, Scott E, Luthria G, Pai S, Parangi S, Weissleder R, Miller MA. Radiation Cleaved Drug-Conjugate Linkers Enable Local Payload Release. Bioconjug Chem 2022; 33:1474-1484. [PMID: 35833631 PMCID: PMC9390333 DOI: 10.1021/acs.bioconjchem.2c00174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conjugation of therapeutic payloads to biologics including antibodies and albumin can enhance the selectively of drug delivery to solid tumors. However, achieving activity in tumors while avoiding healthy tissues remains a challenge, and payload activity in off-target tissues can cause toxicity for many such drug-conjugates. Here, we address this issue by presenting a drug-conjugate linker strategy that releases an active therapeutic payload upon exposure to ionizing radiation. Localized X-ray irradiation at clinically relevant doses (8 Gy) yields 50% drug (doxorubicin or monomethyl auristatin E, MMAE) release under hypoxic conditions that are traditionally associated with radiotherapy resistance. As proof-of-principle, we apply the approach to antibody- and albumin-drug conjugates and achieve >2000-fold enhanced MMAE cytotoxicity upon irradiation. Overall, this work establishes ionizing radiation as a strategy for spatially localized cancer drug delivery.
Collapse
Affiliation(s)
- Jeremy
M. Quintana
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - David Arboleda
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - Huiyu Hu
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Surgery, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ella Scott
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - Gaurav Luthria
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - Sara Pai
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Surgery, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Sareh Parangi
- Department
of Surgery, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ralph Weissleder
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Miles A. Miller
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
17
|
Boehnke N, Straehla JP, Safford HC, Kocak M, Rees MG, Ronan M, Rosenberg D, Adelmann CH, Chivukula RR, Nabar N, Berger AG, Lamson NG, Cheah JH, Li H, Roth JA, Koehler AN, Hammond PT. Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery. Science 2022; 377:eabm5551. [PMID: 35862544 DOI: 10.1126/science.abm5551] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To accelerate the translation of cancer nanomedicine, we used an integrated genomic approach to improve our understanding of the cellular processes that govern nanoparticle trafficking. We developed a massively parallel screen that leverages barcoded, pooled cancer cell lines annotated with multiomic data to investigate cell association patterns across a nanoparticle library spanning a range of formulations with clinical potential. We identified both materials properties and cell-intrinsic features that mediate nanoparticle-cell association. Using machine learning algorithms, we constructed genomic nanoparticle trafficking networks and identified nanoparticle-specific biomarkers. We validated one such biomarker: gene expression of SLC46A3, which inversely predicts lipid-based nanoparticle uptake in vitro and in vivo. Our work establishes the power of integrated screens for nanoparticle delivery and enables the identification and utilization of biomarkers to rationally design nanoformulations.
Collapse
Affiliation(s)
- Natalie Boehnke
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joelle P Straehla
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hannah C Safford
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Mustafa Kocak
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew G Rees
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Melissa Ronan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Danny Rosenberg
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Charles H Adelmann
- Cutaneous Biology Research Center, Massachusetts General Hospital Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Raghu R Chivukula
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Namita Nabar
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Adam G Berger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicholas G Lamson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jaime H Cheah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Hojun Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Angela N Koehler
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
18
|
Qi X, Li Y, Liu W, Wang Y, Chen Z, Lin L. Research Trend of Publications Concerning Antibody-Drug Conjugate in Solid Cancer: A Bibliometric Study. Front Pharmacol 2022; 13:921385. [PMID: 35795565 PMCID: PMC9252465 DOI: 10.3389/fphar.2022.921385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Antibody-drug conjugate (ADC) is a promising therapy for solid cancer that has raised global concern. Although several papers have reviewed the current state of ADCs in different solid cancers, a quantitative analysis of the publications in this field is scarce. Methods: Publications related to ADC in the field of solid cancer were obtained from the Web of Science Core Collection. Data analyses were performed with VOSviewer 1.6.9, HistCite 2.1, CiteSpace V and R package Bibliometrix. Results: A total of 3,482 records were obtained in the holistic field and 1,197 in the clinical field. Steady growth in the number of publications was observed. The United States was the leading contributor in this field. Krop IE was the most influential author. The most productive institution was Genentech Inc., while Mem Sloan Kettering Canc Ctr was the most cited one. The most impactful journal was the Journal of Clinical Oncology. A total of 37 burst references and five burst references were identified between 2017–2022 in the holistic and clinical fields, respectively. Keywords analysis indicated that ADCs research mainly involved breast cancer, triple-negative breast cancer, ovarian cancer, small cell lung cancer, prostate cancer, gastric cancer, and urothelial carcinoma. ADC agents including trastuzumab emtansine, trastuzumab deruxtecan, sacituzumab govitecan, enfortumab vedotin, and rovalpituzumab tesirine were highly studied. Targets including HER2, trophoblast cell-surface antigen, mesothelin, delta-like ligand 3, and nectin-4 were the major concerns. Conclusion: This study analyzed publications concerning ADCs in the field of solid cancer with bibliometric analysis. Further clinical trials of ADCs and designs of the next generation of ADCs are the current focuses of the field. Acquired resistance of ADCs and biomarkers for ADC therapy efficacy monitoring are future concerns.
Collapse
Affiliation(s)
- Xiangjun Qi
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanlong Li
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifan Wang
- School of Chinese Classics Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuangzhong Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lizhu Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Lizhu Lin,
| |
Collapse
|
19
|
Tomabechi R, Kishimoto H, Sato T, Saito N, Kiyomiya K, Takada T, Higuchi K, Shirasaka Y, Inoue K. SLC46A3 is a lysosomal proton-coupled steroid conjugate and bile acid transporter involved in transport of active catabolites of T-DM1. PNAS NEXUS 2022; 1:pgac063. [PMID: 36741448 PMCID: PMC9896951 DOI: 10.1093/pnasnexus/pgac063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Antibody-drug conjugates (ADCs) represent a new class of cancer therapeutics that enable targeted delivery of cytotoxic drugs to cancer cells. Although clinical efficacy has been demonstrated for ADC therapies, resistance to these conjugates may occur. Recently, SLC46A3, a lysosomal membrane protein, was revealed to regulate the efficacy of trastuzumab emtansine (T-DM1), a noncleavable ADC that has been widely used for treating breast cancer. However, the role of SLC46A3 in mediating T-DM1 cytotoxicity remains unclear. In this study, we discovered the function of SLC46A3 as a novel proton-coupled steroid conjugate and bile acid transporter. SLC46A3 preferentially recognized lipophilic steroid conjugates and bile acids as endogenous substrates. In addition, we found that SLC46A3 directly transports Lys-SMCC-DM1, a major catabolite of T-DM1, and potent SLC46A3 inhibitors attenuate the cytotoxic effects of T-DM1, suggesting a role in the escape of Lys-SMCC-DM1 from the lysosome into the cytoplasm. Our findings reveal the molecular mechanism by which T-DM1 kills cancer cells and may contribute to the rational development of ADCs that target SLC46A3.
Collapse
Affiliation(s)
- Ryuto Tomabechi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hisanao Kishimoto
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Taeka Sato
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Naoki Saito
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Keisuke Kiyomiya
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kei Higuchi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | |
Collapse
|
20
|
Abstract
Degrader-antibody conjugates (DACs) are novel entities that combine a proteolysis targeting chimera (PROTAC) payload with a monoclonal antibody via some type of chemical linker. This review provides a current summary of the DAC field. Many general aspects associated with the creation and biological performance of traditional cytotoxic antibody-drug conjugates (ADCs) are initially presented. These characteristics are subsequently compared and contrasted with related parameters that impact DAC generation and biological activity. Several examples of DACs assembled from both the scientific and the patent literature are utilized to highlight differing strategies for DAC creation, and specific challenges associated with DAC construction are documented. Collectively, the assembled examples demonstrate that biologically-active DACs can be successfully prepared using a variety of PROTAC payloads which employ diverse E3 ligases to degrade multiple protein targets.
Collapse
|
21
|
He J, Biswas R, Bugde P, Li J, Liu DX, Li Y. Application of CRISPR-Cas9 System to Study Biological Barriers to Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14050894. [PMID: 35631480 PMCID: PMC9147533 DOI: 10.3390/pharmaceutics14050894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, sequence-specific clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems have been widely used in genome editing of various cell types and organisms. The most developed and broadly used CRISPR-Cas system, CRISPR-Cas9, has benefited from the proof-of-principle studies for a better understanding of the function of genes associated with drug absorption and disposition. Genome-scale CRISPR-Cas9 knockout (KO) screen study also facilitates the identification of novel genes in which loss alters drug permeability across biological membranes and thus modulates the efficacy and safety of drugs. Compared with conventional heterogeneous expression models or other genome editing technologies, CRISPR-Cas9 gene manipulation techniques possess significant advantages, including ease of design, cost-effectiveness, greater on-target DNA cleavage activity and multiplexing capabilities, which makes it possible to study the interactions between membrane proteins and drugs more accurately and efficiently. However, many mechanistic questions and challenges regarding CRISPR-Cas9 gene editing are yet to be addressed, ranging from off-target effects to large-scale genetic alterations. In this review, an overview of the mechanisms of CRISPR-Cas9 in mammalian genome editing will be introduced, as well as the application of CRISPR-Cas9 in studying the barriers to drug delivery.
