1
|
Zech HB, von Bargen C, Oetting A, Möckelmann N, Möller-Koop C, Witt M, Struve N, Petersen C, Betz C, Rothkamm K, Münscher A, Clauditz TS, Rieckmann T. Tissue microarray analyses of the essential DNA repair factors ATM, DNA-PKcs and Ku80 in head and neck squamous cell carcinoma. Radiat Oncol 2024; 19:150. [PMID: 39478631 PMCID: PMC11523811 DOI: 10.1186/s13014-024-02541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) negative for Human Papillomavirus (HPV) has remained a difficult to treat entity, whereas tumors positive for HPV are characterized by radiosensitivity and favorable patient outcome. On the cellular level, radiosensitivity is largely governed by the tumor cells` ability to repair radiation-induced DNA double-strand breaks (DSBs), but no biomarker is established that could guide clinical decision making. Therefore, we tested the impact of the expression levels of ATM, the central kinase of the DNA damage response as well as DNA-PKcs and Ku80, two major factors in the main DSB repair pathway non-homologous end joining (NHEJ). METHODS A tissue microarray of a single center HNSCC cohort was stained for ATM, DNA-PKcs and Ku80 and the expression scored based on staining intensity and the percentages of tumor cells stained. Scores were correlated with clinicopathological parameters and survival. RESULTS Samples from 427 HNSCC patients yielded interpretable stainings and were scored following an established algorithm. The majority of tumors showed strong expression of both NHEJ factors, whereas the expression of ATM varied more. The expression scores of ATM and DNA-PKcs were not associated with patient survival. For HPV-negative HNSCC, the minority of tumors without strong Ku80 expression trended towards superior survival when treatment included radiotherapy. Focusing stronger on staining intensity to define the subgroup with lowest and therefore potentially insufficient expression levels in the HPV-negative subgroup, we observed significantly better overall survival for patients treated with radiotherapy but not with surgery alone. CONCLUSIONS Our data suggest that HPV-negative HNSCC with particularly low Ku80 expression represent a highly radiosensitive subpopulation. Confirmation in independent cohorts is required.
Collapse
Affiliation(s)
- Henrike Barbara Zech
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clara von Bargen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Agnes Oetting
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikolaus Möckelmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Otorhinolaryngology, Marienkrankenhaus, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Witt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Struve
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Betz
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adrian Münscher
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Otorhinolaryngology, Marienkrankenhaus, Hamburg, Germany
| | | | - Thorsten Rieckmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
2
|
Arcuschin CD, Kahrizi K, Sayaman RW, DiBenedetto C, Shen Y, Salaberry PJ, Zakroui O, Schwarzer C, Scapozza A, Betancur P, Saba JD, Coppé JP, Barcellos-Hoff MH, Kappes D, van 't Veer L, Schor IE, Muñoz DP. Super-enhancer profiling reveals ThPOK/ZBTB7B, a CD4 + cell lineage commitment factor, as a master regulator that restricts breast cancer cells to a luminal non-migratory phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614267. [PMID: 39386673 PMCID: PMC11463473 DOI: 10.1101/2024.09.21.614267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Despite efforts to understand breast cancer biology, metastatic disease remains a clinical challenge. Identifying suppressors of breast cancer progression and mechanisms of transition to more invasive phenotypes could provide game changing therapeutic opportunities. Transcriptional deregulation is central to all malignancies, highlighted by the extensive reprogramming of regulatory elements that underlie oncogenic programs. Among these, super-enhancers (SEs) stand out due to their enrichment in genes controlling cancer hallmarks. To reveal novel breast cancer dependencies, we integrated the analysis of the SE landscape with master regulator activity inference for a series of breast cancer cell lines. As a result, we identified T - h elper-inducing Poxviruses and Zinc-finger ( PO Z)/ K rüppel-like factor (ThPOK, ZBTB7B ), a CD4 + cell lineage commitment factor, as a breast cancer master regulator that is recurrently associated with a SE. ThPOK expression is highest in luminal breast cancer but is significantly reduced in the basal subtype. Manipulation of ThPOK levels in cell lines shows that its repressive function restricts breast cancer cells to an epithelial phenotype by suppressing the expression of genes involved in the epithelial-mesenchymal transition (EMT), WNT/β-catenin target genes, and the pro-metastatic TGFβ pathway. Our study reveals ThPOK as a master transcription factor that restricts the acquisition of metastatic features in breast cancer cells.
Collapse
|
3
|
Mai Z, Kongjia L, Wang X, Xie X, Pang L, Yang H, Wen J, Fu J. Impaired TGF-β signaling via AHNAK family mutations elicits an esophageal cancer subtype with sensitivities to genotoxic therapy and immunotherapy. Cancer Immunol Immunother 2024; 73:225. [PMID: 39235488 PMCID: PMC11377381 DOI: 10.1007/s00262-024-03798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Genome instability (GI) is a hallmark of esophageal squamous cell carcinoma (ESCC) while factors affecting GI remain unclear. METHODS Here, we aimed to characterize genomic events representing specific mechanisms of GI based on 201 ESCC samples and validated our findings at the patient, single-cell and cancer cell-line levels, including a newly generated multi-omics dataset of the trial NCT04006041. RESULTS A two-gene (AHNAK and AHNAK2) mutation signature was identified to define the "AHNAK1/2-mutant" cancer subtype. Single-cell-assisted multi-omics analysis showed that this subtype had a higher neoantigen load, active antigen presentation, and proficient CD8 + T cell infiltrations, which were validated at pan-cancer levels. Mechanistically, AHNAK1/2-mutant ESCC was characterized by impaired response of TGF-β and the inefficient alternative end-join repair (Alt-EJ) that might promote GI. Knockdown of AHNAK in ESCC cell lines resulted in more Alt-EJ events and increased sensitivities to cisplatin. Furthermore, this two-gene signature accurately predicted better responses to DNA-damaging therapy in various clinical settings (HR ≈ 0.25). The two-gene signature predicted higher pCR rates in ESCCs receiving neoadjuvant immunotherapy-involved treatment. Finally, a molecular classification scheme was built and outperformed established molecular typing models in the prognosis stratification of ESCC patients. CONCLUSION Our study extended our understanding of the AHNAK family in promoting GI and selecting treatment responders of ESCC.
Collapse
Affiliation(s)
- Zihang Mai
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
- Guangdong Esophageal Cancer Institute, Guangzhou, 510060, Guangdong Province, China
| | - Luo Kongjia
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
- Guangdong Esophageal Cancer Institute, Guangzhou, 510060, Guangdong Province, China
| | - Xinye Wang
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
- Guangdong Esophageal Cancer Institute, Guangzhou, 510060, Guangdong Province, China
| | - Xiuying Xie
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
- Guangdong Esophageal Cancer Institute, Guangzhou, 510060, Guangdong Province, China
| | - Lanlan Pang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
| | - Hong Yang
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
- Guangdong Esophageal Cancer Institute, Guangzhou, 510060, Guangdong Province, China.
| | - Jing Wen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
- Guangdong Esophageal Cancer Institute, Guangzhou, 510060, Guangdong Province, China.
| | - Jianhua Fu
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
- Guangdong Esophageal Cancer Institute, Guangzhou, 510060, Guangdong Province, China.
| |
Collapse
|
4
|
Zelisko N, Lesyk R, Stoika R. Structure, unique biological properties, and mechanisms of action of transforming growth factor β. Bioorg Chem 2024; 150:107611. [PMID: 38964148 DOI: 10.1016/j.bioorg.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Transforming growth factor β (TGF-β) is a ubiquitous molecule that is extremely conserved structurally and plays a systemic role in human organism. TGF-β is a homodimeric molecule consisting of two subunits joined through a disulphide bond. In mammals, three genes code for TGF-β1, TGF-β2, and TGF-β3 isoforms of this cytokine with a dominating expression of TGF-β1. Virtually, all normal cells contain TGF-β and its specific receptors. Considering the exceptional role of fine balance played by the TGF-β in anumber of physiological and pathological processes in human body, this cytokine may be proposed for use in medicine as an immunosuppressant in transplantology, wound healing and bone repair. TGFb itself is an important target in oncology. Strategies for blocking members of TGF-β signaling pathway as therapeutic targets have been considered. In this review, signalling mechanisms of TGF-β1 action are addressed, and their role in physiology and pathology with main focus on carcinogenesis are described.
Collapse
Affiliation(s)
- Nataliya Zelisko
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
5
|
Britton WR, Cioffi I, Stonebraker C, Spence M, Okolo O, Martin C, Henick B, Nakagawa H, Parikh AS. Advancements in TGF-β Targeting Therapies for Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:3047. [PMID: 39272905 PMCID: PMC11394608 DOI: 10.3390/cancers16173047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cause of cancer worldwide according to GLOBOCAN estimates from 2022. Current therapy options for recurrent or metastatic disease are limited to conventional cytotoxic chemotherapy and immunotherapy, with few targeted therapy options readily available. Recent single-cell transcriptomic analyses identified TGF-β signaling as an important mediator of functional interplays between cancer-associated fibroblasts and a subset of mesenchymal cancer cells. This signaling was shown to drive invasiveness, treatment resistance, and immune evasion. These data provide renewed interest in the TGF-β pathway as an alternative therapeutic target, prompting a critical review of previous clinical data which suggest a lack of benefit from TGF-β inhibitors. While preclinical data have demonstrated the great anti-tumorigenic potential of TGF-β inhibitors, the underwhelming results of ongoing and completed clinical trials highlight the difficulty actualizing these benefits into clinical practice. This topical review will discuss the relevant preclinical and clinical findings for TGF-β inhibitors in HNSCC and will explore the potential role of patient stratification in the development of this therapeutic strategy.
Collapse
Affiliation(s)
- William R Britton
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Isabel Cioffi
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Corinne Stonebraker
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Matthew Spence
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ogoegbunam Okolo
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Cecilia Martin
- Organoid and Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, Columbia University, New York, NY 10032, USA
| | - Brian Henick
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Organoid and Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, Columbia University, New York, NY 10032, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Anuraag S Parikh
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
6
|
Yan Z, Zhu J, Liu Y, Li Z, Liang X, Zhou S, Hou Y, Chen H, Zhou L, Wang P, Ao X, Gao S, Huang X, Zhou P, Gu Y. DNA-PKcs/AKT1 inhibits epithelial-mesenchymal transition during radiation-induced pulmonary fibrosis by inducing ubiquitination and degradation of Twist1. Clin Transl Med 2024; 14:e1690. [PMID: 38760896 PMCID: PMC11101672 DOI: 10.1002/ctm2.1690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024] Open
Abstract
INTRODUCTION Radiation-induced pulmonary fibrosis (RIPF) is a chronic, progressive, irreversible lung interstitial disease that develops after radiotherapy. Although several previous studies have focused on the mechanism of epithelial-mesenchymal transition (EMT) in lung epithelial cells, the essential factors involved in this process remain poorly understood. The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) exhibits strong repair capacity when cells undergo radiation-induced damage; whether DNA-PKcs regulates EMT during RIPF remains unclear. OBJECTIVES To investigate the role and molecular mechanism of DNA-PKcs in RIPF and provide an important theoretical basis for utilising DNA-PKcs-targeted drugs for preventing RIPF. METHODS DNA-PKcs knockout (DPK-/-) mice were generated via the Cas9/sgRNA technique and subjected to whole chest ionizing radiation (IR) at a 20 Gy dose. Before whole chest IR, the mice were intragastrically administered the DNA-PKcs-targeted drug VND3207. Lung tissues were collected at 1 and 5 months after IR. RESULTS The expression of DNA-PKcs is low in pulmonary fibrosis (PF) patients. DNA-PKcs deficiency significantly exacerbated RIPF by promoting EMT in lung epithelial cells. Mechanistically, DNA-PKcs deletion by shRNA or inhibitor NU7441 maintained the protein stability of Twist1. Furthermore, AKT1 mediated the interaction between DNA-PKcs and Twist1. High Twist1 expression and EMT-associated changes caused by DNA-PKcs deletion were blocked by insulin-like growth factor-1 (IGF-1), an AKT1 agonist. The radioprotective drug VND3207 prevented IR-induced EMT and alleviated RIPF in mice by stimulating the kinase activity of DNA-PKcs. CONCLUSION Our study clarified the critical role and mechanism of DNA-PKcs in RIPF and showed that it could be a potential target for preventing RIPF.
