1
|
Xia Q, Liu G, Lin W, Zhang J. microRNA-2117 Negatively Regulates Liver Cancer Stem Cells Expansion and Chemoresistance Via Targeting SOX2. Mol Carcinog 2025; 64:33-43. [PMID: 39400383 PMCID: PMC11636587 DOI: 10.1002/mc.23824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Cancer stem cells (CSCs) are involved in the regulation of tumor initiation, progression, recurrence, and chemoresistance. However, the role of microRNAs (miRNAs) in liver CSCs has not been fully understood. Here we show that miR-2117 is downregulated in liver CSCs and predicts the poor prognosis of hepatocellular carcinoma (HCC) patients. Biofunction studies found that knockdown miR-2117 facilitates liver CSCs self-renewal and tumorigenesis. Conversely, forced miR-2117 expression suppresses liver CSCs self-renewal and tumorigenesis. Mechanistically, we find that transcription factor SOX2 is required for miR-2117-mediated liver CSCs expansion. The correlation between miR-2117 and SOX2 was confirmed in human HCC tissues. More importantly, miR-2117 overexpression HCC cells are more sensitive to CDDP treatment. Analysis of patients' cohort further demonstrates that miR-2117 may predict transcatheter arterial chemoembolization benefits in HCC patients. Our findings revealed the crucial role of miR-2117 in liver CSCs expansion, rendering miR-2117 as an optimal therapeutic target for HCC.
Collapse
Affiliation(s)
- Qing Xia
- Department of General Surgery, Hwa Mei Hospital (Ningbo No.2 Hospital)University of Chinese Academy of SciencesNingboChina
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang ProvinceNingboChina
| | - Guanghua Liu
- Department of General SurgeryXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Interventional RadiologyXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Wenbo Lin
- Department of Orthopedic Surgery, Changzheng HospitalNavy Medical UniversityShanghaiChina
| | - Jin Zhang
- Department of General SurgeryThird Affiliated Hospital of Second Military Medical UniversityShanghaiChina
| |
Collapse
|
2
|
Wang M, Hu Y, Cai F, Guo L, Mao Y, Zhang Y. Jmjd2c maintains the ALDH bri+ cancer stemness with transcription factor SOX2 in lung squamous cell carcinoma. Cancer Biol Ther 2024; 25:2373447. [PMID: 38975736 PMCID: PMC11232651 DOI: 10.1080/15384047.2024.2373447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/24/2024] [Indexed: 07/09/2024] Open
Abstract
Lung squamous cell carcinoma (LSCC) is a deadly cancer in the world. Histone demethylase Jmjd2c is a key epigenetic regulator in various tumors, while the molecular mechanism underlying Jmjd2c regulatory in LSCC is still unclear. We used the aldehyde dehydrogenasebright (ALDHbri+) subtype as a research model for cancer stem cells (CSCs) in LSCC and detected the sphere formation ability and the proportion of ALDHbri+ CSCs with Jmjd2c interference and caffeic acid (CA) treatment. Additionally, we carried out bioinformatic analysis on the expression file of Jmjd2c RNAi mice and performed western blotting, qRT-PCR, Co-IP and GST pull-down assays to confirm the bioinformatic findings. Moreover, we generated Jmjd2c-silenced and Jmjd2c-SOX2-silenced ALDHbri+ tumor-bearing BALB/c nude mice to detect the effects on tumor progression. The results showed that Jmjd2c downregulation inhibited the sphere formation and the proportion of ALDHbri+ CSCs. The SOX2 decreased expression significantly in Jmjd2c RNAi mice, and they were positively co-expressed according to the bioinformatic analysis. In addition, SOX2 expression decreased in Jmjd2c shRNA ALDHbri+ CSCs, Jmjd2c and SOX2 proteins interacted with each other. Furthermore, Jmjd2c interference revealed significant blocking effect, and Jmjd2c-SOX2 interference contributed even stronger inhibition on ALDHbri+ tumor progression. The Jmjd2c and SOX2 levels were closely related to the development and prognosis of LSCC patients. This study indicated that Jmjd2c played key roles on maintaining ALDHbri+ CSC activity in LSCC by interacting with transcription factor SOX2. Jmjd2c might be a novel molecule for therapeutic targets and biomarkers in the diagnosis and clinical treatment of lung cancer.