Collapse
Affiliation(s)
- Ji He
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
| | - Riya Biswas
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
| | - Piyush Bugde
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
| | - Jiawei Li
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
| | - Dong-Xu Liu
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Yan Li
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
- School of Interprofessional Health Studies, Auckland University of Technology, Auckland 1010, New Zealand
- Correspondence: ; Tel.: +64-9921-9999 (ext. 7109)
| |
Collapse
|
22
|
Casadevall D, Hernandez-Prat A, Garc A-Alonso S, Arpi-Llucia O, Menendez S, Qin M, Guardia C, Morancho B, Sanchez-Mart N FJ, Zazo S, Gavilan E, Sabbaghi M, Eroles P, Cejalvo JM, Lluch A, Rojo F, Pandiella A, Rovira A, Albanell J. mTOR inhibition and trastuzumab-emtansine (T-DM1) in HER2-positive breast cancer. Mol Cancer Res 2022; 20:1108-1121. [PMID: 35348729 DOI: 10.1158/1541-7786.mcr-21-0545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/06/2022] [Accepted: 03/23/2022] [Indexed: 12/09/2022]
Abstract
In patients with trastuzumab-resistant HER2-positive breast cancer, the combination of everolimus (mTORC1 inhibitor) with trastuzumab failed to show a clinically significant benefit. However, the combination of mTOR inhibition and the antibody-drug conjugate (ADC) trastuzumab-emtansine (T-DM1) remains unexplored. We tested T-DM1 plus everolimus in a broad panel of HER2-positive breast cancer cell lines. The combination was superior to T-DM1 alone in four cell lines (HCC1954, SKBR3, EFM192A, and MDA-MB-36) and in two cultures from primary tumor cells derived from HER2-positive patient-derived xenografts (PDX), but not in BT474 cells. In the trastuzumab-resistant HCC1954 cell line, we characterized the effects of the combination using TAK-228 (mTORC1 and 2 inhibitor) and knockdown of the different mTOR complex components. T-DM1 did not affect mTOR downstream signaling nor induct autophagy. Importantly, mTOR inhibition increased intracellular T-DM1 levels, leading to increased lysosomal accumulation of the compound. The increased efficacy of mTOR inhibition plus T-DM1 was abrogated by lysosome inhibitors (chloroquine and bafilomycin A1). Our experiments suggest that BT474 are less sensitive to T-DM1 due to lack of optimal lysosomal processing and intrinsic resistance to the DM1 moiety. Finally, we performed several in vivo experiments that corroborated the superior activity of T-DM1 and everolimus in HCC1954 and PDX-derived mouse models. In summary, everolimus in combination with T-DM1 showed strong antitumor effects in HER2-positive breast cancer, both in vitro and in vivo. This effect might be related, at least partially, to mTOR-dependent lysosomal processing of T-DM1, a finding that might apply to other ADCs that require lysosomal processing. Implications: Inhibition of mTOR increases the anti-tumor activity of T-DM1, supporting that the combination of mTOR inhibitors and antibody-drug conjugates warrants clinical evaluation in patients with HER2-positive breast cancer.
Collapse
Affiliation(s)
| | | | | | - Oriol Arpi-Llucia
- IMIM (Institut Hospital del Mar d'Investigacions M�diques), Barcelona, Barcelona, Spain
| | | | - Mengjuan Qin
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Cristina Guardia
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Barcelona, Spain
| | | | | | - Sandra Zazo
- IIS-Fundaci�n Jim�nez D�az-CIBERONC, UAM, Madrid, Spain
| | | | | | - Pilar Eroles
- INCLIVA Biomedical Research Institute - University of Valencia, Spain. CIBERONC, Valencia, Valencia, Spain
| | - Juan Miguel Cejalvo
- Biomedical Health Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | - Ana Lluch
- University of Valencia - Biomedical Research Institute INCLIVA-Hospital Cl�nico de Valencia-CIBERONC, Valencia, Valencia, Spain
| | - Federico Rojo
- IIS-Fundaci�n Jim�nez D�az-CIBERONC, UAM, Madrid, Spain
| | - Atanasio Pandiella
- Centro de Investigaci�n del C�ncer, CIBERONC and IBSAL, Salamanca, Spain
| | | | - Joan Albanell
- Hospital Del Mar Medical Research Instiiute, Barcelona, Spain
| |
Collapse
|
23
|
Teicher BA, Morris J. Antibody-Drug Conjugate Targets, Drugs and Linkers. Curr Cancer Drug Targets 2022; 22:463-529. [PMID: 35209819 DOI: 10.2174/1568009622666220224110538] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Antibody-drug conjugates offer the possibility of directing powerful cytotoxic agents to a malignant tumor while sparing normal tissue. The challenge is to select an antibody target expressed exclusively or at highly elevated levels on the surface of tumor cells and either not all or at low levels on normal cells. The current review explores 78 targets that have been explored as antibody-drug conjugate targets. Some of these targets have been abandoned, 9 or more are the targets of FDA-approved drugs, and most remain active clinical interest. Antibody-drug conjugates require potent cytotoxic drug payloads, several of these small molecules are discussed, as are the linkers between the protein component and small molecule components of the conjugates. Finally, conclusions regarding the elements for the successful antibody-drug conjugate are discussed.
Collapse
Affiliation(s)
- Beverly A Teicher
- Developmental Therapeutics Program, DCTD, National Cancer Institute, Bethesda, MD 20892,United States
| | - Joel Morris
- Developmental Therapeutics Program, DCTD, National Cancer Institute, Bethesda, MD 20892,United States
| |
Collapse
|
24
|
Nobari ST, Nojadeh JN, Talebi M. B-cell maturation antigen targeting strategies in multiple myeloma treatment, advantages and disadvantages. J Transl Med 2022; 20:82. [PMID: 35144648 PMCID: PMC8832753 DOI: 10.1186/s12967-022-03285-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/29/2022] [Indexed: 01/02/2023] Open
Abstract
B cell maturation antigen (BCMA), a transmembrane glycoprotein member of the tumor necrosis factor receptor superfamily 17 (TNFRSF17), highly expressed on the plasma cells of Multiple myeloma (MM) patients, as well as the normal population. BCMA is used as a biomarker for MM. Two members of the TNF superfamily proteins, including B-cell activating factor (BAFF) and A proliferation-inducing ligand (APRIL), are closely related to BCMA and play an important role in plasma cell survival and progression of MM. Despite the maximum specificity of the monoclonal antibody technologies, introducing the tumor-specific antigen(s) is not applicable for all malignancies, such as MM that there plenty of relatively specific antigens such as GPCR5D, MUC1, SLAMF7 and etc., but higher expression of BCMA on these cells in comparison with normal ones can be regarded as a relatively exclusive marker. Currently, different monoclonal antibody (mAb) technologies applied in anti-MM therapies such as daratuzumab, SAR650984, GSK2857916, and CAR-T cell therapies are some of these tools that are reviewed in the present manuscript. By the way, the structure, function, and signaling of the BCMA and related molecule(s) role in normal plasma cells and MM development, evaluated as well as the potential side effects of its targeting by different CAR-T cells generations. In conclusion, BCMA can be regarded as an ideal molecule to be targeted in immunotherapeutic methods, regarding lower potential systemic and local side effects.
Collapse
Affiliation(s)
- Shirin Teymouri Nobari
- Department of Medical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Jafar Nouri Nojadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Department of Applied Cells Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Mohammed T, Mailankody S. “Off-the-shelf” immunotherapies for multiple myeloma. Semin Oncol 2022; 49:60-68. [DOI: 10.1053/j.seminoncol.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/01/2022] [Indexed: 12/13/2022]
|
26
|
Díaz-Rodríguez E, Gandullo-Sánchez L, Ocaña A, Pandiella A. Novel ADCs and Strategies to Overcome Resistance to Anti-HER2 ADCs. Cancers (Basel) 2021; 14:154. [PMID: 35008318 PMCID: PMC8750930 DOI: 10.3390/cancers14010154] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/23/2022] Open
Abstract
During recent years, a number of new compounds against HER2 have reached clinics, improving the prognosis and quality of life of HER2-positive breast cancer patients. Nonetheless, resistance to standard-of-care drugs has motivated the development of novel agents, such as new antibody-drug conjugates (ADCs). The latter are a group of drugs that benefit from the potency of cytotoxic agents whose action is specifically guided to the tumor by the target-specific antibody. Two anti-HER2 ADCs have reached the clinic: trastuzumab-emtansine and, more recently, trastuzumab-deruxtecan. In addition, several other HER2-targeted ADCs are in preclinical or clinical development, some of them with promising signs of activity. In the present review, the structure, mechanism of action, and potential resistance to all these ADCs will be described. Specific attention will be given to discussing novel strategies to circumvent resistance to ADCs.