Collapse
Affiliation(s)
- Ziyan Yan
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Jiaojiao Zhu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yuhao Liu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Zhongqiu Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Xinxin Liang
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Shenghui Zhou
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Yifan Hou
- College of Life SciencesHebei UniversityBaodingChina
| | - Huixi Chen
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Lin Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping Wang
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xingkun Ao
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Shanshan Gao
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xin Huang
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yongqing Gu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
- College of Life SciencesHebei UniversityBaodingChina
| |
Collapse
|
7
|
Jones KM, Bryan A, McCunn E, Lantz PE, Blalock H, Ojeda IC, Mehta K, Cosper PF. The Causes and Consequences of DNA Damage and Chromosomal Instability Induced by Human Papillomavirus. Cancers (Basel) 2024; 16:1662. [PMID: 38730612 PMCID: PMC11083350 DOI: 10.3390/cancers16091662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
High-risk human papillomaviruses (HPVs) are the main cause of cervical, oropharyngeal, and anogenital cancers, which are all treated with definitive chemoradiation therapy when locally advanced. HPV proteins are known to exploit the host DNA damage response to enable viral replication and the epithelial differentiation protocol. This has far-reaching consequences for the host genome, as the DNA damage response is critical for the maintenance of genomic stability. HPV+ cells therefore have increased DNA damage, leading to widespread genomic instability, a hallmark of cancer, which can contribute to tumorigenesis. Following transformation, high-risk HPV oncoproteins induce chromosomal instability, or chromosome missegregation during mitosis, which is associated with a further increase in DNA damage, particularly due to micronuclei and double-strand break formation. Thus, HPV induces significant DNA damage and activation of the DNA damage response in multiple contexts, which likely affects radiation sensitivity and efficacy. Here, we review how HPV activates the DNA damage response, how it induces chromosome missegregation and micronuclei formation, and discuss how these factors may affect radiation response. Understanding how HPV affects the DNA damage response in the context of radiation therapy may help determine potential mechanisms to improve therapeutic response.
Collapse
Affiliation(s)
- Kathryn M. Jones
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Ava Bryan
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Emily McCunn
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Pate E. Lantz
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Hunter Blalock
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
- University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Isabel C. Ojeda
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
- University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Kavi Mehta
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
8
|
Ding Y, Zhou G, Hu W. Epigenetic regulation of TGF-β pathway and its role in radiation response. Int J Radiat Biol 2024; 100:834-848. [PMID: 38506660 DOI: 10.1080/09553002.2024.2327395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE Transforming growth factor (TGF-β) plays a dual role in tumor progression as well as a pivotal role in radiation response. TGF-β-related epigenetic regulations, including DNA methylation, histone modifications (including methylation, acetylation, phosphorylation, ubiquitination), chromatin remodeling and non-coding RNA regulation, have been found to affect the occurrence and development of tumors as well as their radiation response in multiple dimensions. Due to the significance of radiotherapy in tumor treatment and the essential roles of TGF-β signaling in radiation response, it is important to better understand the role of epigenetic regulation mechanisms mediated by TGF-β signaling pathways in radiation-induced targeted and non-targeted effects. CONCLUSIONS By revealing the epigenetic mechanism related to TGF-β-mediated radiation response, summarizing the existing relevant adjuvant strategies for radiotherapy based on TGF-β signaling, and discovering potential therapeutic targets, we hope to provide a new perspective for improving clinical treatment.
Collapse
Affiliation(s)
- Yunan Ding
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Xu S, Shi C, Zhou R, Han Y, Li N, Qu C, Xia R, Zhang C, Hu Y, Tian Z, Liu S, Wang L, Li J, Zhang Z. Mapping the landscape of HPV integration and characterising virus and host genome interactions in HPV-positive oropharyngeal squamous cell carcinoma. Clin Transl Med 2024; 14:e1556. [PMID: 38279874 PMCID: PMC10819103 DOI: 10.1002/ctm2.1556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Human papillomavirus (HPV) integration into the host genome is an important factor in HPV(+)OPSCC carcinogenesis, in conjunction with HPV oncoproteins E6/E7. However, a well-studied investigation about virus-host interaction still needs to be completed. Our objective is to characterise HPV integration to investigate potential mechanisms of tumourigenesis independent of E6/E7 oncoproteins. MATERIALS AND METHODS High-throughput viral integration detection was performed on 109 HPV(+)OPSCC tumours with relevant clinicopathological information. Of these tumours, 38 tumours underwent targeted gene sequencing, 29 underwent whole exome sequencing and 26 underwent RNA sequencing. RESULTS HPV integration was detected in 94% of tumours (with a mean integration count of 337). Tumours occurring at the tonsil/oropharyngeal wall that exhibit higher PD-L1 expression demonstrated increased integration sites (p = .024). HPV exhibited a propensity for integration at genomic sites located within specific fragile sites (FRA19A) or genes associated with functional roles such as cell proliferation and differentiation (PTEN, AR), immune evasion (CD274) and glycoprotein biosynthesis process (FUT8). The viral oncogenes E2, E4, E6 and E7 tended to remain intact. HPV fragments displayed enrichment within host copy number variation (CNV) regions. However, insertions into genes related to altered homologous recombination repair were infrequent. Genes with integration had distinct expression levels. Fifty-nine genes whose expression level was affected by viral integration were identified, for example, EPHB1, which was reported to be involved in cellular protein metabolic process. CONCLUSIONS HPV can promote oncogenesis through recurrent integration into functional host genome regions, leading to subsequent genomic aberrations and gene expression disruption. This study characterises viral integrations and virus-host interactions, enhancing our understanding of HPV-related carcinogenesis mechanisms.
Collapse
Affiliation(s)
- Shengming Xu
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Chaoji Shi
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Rong Zhou
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Yong Han
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - NianNian Li
- Department of BioinfomaticsSequantaShanghaiChina
| | - Chuxiang Qu
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Ronghui Xia
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Chunye Zhang
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Yuhua Hu
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Zhen Tian
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Shuli Liu
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Lizhen Wang
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Jiang Li
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| |
Collapse
|
10
|
Schuhwerk H, Brabletz T. Mutual regulation of TGFβ-induced oncogenic EMT, cell cycle progression and the DDR. Semin Cancer Biol 2023; 97:86-103. [PMID: 38029866 DOI: 10.1016/j.semcancer.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
TGFβ signaling and the DNA damage response (DDR) are two cellular toolboxes with a strong impact on cancer biology. While TGFβ as a pleiotropic cytokine affects essentially all hallmarks of cancer, the multifunctional DDR mostly orchestrates cell cycle progression, DNA repair, chromatin remodeling and cell death. One oncogenic effect of TGFβ is the partial activation of epithelial-to-mesenchymal transition (EMT), conferring invasiveness, cellular plasticity and resistance to various noxae. Several reports show that both individual networks as well as their interface affect chemo-/radiotherapies. However, the underlying mechanisms remain poorly resolved. EMT often correlates with TGFβ-induced slowing of proliferation, yet numerous studies demonstrate that particularly the co-activated EMT transcription factors counteract anti-proliferative signaling in a partially non-redundant manner. Collectively, evidence piled up over decades underscore a multifaceted, reciprocal inter-connection of TGFβ signaling / EMT with the DDR / cell cycle progression, which we will discuss here. Altogether, we conclude that full cell cycle arrest is barely compatible with the propagation of oncogenic EMT traits and further propose that 'EMT-linked DDR plasticity' is a crucial, yet intricate facet of malignancy, decisively affecting metastasis formation and therapy resistance.
Collapse
Affiliation(s)
- Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
11
|
Chowdhury S, Kennedy JJ, Ivey RG, Murillo OD, Hosseini N, Song X, Petralia F, Calinawan A, Savage SR, Berry AB, Reva B, Ozbek U, Krek A, Ma W, da Veiga Leprevost F, Ji J, Yoo S, Lin C, Voytovich UJ, Huang Y, Lee SH, Bergan L, Lorentzen TD, Mesri M, Rodriguez H, Hoofnagle AN, Herbert ZT, Nesvizhskii AI, Zhang B, Whiteaker JR, Fenyo D, McKerrow W, Wang J, Schürer SC, Stathias V, Chen XS, Barcellos-Hoff MH, Starr TK, Winterhoff BJ, Nelson AC, Mok SC, Kaufmann SH, Drescher C, Cieslik M, Wang P, Birrer MJ, Paulovich AG. Proteogenomic analysis of chemo-refractory high-grade serous ovarian cancer. Cell 2023; 186:3476-3498.e35. [PMID: 37541199 PMCID: PMC10414761 DOI: 10.1016/j.cell.2023.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/23/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, representing one discovery and two validation cohorts across two biospecimen types (formalin-fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in two independent patient cohorts. We detected significant association between lack of Ch17 loss of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we identified 5 clusters of HGSOC, which validated across two independent patient cohorts and patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of refractoriness and implicate putative therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Shrabanti Chowdhury
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jacob J Kennedy
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Richard G Ivey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Oscar D Murillo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Noshad Hosseini
- Department of Computational Medicine and Bioinformatics, Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Xiaoyu Song
- Tisch Cancer Institute, Department of Population Health Science and Policy, Institute for Health Care Delivery Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna Calinawan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Umut Ozbek
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Jiayi Ji
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Chenwei Lin
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Uliana J Voytovich
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Yajue Huang
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sun-Hee Lee
- Departments of Oncology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Lindsay Bergan
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Travis D Lorentzen
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, Department of Computational Medicine and Bioinformatics, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey R Whiteaker
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - David Fenyo
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Joshua Wang
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Stephan C Schürer
- Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, and Institute for Data Science & Computing, University of Miami, Miami, FL 33136, USA
| | - Vasileios Stathias
- Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, and Institute for Data Science & Computing, University of Miami, Miami, FL 33136, USA
| | - X Steven Chen
- Department of Public Health Sciences, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Mary Helen Barcellos-Hoff
- Helen Diller Family Comprehensive Cancer Center, Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Timothy K Starr
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Boris J Winterhoff
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Scott H Kaufmann
- Departments of Oncology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Charles Drescher
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Marcin Cieslik
- Department of Pathology, Department of Computational Medicine and Bioinformatics, Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Michael J Birrer
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Amanda G Paulovich
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
12
|
Stagg J, Golden E, Wennerberg E, Demaria S. The interplay between the DNA damage response and ectonucleotidases modulates tumor response to therapy. Sci Immunol 2023; 8:eabq3015. [PMID: 37418547 PMCID: PMC10394739 DOI: 10.1126/sciimmunol.abq3015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
The extracellular nucleoside adenosine reduces tissue inflammation and is generated by irreversible dephosphorylation of adenosine monophosphate (AMP) mediated by the ectonucleotidase CD73. The pro-inflammatory nucleotides adenosine triphosphate, nicotinamide adenine dinucleotide, and cyclic guanosine -monophosphate-AMP (cGAMP), which are produced in the tumor microenvironment (TME) during therapy-induced immunogenic cell death and activation of innate immune signaling, can be converted into AMP by ectonucleotidases CD39, CD38, and CD203a/ENPP1. Thus, ectonucleotidases shape the TME by converting immune-activating signals into an immunosuppressive one. Ectonucleotidases also hinder the ability of therapies including radiation therapy, which enhance the release of pro-inflammatory nucleotides in the extracellular milieu, to induce immune-mediated tumor rejection. Here, we review the immunosuppressive effects of adenosine and the role of different ectonucleotidases in modulating antitumor immune responses. We discuss emerging opportunities to target adenosine generation and/or its ability to signal via adenosine receptors expressed by immune and cancer cells in the context of combination immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- John Stagg
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, 900 St-Denis street, Montreal,
Quebec, Canada, H2X 0A9
| | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, Institute of Cancer
Research, London SM2 5NG, UK
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
- Department of Pathology and Laboratory Medicine, Weill
Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
13
|
Gregucci F, Spada S, Barcellos-Hoff MH, Bhardwaj N, Chan Wah Hak C, Fiorentino A, Guha C, Guzman ML, Harrington K, Herrera FG, Honeychurch J, Hong T, Iturri L, Jaffee E, Karam SD, Knott SR, Koumenis C, Lyden D, Marciscano AE, Melcher A, Mondini M, Mondino A, Morris ZS, Pitroda S, Quezada SA, Santambrogio L, Shiao S, Stagg J, Telarovic I, Timmerman R, Vozenin MC, Weichselbaum R, Welsh J, Wilkins A, Xu C, Zappasodi R, Zou W, Bobard A, Demaria S, Galluzzi L, Deutsch E, Formenti SC. Updates on radiotherapy-immunotherapy combinations: Proceedings of 6 th annual ImmunoRad conference. Oncoimmunology 2023; 12:2222560. [PMID: 37363104 PMCID: PMC10286673 DOI: 10.1080/2162402x.2023.2222560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Focal radiation therapy (RT) has attracted considerable attention as a combinatorial partner for immunotherapy (IT), largely reflecting a well-defined, predictable safety profile and at least some potential for immunostimulation. However, only a few RT-IT combinations have been tested successfully in patients with cancer, highlighting the urgent need for an improved understanding of the interaction between RT and IT in both preclinical and clinical scenarios. Every year since 2016, ImmunoRad gathers experts working at the interface between RT and IT to provide a forum for education and discussion, with the ultimate goal of fostering progress in the field at both preclinical and clinical levels. Here, we summarize the key concepts and findings presented at the Sixth Annual ImmunoRad conference.