Collapse
Affiliation(s)
- Min Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Yuling Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Feng Cai
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Lili Guo
- Department of Pathology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Yimin Mao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Yingmin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| |
Collapse
|
3
|
Wu Y, Ying Y, Zhang F, Shu X, Qi Z, Wang J, Liu Z, Tang Y, Sun J, Yi J, Lu D, Lin S, Hao S, Ma X, Li J, Wang X, Xie L, Zheng X. NSUN2-Mediated R-loop Stabilization as a Key Driver of Bladder Cancer Progression and Cisplatin Sensitivity. Cancer Lett 2024:217416. [PMID: 39732321 DOI: 10.1016/j.canlet.2024.217416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/04/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
R-loops are critical structures that play pivotal roles in regulating genomic stability and modulating gene expression. This study investigates the interactions between the 5-methylcytosine (m5C) methyltransferase NOP2/Sun RNA methyltransferase 2 (NSUN2) and R-loops in the transcriptional dynamics and damage repair process of bladder cancer (BCa) cells. We observed markedly elevated levels of R-loops in BCa cells relative to normal urothelial cells. NSUN2 was identified as a regulator of R-loops, acting to bind and stabilize their structure through a process dependent on its m5C catalytic activity. The histone methyltransferase Enhancer of Zeste Homolog 2 (EZH2) was found to interact with NSUN2. Our results demonstrated that NSUN2 facilitates the epigenetic silencing of the tumor suppressor gene PR Domain Zinc Finger Protein 11 (PRDM11) by recruiting EZH2, thereby advancing the progression of BCa. Furthermore, NSUN2 knockdown sensitizes tumors to cisplatin, resulting in reduced tumor growth and increased DNA damage levels, which was associated with reduced recruitment of MRE11 to damage sites, thereby impairing homologous recombination repair. These findings enhance our understanding of BCa pathogenesis and identify new potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yuqing Wu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yufan Ying
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Fenghao Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Xuan Shu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Zhixiang Qi
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Jiaming Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Zixiang Liu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315042, China
| | - Yijie Tang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Jiazhu Sun
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Jiahe Yi
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Dingheng Lu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Shen Lin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Sida Hao
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Xueyou Ma
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jiangfeng Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiao Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Liping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Xiangyi Zheng
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
4
|
El Saftawy E, Aboulhoda BE, Alghamdi MA, Abd Elkhalek MA, AlHariry NS. Heterogeneity of modulatory immune microenvironment in bladder cancer. Tissue Cell 2024; 93:102679. [PMID: 39700733 DOI: 10.1016/j.tice.2024.102679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Urinary bladder cancer (UBC) is the ninth most common cancer worldwide. The intra-tumor heterogeneity of the UBC microenvironment explains the variances in response to therapy among patients. Tumor immune microenvironment (TIME) is based on the balance between anti-tumor and pro-tumorigenic immunity that eventually determines the tumor fate. This review addresses the recent insights of the cytokines, immune checkpoints, receptors, enzymes, proteins, RNAs, cancer stem cells (CSCs), tissue-resident cells, growth factors, epithelial-mesenchymal transition, microbiological cofactor, and paracrine action of cancer cells that mutually cross-talk within the TIME. In-depth balance and alteration of these factors influence the TIME and the overall tumor progression. This, in turn, highlights the prospects of the new era of manipulating these co-factors for improving the diagnosis, prognosis, and treatment of UBC. CONCLUSION: The heterogenic architecture of the TIME orchestrates the fate of the tumor. Nevertheless, recognizing the mutual cross-talk between these key players seems useful in prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Enas El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt.
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Centre for Medical and Heath Research, King Khalid University, Abha 62529, Saudi Arabia
| | - Marwa Ali Abd Elkhalek
- Department of Medical Biochemistry& Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt; Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
5
|
Sharma S. Unraveling the role of long non-coding RNAs in therapeutic resistance in acute myeloid leukemia: New prospects & challenges. Noncoding RNA Res 2024; 9:1203-1221. [PMID: 39036603 PMCID: PMC11259994 DOI: 10.1016/j.ncrna.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 07/23/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is a fatal hematological disease characterized by the unchecked proliferation of immature myeloid blasts in different tissues developed by various mutations in hematopoiesis. Despite intense chemotherapeutic regimens, patients often experience poor outcomes, leading to substandard remission rates. In recent years, long non-coding RNAs (lncRNAs) have increasingly become important prognostic and therapeutic hotspots, due to their contributions to dysregulating many functional epigenetic, transcriptional, and post-translational mechanisms leading to alterations in cell expressions, resulting in increased chemoresistance and reduced apoptosis in leukemic cells. Through this review, I highlight and discuss the latest advances in understanding the major mechanisms through which lncRNAs confer therapy resistance in AML. In addition, I also provide perspective on the current strategies to target lncRNA expressions. A better knowledge of the critical role that lncRNAs play in controlling treatment outcomes in AML will help improve existing medications and devise new ones.
Collapse
Affiliation(s)
- Siddhant Sharma
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
6
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. LncRNAs and the cancer epigenome: Mechanisms and therapeutic potential. Cancer Lett 2024; 605:217297. [PMID: 39424260 DOI: 10.1016/j.canlet.2024.217297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical regulators of epigenome, modulating gene expression through DNA methylation, histone modification, and/or chromosome remodeling. Dysregulated lncRNAs act as oncogenes or tumor suppressors, driving tumor progression by shaping the cancer epigenome. By interacting with the writers, readers, and erasers of the epigenetic script, lncRNAs induce epigenetic modifications that bring about changes in cancer cell proliferation, apoptosis, epithelial-mesenchymal transition, migration, invasion, metastasis, cancer stemness and chemoresistance. This review analyzes and discusses the multifaceted role of lncRNAs in cancer pathobiology, from cancer genesis and progression through metastasis and therapy resistance. It also explores the therapeutic potential of targeting lncRNAs through innovative diagnostic, prognostic, and therapeutic strategies. Understanding the dynamic interplay between lncRNAs and epigenome is crucial for developing personalized therapeutic strategies, offering new avenues for precision cancer medicine.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 151-921, South Korea.