Collapse
Affiliation(s)
- Elena Díaz-Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-IBSAL and CIBERONC, 37007 Salamanca, Spain; (E.D.-R.); (L.G.-S.)
- Departamento de Bioquímica y Biología Molecular, University of Salamanca, 37007 Salamanca, Spain
| | - Lucía Gandullo-Sánchez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-IBSAL and CIBERONC, 37007 Salamanca, Spain; (E.D.-R.); (L.G.-S.)
| | - Alberto Ocaña
- Hospital Clínico San Carlos, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), 28040 Madrid, Spain;
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-IBSAL and CIBERONC, 37007 Salamanca, Spain; (E.D.-R.); (L.G.-S.)
| |
Collapse
|
27
|
Parakh S, Nicolazzo J, Scott AM, Gan HK. Antibody Drug Conjugates in Glioblastoma - Is There a Future for Them? Front Oncol 2021; 11:718590. [PMID: 34926242 PMCID: PMC8678283 DOI: 10.3389/fonc.2021.718590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive and fatal malignancy that despite decades of trials has limited therapeutic options. Antibody drug conjugates (ADCs) are composed of a monoclonal antibody which specifically recognizes a cellular surface antigen linked to a cytotoxic payload. ADCs have demonstrated superior efficacy and/or reduced toxicity in a range of haematological and solid tumors resulting in nine ADCs receiving regulatory approval. ADCs have also been explored in patients with brain tumours but with limited success to date. While earlier generations ADCs in glioma patients have had limited success and high toxicity, newer and improved ADCs characterised by low immunogenicity and more effective payloads have shown promise in a range of tumour types. These newer ADCs have also been tested in glioma patients, however, with mixed results. Factors affecting the effectiveness of ADCs to target the CNS include the blood brain barrier which acts as a physical and biochemical barrier, the pro-cancerogenic and immunosuppressive tumor microenvironment and tumour characteristics like tumour volume and antigen expression. In this paper we review the data regarding the ongoing the development of ADCs in glioma patients as well as potential strategies to overcome these barriers to maximise their therapeutic potential.
Collapse
Affiliation(s)
- Sagun Parakh
- Department of Medical Oncology, Austin Hospital, Heidelberg, VIC, Australia
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Joseph Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, Australia
| | - Hui Kong Gan
- Department of Medical Oncology, Austin Hospital, Heidelberg, VIC, Australia
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC, Australia
| |
Collapse
|
28
|
Marks S, Naidoo J. Antibody drug conjugates in non-small cell lung cancer: An emerging therapeutic approach. Lung Cancer 2021; 163:59-68. [PMID: 34923203 DOI: 10.1016/j.lungcan.2021.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
The current standard-of-care for the treatment of advanced non-small cell lung cancer (NSCLC) incorporates targeted therapies, immune-checkpoint inhibitors (ICI) and systemic chemotherapy. Antibody-drug conjugates (ADC) are a class of anti-cancer therapy capable of transporting cytotoxic drugs directly to tumour cells, thus harnessing the strengths of both cytotoxic chemotherapy and targeted therapy. In this review we provide a comprehensive review the design, mode of action, and mechanisms of resistance to ADCs in NSCLC. We also summarize the clinical development of several promising ADCs in early phase clinical trials for the treatment NSCLC. including ADCs against well-established targets (e.g.HER2 in breast cancer, Nectin4 in urothelial cancer), novel antigenic targets (e.g. HER3, TROP2, PTK7, CEACAM5), as well as promising combinations with agents known to be active in NSCLC such as tyrosine kinase inhibitors and ICI therapy, as a strategy to overcome mechanisms of resistance to ADC therapy.
Collapse
Affiliation(s)
- S Marks
- Beaumont RCSI Cancer Centre, Dublin 9, Republic of Ireland.
| | - J Naidoo
- Beaumont RCSI Cancer Centre, Dublin 9, Republic of Ireland; Upper Aerodigestive Division, Sidney Kimmel Comprehensive Cancer Centre at Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
29
|
Zhou S, Wang R. Targeted therapy of multiple myeloma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:465-480. [PMID: 36045700 PMCID: PMC9400694 DOI: 10.37349/etat.2021.00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/28/2021] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM) is a malignant proliferative disease of monoclonal plasma cells (PCs) and is characterized by uncontrolled proliferation of PCs and excessive production of specific types of immunoglobulins. Since PCs are terminally differentiated B cells, the World Health Organization (WHO) classifies MM as lymphoproliferative B-cell disease. The incidence of MM is 6-7 cases per 100,000 people in the world every year and the second most common cancer in the blood system. Due to the effects of drug resistance and malignant regeneration of MM cells in the microenvironment, all current treatment methods can prolong both overall and symptom-free survival rates of patients with MM but cannot cure MM. Both basic and clinical studies have proven that targeted therapy leads to a clear and significant prolongation of the survival of patients with MM, but when the disease recurs again, resistance to the previous treatment will occur. Therefore, the discovery of new targets and treatment methods plays a vital role in the treatment of MM. This article introduces and summarizes targeted MM therapy, potential new targets, and future precision medicine in MM.
Collapse
Affiliation(s)
- Shan Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
30
|
DaSilva JO, Yang K, Surriga O, Nittoli T, Kunz A, Franklin MC, Delfino FJ, Mao S, Zhao F, Giurleo JT, Kelly MP, Makonnen S, Hickey C, Krueger P, Foster R, Chen Z, Retter MW, Slim R, Young TM, Olson WC, Thurston G, Daly C. A Biparatopic Antibody-Drug Conjugate to Treat MET-Expressing Cancers, Including Those that Are Unresponsive to MET Pathway Blockade. Mol Cancer Ther 2021; 20:1966-1976. [PMID: 34315762 PMCID: PMC9398133 DOI: 10.1158/1535-7163.mct-21-0009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/30/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023]
Abstract
Lung cancers harboring mesenchymal-to-epithelial transition factor (MET) genetic alterations, such as exon 14 skipping mutations or high-level gene amplification, respond well to MET-selective tyrosine kinase inhibitors (TKI). However, these agents benefit a relatively small group of patients (4%-5% of lung cancers), and acquired resistance limits response durability. An antibody-drug conjugate (ADC) targeting MET might enable effective treatment of MET-overexpressing tumors (approximately 25% of lung cancers) that do not respond to MET targeted therapies. Using a protease-cleavable linker, we conjugated a biparatopic METxMET antibody to a maytansinoid payload to generate a MET ADC (METxMET-M114). METxMET-M114 promotes substantial and durable tumor regression in xenografts with moderate to high MET expression, including models that exhibit innate or acquired resistance to MET blockers. Positron emission tomography (PET) studies show that tumor uptake of radiolabeled METxMET antibody correlates with MET expression levels and METxMET-M114 efficacy. In a cynomolgus monkey toxicology study, METxMET-M114 was well tolerated at a dose that provides circulating drug concentrations that are sufficient for maximal antitumor activity in mouse models. Our findings suggest that METxMET-M114, which takes advantage of the unique trafficking properties of our METxMET antibody, is a promising candidate for the treatment of MET-overexpressing tumors, with the potential to address some of the limitations faced by the MET function blockers currently in clinical use.
Collapse
Affiliation(s)
- John O. DaSilva
- Corresponding Author: John DaSilva, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591. Phone: 914-847-5392; E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gandullo-Sánchez L, Ocaña A, Pandiella A. Generation of Antibody-Drug Conjugate Resistant Models. Cancers (Basel) 2021; 13:cancers13184631. [PMID: 34572858 PMCID: PMC8466899 DOI: 10.3390/cancers13184631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Antibody-drug conjugates (ADCs) constitute new and effective therapies in cancer. However, resistance is frequently observed in treated patients after a given period of time. That resistance may be present from the beginning of the treatment (primary or de novo resistance) or raise after an initial response to the ADC (secondary resistance). Knowing the causes of those resistances is a necessity in the field as it may help in designing strategies to overcome them. Because of that, it is necessary to develop models that allow the identification of mechanisms of resistance. In this review, we present different approaches that have been used to model ADC resistance in the preclinical setting, and that include the use of established cell lines, patient-derived ex vivo cultures and xenografts primarily or secondarily resistant to the ADC. Abstract In the last 20 years, antibody-drug conjugates (ADCs) have been incorporated into the oncology clinic as treatments for several types of cancer. So far, the Food and Drug Administration (FDA) has approved 11 ADCs and other ADCs are in the late stages of clinical development. Despite the efficacy of this type of drug, the tumors of some patients may result in resistance to ADCs. Due to this, it is essential not only to comprehend resistance mechanisms but also to develop strategies to overcome resistance to ADCs. To reach these goals, the generation and use of preclinical models to study those mechanisms of resistance are critical. Some cells or patient tumors may result in primary resistance to the action of an ADC, even if they express the antigen against which the ADC is directed. Isolated primary tumoral cells, cell lines, or patient explants (patient-derived xenografts) with these characteristics can be used to study primary resistance. The most common method to generate models of secondary resistance is to treat cancer cell lines or tumors with an ADC. Two strategies, either continuous treatment with the ADC or intermittent treatment, have successfully been used to develop those resistance models.