Collapse
Affiliation(s)
- Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, Bari, Italy
| | - Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, School of Medicine, University of California, San Francisco, CA, USA
| | - Nina Bhardwaj
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Alba Fiorentino
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, Bari, Italy
- Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Monica L. Guzman
- Division of Hematology/Oncology, Department of Medicine, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Kevin Harrington
- The Institute of Cancer Research/The Royal Marsden NHS Foundation Trust, National Institute for Health Research Biomedical Research Centre, London, UK
| | - Fernanda G. Herrera
- Centre Hospitalier Universitaire Vaudois, University of Lausanne and Ludwig Institute for Cancer Research at the Agora Cancer Research Center, Lausanne, Switzerland
| | - Jamie Honeychurch
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Theodore Hong
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Elisabeth Jaffee
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado, Aurora, CO, USA
| | - Simon R.V. Knott
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | | | - Alan Melcher
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Michele Mondini
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Université of Paris-Saclay, Saclay, France
- INSERM U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, Villejuif, France
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sean Pitroda
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Sergio A. Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Stephen Shiao
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l’Universite de Montreal, Faculty of Pharmacy, Montreal, Canada
| | - Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Robert Timmerman
- Departments of Radiation Oncology and Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ralph Weichselbaum
- Department of Radiation and Cellular Oncology, Ludwig Center for Metastases Research, University of Chicago, IL, USA
| | - James Welsh
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Wilkins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom, Royal Marsden Hospital, Sutton, UK
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Roberta Zappasodi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Weiping Zou
- Departments of Surgery and Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Université of Paris-Saclay, Saclay, France
- INSERM U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, Villejuif, France
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
14
|
Ma L, Gonzalez-Junca A, Chou W, Barcellos-Hoff MH. Monitoring TGFβ signaling in irradiated tumors. Methods Cell Biol 2023; 180:49-67. [PMID: 37890932 DOI: 10.1016/bs.mcb.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Transforming growth factor β (TGFβ) is exquisitely regulated under physiological conditions but its activity is highly dysregulated in cancer. All cells make TGFβ and have receptors for the ligand, which is sequestered in the extracellular matrix in a latent form. Ionizing radiation elicits rapid release of TGFβ from these stores, so-called activation, over a wide range of doses and exposures, including low dose (<1Gy) whole-body irradiation, creating an extraordinarily potent signal in the irradiated tissue or tumor. Hence, accurate evaluation of TGFβ activity is complicated because of its ubiquitous distribution as a latent complex. Here we describe conditions for assays that reveal TGFβ activity in situ using either tissue preparations or functional imaging.
Collapse
Affiliation(s)
- Lin Ma
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Alba Gonzalez-Junca
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - William Chou
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
15
|
Barcellos-Hoff MH, Gulley JL. Molecular Pathways and Mechanisms of TGFβ in Cancer Therapy. Clin Cancer Res 2023; 29:2025-2033. [PMID: 36598437 PMCID: PMC10238558 DOI: 10.1158/1078-0432.ccr-21-3750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/04/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023]
Abstract
Even though the number of agents that inhibit TGFβ being tested in patients with cancer has grown substantially, clinical benefit from TGFβ inhibition has not yet been achieved. The myriad mechanisms in which TGFβ is protumorigenic may be a key obstacle to its effective deployment; cancer cells frequently employ TGFβ-regulated programs that engender plasticity, enable a permissive tumor microenvironment, and profoundly suppress immune recognition, which is the target of most current early-phase trials of TGFβ inhibitors. Here we discuss the implications of a less well-recognized aspect of TGFβ biology regulating DNA repair that mediates responses to radiation and chemotherapy. In cancers that are TGFβ signaling competent, TGFβ promotes effective DNA repair and suppresses error-prone repair, thus conferring resistance to genotoxic therapies and limiting tumor control. Cancers in which TGFβ signaling is intrinsically compromised are more responsive to standard genotoxic therapy. Recognition that TGFβ is a key moderator of both DNA repair and immunosuppression might be used to synergize combinations of genotoxic therapy and immunotherapy to benefit patients with cancer.
Collapse
Affiliation(s)
- Mary Helen Barcellos-Hoff
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - James L. Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Zuo N, Ma L, Liu T, Hu W, Luo Y, Meng H, Ren Q, Deng Y, Wei L, Liu Q. Human papillomavirus associated XPF deficiency increases alternative end joining and cisplatin sensitivity in head and neck squamous cell carcinoma. Oral Oncol 2023; 140:106367. [PMID: 36996606 DOI: 10.1016/j.oraloncology.2023.106367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVES Human papillomavirus (HPV) positive head and neck squamous cell carcinoma (HNSCC) showed a considerably better prognosis with greater cisplatin sensitivity compared to their HPV-negative counterparts. Deciphering the underlying molecular mechanisms for HPV-induced cisplatin sensitivity is imperative to improve the prognosis of HPV-negative HNSCC. MATERIALS AND METHODS The Fanconi anemia (FA) pathway status in HNSCC cells was analysed by detecting the cell cycle and chromosomal aberrations. XPF expression was validated using PCR, western blot, and immunohistochemistry. Droplet digital PCR and GFP expressing reporter assay were used to analyse the changes in alternative end-joining (alt-EJ) levels. The cisplatin sensitization was verified by cell proliferation assay, clonogenic cell survival assay, and TUNEL. RESULTS HPV-positive HNSCC cells showed significant prolonged G2-M cell cycle arrest and aberrant chromosome formation under interstrand crosslinker treatment. Both mRNA and protein expression of XPF were considerably decreased in HPV-positive HNSCC, according to the analysis of cellular and clinical data. XPF inhibition upregulated the activity of the alt-EJ pathway in HPV-negative HNSCC cells by 32.02% (P < 0.001) but had little effect on HPV-positive HNSCC. Consistent with this, simultaneous suppression of XPF and alt-EJ enhanced cisplatin sensitivity of HPV-negative HNSCC in vitro and in vivo. CONCLUSION HPV-positive HNSCC cells exhibit a profound FA pathway deficiency associated with reduced XPF expression. HNSCC cells with compromised XPF function are more reliant on the alt-EJ pathway for genomic stability. Combining FA and alt-EJ inhibition may be used to cope with the hard-to-treat HPV-negative HNSCC.
Collapse
|
17
|
Gan Q, Mao L, Shi R, Chang L, Wang G, Cheng J, Chen R. Prognostic Value and Immune Infiltration of HPV-Related Genes in the Immune Microenvironment of Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma. Cancers (Basel) 2023; 15:1419. [PMID: 36900213 PMCID: PMC10000937 DOI: 10.3390/cancers15051419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 03/12/2023] Open
Abstract
Mounting evidence has highlighted the immune environment as a critical feature in the development of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). However, the relationship between the clinical characteristics of the immune environment and CESC remain unclear. Therefore, the aim of this study was to further characterize the relationship between the tumor and immune microenvironment and the clinical features of CESC using a variety of bioinformatic methods. Expression profiles (303 CESCs and three control samples) and relevant clinical data were obtained from The Cancer Genome Atlas. We divided CESC cases into different subtypes and performed a differential gene expression analysis. In addition, gene ontology (GO) and gene set enrichment analysis (GSEA) were performed to identify potential molecular mechanisms. Furthermore, data from 115 CESC patients from East Hospital were used to help identify the relationship between the protein expressions of key genes and disease-free survival using tissue microarray technology. Cases of CESC (n = 303) were divided into five subtypes (C1-C5) based on their expression profiles. A total of 69 cross-validated differentially expressed immune-related genes were identified. Subtype C4 demonstrated a downregulation of the immune profile, lower tumor immune/stroma scores, and worse prognosis. In contrast, the C1 subtype showed an upregulation of the immune profile, higher tumor immune/stroma scores, and better prognosis. A GO analysis suggested that changes in CESC were primarily enriched nuclear division, chromatin binding, and condensed chromosomes. In addition, GSEA demonstrated that cellular senescence, the p53 signaling pathway, and viral carcinogenesis are critical features of CESC. Moreover, high FOXO3 and low IGF-1 protein expression were closely correlated with decreased clinical prognosis. In summary, our findings provide novel insight into the relationship between the immune microenvironment and CESC. As such, our results may provide guidance for developing potential immunotherapeutic targets and biomarkers for CESC.
Collapse
Affiliation(s)
- Qiyu Gan
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Luning Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100021, China
| | - Rui Shi
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Linlin Chang
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Guozeng Wang
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Jingxin Cheng
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Rui Chen
- Department of Gynecology, Shanghai United Family Hospital, Shanghai 200120, China
| |
Collapse
|
18
|
DNA Damage Response Mechanisms in Head and Neck Cancer: Significant Implications for Therapy and Survival. Int J Mol Sci 2023; 24:ijms24032760. [PMID: 36769087 PMCID: PMC9917521 DOI: 10.3390/ijms24032760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Head and neck cancer (HNC) is a term collectively used to describe a heterogeneous group of tumors that arise in the oral cavity, larynx, nasopharynx, oropharynx, and hypopharynx, and represents the sixth most common type of malignancy worldwide. Despite advances in multimodality treatment, the disease has a recurrence rate of around 50%, and the prognosis of metastatic patients remains poor. HNCs are characterized by a high degree of genomic instability, which involves a vicious circle of accumulating DNA damage, defective DNA damage repair (DDR), and replication stress. Nonetheless, the damage that is induced on tumor cells by chemo and radiotherapy relies on defective DDR processes for a successful response to treatment, and may play an important role in the development of novel and more effective therapies. This review summarizes the current knowledge on the genes and proteins that appear to be deregulated in DDR pathways, their implication in HNC pathogenesis, and the rationale behind targeting these genes and pathways for the development of new therapies. We give particular emphasis on the therapeutic targets that have shown promising results at the pre-clinical stage and on those that have so far been associated with a therapeutic advantage in the clinical setting.
Collapse
|
19
|
Hu C, Bugbee T, Palinski R, Akinyemi IA, McIntosh MT, MacCarthy T, Bhaduri-McIntosh S, Wallace N. Beta human papillomavirus 8E6 promotes alternative end joining. eLife 2023; 12:e81923. [PMID: 36692284 PMCID: PMC9897725 DOI: 10.7554/elife.81923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
Double strand breaks (DSBs) are one of the most lethal DNA lesions in cells. The E6 protein of beta-human papillomavirus (HPV8 E6) impairs two critical DSB repair pathways: homologous recombination (HR) and non-homologous end joining (NHEJ). However, HPV8 E6 only delays DSB repair. How DSBs are repaired in cells with HPV8 E6 remains to be studied. We hypothesize that HPV8 E6 promotes a less commonly used DSB repair pathway, alternative end joining (Alt-EJ). Using CAS9-based Alt-EJ reporters, we show that HPV8 E6 promotes Alt-EJ. Further, using small molecule inhibitors, CRISPR/CAS9 gene knockout, and HPV8 E6 mutant, we find that HPV8 E6 promotes Alt-EJ by binding p300, an acetyltransferase that facilitates DSB repair by HR and NHEJ. At least some of this repair occurs through a subset of Alt-EJ known as polymerase theta dependent end joining. Finally, whole genome sequencing analysis showed HPV8 E6 caused an increased frequency of deletions bearing the microhomology signatures of Alt-EJ. This study fills the knowledge gap of how DSB is repaired in cells with HPV8 E6 and the mutagenic consequences of HPV8 E6 mediated p300 destabilization. Broadly, this study supports the hypothesis that beta-HPV promotes cancer formation by increasing genomic instability.