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
7
|
Cheng L, Yang C, Lu J, Huang M, Xie R, Lynch S, Elfman J, Huang Y, Liu S, Chen S, He B, Lin T, Li H, Chen X, Huang J. Oncogenic SLC2A11-MIF fusion protein interacts with polypyrimidine tract binding protein 1 to facilitate bladder cancer proliferation and metastasis by regulating mRNA stability. MedComm (Beijing) 2024; 5:e685. [PMID: 39156764 PMCID: PMC11324686 DOI: 10.1002/mco2.685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 08/20/2024] Open
Abstract
Chimeric RNAs, distinct from DNA gene fusions, have emerged as promising therapeutic targets with diverse functions in cancer treatment. However, the functional significance and therapeutic potential of most chimeric RNAs remain unclear. Here we identify a novel fusion transcript of solute carrier family 2-member 11 (SLC2A11) and macrophage migration inhibitory factor (MIF). In this study, we investigated the upregulation of SLC2A11-MIF in The Cancer Genome Atlas cohort and a cohort of patients from Sun Yat-Sen Memorial Hospital. Subsequently, functional investigations demonstrated that SLC2A11-MIF enhanced the proliferation, antiapoptotic effects, and metastasis of bladder cancer cells in vitro and in vivo. Mechanistically, the fusion protein encoded by SLC2A11-MIF interacted with polypyrimidine tract binding protein 1 (PTBP1) and regulated the mRNA half-lives of Polo Like Kinase 1, Roundabout guidance receptor 1, and phosphoinositide-3-kinase regulatory subunit 3 in BCa cells. Moreover, PTBP1 knockdown abolished the enhanced impact of SLC2A11-MIF on biological function and mRNA stability. Furthermore, the expression of SLC2A11-MIF mRNA is regulated by CCCTC-binding factor and stabilized through RNA N4-acetylcytidine modification facilitated by N-acetyltransferase 10. Overall, our findings revealed a significant fusion protein orchestrated by the SLC2A11-MIF-PTBP1 axis that governs mRNA stability during the multistep progression of bladder cancer.
Collapse
Affiliation(s)
- Liang Cheng
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Chenwei Yang
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Junlin Lu
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Ming Huang
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Urological DiseasesDepartment of Urology, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ruihui Xie
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Urological DiseasesDepartment of Urology, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Sarah Lynch
- Department of PathologySchool of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Justin Elfman
- Department of PathologySchool of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Yuhang Huang
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Sen Liu
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Siting Chen
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Baoqing He
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Tianxin Lin
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Urological DiseasesDepartment of Urology, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Hui Li
- Department of PathologySchool of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Xu Chen
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Urological DiseasesDepartment of Urology, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jian Huang
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Urological DiseasesDepartment of Urology, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
8
|
Zhao J, Ma Y, Zheng X, Sun Z, Lin H, Du C, Cao J. Bladder cancer: non-coding RNAs and exosomal non-coding RNAs. Funct Integr Genomics 2024; 24:147. [PMID: 39217254 DOI: 10.1007/s10142-024-01433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Bladder cancer (BCa) is a highly prevalent type of cancer worldwide, and it is responsible for numerous deaths and cases of disease. Due to the diverse nature of this disease, it is necessary to conduct significant research that delves deeper into the molecular aspects, to potentially discover novel diagnostic and therapeutic approaches. Lately, there has been a significant increase in the focus on non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), due to their growing recognition for their involvement in the progression and manifestation of BCa. The interest in exosomes has greatly grown due to their potential for transporting a diverse array of active substances, including proteins, nucleic acids, carbohydrates, and lipids. The combination of these components differs based on the specific cell and its condition. Research indicates that using exosomes could have considerable advantages in identifying and forecasting BCa, offering a less invasive alternative. The distinctive arrangement of the lipid bilayer membrane found in exosomes is what makes them particularly effective for administering treatments aimed at managing cancer. In this review, we have tried to summarize different ncRNAs that are involved in BCa pathogenesis. Moreover, we highlighted the role of exosomal ncRNAs in BCa.
Collapse
Affiliation(s)
- Jingang Zhao
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China
| | - Yangyang Ma
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China
| | - Xiaodong Zheng
- Department of the First Surgery, Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Force, Hangzhou, 310051, Zhe'jiang, China
| | - Zhen Sun
- Department of the First Surgery, Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Force, Hangzhou, 310051, Zhe'jiang, China
| | - Hongxiang Lin
- Department of Urology, Ganzhou Donghe Hospital, Ganzhou, 341000, Jiang'xi, China
| | - Chuanjun Du
- Department of Urology, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310009, Zhe'jiang, China
| | - Jing Cao
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China.