Collapse
Affiliation(s)
- Lucía Gandullo-Sánchez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, 37007 Salamanca, Spain;
| | - Alberto Ocaña
- Hospital Clínico San Carlos, 28040 Madrid, Spain;
- Symphogen, DK-2750 Ballerup, Denmark
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, 37007 Salamanca, Spain;
- Correspondence: ; Tel.: +34-923-294-815
| |
Collapse
|
32
|
Pegram MD, Hamilton EP, Tan AR, Storniolo AM, Balic K, Rosenbaum AI, Liang M, He P, Marshall S, Scheuber A, Das M, Patel MR. First-in-Human, Phase 1 Dose-Escalation Study of Biparatopic Anti-HER2 Antibody-Drug Conjugate MEDI4276 in Patients with HER2-positive Advanced Breast or Gastric Cancer. Mol Cancer Ther 2021; 20:1442-1453. [PMID: 34045233 PMCID: PMC9398097 DOI: 10.1158/1535-7163.mct-20-0014] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/04/2021] [Accepted: 05/25/2021] [Indexed: 01/07/2023]
Abstract
MEDI4276 is a biparatopic tetravalent antibody targeting two nonoverlapping epitopes in subdomains 2 and 4 of the HER2 ecto-domain, with site-specific conjugation to a tubulysin-based microtubule inhibitor payload. MEDI4276 demonstrates enhanced cellular internalization and cytolysis of HER2-positive tumor cells in vitro This was a first-in-human, dose-escalation clinical trial in patients with HER2-positive advanced or metastatic breast cancer or gastric cancer. MEDI4276 doses escalated from 0.05 to 0.9 mg/kg (60- to 90-minute intravenous infusion every 3 weeks). Primary endpoints were safety and tolerability; secondary endpoints included antitumor activity (objective response, progression-free survival, and overall survival), pharmacokinetics, and immunogenicity. Forty-seven patients (median age 59 years; median of seven prior treatment regimens) were treated. The maximum tolerated dose was exceeded at 0.9 mg/kg with two patients experiencing dose-limiting toxicities (DLTs) of grade 3 liver function test (LFT) increases, one of whom also had grade 3 diarrhea, which resolved. Two additional patients reported DLTs of grade 3 LFT increases at lower doses (0.4 and 0.6 mg/kg). The most common (all grade) drug-related adverse events (AEs) were nausea (59.6%), fatigue (44.7%), aspartate aminotransferase (AST) increased (42.6%), and vomiting (38.3%). The most common grade 3/4 drug-related AE was AST increased (21.3%). Five patients had drug-related AEs leading to treatment discontinuation. In the as-treated population, there was one complete response (0.5 mg/kg; breast cancer), and two partial responses (0.6 and 0.75 mg/kg; breast cancer)-all had prior trastuzumab, pertuzumab, and ado-trastuzumab emtansine (T-DM1). MEDI4276 has demonstrable clinical activity but displays intolerable toxicity at doses >0.3 mg/kg.
Collapse
Affiliation(s)
- Mark D Pegram
- Stanford Comprehensive Cancer Institute, Stanford, California.
| | - Erika P Hamilton
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | - Antoinette R Tan
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Anna Maria Storniolo
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
| | - Kemal Balic
- AstraZeneca, South San Francisco, California
| | | | - Meina Liang
- AstraZeneca, South San Francisco, California
| | - Peng He
- AstraZeneca, Gaithersburg, Maryland
| | | | | | | | - Manish R Patel
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, Florida
| |
Collapse
|
33
|
Hammood M, Craig AW, Leyton JV. Impact of Endocytosis Mechanisms for the Receptors Targeted by the Currently Approved Antibody-Drug Conjugates (ADCs)-A Necessity for Future ADC Research and Development. Pharmaceuticals (Basel) 2021; 14:ph14070674. [PMID: 34358100 PMCID: PMC8308841 DOI: 10.3390/ph14070674] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
Biologically-based therapies increasingly rely on the endocytic cycle of internalization and exocytosis of target receptors for cancer therapies. However, receptor trafficking pathways (endosomal sorting (recycling, lysosome localization) and lateral membrane movement) are often dysfunctional in cancer. Antibody-drug conjugates (ADCs) have revitalized the concept of targeted chemotherapy by coupling inhibitory antibodies to cytotoxic payloads. Significant advances in ADC technology and format, and target biology have hastened the FDA approval of nine ADCs (four since 2019). Although the links between aberrant endocytic machinery and cancer are emerging, the impact of dysregulated internalization processes of ADC targets and response rates or resistance have not been well studied. This is despite the reliance on ADC uptake and trafficking to lysosomes for linker cleavage and payload release. In this review, we describe what is known about all the target antigens for the currently approved ADCs. Specifically, internalization efficiency and relevant intracellular sorting activities are described for each receptor under normal processes, and when complexed to an ADC. In addition, we discuss aberrant endocytic processes that have been directly linked to preclinical ADC resistance mechanisms. The implications of endocytosis in regard to therapeutic effectiveness in the clinic are also described. Unexpectedly, information on endocytosis is scarce (absent for two receptors). Moreover, much of what is known about endocytosis is not in the context of receptor-ADC/antibody complexes. This review provides a deeper understanding of the pertinent principles of receptor endocytosis for the currently approved ADCs.
Collapse
Affiliation(s)
- Manar Hammood
- Departément de Medécine Nucléaire et Radiobiologie, Faculté de Medécine et des Sciences de la Santé, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Andrew W. Craig
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Jeffrey V. Leyton
- Departément de Medécine Nucléaire et Radiobiologie, Faculté de Medécine et des Sciences de la Santé, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Centre d’Imagerie Moleculaire, Centre de Recherche, CHUS, Sherbrooke, QC J1H 5N4, Canada
- Correspondence: ; Tel.: +1-819-346-1110
| |
Collapse
|
34
|
Su D, Zhang D. Linker Design Impacts Antibody-Drug Conjugate Pharmacokinetics and Efficacy via Modulating the Stability and Payload Release Efficiency. Front Pharmacol 2021; 12:687926. [PMID: 34248637 PMCID: PMC8262647 DOI: 10.3389/fphar.2021.687926] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 01/03/2023] Open
Abstract
The development of antibody-drug conjugates (ADCs) has significantly been advanced in the past decade given the improvement of payloads, linkers and conjugation methods. In particular, linker design plays a critical role in modulating ADC stability in the systemic circulation and payload release efficiency in the tumors, which thus affects ADC pharmacokinetic (PK), efficacy and toxicity profiles. Previously, we have investigated key linker parameters such as conjugation chemistry (e.g., maleimide vs. disulfide), linker length and linker steric hindrance and their impacts on PK and efficacy profiles. Herein, we discuss our perspectives on development of integrated strategies for linker design to achieve a balance between ADC stability and payload release efficiency for desired efficacy in antigen-expressing xenograft models. The strategies have been successfully applied to the design of site-specific THIOMABTM antibody-drug conjugates (TDCs) with different payloads. We also propose to conduct dose fractionation studies to gain guidance for optimal dosing regimens of ADCs in pre-clinical models.
Collapse
Affiliation(s)
- Dian Su
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, United States
| | - Donglu Zhang
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
35
|
Sheng Q, D'Alessio JA, Menezes DL, Karim C, Tang Y, Tam A, Clark S, Ying C, Connor A, Mansfield KG, Rondeau JM, Ghoddusi M, Geyer FC, Gu J, McLaughlin ME, Newcombe R, Elliot G, Tschantz WR, Lehmann S, Fanton CP, Miller K, Huber T, Rendahl KG, Jeffry U, Pryer NK, Lees E, Kwon P, Abraham JA, Damiano JS, Abrams TJ. PCA062, a P-cadherin Targeting Antibody-Drug Conjugate, Displays Potent Antitumor Activity Against P-cadherin-expressing Malignancies. Mol Cancer Ther 2021; 20:1270-1282. [PMID: 33879555 DOI: 10.1158/1535-7163.mct-20-0708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/19/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022]
Abstract
The cell surface glycoprotein P-cadherin is highly expressed in a number of malignancies, including those arising in the epithelium of the bladder, breast, esophagus, lung, and upper aerodigestive system. PCA062 is a P-cadherin specific antibody-drug conjugate that utilizes the clinically validated SMCC-DM1 linker payload to mediate potent cytotoxicity in cell lines expressing high levels of P-cadherin in vitro, while displaying no specific activity in P-cadherin-negative cell lines. High cell surface P-cadherin is necessary, but not sufficient, to mediate PCA062 cytotoxicity. In vivo, PCA062 demonstrated high serum stability and a potent ability to induce mitotic arrest. In addition, PCA062 was efficacious in clinically relevant models of P-cadherin-expressing cancers, including breast, esophageal, and head and neck. Preclinical non-human primate toxicology studies demonstrated a favorable safety profile that supports clinical development. Genome-wide CRISPR screens reveal that expression of the multidrug-resistant gene ABCC1 and the lysosomal transporter SLC46A3 differentially impact tumor cell sensitivity to PCA062. The preclinical data presented here suggest that PCA062 may have clinical value for treating patients with multiple cancer types including basal-like breast cancer.