Collapse
Affiliation(s)
- Changkun Hu
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Division of Biology, Kansas State UniversityManhattanUnited States
| | - Taylor Bugbee
- Division of Biology, Kansas State UniversityManhattanUnited States
| | - Rachel Palinski
- Veterinary Diagnostic Laboratory, Kansas State UniversityManhattanUnited States
| | - Ibukun A Akinyemi
- Child Health Research Institute, Department of Pediatrics, University of FloridaGainesvilleUnited States
- Department of Molecular Genetics and Microbiology, University of FloridaGainesvilleUnited States
| | - Michael T McIntosh
- Child Health Research Institute, Department of Pediatrics, University of FloridaGainesvilleUnited States
| | - Thomas MacCarthy
- Laufer Center for Physical and Quantitative Biology, Stony Brook UniversityStony BrookUnited States
| | - Sumita Bhaduri-McIntosh
- Child Health Research Institute, Department of Pediatrics, University of FloridaGainesvilleUnited States
- Department of Molecular Genetics and Microbiology, University of FloridaGainesvilleUnited States
| | - Nicholas Wallace
- Division of Biology, Kansas State UniversityManhattanUnited States
| |
Collapse
|
20
|
Pinkiewicz M, Dorobisz K, Zatoński T. Human Papillomavirus-Associated Head and Neck Cancers. Where are We Now? A Systematic Review. Cancer Manag Res 2022; 14:3313-3324. [PMID: 36465708 PMCID: PMC9709860 DOI: 10.2147/cmar.s379173] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/19/2022] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Human papillomavirus targets the skin and mucous membranes, producing benign hyperplastic lesions and precancerous and cancerous lesions. An increasing number of head and neck cancersin particular, oropharyngeal squamous cell carcinoma, laryngeal squamous cell carcinoma, and oral squamous cell carcinoma, are attributable to HPV infection. HPV-induced HNCs typically affect younger, nonsmoking patients with no prior history of heavy alcohol use, more extensive sexual history, and higher socioeconomic status. AIM The purpose of the review is to present the most recent and well-established findings concerning HPV-induced head and neck cancers and consequently to provide medical specialists with essential information regarding the epidemiology, the role of HPV in HNC cancerogenesis, prevention, diagnosis, and treatment. MATERIAL AND METHODS All authors independently have searched The EMbase, Medline/Pubmed, and Cochrane databases by using the following keywords "head and neck cancer", "human papillomavirus", "HPV", "HPV biology", "oropharyngeal squamous cell carcinoma", "carcinogenesis", "transoral surgery", "robotic surgery". The last search was conducted in March 2022. The references of the publications of interest were also screened for relevant papers. There were no limitations in regard to the publication date. CONCLUSION Aiming to avoid the epidemic of HPV-induced HNC, it is paramount to improve the access to vaccination as well as resolve parental concerns regarding vaccine safety. Physicians should rely on reduced-dose radiation and aim to reduce the overall treatment time. Thanks to a more elaborate understanding of the genomic background of HPV-induced HNC, precision medicine could become a relevant part of patients' management. In comparison to traditional techniques and non-operative treatment, transoral robotic surgery (TORS) offers similar oncologic and functional outcomes, with a possible benefit on long-term quality of life. However, more research is needed to establish clear guidelines indicating when TORS resections should be supported with adjuvant therapy.
Collapse
Affiliation(s)
- Miłosz Pinkiewicz
- Department of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - Karolina Dorobisz
- Department of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Zatoński
- Department of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
21
|
Barcellos-Hoff MH. The radiobiology of TGFβ. Semin Cancer Biol 2022; 86:857-867. [PMID: 35122974 DOI: 10.1016/j.semcancer.2022.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023]
Abstract
Ionizing radiation is a pillar of cancer therapy that is deployed in more than half of all malignancies. The therapeutic effect of radiation is attributed to induction of DNA damage that kills cancers cells, but radiation also affects signaling that alters the composition of the tumor microenvironment by activating transforming growth factor β (TGFβ). TGFβ is a ubiquitously expressed cytokine that acts as biological lynchpin to orchestrate phenotypes, the stroma, and immunity in normal tissue; these activities are subverted in cancer to promote malignancy, a permissive tumor microenvironment and immune evasion. The radiobiology of TGFβ unites targets at the forefront of oncology-the DNA damage response and immunotherapy. The cancer cell intrinsic and extrinsic network of TGFβ responses in the irradiated tumor form a barrier to both genotoxic treatments and immunotherapy response. Here, we focus on the mechanisms by which radiation induces TGFβ activation, how TGFβ regulates DNA repair, and the dynamic regulation of the tumor immune microenvironment that together oppose effective cancer therapy. Strategies to inhibit TGFβ exploit fundamental radiobiology that may be the missing link to deploying TGFβ inhibitors for optimal patient benefit from cancer treatment.
Collapse
Affiliation(s)
- Mary Helen Barcellos-Hoff
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
22
|
Network analysis of long non-coding RNA expression profiles in common warts. Heliyon 2022; 8:e11790. [DOI: 10.1016/j.heliyon.2022.e11790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/15/2022] [Accepted: 11/14/2022] [Indexed: 11/20/2022] Open
|
23
|
Porter VL, Marra MA. The Drivers, Mechanisms, and Consequences of Genome Instability in HPV-Driven Cancers. Cancers (Basel) 2022; 14:4623. [PMID: 36230545 PMCID: PMC9564061 DOI: 10.3390/cancers14194623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022] Open
Abstract
Human papillomavirus (HPV) is the causative driver of cervical cancer and a contributing risk factor of head and neck cancer and several anogenital cancers. HPV's ability to induce genome instability contributes to its oncogenicity. HPV genes can induce genome instability in several ways, including modulating the cell cycle to favour proliferation, interacting with DNA damage repair pathways to bring high-fidelity repair pathways to viral episomes and away from the host genome, inducing DNA-damaging oxidative stress, and altering the length of telomeres. In addition, the presence of a chronic viral infection can lead to immune responses that also cause genome instability of the infected tissue. The HPV genome can become integrated into the host genome during HPV-induced tumorigenesis. Viral integration requires double-stranded breaks on the DNA; therefore, regions around the integration event are prone to structural alterations and themselves are targets of genome instability. In this review, we present the mechanisms by which HPV-dependent and -independent genome instability is initiated and maintained in HPV-driven cancers, both across the genome and at regions of HPV integration.
Collapse
Affiliation(s)
- Vanessa L. Porter
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
24
|
Hess J, Unger K, Maihoefer C, Schüttrumpf L, Weber P, Marschner S, Wintergerst L, Pflugradt U, Baumeister P, Walch A, Woischke C, Kirchner T, Werner M, Sörensen K, Baumann M, Tinhofer I, Combs SE, Debus J, Schäfer H, Krause M, Linge A, von der Grün J, Stuschke M, Zips D, Canis M, Lauber K, Ganswindt U, Henke M, Zitzelsberger H, Belka C. Integration of p16/HPV DNA Status with a 24-miRNA-Defined Molecular Phenotype Improves Clinically Relevant Stratification of Head and Neck Cancer Patients. Cancers (Basel) 2022; 14:cancers14153745. [PMID: 35954409 PMCID: PMC9367561 DOI: 10.3390/cancers14153745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Human papillomavirus (HPV)-driven head and neck squamous cell carcinomas (HNSCC), regarded as a distinct clinical entity, are characterized by a considerably favourable prognosis after radio(chemo)therapy and a not yet fully understood distinct molecular pathogenesis. We aimed to develop a miRNA-signature that identifies HPV-associated HNSCC according to their specific molecular pathogenesis, and to characterise the transcriptome compared to HPV-negative HNSCC. We performed miRNA expression profiling of n = 229 HPV characterized HNSCC specimens of patients treated by adjuvant radio(chemo) therapy. Using lasso-regression, a 24-miRNA signature predicting HPV-status was built in a multicentre cohort and validated in a single-centre cohort. Its combination with p16/HPV DNA status improved clinically relevant risk stratification, allowed the identification of an HPV-associated patient subgroup with impaired overall survival, and might be considered for future clinical decision-making. miRNA-transcriptome integration identified HPV-specific signaling pathways. Abstract Human papillomavirus (HPV)-driven head and neck squamous cell carcinomas (HNSCC) generally have a more favourable prognosis. We hypothesized that HPV-associated HNSCC may be identified by an miRNA-signature according to their specific molecular pathogenesis, and be characterized by a unique transcriptome compared to HPV-negative HNSCC. We performed miRNA expression profiling of two p16/HPV DNA characterized HNSCC cohorts of patients treated by adjuvant radio(chemo)therapy (multicentre DKTK-ROG n = 128, single-centre LMU-KKG n = 101). A linear model predicting HPV status built in DKTK-ROG using lasso-regression was tested in LMU-KKG. LMU-KKG tumours (n = 30) were transcriptome profiled for differential gene expression and miRNA-integration. A 24-miRNA signature predicted HPV-status with 94.53% accuracy (AUC: 0.99) in DKTK-ROG, and 86.14% (AUC: 0.86) in LMU-KKG. The prognostic values of 24-miRNA- and p16/HPV DNA status were comparable. Combining p16/HPV DNA and 24-miRNA status allowed patient sub-stratification and identification of an HPV-associated patient subgroup with impaired overall survival. HPV-positive tumours showed downregulated MAPK, Estrogen, EGFR, TGFbeta, WNT signaling activity. miRNA-mRNA integration revealed HPV-specific signaling pathway regulation, including PD−L1 expression/PD−1 checkpoint pathway in cancer in HPV-associated HNSCC. Integration of clinically established p16/HPV DNA with 24-miRNA signature status improved clinically relevant risk stratification, which might be considered for future clinical decision-making with respect to treatment de-escalation in HPV-associated HNSCC.
Collapse
Affiliation(s)
- Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (K.U.); (P.W.); (L.W.); (H.Z.)
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (C.M.); (L.S.); (S.M.); (U.P.); (P.B.); (M.C.); (K.L.); (U.G.); (C.B.)
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377 Munich, Germany
- Correspondence: ; Tel.: +49-89-3187-3517
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (K.U.); (P.W.); (L.W.); (H.Z.)
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (C.M.); (L.S.); (S.M.); (U.P.); (P.B.); (M.C.); (K.L.); (U.G.); (C.B.)
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Cornelius Maihoefer
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (C.M.); (L.S.); (S.M.); (U.P.); (P.B.); (M.C.); (K.L.); (U.G.); (C.B.)
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Lars Schüttrumpf
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (C.M.); (L.S.); (S.M.); (U.P.); (P.B.); (M.C.); (K.L.); (U.G.); (C.B.)
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Peter Weber
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (K.U.); (P.W.); (L.W.); (H.Z.)
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (C.M.); (L.S.); (S.M.); (U.P.); (P.B.); (M.C.); (K.L.); (U.G.); (C.B.)
| | - Sebastian Marschner
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (C.M.); (L.S.); (S.M.); (U.P.); (P.B.); (M.C.); (K.L.); (U.G.); (C.B.)
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Ludmila Wintergerst
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (K.U.); (P.W.); (L.W.); (H.Z.)
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (C.M.); (L.S.); (S.M.); (U.P.); (P.B.); (M.C.); (K.L.); (U.G.); (C.B.)
| | - Ulrike Pflugradt
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (C.M.); (L.S.); (S.M.); (U.P.); (P.B.); (M.C.); (K.L.); (U.G.); (C.B.)
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Philipp Baumeister
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (C.M.); (L.S.); (S.M.); (U.P.); (P.B.); (M.C.); (K.L.); (U.G.); (C.B.)
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany;
| | - Christine Woischke
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany; (C.W.); (T.K.)
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany; (C.W.); (T.K.)
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Martin Werner
- Institute for Surgical Pathology, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (M.W.); (K.S.)
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.S.); (M.H.)
| | - Kristin Sörensen
- Institute for Surgical Pathology, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (M.W.); (K.S.)
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.S.); (M.H.)
| | - Michael Baumann
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (M.K.); (A.L.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01309 Dresden, Germany
| | - Ingeborg Tinhofer
- Department of Radiooncology and Radiotherapy, Charité University Hospital Berlin, 10117 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stephanie E. Combs
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg Ion Therapy Center (HIT), University of Heidelberg, 69120 Heidelberg, Germany;
- German Cancer Consortium (DKTK), Partner Site Heidelberg, and Clinical cooperation unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Henning Schäfer
- German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.S.); (M.H.)