| |
Collapse
|
9
|
Zhang J, Chen J, Xu M, Zhu T. Exploring prognostic DNA methylation genes in bladder cancer: a comprehensive analysis. Discov Oncol 2024; 15:331. [PMID: 39095590 PMCID: PMC11297003 DOI: 10.1007/s12672-024-01206-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
The current study aimed to investigate the status of genes with prognostic DNA methylation sites in bladder cancer (BLCA). We obtained bulk transcriptome sequencing data, methylation data, and single-cell sequencing data of BLCA from public databases. Initially, Cox survival analysis was conducted for each methylation site, and genes with more than 10 methylation sites demonstrating prognostic significance were identified to form the BLCA prognostic methylation gene set. Subsequently, the intersection of marker genes associated with epithelial cells in single-cell sequencing analysis was obtained to acquire epithelial cell prognostic methylation genes. Utilizing ten machine learning algorithms for multiple combinations, we selected key genes (METRNL, SYT8, COL18A1, TAP1, MEST, AHNAK, RPP21, AKAP13, RNH1) based on the C-index from multiple validation sets. Single-factor and multi-factor Cox analyses were conducted incorporating clinical characteristics and model genes to identify independent prognostic factors (AHNAK, RNH1, TAP1, Age, and Stage) for constructing a Nomogram model, which was validated for its good diagnostic efficacy, prognostic prediction ability, and clinical decision-making benefits. Expression patterns of model genes varied among different clinical features. Seven immune cell infiltration prediction algorithms were used to assess the correlation between immune cell scores and Nomogram scores. Finally, drug sensitivity analysis of Nomogram model genes was conducted based on the CMap database, followed by molecular docking experiments. Our research offers a reference and theoretical basis for prognostic evaluation, drug selection, and understanding the impact of DNA methylation changes on the prognosis of BLCA.
Collapse
Affiliation(s)
- Jianzhong Zhang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Junyan Chen
- China Medical University, Shenyang, Liaoning, China
| | - Manrou Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tong Zhu
- Panjin Central Hospital, Panjin, Liaoning, China.
| |
Collapse
|
10
|
Obaid Saleh R, Shbeer AM, Jetti R, Ahmed Robadi I, Hjazi A, Hussein Kareem A, Noori Shakir M, Qasim Alasheqi M, Alawadi A, Haslany A. Association between lncRNAs with stem cells in cancer; a particular focus on lncRNA-CSCs axis in cancer immunopathogenesis. Int Immunopharmacol 2024; 136:112306. [PMID: 38833843 DOI: 10.1016/j.intimp.2024.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
A unique population of cells known as cancer stem cells (CSCs) is essential to developing and spreading cancer. Cancer initiation, maintenance, and progression are all believed to be significantly impacted by the distinct characteristics these cells exhibit regarding self-renewal, proliferation, and differentiation. Transcriptional, post-transcriptional, and translational processes are the only steps of gene expression that lncRNAs can affect. As a result, these proteins participate in numerous biological processes, including the repair of DNA damage, inflammatory reactions, metabolic control, the survival of cells, intercellular communication, and the development and specialization of cells. Studies have indicated that lncRNAs are important for controlling the increase in the subset of CSCs contributing to cancer development. The knowledge that is currently available about lncRNAs and their critical role in maintaining the biological properties of CSCs is highlighted in this study.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| | - Raghu Jetti
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ibrahim Ahmed Robadi
- Department of Pathology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Haslany
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
11
|
Wang J, Tan Z, Huang Y, Li C, Zhan P, Wang H, Li H. Integrating single-cell RNA-seq to identify fibroblast-based molecular subtypes for predicting prognosis and therapeutic response in bladder cancer. Aging (Albany NY) 2024; 16:11385-11408. [PMID: 39033778 PMCID: PMC11315389 DOI: 10.18632/aging.206021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Bladder cancer (BLCA) is a highly aggressive and heterogeneous disease, posing challenges for diagnosis and treatment. Cancer immunotherapy has recently emerged as a promising option for patients with advanced and drug-resistant cancers. Fibroblasts, a significant component of the tumor microenvironment, play a crucial role in tumor progression, but their precise function in BLCA remains uncertain. METHODS Single-cell RNA sequencing (scRNA-seq) data for BLCA were obtained from the Gene Expression Omnibus database. The R package "Seurat" was used for processing scRNA-seq data, with uniform manifold approximation and projection (UMAP) for downscaling and cluster identification. The FindAllMarkers function identified marker genes for each cluster. Differentially expressed genes influencing overall survival (OS) of BLCA patients were identified using the limma package. Differences in clinicopathological characteristics, immune microenvironment, immune checkpoints, and chemotherapeutic drug sensitivity between high- and low-risk groups were investigated. RT-qPCR and immunohistochemistry validated the expression of prognostic genes. RESULTS Fibroblast marker genes identified three molecular subtypes in the testing set. A prognostic signature comprising ten genes stratified BLCA patients into high- and low-score groups. This signature was validated in one internal and two external validation sets. High-score patients exhibited increased immune cell infiltration, elevated chemokine expression, and enhanced immune checkpoint expression but had poorer OS and a reduced response to immunotherapy. Six sensitive anti-tumor drugs were identified for the high-score group. RT-qPCR and immunohistochemistry showed that CERCAM, TM4SF1, FN1, ANXA1, and LOX were highly expressed, while EMP1, HEYL, FBN1, and SLC2A3 were downregulated in BLCA. CONCLUSION A novel fibroblast marker gene-based signature was established, providing robust predictions of survival and immunotherapeutic response in BLCA patients.