Collapse
Affiliation(s)
- Qing Sheng
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | - Daniel L Menezes
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Christopher Karim
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Yan Tang
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Angela Tam
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Suzanna Clark
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Chi Ying
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Anu Connor
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Keith G Mansfield
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | - Majid Ghoddusi
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Felipe C Geyer
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Jane Gu
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | - Rick Newcombe
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - GiNell Elliot
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | - Sylvie Lehmann
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Christie P Fanton
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Kathy Miller
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Thomas Huber
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | - Ursula Jeffry
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Nancy K Pryer
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Emma Lees
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Paul Kwon
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Judith A Abraham
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Jason S Damiano
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Tinya J Abrams
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts.
| |
Collapse
|
36
|
Mao S, Chaerkady R, Yu W, D'Angelo G, Garcia A, Chen H, Barrett AM, Phipps S, Fleming R, Hess S, Koopmann JO, Dimasi N, Wilson S, Pugh K, Cook K, Masterson LA, Gao C, Wu H, Herbst R, Howard PW, Tice DA, Cobbold M, Harper J. Resistance to Pyrrolobenzodiazepine Dimers Is Associated with SLFN11 Downregulation and Can Be Reversed through Inhibition of ATR. Mol Cancer Ther 2021; 20:541-552. [PMID: 33653945 DOI: 10.1158/1535-7163.mct-20-0351] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/01/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
Resistance to antibody-drug conjugates (ADCs) has been observed in both preclinical models and clinical studies. However, mechanisms of resistance to pyrrolobenzodiazepine (PBD)-conjugated ADCs have not been well characterized and thus, this study was designed to investigate development of resistance to PBD dimer warheads and PBD-conjugated ADCs. We established a PBD-resistant cell line, 361-PBDr, by treating human breast cancer MDA-MB-361 cells with gradually increasing concentrations of SG3199, the PBD dimer released from the PBD drug-linker tesirine. 361-PBDr cells were over 20-fold less sensitive to SG3199 compared with parental cells and were cross-resistant to other PBD warhead and ADCs conjugated with PBDs. Proteomic profiling revealed that downregulation of Schlafen family member 11 (SLFN11), a putative DNA/RNA helicase, sensitizing cancer cells to DNA-damaging agents, was associated with PBD resistance. Confirmatory studies demonstrated that siRNA knockdown of SLFN11 in multiple tumor cell lines conferred reduced sensitivity to SG3199 and PBD-conjugated ADCs. Treatment with EPZ011989, an EZH2 inhibitor, derepressed SLFN11 expression in 361-PBDr and other SLFN11-deficient tumor cells, and increased sensitivity to PBD and PBD-conjugated ADCs, indicating that the suppression of SLFN11 expression is associated with histone methylation as reported. Moreover, we demonstrated that combining an ataxia telangiectasia and Rad3-related protein (ATR) inhibitor, AZD6738, with SG3199 or PBD-based ADCs led to synergistic cytotoxicity in either resistant 361-PBDr cells or cells that SLFN11 was knocked down via siRNA. Collectively, these data provide insights into potential development of resistance to PBDs and PBD-conjugated ADCs, and more importantly, inform strategy development to overcome such resistance.
Collapse
Affiliation(s)
- Shenlan Mao
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland.
| | | | - Wen Yu
- Bioinformatics, AstraZeneca, Gaithersburg, Maryland
| | | | - Andrew Garcia
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Hong Chen
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - Sandrina Phipps
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Ryan Fleming
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Sonja Hess
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | | | - Nazzareno Dimasi
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Susan Wilson
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | | | - Kimberly Cook
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - Changshou Gao
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Herren Wu
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Ronald Herbst
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - David A Tice
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Mark Cobbold
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Jay Harper
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland.
| |
Collapse
|
37
|
Kumagai S, Koyama S, Nishikawa H. Antitumour immunity regulated by aberrant ERBB family signalling. Nat Rev Cancer 2021; 21:181-197. [PMID: 33462501 DOI: 10.1038/s41568-020-00322-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 01/30/2023]
Abstract
Aberrant signalling of ERBB family members plays an important role in tumorigenesis and in the escape from antitumour immunity in multiple malignancies. Molecular-targeted agents against these signalling pathways exhibit robust clinical efficacy, but patients inevitably experience acquired resistance to these molecular-targeted therapies. Although cancer immunotherapies, including immune checkpoint inhibitors (ICIs), have shown durable antitumour response in a subset of the treated patients in multiple cancer types, clinical efficacy is limited in cancers harbouring activating gene alterations of ERBB family members. In particular, ICI treatment of patients with non-small cell lung cancers with epidermal growth factor receptor (EGFR) alterations and breast cancers with HER2 alterations failed to show clinical benefits, suggesting that EGFR and HER2 signalling may have an essential role in inhibiting antitumour immune responses. Here, we discuss the mechanisms by which the signalling of ERBB family members affects not only autonomous cancer hallmarks, such as uncontrolled cell proliferation, but also antitumour immune responses in the tumour microenvironment and the potential application of immune-genome precision medicine into immunotherapy and molecular-targeted therapy focusing on the signalling of ERBB family members.
Collapse
Affiliation(s)
- Shogo Kumagai
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Shohei Koyama
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan.
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan.
| |
Collapse
|
38
|
Dragovich PS, Pillow TH, Blake RA, Sadowsky JD, Adaligil E, Adhikari P, Bhakta S, Blaquiere N, Chen J, Dela Cruz-Chuh J, Gascoigne KE, Hartman SJ, He M, Kaufman S, Kleinheinz T, Kozak KR, Liu L, Liu L, Liu Q, Lu Y, Meng F, Mulvihill MM, O'Donohue A, Rowntree RK, Staben LR, Staben ST, Wai J, Wang J, Wei B, Wilson C, Xin J, Xu Z, Yao H, Zhang D, Zhang H, Zhou H, Zhu X. Antibody-Mediated Delivery of Chimeric BRD4 Degraders. Part 1: Exploration of Antibody Linker, Payload Loading, and Payload Molecular Properties. J Med Chem 2021; 64:2534-2575. [PMID: 33596065 DOI: 10.1021/acs.jmedchem.0c01845] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The biological and medicinal impacts of proteolysis-targeting chimeras (PROTACs) and related chimeric molecules that effect intracellular degradation of target proteins via ubiquitin ligase-mediated ubiquitination continue to grow. However, these chimeric entities are relatively large compounds that often possess molecular characteristics, which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. We therefore explored the conjugation of such molecules to monoclonal antibodies using technologies originally developed for cytotoxic payloads so as to provide alternate delivery options for these novel agents. In this report, we describe the first phase of our systematic development of antibody-drug conjugates (ADCs) derived from bromodomain-containing protein 4 (BRD4)-targeting chimeric degrader entities. We demonstrate the antigen-dependent delivery of the degrader payloads to PC3-S1 prostate cancer cells along with related impacts on MYC transcription and intracellular BRD4 levels. These experiments culminate with the identification of one degrader conjugate, which exhibits antigen-dependent antiproliferation effects in LNCaP prostate cancer cells.