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Mechthild Krause
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (M.K.); (A.L.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01309 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiooncology—OncoRay Dresden, 01328 Dresden, Germany
| | - Annett Linge
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (M.K.); (A.L.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01309 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Jens von der Grün
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, 60596 Frankfurt, Germany;
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Martin Stuschke
- Department of Radiotherapy, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany;
- German Cancer Consortium (DKTK), Partner Site Essen, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany;
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Martin Canis
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (C.M.); (L.S.); (S.M.); (U.P.); (P.B.); (M.C.); (K.L.); (U.G.); (C.B.)
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Kirsten Lauber
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (C.M.); (L.S.); (S.M.); (U.P.); (P.B.); (M.C.); (K.L.); (U.G.); (C.B.)
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Ute Ganswindt
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (C.M.); (L.S.); (S.M.); (U.P.); (P.B.); (M.C.); (K.L.); (U.G.); (C.B.)
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Michael Henke
- German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.S.); (M.H.)
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (K.U.); (P.W.); (L.W.); (H.Z.)
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (C.M.); (L.S.); (S.M.); (U.P.); (P.B.); (M.C.); (K.L.); (U.G.); (C.B.)
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Claus Belka
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (C.M.); (L.S.); (S.M.); (U.P.); (P.B.); (M.C.); (K.L.); (U.G.); (C.B.)
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| |
Collapse
|
25
|
Mishra T, Bhardwaj V, Ahuja N, Gadgil P, Ramdas P, Shukla S, Chande A. Improved loss-of-function CRISPR-Cas9 genome editing in human cells concomitant with inhibition of TGF-β signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:202-218. [PMID: 35402072 PMCID: PMC8961078 DOI: 10.1016/j.omtn.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Strategies to modulate cellular DNA repair pathways hold immense potential to enhance the efficiency of CRISPR-Cas9 genome editing platform. In the absence of a repair template, CRISPR-Cas9-induced DNA double-strand breaks are repaired by the endogenous cellular DNA repair pathways to generate loss-of-function edits. Here, we describe a reporter-based assay for expeditious measurement of loss-of-function editing by CRISPR-Cas9. An unbiased chemical screen performed using this assay enabled the identification of small molecules that promote loss-of-function editing. Iterative rounds of screens reveal Repsox, a TGF-β signaling inhibitor, as a CRISPR-Cas9 editing efficiency enhancer. Repsox invariably increased CRISPR-Cas9 editing in a panel of commonly used cell lines in biomedical research and primary cells. Furthermore, Repsox-mediated editing enhancement in primary human CD4+ T cells enabled the generation of HIV-1-resistant cells with high efficiency. This study demonstrates the potential of transiently targeting cellular pathways by small molecules to improve genome editing for research applications and is expected to benefit gene therapy efforts.
Collapse
Affiliation(s)
- Tarun Mishra
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India
| | - Vipin Bhardwaj
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India
| | - Neha Ahuja
- Epigenetics and RNA Processing Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India
| | - Pallavi Gadgil
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India
| | - Pavitra Ramdas
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India
| | - Sanjeev Shukla
- Epigenetics and RNA Processing Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India
| | - Ajit Chande
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India
| |
Collapse
|
26
|
Liu T, Ma L, Song L, Yan B, Zhang S, Wang B, Zuo N, Sun X, Deng Y, Ren Q, Li Y, Zhou J, Liu Q, Wei L. CENPM upregulation by E5 oncoprotein of human papillomavirus promotes radiosensitivity in head and neck squamous cell carcinoma. Oral Oncol 2022; 129:105858. [DOI: 10.1016/j.oraloncology.2022.105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/10/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
|
27
|
Köcher S, Zech HB, Krug L, Gatzemeier F, Christiansen S, Meyer F, Rietow R, Struve N, Mansour WY, Kriegs M, Petersen C, Betz C, Rothkamm K, Rieckmann T. A Lack of Effectiveness in the ATM-Orchestrated DNA Damage Response Contributes to the DNA Repair Defect of HPV-Positive Head and Neck Cancer Cells. Front Oncol 2022; 12:765968. [PMID: 35719921 PMCID: PMC9204973 DOI: 10.3389/fonc.2022.765968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with human papillomavirus-positive squamous cell carcinoma of the head and neck (HPV+ HNSCC) have a favorable prognosis compared to those with HPV-negative (HPV−) ones. We have shown previously that HPV+ HNSCC cell lines are characterized by enhanced radiation sensitivity and impaired DNA double-strand break (DSB) repair. Since then, various publications have suggested a defect in homologous recombination (HR) and dysregulated expression of DSB repair proteins as underlying mechanisms, but conclusions were often based on very few cell lines. When comparing the expression levels of suggested proteins and other key repair factors in 6 HPV+ vs. 5 HPV− HNSCC strains, we could not confirm most of the published differences. Furthermore, HPV+ HNSCC strains did not demonstrate enhanced sensitivity towards PARP inhibition, questioning a general HR defect. Interestingly, our expression screen revealed minimal levels of the central DNA damage response kinase ATM in the two most radiosensitive HPV+ strains. We therefore tested whether insufficient ATM activity may contribute to the enhanced cellular radiosensitivity. Irrespective of their ATM expression level, radiosensitive HPV+ HNSCC cells displayed DSB repair kinetics similar to ATM-deficient cells. Upon ATM inhibition, HPV+ cell lines showed only a marginal increase in residual radiation-induced γH2AX foci and induction of G2 cell cycle arrest as compared to HPV− ones. In line with these observations, ATM inhibition sensitized HPV+ HNSCC strains less towards radiation than HPV− strains, resulting in similar levels of sensitivity. Unexpectedly, assessment of the phosphorylation kinetics of the ATM targets KAP-1 and Chk2 as well as ATM autophosphorylation after radiation did not indicate directly compromised ATM activity in HPV-positive cells. Furthermore, ATM inhibition delayed radiation induced DNA end resection in both HPV+ and HPV− cells to a similar extent, further suggesting comparable functionality. In conclusion, DNA repair kinetics and a reduced effectiveness of ATM inhibition clearly point to an impaired ATM-orchestrated DNA damage response in HPV+ HNSCC cells, but since ATM itself is apparently functional, the molecular mechanisms need to be further explored.
Collapse
Affiliation(s)
- Sabrina Köcher
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henrike Barbara Zech
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel Cancer Career Center HaTriCS, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Krug
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fruzsina Gatzemeier
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabrina Christiansen
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Meyer
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ruth Rietow
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Department, Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Struve
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel Cancer Career Center HaTriCS, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wael Yassin Mansour
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel Cancer Career Center HaTriCS, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Betz
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Thorsten Rieckmann,
| |
Collapse
|
28
|
Moyret-Lalle C, Prodhomme MK, Burlet D, Kashiwagi A, Petrilli V, Puisieux A, Seimiya H, Tissier A. Role of EMT in the DNA damage response, double-strand break repair pathway choice and its implications in cancer treatment. Cancer Sci 2022; 113:2214-2223. [PMID: 35534984 PMCID: PMC9277259 DOI: 10.1111/cas.15389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
Numerous epithelial–mesenchymal transition (EMT) characteristics have now been demonstrated to participate in tumor development. Indeed, EMT is involved in invasion, acquisition of stem cell properties, and therapy‐associated resistance of cancer cells. Together, these mechanisms offer advantages in adapting to changes in the tumor microenvironment. However, recent findings have shown that EMT‐associated transcription factors (EMT‐TFs) may also be involved in DNA repair. A better understanding of the coordination between the DNA repair pathways and the role played by some EMT‐TFs in the DNA damage response (DDR) should pave the way for new treatments targeting tumor‐specific molecular vulnerabilities, which result in selective destruction of cancer cells. Here we review recent advances, providing novel insights into the role of EMT in the DDR and repair pathways, with a particular focus on the influence of EMT on cellular sensitivity to damage, as well as the implications of these relationships for improving the efficacy of cancer treatments.
Collapse
Affiliation(s)
- Caroline Moyret-Lalle
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Centre of Lyon, Lyon, France.,LabEx DEVweCAN, Université de Lyon, Lyon, France
| | - Mélanie K Prodhomme
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Delphine Burlet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Centre of Lyon, Lyon, France
| | - Ayaka Kashiwagi
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Virginie Petrilli
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Centre of Lyon, Lyon, France
| | - Alain Puisieux
- Institut Curie, Versailles Saint-Quentin-en-Yvelines University, PSL Research University, Paris, France
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Agnès Tissier
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Centre of Lyon, Lyon, France
| |
Collapse
|
29
|
Models of Head and Neck Squamous Cell Carcinoma Using Bioengineering Approaches. Crit Rev Oncol Hematol 2022; 175:103724. [DOI: 10.1016/j.critrevonc.2022.103724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022] Open
|
30
|
Abuzenadah AM, Al-Sayes F, Mahafujul Alam SS, Hoque M, Karim S, Hussain IMR, Tabrez S. Identification of Potential Poly (ADP-Ribose) Polymerase-1 Inhibitors Derived from Rauwolfia serpentina: Possible Implication in Cancer Therapy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3787162. [PMID: 35368755 PMCID: PMC8967534 DOI: 10.1155/2022/3787162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/21/2022] [Indexed: 12/18/2022]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) has been recognized as a prospective target for the development of novel cancer therapeutics. Several PARP-1 inhibitors are currently being considered for anticancer drug development and clinical investigation. Lately, natural compounds seem to be excellent alternative drug candidates for cancer treatment. Rauwolfia serpentina is a medicinal plant traditionally used in Indian subcontinents to treat various diseases. This study has been designed to identify the bioactive compounds derived from R. serpentina for possible binding and inhibition of PARP-1 using the molecular docking approach. Thirteen compounds were found to interact with the target with a binding affinity greater than the value of -9.0 kcal/mol. After screening the physicochemical properties, only 5 ligands (ajmalicine, yohimbine, isorauhimbine, rauwolscine, and 1,2-dihydrovomilenine) were found to obey all the parameters of Lipinski's rule of five, showed maximum drug-likeness, and possess no significant toxicity. These ligands displayed strong interactions with target PARP-1 via several hydrogen bonds and hydrophobic interactions. Therefore, these identified compounds derived from R. serpentina can be considered for drug development against cancer-targeting PARP-1.