Collapse
Affiliation(s)
- Jia Wang
- The Second Clinical Medical College, Kunming Medical University, Kunming, China
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhiyong Tan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yinglong Huang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Charles Li
- Core Facility for Protein Research, Chinese Academy of Sciences, Beijing, China
- Zhongke Jianlan Medical Research Institute, Beijing, China
- Zhejiang Institute of Integrated Traditional and Western Medicine, Hangzhou, China
| | - Peiqin Zhan
- The Second Clinical Medical College, Kunming Medical University, Kunming, China
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haifeng Wang
- The Second Clinical Medical College, Kunming Medical University, Kunming, China
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haihao Li
- The Second Clinical Medical College, Kunming Medical University, Kunming, China
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
12
|
Qing L, Li Q, Yang Y, Xu W, Wang Y, Li R, You C, Dong Z. Hypoxia-mediated attenuation of EGLN2 inhibition of the NF-κB signaling pathway leads to the formation of a loop between HIF-1α and MUC1-C promoting chemoresistance in bladder cancer. Mol Carcinog 2024; 63:1303-1318. [PMID: 38634741 DOI: 10.1002/mc.23725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/30/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
The expression pattern of MUC1-C in tumors is closely linked to tumor progression; however, its specific mechanism remains unclear. The expression of MUC1-C in cancer and adjacent normal tissues was detected using immunohistochemistry and Western blot. The IC50 of cells to gemcitabine was determined using the CCK8 assay. The effects of hypoxia and MUC1-C on the behavioral and metabolic characteristics of bladder cancer cells were investigated. Gene expression was assessed through Western blot and polymerase chain reaction. The relationship between the genes was analyzed by co-immunoprecipitation, immunofluorescence and Western blot. Finally, the role of the EGLN2 and NF-κB signaling pathways in the interaction between MUC1-C and hypoxia-inducible factor-1α (HIF-1α) was investigated. MUC1-C expression is significantly higher in bladder cancer tissues than in adjacent normal tissues, particularly in large-volume tumors, and is closely correlated with clinical features such as tumor grade. Tumor volume-mediated hypoxia resulted in increased expression of MUC1-C and HIF-1α in bladder cancer cells. Under stimulation of hypoxia, the inhibitory effect of EGLN2 on the NF-κB signaling pathway was weakened, allowing NF-κB to promote the positive feedback formation of MUC1-C and HIF-1α. Simultaneously, EGLN2-mediated degradation of HIF-1α was reduced. This ultimately led to elevated HIF-1α-mediated downstream gene expression, promoting increased glucose uptake and glycolysis, and ultimately resulting in heightened chemotherapy resistance and malignancy.
Collapse
Affiliation(s)
- Liangliang Qing
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Qingchao Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yongjin Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Wenbo Xu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanan Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Rongxing Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Chengyu You
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhilong Dong
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
13
|
Yang Q, Gao W, Li X, Li X, Zhou X, Li W, Zhou C, Luo A, Liu Z. Targeting ABCA1 via Extracellular Vesicle-Encapsulated Staurosporine as a Therapeutic Strategy to Enhance Radiosensitivity. Adv Healthc Mater 2024; 13:e2400381. [PMID: 38467587 DOI: 10.1002/adhm.202400381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Cancer stem cells (CSCs) are essential for tumor initiation, recurrence, metastasis, and resistance. However, targeting CSCs as a therapeutic approach remains challenging. Here, a stemness signature based on 22-gene is developed to predict prognosis in esophageal squamous cell carcinoma (ESCC). Staurosporine (STS) is identified as a radioresistance suppressor by high-throughput screening of a library of 2131 natural compounds, leading to dramatically improved radiotherapy efficacy in subcutaneous tumor models. Mechanistically, STS inhibits cell proliferation through the mTOR/AKT signaling pathway and suppressed stemness by targeting ATP-binding cassette A1 (ABCA1), which is transcriptionally regulated by liver X receptor alpha (LXRα). STS can selectively bind to the nucleotide-binding domain (NBD) of ABCA1 and compete for ATP, blocking ABCA1-mediated drug efflux and facilitating intracellular accumulation of STS. Considering the cytotoxicity of STS, an extracellular vesicle-encapsulated STS system (EV-STS) is established for effective STS delivery. EV-STS shows remarkable tumor growth inhibition, even at half the dose of STS, with superior safety and efficacy. These findings indicate that ABCA1 may serve as a predictor of response to neoadjuvant chemotherapy and/or radiotherapy in ESCC patients. EV-STS has shown improved antitumor efficacy and low systemic toxicity, offering a promising therapeutic approach for ESCC.