Collapse
Affiliation(s)
- Peter S Dragovich
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas H Pillow
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert A Blake
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jack D Sadowsky
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Emel Adaligil
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Pragya Adhikari
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sunil Bhakta
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nicole Blaquiere
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jinhua Chen
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | | | - Karen E Gascoigne
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven J Hartman
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Mingtao He
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, China
| | - Susan Kaufman
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Tracy Kleinheinz
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine R Kozak
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Liang Liu
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, China
| | - Liling Liu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Qi Liu
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, China
| | - Ying Lu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Fanwei Meng
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, China
| | - Melinda M Mulvihill
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Aimee O'Donohue
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rebecca K Rowntree
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Leanna R Staben
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven T Staben
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Wai
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jian Wang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - BinQing Wei
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Catherine Wilson
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jianfeng Xin
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, China
| | - Zijin Xu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hui Yao
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Donglu Zhang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Hongyan Zhang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hao Zhou
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaoyu Zhu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|
39
|
Yamamoto L, Amodio N, Gulla A, Anderson KC. Harnessing the Immune System Against Multiple Myeloma: Challenges and Opportunities. Front Oncol 2021; 10:606368. [PMID: 33585226 PMCID: PMC7873734 DOI: 10.3389/fonc.2020.606368] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma (MM) is an incurable malignancy of plasma cells that grow within a permissive bone marrow microenvironment (BMM). The bone marrow milieu supports the malignant transformation both by promoting uncontrolled proliferation and resistance to cell death in MM cells, and by hampering the immune response against the tumor clone. Hence, it is expected that restoring host anti-MM immunity may provide therapeutic benefit for MM patients. Already several immunotherapeutic approaches have shown promising results in the clinical setting. In this review, we outline recent findings demonstrating the potential advantages of targeting the immunosuppressive bone marrow niche to restore effective anti-MM immunity. We discuss different approaches aiming to boost the effector function of T cells and/or exploit innate or adaptive immunity, and highlight novel therapeutic opportunities to increase the immunogenicity of the MM clone. We also discuss the main challenges that hamper the efficacy of immune-based approaches, including intrinsic resistance of MM cells to activated immune-effectors, as well as the protective role of the immune-suppressive and inflammatory bone marrow milieu. Targeting mechanisms to convert the immunologically “cold” to “hot” MM BMM may induce durable immune responses, which in turn may result in long-lasting clinical benefit, even in patient subgroups with high-risk features and poor survival.
Collapse
Affiliation(s)
- Leona Yamamoto
- Division of Hematologic Malignancy, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Annamaria Gulla
- Division of Hematologic Malignancy, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Kenneth Carl Anderson
- Division of Hematologic Malignancy, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
40
|
Mignot F, Kirova Y, Verrelle P, Teulade-Fichou MP, Megnin-Chanet F. In vitro effects of Trastuzumab Emtansine (T-DM1) and concurrent irradiation on HER2-positive breast cancer cells. Cancer Radiother 2021; 25:126-134. [PMID: 33431297 DOI: 10.1016/j.canrad.2020.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/27/2020] [Accepted: 06/09/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND To determine the effects of concurrent irradiation and T-DM1 on HER2-positive breast cancer cell lines. METHODS Five human breast cancer cell lines (in vitro study) presenting various levels of HER2 expression were used to determine the potential therapeutic effect of T-DM1 combined with radiation. The toxicity of T-DM1 was assessed using viability assay and cell cycle analysis was performed by flow cytometry after BrdU incorporation. HER2 cells were irradiated at different dose levels after exposure to T-DM1. Survival curves were determined by cell survival assays (after 5 population doubling times). RESULTS The results revealed that T-DM1 induced significant lethality due to the intracellular action of DM1 on the cell cycle with significant G2/M phase blocking. Even after a short time incubation, the potency of T-DM1 was maintained and even enhanced over time, with a higher rate of cell death. After irradiation alone, the D10 (dose required to achieve 10% cell survival) was significantly higher for high HER2-expressing cell lines than for low HER2-expressing cells, with a linearly increasing relationship. In combination with irradiation, using conditions that allow cell survival, T-DM1 does not induce a radiosensitivity. CONCLUSIONS Although there is a linear correlation between intrinsic HER2 expression and radioresistance, the results indicated that T-DM1 is not a radiation-sensitizer under the experimental conditions of this study that allowed cell survival. However, further investigations are needed, in particular in vivo studies before reaching a final conclusion.
Collapse
Affiliation(s)
- F Mignot
- Institut Curie, département de radiothérapie, 26, rue d'Ulm, 75005 Paris, France.
| | - Y Kirova
- Institut Curie, département de radiothérapie, 26, rue d'Ulm, 75005 Paris, France
| | - P Verrelle
- Institut Curie, département de radiothérapie, 26, rue d'Ulm, 75005 Paris, France
| | - M-P Teulade-Fichou
- Institut Curie, Bât. 110-112, rue H. Becquerel, centre universitaire, 91405 Orsay, France; Université Paris-Saclay, centre universitaire, 91405 Orsay, France; INSERM U1196/CNRS UMR9187, France
| | - F Megnin-Chanet
- Institut Curie, Bât. 110-112, rue H. Becquerel, centre universitaire, 91405 Orsay, France; Université Paris-Saclay, centre universitaire, 91405 Orsay, France; INSERM U1196/CNRS UMR9187, France
| |
Collapse
|
41
|
Hafeez U, Parakh S, Gan HK, Scott AM. Antibody-Drug Conjugates for Cancer Therapy. Molecules 2020; 25:E4764. [PMID: 33081383 PMCID: PMC7587605 DOI: 10.3390/molecules25204764] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/03/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are novel drugs that exploit the specificity of a monoclonal antibody (mAb) to reach target antigens expressed on cancer cells for the delivery of a potent cytotoxic payload. ADCs provide a unique opportunity to deliver drugs to tumor cells while minimizing toxicity to normal tissue, achieving wider therapeutic windows and enhanced pharmacokinetic/pharmacodynamic properties. To date, nine ADCs have been approved by the FDA and more than 80 ADCs are under clinical development worldwide. In this paper, we provide an overview of the biology and chemistry of each component of ADC design. We briefly discuss the clinical experience with approved ADCs and the various pathways involved in ADC resistance. We conclude with perspectives about the future development of the next generations of ADCs, including the role of molecular imaging in drug development.
Collapse
Affiliation(s)
- Umbreen Hafeez
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Sagun Parakh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Hui K Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3084, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3084, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC 3084, Australia
| |
Collapse
|
42
|
Gulla' A, Anderson KC. Multiple myeloma: the (r)evolution of current therapy and a glance into future. Haematologica 2020; 105:2358-2367. [PMID: 33054076 PMCID: PMC7556665 DOI: 10.3324/haematol.2020.247015] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Over the past 20 years, the regulatory approval of several novel agents to treat multiple myeloma (MM) has prolonged median patient survival from 3 to 8-10 years. Increased understanding of MM biology has translated to advances in diagnosis, prognosis, and response assessment, as well as informed the development of targeted and immune agents. Here we provide an overview of the recent progress in MM, and highlight research areas of greatest promise to further improve patient outcome in the future.
Collapse
Affiliation(s)
| | - Kenneth C. Anderson
- Division of Hematologic Neoplasia, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Yamashita-Kashima Y, Shu S, Osada M, Fujimura T, Yoshiura S, Harada N, Yoshimura Y. Combination efficacy of pertuzumab and trastuzumab for trastuzumab emtansine-resistant cells exhibiting attenuated lysosomal trafficking or efflux pumps upregulation. Cancer Chemother Pharmacol 2020; 86:641-654. [PMID: 32997196 PMCID: PMC7561595 DOI: 10.1007/s00280-020-04138-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/04/2020] [Indexed: 11/28/2022]
Abstract
Purpose Trastuzumab emtansine (T-DM1) is the standard treatment in the current second-line therapy of human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer. However, a useful therapy after T-DM1 resistance has not been established. In this study, we established two different HER2-positive T-DM1-resistant cancer cells and evaluated the antitumor effect of trastuzumab in combination with pertuzumab (TRAS + PER). Methods Single-cell-cloned OE19 and BT-474 cells were cultured with increasing concentrations of T-DM1 to generate T-DM1-resistant OE19bTDR and BT-474bTDR cells, respectively. HER2 expression was assessed by immunohistochemistry. Multidrug resistance proteins (MDR1 and MRP1) were evaluated by real-time polymerase chain reaction and western blotting. Intracellular trafficking of T-DM1 was examined by flow cytometry and immunofluorescence staining. Efficacy of TRAS + PER was evaluated by cell proliferation assay, HER3 and AKT phosphorylation, caspase 3/7 activity, and antitumor activity. Results HER2 expression of both resistant cells was equivalent to that of the parent cells. Overexpression of MDR1 and MRP1 was observed and affected the T-DM1 sensitivity in the OE19bTDR cells. Abnormal localization of T-DM1 into the lysosomes was observed in the BT-474bTDR cells. In BT-474bTDR cells, TRAS + PER inhibited the phosphorylation of AKT involved in HER2–HER3 signaling, and apoptosis induction and cell proliferation inhibition were significantly higher with TRAS + PER than with the individual drugs. TRAS + PER significantly suppressed tumor growth in the OE19bTDR xenograft model compared with each single agent. Conclusions The results suggest that the TRAS + PER combination may be effective in T-DM1-resistant cancer cells where HER2 overexpression is maintained. Electronic supplementary material The online version of this article (10.1007/s00280-020-04138-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoriko Yamashita-Kashima
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Sei Shu
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Masahiro Osada
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Takaaki Fujimura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Shigeki Yoshiura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Naoki Harada
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan.