Collapse
Affiliation(s)
- Adel M. Abuzenadah
- Department of Medical Laboratory Science, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatin Al-Sayes
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Mehboob Hoque
- Applied Bio-Chemistry Lab, Department of Biological Sciences, Aliah University, Kolkata, India
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibtessam M. R. Hussain
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- Department of Medical Laboratory Science, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Ramsden DA, Carvajal-Garcia J, Gupta GP. Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining. Nat Rev Mol Cell Biol 2022; 23:125-140. [PMID: 34522048 DOI: 10.1038/s41580-021-00405-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
Cellular pathways that repair chromosomal double-strand breaks (DSBs) have pivotal roles in cell growth, development and cancer. These DSB repair pathways have been the target of intensive investigation, but one pathway - alternative end joining (a-EJ) - has long resisted elucidation. In this Review, we highlight recent progress in our understanding of a-EJ, especially the assignment of DNA polymerase theta (Polθ) as the predominant mediator of a-EJ in most eukaryotes, and discuss a potential molecular mechanism by which Polθ-mediated end joining (TMEJ) occurs. We address possible cellular functions of TMEJ in resolving DSBs that are refractory to repair by non-homologous end joining (NHEJ), DSBs generated following replication fork collapse and DSBs present owing to stalling of repair by homologous recombination. We also discuss how these context-dependent cellular roles explain how TMEJ can both protect against and cause genome instability, and the emerging potential of Polθ as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Dale A Ramsden
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Juan Carvajal-Garcia
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
32
|
Petroni G, Cantley LC, Santambrogio L, Formenti SC, Galluzzi L. Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nat Rev Clin Oncol 2022; 19:114-131. [PMID: 34819622 PMCID: PMC9004227 DOI: 10.1038/s41571-021-00579-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 02/03/2023]
Abstract
A variety of targeted anticancer agents have been successfully introduced into clinical practice, largely reflecting their ability to inhibit specific molecular alterations that are required for disease progression. However, not all malignant cells rely on such alterations to survive, proliferate, disseminate and/or evade anticancer immunity, implying that many tumours are intrinsically resistant to targeted therapies. Radiotherapy is well known for its ability to activate cytotoxic signalling pathways that ultimately promote the death of cancer cells, as well as numerous cytoprotective mechanisms that are elicited by cellular damage. Importantly, many cytoprotective mechanisms elicited by radiotherapy can be abrogated by targeted anticancer agents, suggesting that radiotherapy could be harnessed to enhance the clinical efficacy of these drugs. In this Review, we discuss preclinical and clinical data that introduce radiotherapy as a tool to elicit or amplify clinically actionable signalling pathways in patients with cancer.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lewis C Cantley
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
33
|
Guix I, Liu Q, Pujana MA, Ha P, Piulats J, Linares I, Guedea F, Mao JH, Lazar A, Chapman J, Yom SS, Ashworth A, Barcellos-Hoff MH. Validation of anti-correlated TGFβ signaling and alternative end-joining DNA repair signatures that predict response to genotoxic cancer therapy. Clin Cancer Res 2022; 28:1372-1382. [PMID: 35022323 DOI: 10.1158/1078-0432.ccr-21-2846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/13/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Loss of transforming growth factor β (TGFβ) signaling increases error-prone alternative end-joining (alt-EJ) DNA repair. We previously translated this mechanistic relationship as TGFβ and alt-EJ gene expression signatures, which are anti-correlated across cancer types. A score, βAlt, representing anti-correlation predicts patient outcome in response to genotoxic therapy. Here we sought to verify this biology in live specimens and additional datasets. EXPERIMENTAL DESIGN Human head and neck squamous cell (HNSC) carcinoma explants were treated in vitro to test whether the signatures report TGFβ signaling, indicated by SMAD2 phosphorylation, and unrepaired DNA damage, indicated by persistent 53BP1 foci after irradiation or olaparib. A custom NanoString assay was implemented to analyze the signatures' expression in explants. Each signature gene was then weighted by its association with functional responses to define a modified score, βAltw, that was retested for association with response to genotoxic therapies in independent datasets. RESULTS Most genes in each signature were positively correlated with the expected biological response in tumor explants. Anticorrelation of TGFβ and alt-EJ signatures measured by Nanostring was confirmed in explants. βAltw was significantly (P<0.001) better than βAlt in predicting overall survival in response to genotoxic therapy in TCGA pancancer patients and in independent HNSC and ovarian cancer patient datasets. CONCLUSION Association of the TGFβ and alt-EJ signatures with their biological response validates TGFβ competency as a key mediator of DNA repair that can be readily assayed by gene expression. The predictive value of βAltw supports its development to assist in clinical decision-making.
Collapse
Affiliation(s)
- Ines Guix
- Department of Radiation Oncology, University of California, San Francicsco
| | - Qi Liu
- Shenzhen Bay Laboratory, Institute for Biomedical Engineering
| | | | - Patrick Ha
- Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco
| | - Josep Piulats
- Medical Oncology, Institut Català d'Oncologia-IDIBELL
| | | | | | - Jian-Hua Mao
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, University of California, Berkely
| | - Ann Lazar
- Biostatistics, University of California, San Francisco
| | - Jocelyn Chapman
- Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco
| | - Sue S Yom
- Radiation Oncology, University of California, San Francisco
| | - Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Centre
| | | |
Collapse
|
34
|
Derby SJ, Chalmers AJ, Carruthers RD. Radiotherapy-Poly(ADP-ribose) Polymerase Inhibitor Combinations: Progress to Date. Semin Radiat Oncol 2022; 32:15-28. [PMID: 34861992 DOI: 10.1016/j.semradonc.2021.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Radiation resistance remains a huge clinical problem for cancer patients and oncologists in the 21st century. In recent years, the mammalian DNA damage response (DDR) has been extensively characterized and shown to play a key role in determining cellular survival following ionizing radiation exposure. Genomic instability due to altered DDR is a hallmark of cancer, with many tumors exhibiting abnormal DNA repair or lack of redundancy in DDR. Targeting the abnormal DDR phenotype of tumor cells could lead to substantial gains in radiotherapy efficacy, improving local control and survival for patients with cancers that are refractory to current therapies. Poly(ADP-ribose) polymerase inhibitors (PARPi) are the most clinically advanced DDR inhibitors under investigation as radiosensitisers. Preclinical evidence suggests that PARPi may provide tumor specific radiosensitisation in certain contexts. In addition to inhibition of DNA single strand break repair, PARPi may offer other benefits in combination treatment including radiosensitisation of hypoxic cells and targeting of alternative repair pathways such as microhomology mediated end joining which are increasingly recognized to be upregulated in cancer. Several early phase clinical trials of PARPi with radiation have completed or are in progress. Early reports have highlighted tumor specific challenges, with tolerability dependent upon anatomical location and use of concomitant systemic therapies; these challenges were largely predicted by preclinical data. This review discusses the role of PARP in the cellular response to ionizing radiation, summarizes preclinical studies of PARPi in combination with radiotherapy and explores current early phase clinical trials that are evaluating these combinations.
Collapse
Affiliation(s)
- Sarah J Derby
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland.
| | - Anthony J Chalmers
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland
| | - Ross D Carruthers
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
35
|
Patient derived ex vivo tissue slice cultures demonstrate a profound DNA double-strand break repair defect in HPV-positive oropharyngeal head and neck cancer. Radiother Oncol 2022; 168:138-146. [DOI: 10.1016/j.radonc.2022.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 12/11/2022]
|
36
|
Moore J, Ma L, Lazar AA, Barcellos-Hoff MH. Mammary tumor-derived transplants as breast cancer models to evaluate tumor-immune interactions and therapeutic responses. Cancer Res 2021; 82:365-376. [PMID: 34903599 DOI: 10.1158/0008-5472.can-21-0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/25/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
In breast cancer, the type and distribution of infiltrating immune cells are associated with clinical outcome. Moreover, infiltrated cancers with abundant tumor infiltrating lymphocytes (TIL) are more likely to respond to immunotherapy, while those in which CD8+ T cells are completely absent (deserts) or excluded are less likely to respond. Detailed understanding of this biology is limited by a lack of preclinical breast cancer models that recapitulate TIL distributions and their associated biology. Here we established mammary tumor-derived transplants (mTDT) from 12 Trp53 null mammary tumors in syngeneic BALB/cJ mice and examined the stability of their growth rate, TIL distribution, and transcriptomic profiles. All mTDT were estrogen receptor negative. Half of the parental tumors were classified as infiltrated, and the rest were divided between excluded and desert phenotypes. After two orthotopic passages, most (70%) mTDT from infiltrated parents recapitulated this pattern, whereas the desert or excluded parental patterns were maintained in about half of daughter mTDT. Approximately 30% of mTDT gave rise to lung or liver metastases, but metastasis was not associated with a TIL phenotype. Unsupervised transcriptomic analysis clustered mTDT according to their TIL spatial patterns. Infiltrated mTDT transplanted subcutaneously and orthotopically were resistant to anti-PD-L1. Profiling implicated prolonged antigen stimulation and loss of effector function of lymphocytes rather than T cell exhaustion in the lack of response of infiltrated mTDT to checkpoint blockade. In summary, the molecular diversity and immune complexity of mTDT will facilitate the dissection of mechanisms of breast cancer response to immunotherapies.
Collapse
Affiliation(s)
- Jade Moore
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Lin Ma
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Ann A Lazar
- Department of Oral Epidemiology, School of Dentistry, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco School of Medicine, San Francisco, California
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.
| |
Collapse
|
37
|
Liu Q, Chen G, Moore J, Guix I, Placantonokis D, Barcellos-Hoff MH. Exploiting Canonical TGFβ Signaling in Cancer Treatment. Mol Cancer Ther 2021; 21:16-24. [PMID: 34670783 PMCID: PMC8742762 DOI: 10.1158/1535-7163.mct-20-0891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022]
Abstract
Transforming growth factor β (TGFβ) is a pleiotropic cytokine that plays critical roles to define cancer cell phenotypes, construct the tumor microenvironment, and suppress anti-tumor immune responses. As such, TGFβ is a lynchpin for integrating cancer cell intrinsic pathways and communication among host cells in the tumor and beyond that together affect responses to genotoxic, targeted, and immune therapy. Despite decades of preclinical and clinical studies, evidence of clinical benefit from targeting TGFβ in cancer remains elusive. Here, we review the mechanisms by which TGFβ acts to oppose successful cancer therapy, the reported prognostic and predictive value of TGFβ biomarkers, and the potential impact of inhibiting TGFβ in precision oncology. Paradoxically, the diverse mechanisms by which TGFβ impedes therapeutic response are a principal barrier to implementing TGFβ inhibitors because it is unclear which TGFβ mechanism is functional in which patient. Companion diagnostic tools and specific biomarkers of TGFβ targeted biology will be the key to exploiting TGFβ biology for patient benefit.
Collapse
Affiliation(s)
- Qi Liu
- Shenzhen Bay Laboratory, Institute for Biomedical Engineering
| | - Genwen Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University
| | - Jade Moore
- Department of Radiation Oncology, University of California, San Francicsco
| | - Ines Guix
- Department of Radiation Oncology, University of California, San Francicsco
| | | | | |
Collapse
|
38
|
Frock RL, Sadeghi C, Meng J, Wang JL. DNA End Joining: G0-ing to the Core. Biomolecules 2021; 11:biom11101487. [PMID: 34680120 PMCID: PMC8533500 DOI: 10.3390/biom11101487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Humans have evolved a series of DNA double-strand break (DSB) repair pathways to efficiently and accurately rejoin nascently formed pairs of double-stranded DNA ends (DSEs). In G0/G1-phase cells, non-homologous end joining (NHEJ) and alternative end joining (A-EJ) operate to support covalent rejoining of DSEs. While NHEJ is predominantly utilized and collaborates extensively with the DNA damage response (DDR) to support pairing of DSEs, much less is known about A-EJ collaboration with DDR factors when NHEJ is absent. Non-cycling lymphocyte progenitor cells use NHEJ to complete V(D)J recombination of antigen receptor genes, initiated by the RAG1/2 endonuclease which holds its pair of targeted DSBs in a synapse until each specified pair of DSEs is handed off to the NHEJ DSB sensor complex, Ku. Similar to designer endonuclease DSBs, the absence of Ku allows for A-EJ to access RAG1/2 DSEs but with random pairing to complete their repair. Here, we describe recent insights into the major phases of DSB end joining, with an emphasis on synapsis and tethering mechanisms, and bring together new and old concepts of NHEJ vs. A-EJ and on RAG2-mediated repair pathway choice.
Collapse
|
39
|
Hussain SS, Lundine D, Leeman JE, Higginson DS. Genomic Signatures in HPV-Associated Tumors. Viruses 2021; 13:v13101998. [PMID: 34696429 PMCID: PMC8537705 DOI: 10.3390/v13101998] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 02/01/2023] Open
Abstract
Papillomaviruses dysregulate the G1/S cell cycle transition in order to promote DNA synthesis in S phase, which is a requirement for viral replication. The human papillomaviruses (HPV) E6 and E7 oncoproteins mediate degradation of the cell cycle regulators p53 and Rb, which are two of the most universally disrupted tumor-suppressor genes in all of cancer. The G1/S checkpoint is activated in normal cells to allow sufficient time for DNA repair in G1 before proceeding to replicate DNA and risk propagating unrepaired errors. The TP53 pathway suppresses a variety of such errors, including translocation, copy number alterations, and aneuploidy, which are thus found in HPV-associated tumors similarly to HPV-negative tumors with other mechanisms of TP53 disruption. However, E6 and E7 maintain a variety of other virus–host interactions that directly disrupt a growing list of other DNA repair and chromatin remodeling factors, implying HPV-specific repair deficiencies. In addition, HPV-associated squamous cell carcinomas tumors clinically respond differently to DNA damaging agents compared to their HPV negative counterparts. The focus of this review is to integrate three categories of observations: (1) pre-clinical understanding as to the effect of HPV on DNA repair, (2) genomic signatures of DNA repair in HPV-associated tumor genomes, and (3) clinical responses of HPV-associated tumors to DNA damaging agents. The goals are to try to explain why HPV-associated tumors respond so well to DNA damaging agents, identify missing pieces, and suggest clinical strategies could be used to further improve treatment of these cancers.