Collapse
Affiliation(s)
- Qi Yang
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenyan Gao
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinyue Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xin Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuantong Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Wenxin Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Changchun Zhou
- Biobank, Cancer Research Center, Shandong Cancer Hospital, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Aiping Luo
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhihua Liu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
14
|
Huang P, Wen F, Li Y, Li Q. The tale of SOX2: Focusing on lncRNA regulation in cancer progression and therapy. Life Sci 2024; 344:122576. [PMID: 38492918 DOI: 10.1016/j.lfs.2024.122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as influential contributors to diverse cellular processes, which regulate gene function and expression via multiple mechanistic pathways. Therefore, it is essential to exploit the structures and interactions of lncRNAs to comprehend their mechanistic functions within cells. A growing body of evidence has revealed that deregulated lncRNAs are involved in multiple regulations of malignant events including cell proliferation, growth, invasion, and metabolism. SRY-related high mobility group box (SOX)2, a well-recognized member of the SOX family, is commonly overexpressed in various types of cancer, contributing to tumor progression and maintenance of stemness. Emerging studies have shown that lncRNAs interact with SOX2 to remarkably contribute to carcinogenesis and disease states. This review elaborates on the crosstalk between the intricate and complicated functions of lncRNAs and SOX2 in the context of malignant diseases. We elucidate distinct molecular mechanisms that contribute to the onset/advancement of cancer, indicating that lncRNAs/SOX2 axes hold immense promise for potential therapeutic targets. Furthermore, we delve into the modalities of emerging feasible treatment options for targeting lncRNAs, highlighting the limitations of such therapies and providing novel insights into further ameliorations of targeted strategies of lncRNAs to promote the clinical implications. Translating current discoveries into clinical applications could ultimately boost improved survival and prognosis of cancer patients.
Collapse
Affiliation(s)
- Peng Huang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feng Wen
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - YiShan Li
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, West China School of Nursing, Chengdu, Sichuan 610041, China
| | - Qiu Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
15
|
Chen K, Zhang Y, Li C, Liu Y, Cao Q, Zhang X. Clinical value of molecular subtypes identification based on anoikis-related lncRNAs in castration-resistant prostate cancer. Cell Signal 2024; 117:111104. [PMID: 38373667 DOI: 10.1016/j.cellsig.2024.111104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Anoikis is a distinctive type of apoptosis. It is involved in tumor progression and metastasis. But its function in castration-resistant prostate cancer (CRPC) remains veiled. We aimed to develop a prognostic indicator based on anoikis-related long non-coding RNAs (arlncRNAs) and to investigate their biological function in CRPC. MATERIAL AND METHOD Differentially expressed anoikis-related genes were extracted from two CRPC datasets, GSE51873, and GSE78201. Four lncRNAs associated with the anoikis-related genes were selected. A risk model based on these lncRNAs was developed and validated in The Cancer Genome Atlas (TCGA) and the Memorial Sloan-Kettering Cancer Center (MSKCC) prostate cancer cohorts. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, immune infiltration, immune checkpoints expression, and drug susceptibility were performed based on the model. To identify the biofunction of anoikis-related lncRNA, CCK-8 assays, colony formation assays, and flow cytometry were used. RESULT Twenty-nine anoikis-related genes were differentially expressed in the CRPC datasets. And 36 prognostic arlncRNAs were selected for the LASSO Cox analysis. Patients were subsequently classified into two subtypes by constructing an anoikis-related lncRNA based prognostic index (ARPI). The accuracy of this index was validated. KEGG enrichment analysis revealed that the high-ARPI group was enriched in cancer-related and immune-related pathways. Immune infiltration analysis has indicated a positive association between high-ARPI groups and increased immune infiltration. Fulvestrant, OSI-027, Lapatinib, Dabrafenib, and Palbociclib were identified as potential sensitive drugs for high-ARPI patients. In vitro experiments exhibited that silencing LINC01138 dampened the proliferation, migration and enzalutamide resistance in CRPC. Furthermore, it stimulated apoptosis and inhibited the eithelial-mesenchymal transition process. CONCLUSION Four arlncRNAs were identified and a risk model was established to predict the prognosis of patients with prostate cancer. Immune infiltration and drug susceptibility analysis revealed a potential therapeutic strategy for patients with castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Kailei Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunxuan Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chengyong Li
- Department of Urology, the Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Yuenan Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China..
| |
Collapse
|
16
|
Wang Z, He W, Ying Y, Wang M, Chen Q, Zhang Z, Zeng S, Xu C. Patients With Muscle-Invasive Bladder Cancer With Lymphovascular Invasion in Transurethral Resection Specimen Benefits Most From Platinum-Based Neoadjuvant Chemotherapy. Clin Genitourin Cancer 2024; 22:201-209.e7. [PMID: 37989709 DOI: 10.1016/j.clgc.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
PURPOSE The survival benefit of neoadjuvant chemotherapy (NAC) before definitive radical cystectomy (RC) varied among patients, suggesting proper selection of patients for NAC to maximize the survival benefit. This study aimed to investigate the role of lymphovascular invasion (LVI) in transurethral resection (TUR) specimens in selecting patients with MIBC for NAC. METHODS Two retrospective cohorts of patients with cT2-4aN0 MIBC who underwent RC from 2004 to 2015 provided by Lund University were included. Inverse probability weighting was applied to make the NAC-treated (NAC) and untreated (non-NAC) cohorts comparable. Survival benefits were estimated with Kaplan-Meier curves and Cox proportional hazards models. The primary endpoint was cancer-specific survival (CSS). LVI in TUR specimens and molecular taxonomies (BASE47, UNC, and LundTax) were examined, and bulk RNA-seq datasets were explored for LVI-relevant signatures. RESULTS A total of 341 patients with cT2-4aN0 MIBC were included. The NAC cohort included 125 patients, whereas the non-NAC cohort included 216 patients. The 3-year CSS benefit of NAC was 7.1%. For patients with positive LVI in TUR specimens, the 3-year CSS benefit of NAC was 26.2% (48.1% vs. 74.3%), with a risk reduction of 56% (HR = 0.44, P = .03). A sensitivity analysis confirmed a significant interaction between LVI and NAC. This study failed to identify the molecular subtypes that maximized the survival benefit of NAC. Exploration of LVI-relevant signatures remains inconclusive. CONCLUSIONS LVI in TUR specimens could help identify patients with MIBC who would derive maximal survival benefit from NAC. Further prospective validation is necessary.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Urology, Changhai Hospital, Shanghai, China
| | - Wei He
- Department of Clinical Medicine, Naval Medical University, Shanghai, China
| | - Yidie Ying
- Department of Urology, Changhai Hospital, Shanghai, China
| | - Maoyu Wang
- Department of Urology, Changhai Hospital, Shanghai, China
| | - Qing Chen
- Department of Urology, Changhai Hospital, Shanghai, China
| | | | - Shuxiong Zeng
- Department of Urology, Changhai Hospital, Shanghai, China.