| | - Yasushi Yoshimura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| |
Collapse
|
44
|
Staben LR, Chen J, Cruz-Chuh JD, Del Rosario G, Go MA, Guo J, Khojasteh SC, Kozak KR, Li G, Ng C, Lewis Phillips GD, Pillow TH, Rowntree RK, Wai J, Wei B, Xu K, Xu Z, Yu SF, Zhang D, Dragovich PS. Systematic Variation of Pyrrolobenzodiazepine (PBD)-Dimer Payload Physicochemical Properties Impacts Efficacy and Tolerability of the Corresponding Antibody-Drug Conjugates. J Med Chem 2020; 63:9603-9622. [PMID: 32787101 DOI: 10.1021/acs.jmedchem.0c00691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytotoxic pyrrolobenzodiazepine (PBD)-dimer molecules are frequently utilized as payloads for antibody-drug conjugates (ADCs), and many examples are currently in clinical development. In order to further explore this ADC payload class, the physicochemical properties of various PBD-dimer molecules were modified by the systematic introduction of acidic and basic moieties into their chemical structures. The impact of these changes on DNA binding, cell membrane permeability, and in vitro antiproliferation potency was, respectively, determined using a DNA alkylation assay, PAMPA assessments, and cell-based cytotoxicity measurements conducted with a variety of cancer lines. The modified PBD-dimer compounds were subsequently incorporated into CD22-targeting ADCs, and these entities were profiled in a variety of in vitro and in vivo experiments. The introduction of a strongly basic moiety into the PBD-dimer scaffold afforded a conjugate with dramatically worsened mouse tolerability properties relative to ADCs derived from related payloads, which lacked the basic group.
Collapse
Affiliation(s)
- Leanna R Staben
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jinhua Chen
- WuXi AppTec Co., Ltd, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | | | - Geoff Del Rosario
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Mary Ann Go
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jun Guo
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - S Cyrus Khojasteh
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine R Kozak
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Guangmin Li
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Carl Ng
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Thomas H Pillow
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rebecca K Rowntree
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Wai
- WuXi AppTec Co., Ltd, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - BinQing Wei
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Keyang Xu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Zijin Xu
- WuXi AppTec Co., Ltd, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shang-Fan Yu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Donglu Zhang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter S Dragovich
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
45
|
Sauveur J, Conilh L, Beaumel S, Chettab K, Jordheim L, Matera E, Dumontet C. Characterization of T-DM1-resistant breast cancer cells. Pharmacol Res Perspect 2020; 8:e00617. [PMID: 32583565 PMCID: PMC7314699 DOI: 10.1002/prp2.617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
The development of targeted therapies has drastically improved the outcome of patients with different types of cancer. T-DM1 (trastuzumab-emtansine) is an antibody-drug conjugate used for the treatment of HER2-positive breast cancer combining the FDA approved mAb (monoclonal antibody) trastuzumab and the microtubule cytotoxic agent DM1 (emtansine). Despite clinical successes achieved by targeted therapies, a large number of patients develop resistance during treatment. To explore mechanisms of resistance to T-DM1, the MDA-MB-361 HER2-positive breast cancer cell line was exposed in vitro to T-DM1 in the absence or presence of ciclosporin A. Previously reported mechanisms of resistance such as trastuzumab-binding alterations, MDR1 upregulation, and SLC46A3 downregulation were not observed in these models. Despite a decrease in HER2 expression at the cell surface, both resistant cell lines remained sensitive to HER2 targeted therapies such as mAbs and tyrosine kinase inhibitors. In addition, sensitivity to DNA damaging agents and topoisomerase inhibitors were unchanged. Conversely resistance to anti-tubulin agents increased. Resistant cells displayed a decreased content of polymerized tubulin and a decreased content of βIII tubulin although the downregulation of βIII tubulin by siRNA in the parental cell line did not modified the sensitivity to T-DM1. Both cell lines resistant to T-DM1 also presented giant aneuploid cells. Several SLC (solute carrier) transporters were found to be differentially expressed in the resistant cells in comparison to parental cells. These results suggest that some characteristics such as increased baseline aneuploidy and altered intracellular drug trafficking might be involved in resistance to T-DM1.
Collapse
Affiliation(s)
- Juliette Sauveur
- Cancer Research Center of LyonINSERM 1052/CNRS 5286/University of LyonLyonFrance
| | - Louise Conilh
- Cancer Research Center of LyonINSERM 1052/CNRS 5286/University of LyonLyonFrance
| | - Sabine Beaumel
- Cancer Research Center of LyonINSERM 1052/CNRS 5286/University of LyonLyonFrance
| | - Kamel Chettab
- Cancer Research Center of LyonINSERM 1052/CNRS 5286/University of LyonLyonFrance
| | - Lars‐Petter Jordheim
- Cancer Research Center of LyonINSERM 1052/CNRS 5286/University of LyonLyonFrance
| | - Eva‐Laure Matera
- Cancer Research Center of LyonINSERM 1052/CNRS 5286/University of LyonLyonFrance
| | - Charles Dumontet
- Cancer Research Center of LyonINSERM 1052/CNRS 5286/University of LyonLyonFrance
| |
Collapse
|
46
|
Lai Q, Wu M, Wang R, Lai W, Tao Y, Lu Y, Wang Y, Yu L, Zhang R, Peng Y, Jiang X, Fu Y, Wang X, Zhang Z, Guo C, Liao W, Zhang Y, Kang T, Chen H, Yao Y, Gou L, Yang J. Cryptophycin-55/52 based antibody-drug conjugates: Synthesis, efficacy, and mode of action studies. Eur J Med Chem 2020; 199:112364. [PMID: 32402935 DOI: 10.1016/j.ejmech.2020.112364] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 02/05/2023]
Abstract
Cryptophycin-52 (CR52), a tubulin inhibitor, exhibits promising antitumor activity in vitro (picomolar level) and in mouse xenograft models. However, the narrow therapeutic window in clinical trials limits its further development. Antibody-drug conjugate (ADC), formed by coupling cytotoxic compound (payload) to an antibody via a linker, can deliver drug to tumor locations in a targeted manner by antibody, enhancing the therapeutic effects and reducing toxic and side effects. In this study, we aim to explore the possibility of CR52-based ADC for tumor targeted therapy. Due to the lack of a coupling site in CR52, its prodrug cryptophycin-55 (CR55) containing a free hydroxyl was synthesized and conjugated to the model antibody trastuzumab (anti-HER2 antibody drug approved by FDA for breast cancer therapy) via the linkers based on Mc-NHS and Mc-Val-Cit-PAB-PNP. The average drug-to-antibody ratios (DARs) of trastuzumab-CR55 conjugates (named T-L1-CR55, T-L2-CR55, and T-L3-CR55) were 3.50, 3.29, and 3.35, respectively. These conjugates exhibited potent cytotoxicity in HER2-positive tumor cell lines with IC50 values at low nanomolar levels (0.58-1.19 nM). Further, they displayed significant antitumor activities at the doses of 10 mg/kg in established ovarian cancer (SKOV3) and gastric cancer (NCI-N87) xenograft models without overt toxicities. Finally, the drug releases were analyzed and the results indicated that T-L3-CR55 was able to effectively release CR55 and further epoxidized to CR52, which may be responsible for its best performance in antitumor activities. In conclusion, our results demonstrated that these conjugates have the potential for tumor targeted therapy, which provides insights to further research the CR55/CR52-based ADC for tumor therapy.
Collapse
Affiliation(s)
- Qinhuai Lai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Mengdan Wu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Ruixue Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Weirong Lai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yiran Tao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Ying Lu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China; West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center/ Sichuan University, Chengdu, PR China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Lin Yu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China; Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, PR China
| | - Ruirui Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yujia Peng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xiaohua Jiang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yuyin Fu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xin Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Zhixiong Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Cuiyu Guo
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Wei Liao
- The 32265 Army Hospital of PLA, Guangzhou, PR China
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Tairan Kang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, PR China
| | - Hao Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yuqin Yao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China; West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center/ Sichuan University, Chengdu, PR China
| | - Lantu Gou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China; Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Beijing, PR China.
| |
Collapse
|
47
|
A Novel Antibody-Drug Conjugate (ADC) Delivering a DNA Mono-Alkylating Payload to Chondroitin Sulfate Proteoglycan (CSPG4)-Expressing Melanoma. Cancers (Basel) 2020; 12:cancers12041029. [PMID: 32331483 PMCID: PMC7226475 DOI: 10.3390/cancers12041029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022] Open
Abstract
Despite emerging targeted and immunotherapy treatments, no monoclonal antibodies or antibody-drug conjugates (ADCs) directly targeting tumor cells are currently approved for melanoma therapy. The tumor-associated antigen chondroitin sulphate proteoglycan 4 (CSPG4), a neural crest glycoprotein over-expressed on 70% of melanomas, contributes to proliferative signaling pathways, but despite highly tumor-selective expression it has not yet been targeted using ADCs. We developed a novel ADC comprising an anti-CSPG4 antibody linked to a DNA minor groove-binding agent belonging to the novel pyrridinobenzodiazepine (PDD) class. Unlike conventional DNA-interactive pyrrolobenzodiazepine (PBD) dimer payloads that cross-link DNA, PDD-based payloads are mono-alkylating agents but have similar efficacy and substantially enhanced tolerability profiles compared to PBD-based cross-linkers. We investigated the anti-tumor activity and safety of the anti-CSPG4-(PDD) ADC in vitro and in human melanoma xenografts. Anti-CSPG4-(PDD) inhibited CSPG4-expressing melanoma cell growth and colony formation and triggered apoptosis in vitro at low nanomolar to picomolar concentrations without off-target Fab-mediated or Fc-mediated toxicity. Anti-CSPG4-(PDD) restricted xenograft growth in vivo at 2 mg/kg doses. One 5 mg/kg injection triggered tumor regression in the absence of overt toxic effects or of acquired residual tumor cell resistance. This anti-CSPG4-(PDD) can deliver a highly cytotoxic DNA mono-alkylating payload to CSPG4-expressing tumors at doses tolerated in vivo.