Collapse
Affiliation(s)
- Suleman S. Hussain
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.S.H.); (D.L.)
| | - Devon Lundine
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.S.H.); (D.L.)
| | - Jonathan E. Leeman
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02189, USA;
| | - Daniel S. Higginson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.S.H.); (D.L.)
- Correspondence:
| |
Collapse
|
40
|
Weiss BG, Anczykowski MZ, Ihler F, Bertlich M, Spiegel JL, Haubner F, Canis M, Küffer S, Hess J, Unger K, Kitz J, Jakob M. MicroRNA-182-5p and microRNA-205-5p as potential biomarkers for prognostic stratification of p16-positive oropharyngeal squamous cell carcinoma. Cancer Biomark 2021; 33:331-347. [PMID: 34542062 DOI: 10.3233/cbm-203149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND MicroRNAs constitute promising biomarkers. OBJECTIVE The aim was to investigate diagnostic and prognostic implications of miR-182-5p and miR-205-5p in p16-positive and p16-negative oropharyngeal squamous cell carcinomas (OPSCCs). METHODS Expression of miR-182-5p, miR-205-5p were determined via quantitative real-time-PCR in fresh frozen tissues of 26 p16-positive, 19 p16-negative OPSCCs and 18 HPV-negative oropharyngeal controls. Associations between miRNA-expression, clinicopathological characteristics and prognosis were analyzed. RESULTS Higher miR-182-5p expression was associated with significant inferior disease-specific survival for p16-positive OPSCCs (HR = 1.98E+09, 95% CI 0-Inf; P= 0.028) and a similar trend was observed for p16-negative OPSCCs (HR = 1.56E+09, 95% CI 0-Inf; P= 0.051). Higher miR-205-5p expression was associated with an inferior progression-free survival (HR = 4.62, 95% CI 0.98-21.83; P= 0.034) and local control rate (HR = 2.18E+09, 95% CI 0-Inf; P= 0.048) for p16-positive OPSCCs. CONCLUSIONS Results indicate that miR-182-5p and miR-205-5p can further stratify patients with p16-positive OPSCC into prognostic groups.
Collapse
Affiliation(s)
- Bernhard G Weiss
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Mahalia Zoe Anczykowski
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Göttingen, Göttingen, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Friedrich Ihler
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians University of Munich, Munich, Germany
| | - Mattis Bertlich
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Jennifer L Spiegel
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Frank Haubner
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany
| | - Julia Kitz
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Mark Jakob
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
41
|
Prodhomme MK, Péricart S, Pommier RM, Morel AP, Brunac AC, Franchet C, Moyret-Lalle C, Brousset P, Puisieux A, Hoffmann JS, Tissier A. Opposite Roles for ZEB1 and TMEJ in the Regulation of Breast Cancer Genome Stability. Front Cell Dev Biol 2021; 9:727429. [PMID: 34458275 PMCID: PMC8388841 DOI: 10.3389/fcell.2021.727429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022] Open
Abstract
Breast cancer cells frequently acquire mutations in faithful DNA repair genes, as exemplified by BRCA-deficiency. Moreover, overexpression of an inaccurate DNA repair pathway may also be at the origin of the genetic instability arising during the course of cancer progression. The specific gain in expression of POLQ, encoding the error-prone DNA polymerase Theta (POLθ) involved in theta-mediated end joining (TMEJ), is associated with a characteristic mutational signature. To gain insight into the mechanistic regulation of POLQ expression, this review briefly presents recent findings on the regulation of POLQ in the claudin-low breast tumor subtype, specifically expressing transcription factors involved in epithelial-to-mesenchymal transition (EMT) such as ZEB1 and displaying a paucity in genomic abnormality.
Collapse
Affiliation(s)
- Mélanie K Prodhomme
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Centre of Lyon, Équipe Labellisée Ligue Contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,LabEx DEVweCAN, Université de Lyon, Lyon, France
| | - Sarah Péricart
- Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Toulouse, France
| | - Roxane M Pommier
- Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, Cancer Research Centre of Lyon, Lyon, France
| | - Anne-Pierre Morel
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Centre of Lyon, Équipe Labellisée Ligue Contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,LabEx DEVweCAN, Université de Lyon, Lyon, France
| | - Anne-Cécile Brunac
- Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Toulouse, France
| | - Camille Franchet
- Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Toulouse, France
| | - Caroline Moyret-Lalle
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Centre of Lyon, Équipe Labellisée Ligue Contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,LabEx DEVweCAN, Université de Lyon, Lyon, France
| | - Pierre Brousset
- Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Toulouse, France
| | - Alain Puisieux
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Centre of Lyon, Équipe Labellisée Ligue Contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Institut Curie, Versailles Saint-Quentin-en-Yvelines University, PSL Research University, Paris, France
| | - Jean-Sébastien Hoffmann
- Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Toulouse, France
| | - Agnès Tissier
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Centre of Lyon, Équipe Labellisée Ligue Contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,LabEx DEVweCAN, Université de Lyon, Lyon, France
| |
Collapse
|
42
|
Chitsike L, Duerksen-Hughes PJ. Targeted Therapy as a Potential De-Escalation Strategy in Locally Advanced HPV-Associated Oropharyngeal Cancer: A Literature Review. Front Oncol 2021; 11:730412. [PMID: 34490123 PMCID: PMC8418093 DOI: 10.3389/fonc.2021.730412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
The treatment landscape of locally advanced HPV-oropharyngeal squamous cell carcinoma (OPSCC) is undergoing transformation. This is because the high cures rates observed in OPSCC are paired with severe treatment-related, long-term toxicities. These significant adverse effects have led some to conclude that the current standard of care is over-treating patients, and that de-intensifying the regimens may achieve comparable survival outcomes with lower toxicities. Consequently, several de-escalation approaches involving locally advanced OPSCC are underway. These include the reduction of dosage and volume of intensive cytotoxic regimens, as well as elimination of invasive surgical procedures. Such de-intensifying treatments have the potential to achieve efficacy and concurrently alleviate morbidity. Targeted therapies, given their overall safer toxicity profiles, also make excellent candidates for de-escalation, either alone or alongside standard treatments. However, their role in these endeavors is currently limited, because few targeted therapies are currently in clinical use for head and neck cancers. Unfortunately, cetuximab, the only FDA-approved targeted therapy, has shown inferior outcomes when paired with radiation as compared to cisplatin, the standard radio-sensitizer, in recent de-escalation trials. These findings indicate the need for a better understanding of OPSCC biology in the design of rational therapeutic strategies and the development of novel, OPSCC-targeted therapies that are safe and can improve the therapeutic index of standard therapies. In this review, we summarize ongoing research on mechanism-based inhibitors in OPSCC, beginning with the salient molecular features that modulate tumorigenic processes and response, then exploring pharmacological inhibition and pre-clinical validation studies of candidate targeted agents, and finally, summarizing the progression of those candidates in the clinic.
Collapse
|
43
|
Hussain SS, Majumdar R, Moore GM, Narang H, Buechelmaier E, Bazil MJ, Ravindran PT, Leeman J, Li Y, Jalan M, Anderson KS, Farina A, Soni R, Mohibullah N, Hamzic E, Rong-Mullins X, Sifuentes C, Damerla RR, Viale A, Powell SN, Higginson D. Measuring nonhomologous end-joining, homologous recombination and alternative end-joining simultaneously at an endogenous locus in any transfectable human cell. Nucleic Acids Res 2021; 49:e74. [PMID: 33877327 PMCID: PMC8287935 DOI: 10.1093/nar/gkab262] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Double strand break (DSB) repair primarily occurs through 3 pathways: non-homologous end-joining (NHEJ), alternative end-joining (Alt-EJ), and homologous recombination (HR). Typical methods to measure pathway usage include integrated cassette reporter assays or visualization of DNA damage induced nuclear foci. It is now well understood that repair of Cas9-induced breaks also involves NHEJ, Alt-EJ, and HR pathways, providing a new format to measure pathway usage. Here, we have developed a simple Cas9-based system with validated repair outcomes that accurately represent each pathway and then converted it to a droplet digital PCR (ddPCR) readout, thus obviating the need for Next Generation Sequencing and bioinformatic analysis with the goal to make Cas9-based system accessible to more laboratories. The assay system has reproduced several important insights. First, absence of the key Alt-EJ factor Pol θ only abrogates ∼50% of total Alt-EJ. Second, single-strand templated repair (SSTR) requires BRCA1 and MRE11 activity, but not BRCA2, establishing that SSTR commonly used in genome editing is not conventional HR. Third, BRCA1 promotes Alt-EJ usage at two-ended DSBs in contrast to BRCA2. This assay can be used in any system, which permits Cas9 delivery and, importantly, allows rapid genotype-to-phenotype correlation in isogenic cell line pairs.
Collapse
Affiliation(s)
- Suleman S Hussain
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rahul Majumdar
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Grace M Moore
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Himanshi Narang
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erika S Buechelmaier
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medicine, Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Maximilian J Bazil
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Jonathan E Leeman
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02189, USA
| | - Yi Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manisha Jalan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyrie S Anderson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrea Farina
- Integrated Genomics Operations, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rekha Soni
- Integrated Genomics Operations, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Neeman Mohibullah
- Integrated Genomics Operations, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edin Hamzic
- Biocomputix, Sarajevo, 71000, Bosnia and Herzegovina
| | - Xiaoqing Rong-Mullins
- Department of Biostatistics, The Ohio State University College of Public Health, Columbus, OH 43210, USA
| | | | - Rama R Damerla
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Agnes Viale
- Integrated Genomics Operations, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel S Higginson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
44
|
Hintelmann K, Berenz T, Kriegs M, Christiansen S, Gatzemeier F, Struve N, Petersen C, Betz C, Rothkamm K, Oetting A, Rieckmann T. Dual Inhibition of PARP and the Intra-S/G2 Cell Cycle Checkpoints Results in Highly Effective Radiosensitization of HPV-Positive HNSCC Cells. Front Oncol 2021; 11:683688. [PMID: 34354944 PMCID: PMC8329549 DOI: 10.3389/fonc.2021.683688] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
In head and neck squamous cell carcinoma (HNSCC), tumors positive for human papillomavirus (HPV) represent a distinct biological entity with favorable prognosis. An enhanced radiation sensitivity of these tumors is evident in the clinic and on the cellular level when comparing HPV-positive and HPV-negative HNSCC cell lines. We could show that the underlying mechanism is a defect in DNA double-strand break repair associated with a profound and sustained G2 arrest. This defect can be exploited by molecular targeting approaches additionally compromising the DNA damage response to further enhance their radiation sensitivity, which may offer new opportunities in the setting of future de-intensified regimes. Against this background, we tested combined targeting of PARP and the DNA damage-induced intra-S/G2 cell cycle checkpoints to achieve effective radiosensitization. Enhancing CDK1/2 activity through the Wee1 inhibitor adavosertib or a combination of Wee1 and Chk1 inhibition resulted in an abrogation of the radiation-induced G2 cell cycle arrest and induction of replication stress as assessed by γH2AX and chromatin-bound RPA levels in S phase cells. Addition of the PARP inhibitor olaparib had little influence on these endpoints, irrespective of checkpoint inhibition. Combined PARP/Wee1 targeting did not result in an enhancement in the absolute number of residual, radiation induced 53BP1 foci as markers of DNA double-strand breaks but it induced a shift in foci numbers from S/G2 to G1 phase cells. Most importantly, while sole checkpoint or PARP inhibition induced moderate radiosensitization, their combination was clearly more effective, while exerting little effect in p53/G1 arrest proficient normal human fibroblasts, thus indicating tumor specificity. We conclude that the combined inhibition of PARP and the intra-S/G2 checkpoint is a highly effective approach for the radiosensitization of HPV-positive HNSCC cells and may represent a viable alternative for the current standard of concomitant cisplatin-based chemotherapy. In vivo studies to further evaluate the translational potential are highly warranted.