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Shanghai, China.
| |
Collapse
|
17
|
Wang H, Geng X, Ai F, Yu Z, Zhang Y, Zhang B, Lv C, Gao R, Yue B, Dou W. Nuciferine alleviates collagen-induced arthritic in rats by inhibiting the proliferation and invasion of human arthritis-derived fibroblast-like synoviocytes and rectifying Th17/Treg imbalance. Chin J Nat Med 2024; 22:341-355. [PMID: 38658097 DOI: 10.1016/s1875-5364(24)60622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 04/26/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder marked by persistent synovial inflammation and joint degradation, posing challenges in the development of effective treatments. Nuciferine, an alkaloid found in lotus leaf, has shown promising anti-inflammatory and anti-tumor effects, yet its efficacy in RA treatment remains unexplored. This study investigated the antiproliferative effects of nuciferine on the MH7A cell line, a human RA-derived fibroblast-like synoviocyte, revealing its ability to inhibit cell proliferation, promote apoptosis, induce apoptosis, and cause G1/S phase arrest. Additionally, nuciferine significantly reduced the migration and invasion capabilities of MH7A cells. The therapeutic potential of nuciferine was further evaluated in a collagen-induced arthritis (CIA) rat model, where it markedly alleviated joint swelling, synovial hyperplasia, cartilage injury, and inflammatory infiltration. Nuciferine also improved collagen-induced bone erosion, decreased pro-inflammatory cytokines and serum immunoglobulins (IgG, IgG1, IgG2a), and restored the balance between T helper (Th) 17 and regulatory T cells in the spleen of CIA rats. These results indicate that nuciferine may offer therapeutic advantages for RA by decreasing the proliferation and invasiveness of FLS cells and correcting the Th17/Treg cell imbalance in CIA rats.
Collapse
Affiliation(s)
- Hao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, School of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China
| | - Xiaolong Geng
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, School of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China
| | - Fangbin Ai
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, School of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China
| | - Zhilun Yu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, School of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China
| | - Yan Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, School of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China
| | - Beibei Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, School of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China
| | - Cheng Lv
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, School of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China
| | - Ruiyang Gao
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, School of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China
| | - Bei Yue
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, School of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| | - Wei Dou
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, School of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| |
Collapse
|
18
|
Yang W, Chen H, Ma L, Wei M, Xue X, Li Y, Jin Z, dong J, Xiao H. The oncogene MYBL2 promotes the malignant phenotype and suppresses apoptosis through hedgehog signaling pathway in clear cell renal cell carcinoma. Heliyon 2024; 10:e27772. [PMID: 38510035 PMCID: PMC10950673 DOI: 10.1016/j.heliyon.2024.e27772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Multiple cancers have been associated with MYB-related protein B (MYBL2), its involvement in clear cell renal cell carcinoma (ccRCC) has yet to be demonstrated. Our study revealed a significant upregulation of MYBL2 in ccRCC tissues, correlating with clinicopathological features and patient prognosis. Increased MYBL2 expression promoted cell proliferation and suppressed apoptosis. RNA-seq analysis unveiled a reduction in smoothened (SMO) expression upon MYBL2 silencing. However, luciferase and chromatin immunoprecipitation (ChIP) assays demonstrated MYBL2's positive regulation of SMO expression by directly targeting the SMO promoter. Reintroduction of SMO expression in MYBL2-knocked down cells partially restored cell proliferation and mitigated apoptosis inhibition. Overall, these results indicate that MYBL2 facilitates ccRCC progression by enhancing SMO expression, suggesting its potential as an intriguing drug target for ccRCC therapy.