Collapse
|
48
|
Nadal-Serrano M, Morancho B, Escrivá-de-Romaní S, Bernadó Morales C, Luque A, Escorihuela M, Espinosa Bravo M, Peg V, Dijcks FA, Dokter WH, Cortés J, Saura C, Arribas J. The Second Generation Antibody-Drug Conjugate SYD985 Overcomes Resistances to T-DM1. Cancers (Basel) 2020; 12:cancers12030670. [PMID: 32183023 PMCID: PMC7139846 DOI: 10.3390/cancers12030670] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/29/2022] Open
Abstract
Trastuzumab-emtansine (T-DM1) is an antibody-drug conjugate (ADC) approved for the treatment of HER2 (human epidermal growth factor receptor 2)-positive breast cancer. T-DM1 consists of trastuzumab covalently linked to the cytotoxic maytansinoid DM1 via a non-cleavable linker. Despite its efficacy, primary or acquired resistance frequently develops, particularly in advanced stages of the disease. Second generation ADCs targeting HER2 are meant to supersede T-DM1 by using a cleavable linker and a more potent payload with a different mechanism of action. To determine the effect of one of these novel ADCs, SYD985, on tumors resistant to T-DM1, we developed several patient-derived models of resistance to T-DM1. Characterization of these models showed that previously described mechanisms-HER2 downmodulation, impairment of lysosomal function and upregulation of drug efflux pumps-account for the resistances observed, arguing that mechanisms of resistance to T-DM1 are limited, and most of them have already been described. Importantly, SYD985 was effective in these models, showing that the resistance to first generation ADCs can be overcome with an improved design.
Collapse
Affiliation(s)
- Mercedes Nadal-Serrano
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (M.N.-S.); (B.M.); (C.B.M.); (A.L.); (M.E.); (J.C.)
| | - Beatriz Morancho
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (M.N.-S.); (B.M.); (C.B.M.); (A.L.); (M.E.); (J.C.)
| | - Santiago Escrivá-de-Romaní
- Breast Cancer and Melanoma Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (S.E.-d.-R.); (M.E.B.); (V.P.); (C.S.)
- Medical Oncology Department, Vall d´Hebron University Hospital (HUVH), 08035 Barcelona, Spain
| | - Cristina Bernadó Morales
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (M.N.-S.); (B.M.); (C.B.M.); (A.L.); (M.E.); (J.C.)
| | - Antonio Luque
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (M.N.-S.); (B.M.); (C.B.M.); (A.L.); (M.E.); (J.C.)
| | - Marta Escorihuela
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (M.N.-S.); (B.M.); (C.B.M.); (A.L.); (M.E.); (J.C.)
| | - Martín Espinosa Bravo
- Breast Cancer and Melanoma Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (S.E.-d.-R.); (M.E.B.); (V.P.); (C.S.)
- Medical Oncology Department, Vall d´Hebron University Hospital (HUVH), 08035 Barcelona, Spain
| | - Vicente Peg
- Breast Cancer and Melanoma Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (S.E.-d.-R.); (M.E.B.); (V.P.); (C.S.)
- Medical Oncology Department, Vall d´Hebron University Hospital (HUVH), 08035 Barcelona, Spain
| | - Fred A. Dijcks
- Preclinical R&D, Synthon Biopharmaceuticals BV, 6545 CM Nijmegen, The Netherlands; (F.A.D.)
| | - Wim H.A. Dokter
- Preclinical R&D, Synthon Biopharmaceuticals BV, 6545 CM Nijmegen, The Netherlands; (F.A.D.)
| | - Javier Cortés
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (M.N.-S.); (B.M.); (C.B.M.); (A.L.); (M.E.); (J.C.)
| | - Cristina Saura
- Breast Cancer and Melanoma Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (S.E.-d.-R.); (M.E.B.); (V.P.); (C.S.)
- Medical Oncology Department, Vall d´Hebron University Hospital (HUVH), 08035 Barcelona, Spain
| | - Joaquín Arribas
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (M.N.-S.); (B.M.); (C.B.M.); (A.L.); (M.E.); (J.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Campus de la UAB, 08193 Bellaterra, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|
49
|
B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. Leukemia 2020; 34:985-1005. [PMID: 32055000 PMCID: PMC7214244 DOI: 10.1038/s41375-020-0734-z] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022]
Abstract
Despite considerable advances in the treatment of multiple myeloma (MM) in the last decade, a substantial proportion of patients do not respond to current therapies or have a short duration of response. Furthermore, these treatments can have notable morbidity and are not uniformly tolerated in all patients. As there is no cure for MM, patients eventually become resistant to therapies, leading to development of relapsed/refractory MM. Therefore, an unmet need exists for MM treatments with novel mechanisms of action that can provide durable responses, evade resistance to prior therapies, and/or are better tolerated. B-cell maturation antigen (BCMA) is preferentially expressed by mature B lymphocytes, and its overexpression and activation are associated with MM in preclinical models and humans, supporting its potential utility as a therapeutic target for MM. Moreover, the use of BCMA as a biomarker for MM is supported by its prognostic value, correlation with clinical status, and its ability to be used in traditionally difficult-to-monitor patient populations. Here, we review three common treatment modalities used to target BCMA in the treatment of MM: bispecific antibody constructs, antibody–drug conjugates, and chimeric antigen receptor (CAR)-modified T-cell therapy. We provide an overview of preliminary clinical data from trials using these therapies, including the BiTE® (bispecific T-cell engager) immuno-oncology therapy AMG 420, the antibody–drug conjugate GSK2857916, and several CAR T-cell therapeutic agents including bb2121, NIH CAR-BCMA, and LCAR-B38M. Notable antimyeloma activity and high minimal residual disease negativity rates have been observed with several of these treatments. These clinical data outline the potential for BCMA-targeted therapies to improve the treatment landscape for MM. Importantly, clinical results to date suggest that these therapies may hold promise for deep and durable responses and support further investigation in earlier lines of treatment, including newly diagnosed MM.
Collapse
|
50
|
Hunter FW, Barker HR, Lipert B, Rothé F, Gebhart G, Piccart-Gebhart MJ, Sotiriou C, Jamieson SMF. Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br J Cancer 2019; 122:603-612. [PMID: 31839676 PMCID: PMC7054312 DOI: 10.1038/s41416-019-0635-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
The HER2-targeted antibody-drug conjugate trastuzumab emtansine (T-DM1) is approved for the treatment of metastatic, HER2-positive breast cancer after prior trastuzumab and taxane therapy, and has also demonstrated efficacy in the adjuvant setting in incomplete responders to neoadjuvant therapy. Despite its objective activity, intrinsic and acquired resistance to T-DM1 remains a major clinical challenge. T-DM1 mediates its activity in a number of ways, encompassing HER2 signalling blockade, Fc-mediated immune response and payload-mediated microtubule poisoning. Resistance mechanisms relating to each of these features have been demonstrated, and we outline the findings of these studies in this review. In our overview of the substantial literature on T-DM1 activity and resistance, we conclude that the T-DM1 resistance mechanisms most strongly supported by the experimental data relate to dysfunctional intracellular metabolism of the construct and subversion of DM1-mediated cell killing. Loss of dependence on signalling initiated by HER2-HER2 homodimers is not substantiated as a resistance mechanism by clinical or experimental studies, and the impact of EGFR expression and tumour immunological status requires further investigation. These findings are instructive with respect to strategies that might overcome T-DM1 resistance, including the use of second-generation anti-HER2 antibody-drug conjugates that deploy alternative linker-payload chemistries.
Collapse
Affiliation(s)
- Francis W Hunter
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | - Hilary R Barker
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Barbara Lipert
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Françoise Rothé
- Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | - Géraldine Gebhart
- Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | | | - Christos Sotiriou
- Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|