Collapse
Affiliation(s)
- Katharina Hintelmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Berenz
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabrina Christiansen
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fruzsina Gatzemeier
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Struve
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred-Scheel Cancer Career Center HATRICs4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Betz
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Agnes Oetting
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
45
|
Kober KM, Yom SS. Doc, I feel tired… oh really, so how's your mucositis? Cancer 2021; 127:3294-3297. [PMID: 34028000 DOI: 10.1002/cncr.33640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Kord M Kober
- Department of Physiological Nursing, University of California San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Sue S Yom
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California.,Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| |
Collapse
|
46
|
Moutafi M, Economopoulou P, Rimm D, Psyrri A. PARP inhibitors in head and neck cancer: Molecular mechanisms, preclinical and clinical data. Oral Oncol 2021; 117:105292. [PMID: 33862558 DOI: 10.1016/j.oraloncology.2021.105292] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have revolutionized the treatment landscape in several cancers. PARPi increase DNA damage particularly in tumors with underlying defects in DNA repair. In addition to PARPi-induced DNA damage, PARPi enhance immune priming and induce adaptive upregulation of programmed death ligand 1 (PD-L1) expression. Patients with head and neck squamous cell carcinoma (HNSCC) are characterized by aberrant DNA repair pathways, including nucleotide excision repair (NER), base excision repair (BER) and DNA double-strand breaks (DSBs) repair and these deregulated repair mechanisms are implicated in both the pathogenesis of the disease and the outcome of therapy. Cisplatin represents the cornerstone of treatment of HNSCC and cisplatin resistance impedes successful treatment outcomes. To this end, research strategies that are testing modulation of cisplatin sensitivity by PARPi are of particular interest. Moreover, given the immune modulating effects of PARPi and the recent approval of Programmed Cell Death- 1 (PD-1) checkpoint inhibitors in HNSCC, the design of trials combining PARPi and PD-1 checkpoint inhibitors represent a rational research strategy. In this review, we summarize data supporting the integration of PARP inhibitors into HNSCC therapeutic strategy.
Collapse
Affiliation(s)
- Myrto Moutafi
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Panagiota Economopoulou
- Section of Medical Oncology, 2(nd) Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - David Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Amanda Psyrri
- Section of Medical Oncology, 2(nd) Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| |
Collapse
|
47
|
Liu Q, Palomero L, Moore J, Guix I, Espín R, Aytés A, Mao JH, Paulovich AG, Whiteaker JR, Ivey RG, Iliakis G, Luo D, Chalmers AJ, Murnane J, Pujana MA, Barcellos-Hoff MH. Loss of TGFβ signaling increases alternative end-joining DNA repair that sensitizes to genotoxic therapies across cancer types. Sci Transl Med 2021; 13:eabc4465. [PMID: 33568520 PMCID: PMC8208885 DOI: 10.1126/scitranslmed.abc4465] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Among the pleotropic roles of transforming growth factor-β (TGFβ) signaling in cancer, its impact on genomic stability is least understood. Inhibition of TGFβ signaling increases use of alternative end joining (alt-EJ), an error-prone DNA repair process that typically functions as a "backup" pathway if double-strand break repair by homologous recombination or nonhomologous end joining is compromised. However, the consequences of this functional relationship on therapeutic vulnerability in human cancer remain unknown. Here, we show that TGFβ broadly controls the DNA damage response and suppresses alt-EJ genes that are associated with genomic instability. Mechanistically based TGFβ and alt-EJ gene expression signatures were anticorrelated in glioblastoma, squamous cell lung cancer, and serous ovarian cancer. Consistent with error-prone repair, more of the genome was altered in tumors classified as low TGFβ and high alt-EJ, and the corresponding patients had better outcomes. Pan-cancer analysis of solid neoplasms revealed that alt-EJ genes were coordinately expressed and anticorrelated with TGFβ competency in 16 of 17 cancer types tested. Moreover, regardless of cancer type, tumors classified as low TGFβ and high alt-EJ were characterized by an insertion-deletion mutation signature containing short microhomologies and were more sensitive to genotoxic therapy. Collectively, experimental studies revealed that loss or inhibition of TGFβ signaling compromises the DNA damage response, resulting in ineffective repair by alt-EJ. Translation of this mechanistic relationship into gene expression signatures identified a robust anticorrelation that predicts response to genotoxic therapies, thereby expanding the potential therapeutic scope of TGFβ biology.
Collapse
Affiliation(s)
- Qi Liu
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Luis Palomero
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Jade Moore
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ines Guix
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Roderic Espín
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Alvaro Aytés
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Richard G Ivey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen, University Hospital Essen, Essen 45147, Germany
| | - Daxian Luo
- Institute of Medical Radiation Biology, University of Duisburg-Essen, University Hospital Essen, Essen 45147, Germany
| | - Anthony J Chalmers
- Institute of Cancer Sciences and Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - John Murnane
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain.
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
48
|
Gonzalez-Junca A, Reiners O, Borrero-Garcia LD, Beckford-Vera D, Lazar AA, Chou W, Braunstein S, VanBrocklin H, Franc BL, Barcellos-Hoff MH. Positron Emission Tomography Imaging of Functional Transforming Growth Factor β (TGFβ) Activity and Benefit of TGFβ Inhibition in Irradiated Intracranial Tumors. Int J Radiat Oncol Biol Phys 2021; 109:527-539. [PMID: 33007434 PMCID: PMC7856163 DOI: 10.1016/j.ijrobp.2020.09.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Transforming growth factor β (TGFβ) promotes cell survival by endorsing DNA damage repair and mediates an immunosuppressive tumor microenvironment. Thus, TGFβ activation in response to radiation therapy is potentially targetable because it opposes therapeutic control. Strategies to assess this potential in the clinic are needed. METHODS AND MATERIALS We evaluated positron emission tomography (PET) to image 89Zr -fresolimumab, a humanized TGFβ neutralizing monoclonal antibody, as a means to detect TGFβ activation in intracranial tumor models. Pathway activity of TGFβ was validated by immunodetection of phosphorylated SMAD2 and the TGFβ target, tenascin. The contribution of TGFβ to radiation response was assessed by Kaplan-Meier survival analysis of mice bearing intracranial murine tumor models GL261 and SB28 glioblastoma and brain-adapted 4T1 breast cancer (4T1-BrA) treated with TGFβ neutralizing monoclonal antibody, 1D11, and/or focal radiation (10 Gy). RESULTS 89Zr-fresolimumab PET imaging detected engineered, physiological, and radiation-induced TGFβ activation, which was confirmed by immunostaining of biological markers. GL261 glioblastoma tumors had a greater PET signal compared with similar-sized SB28 glioblastoma tumors, whereas the widespread PET signal of 4T1-BrA intracranial tumors was consistent with their highly dispersed histologic distribution. Survival of mice bearing intracranial tumors treated with 1D11 neutralizing antibody alone was similar to that of mice treated with control antibody, whereas 1D11 improved survival when given in combination with focal radiation. The extent of survival benefit of a combination of radiation and 1D11 was associated with the degree of TGFβ activity detected by PET. CONCLUSIONS This study demonstrates that 89Zr-fresolimumab PET imaging detects radiation-induced TGFβ activation in tumors. Functional imaging indicated a range of TGFβ activity in intracranial tumors, but TGFβ blockade provided survival benefit only in the context of radiation treatment. This study provides further evidence that radiation-induced TGFβ activity opposes therapeutic response to radiation.
Collapse
Affiliation(s)
- Alba Gonzalez-Junca
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Oliver Reiners
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Luis D. Borrero-Garcia
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Denis Beckford-Vera
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ann A. Lazar
- Helen Diller Family Comprehensive Cancer Center, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Division of Oral Epidemiology, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
- Division of Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - William Chou
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Steve Braunstein
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Henry VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Benjamin L. Franc
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- Current address: Department of Radiology, Stanford University, School of Medicine, Palo Alto, CA, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
49
|
Wu Y, Yin Q, Zhou YL, He L, Zou ZQ, Dai XY, Xia W. Evaluation of microRNAs as potential biomarkers in circulating HPV-DNA-positive non-small cell lung cancer patients. Cancer Biol Ther 2021; 22:136-148. [PMID: 33535877 DOI: 10.1080/15384047.2021.1872155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The aim of the present study was to identify the potential risk of circulating-HPV-DNA in non-small cell lung cancer (NSCLC) and to analyze abnormally expressed miRNAs in circulating HPV-DNA-positive NSCLC. HPV universal primers were used to detect the presence of HPV-DNA in the peripheral blood of 100 patients with NSCLC. The relationship between circulating-HPV-DNA and NSCLC patients characteristics was analyzed. Then, eight differentially expressed miRNAs in NSCLC were screened based on the TCGA database. The levels of miRNAs in circulating HPV-DNA-positive NSCLC patients were detected by real-time quantitative PCR. ROC curves were generated to evaluate the diagnostic performance. Circulating-HPV-DNA was found in 16 patients. The proportion of HPV-DNA-positive patients with poorly differentiated NSCLC, advanced lung cancer and lymph node metastasis was higher than that of HPV-DNA-negative patients. The levels of miR-183, miR-210 and miR-182 were significantly higher and miR-144 was significantly lower in HPV-DNA-positive NSCLC than those in HPV-DNA-negative NSCLC patients. When using a single miRNA to identify circulating HPV-DNA-positive NSCLC patients, miR-210 had a higher area under the ROC curve (AUC) than other miRNAs, and its sensitivity and specificity were also higher. In addition, the combination of two miRNAs was more effective than a single miRNA. Among them, miR-210+ miR-144 had the highest AUC value and showed the best prediction performance. Circulating-HPV-DNA may serve as a risk factor in NSCLC. Plasma miR-183, miR-210, miR-182 and miR-144 can be used as reliable biomarkers to identify circulating HPV-DNA-positive NSCLC.
Collapse
Affiliation(s)
- Yao Wu
- Department of Clinical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qing Yin
- Department of Clinical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ya-Ling Zhou
- Department of Clinical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lei He
- Department of Clinical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhi-Qing Zou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao-Yue Dai
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wen Xia
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
50
|
Yetsko K, Farrell JA, Blackburn NB, Whitmore L, Stammnitz MR, Whilde J, Eastman CB, Ramia DR, Thomas R, Krstic A, Linser P, Creer S, Carvalho G, Devlin MA, Nahvi N, Leandro AC, deMaar TW, Burkhalter B, Murchison EP, Schnitzler C, Duffy DJ. Molecular characterization of a marine turtle tumor epizootic, profiling external, internal and postsurgical regrowth tumors. Commun Biol 2021; 4:152. [PMID: 33526843 PMCID: PMC7851172 DOI: 10.1038/s42003-021-01656-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/31/2020] [Indexed: 01/30/2023] Open
Abstract
Sea turtle populations are under threat from an epizootic tumor disease (animal epidemic) known as fibropapillomatosis. Fibropapillomatosis continues to spread geographically, with prevalence of the disease also growing at many longer-affected sites globally. However, we do not yet understand the precise environmental, mutational and viral events driving fibropapillomatosis tumor formation and progression.Here we perform transcriptomic and immunohistochemical profiling of five fibropapillomatosis tumor types: external new, established and postsurgical regrowth tumors, and internal lung and kidney tumors. We reveal that internal tumors are molecularly distinct from the more common external tumors. However, they have a small number of conserved potentially therapeutically targetable molecular vulnerabilities in common, such as the MAPK, Wnt, TGFβ and TNF oncogenic signaling pathways. These conserved oncogenic drivers recapitulate remarkably well the core pan-cancer drivers responsible for human cancers. Fibropapillomatosis has been considered benign, but metastatic-related transcriptional signatures are strongly activated in kidney and established external tumors. Tumors in turtles with poor outcomes (died/euthanized) have genes associated with apoptosis and immune function suppressed, with these genes providing putative predictive biomarkers.Together, these results offer an improved understanding of fibropapillomatosis tumorigenesis and provide insights into the origins, inter-tumor relationships, and therapeutic treatment for this wildlife epizootic.
Collapse
Affiliation(s)
- Kelsey Yetsko
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Jessica A Farrell
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Nicholas B Blackburn
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Liam Whitmore
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Maximilian R Stammnitz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Jenny Whilde
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Catherine B Eastman
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Devon Rollinson Ramia
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Rachel Thomas
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Aleksandar Krstic
- Systems Biology Ireland & Precision Oncology Ireland, School of Medicine, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Paul Linser
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Gary Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | | | - Nina Nahvi
- Sea Turtle Inc., South Padre Island, TX, USA
| | - Ana Cristina Leandro
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | | | - Brooke Burkhalter
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Elizabeth P Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Christine Schnitzler
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - David J Duffy
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA.
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA.
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
- Systems Biology Ireland & Precision Oncology Ireland, School of Medicine, University College Dublin, Belfield, Dublin, 4, Ireland.
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| |
Collapse
|