Collapse
Affiliation(s)
| | | | | | - Mengchao Wei
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, 100000, China
| | - Xiaoqiang Xue
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, 100000, China
| | - Yingjie Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, 100000, China
| | - Zhaoheng Jin
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, 100000, China
| | - Jie dong
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, 100000, China
| | - He Xiao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, 100000, China
| |
Collapse
|
19
|
Yao L, Li T, Teng Y, Guo J, Zhang H, Xia L, Wu Q. ALKHB5-demethylated lncRNA SNHG15 promotes myeloma tumorigenicity by increasing chromatin accessibility and recruiting H3K36me3 modifier SETD2. Am J Physiol Cell Physiol 2024; 326:C684-C697. [PMID: 38145297 PMCID: PMC11193452 DOI: 10.1152/ajpcell.00348.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Chromatin instability plays a crucial role in multiple myeloma (MM) relapse and progression, but its mechanism remains obscure. Here, we uncovered that m6A-demethylase ALKBH5 upregulated and stabilized long noncoding RNA (lncRNA) small nucleolar RNA host gene 15 (SNHG15), which was elevated in MM and positively correlated with unfavorable clinical prognosis factors. ALKBH5-SNHG15 axis participated in viability and migration/invasion of myeloma cell lines and MM-xenografted SCID/NOD mice. Mechanically, ALKBH5 promoted the expression of trimethylated histone H3 at lysine 36 (H3K36me3) methyltransferase SETD2 through lncRNA SNHG15-mediated protein stability. ALKBH5-SNHG15 axis increased chromatin accessibility and altered the H3K36me3 enrichment at the gene body, which is responsible for transcription elongation. Our study suggested a novel epigenetically interaction of N6-methyladenosine (m6A) methylation, lncRNA SNHG15, and histone SETD2/H3K36me3 modifications in myeloma progression, indicating that ALKBH5 and lncRNA SNHG15 could serve as potential novel therapeutic targets for MM treatment.NEW & NOTEWORTHY To our knowledge, this study first demonstrated the prognostic significance and biological function of long noncoding RNA (lncRNA) small nucleolar RNA host gene 15 (SNHG15) in multiple myeloma (MM), and indicated a novel revelation on the effect of N6-methyladenosine (m6A)-regulated lncRNA on MM tumorigenicity. Moreover, the novel chromatin-regulatory mechanism of lncRNA by interacting with epigenetic modifiers including m6A demethylase ALKBH5 and H3K36me3 methyltransferase SETD2 in myeloma progression elucidated intricate mechanism of tumor pathogenesis.
Collapse
Affiliation(s)
- Lan Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tingting Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yao Teng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jingjing Guo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hongyong Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
20
|
Singh V, Nandi S, Ghosh A, Adhikary S, Mukherjee S, Roy S, Das C. Epigenetic reprogramming of T cells: unlocking new avenues for cancer immunotherapy. Cancer Metastasis Rev 2024; 43:175-195. [PMID: 38233727 DOI: 10.1007/s10555-024-10167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
T cells, a key component of cancer immunotherapy, undergo a variety of histone modifications and DNA methylation changes since their bone marrow progenitor stages before developing into CD8+ and CD4+ T cells. These T cell types can be categorized into distinct subtypes based on their functionality and properties, such as cytotoxic T cells (Tc), helper T cells (Th), and regulatory T cells (Treg) as subtypes for CD8+ and CD4+ T cells. Among these, the CD4+ CD25+ Tregs potentially contribute to cancer development and progression by lowering T effector (Teff) cell activity under the influence of the tumor microenvironment (TME). This contributes to the development of therapeutic resistance in patients with cancer. Subsequently, these individuals become resistant to monoclonal antibody therapy as well as clinically established immunotherapies. In this review, we delineate the different epigenetic mechanisms in cancer immune response and its involvement in therapeutic resistance. Furthermore, the possibility of epi-immunotherapeutic methods based on histone deacetylase inhibitors and histone methyltransferase inhibitors are under investigation. In this review we highlight EZH2 as the principal driver of cancer cell immunoediting and an immune escape regulator. We have addressed in detail how understanding T cell epigenetic regulation might bring unique inventive strategies to overcome drug resistance and increase the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Aritra Ghosh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Indian Institute of Science Education and Research, Kolkata, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Siddhartha Roy
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
- Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
21
|
Chen H, Xiao L, Xie G, Zhang P, Dong P, Bian B, Wang J, Zhou Y, Ma Y, Liu Y, Shen L. LINC00355 promotes gastric carcinogenesis by scaffolding p300 to activate CDC42 transcription and enhancing HNRNPA2B1 to stabilize CDC42 mRNA dependent on m6A. Mol Carcinog 2024; 63:430-447. [PMID: 37983727 DOI: 10.1002/mc.23662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
LINC00355 is involved in the tumorigenesis of several types of cancer. We verified that LINC00355 is upregulated in gastric cancer (GC) and contributes to GC cells' proliferation and metastasis. RNA sequencing (RNA-seq) and rescue assays suggested that LINC00355 controls gastric carcinogenesis by regulating the expression of cell division cycle 42 (CDC42) guanosine triphosphatase (GTPases), thereby activating their downstream pathways. Most previous studies have shown that LINC00355 acts as a ceRNA by sponging miRNAs to modulate downstream gene expression. Our group focus on epigenetic regulatory potential of LINC00355 in gene expression. Mechanistically, LINC00355 binds to p300 histone acetyltransferase, specifying the histone modification pattern on the CDC42 promoter to activate CDC42 transcription, thereby altering GC cell biology. In addition, HNRNPA2B1, which is upregulated by LINC00355, recognizes the N6-methyladenosine (m6A) sites of CDC42 and enhances the stability of CDC42 mRNA transcripts. Therefore, LINC00355 is mechanistically, functionally, and clinically oncogenic in GC cells.
Collapse
Affiliation(s)
- Hui Chen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lanshu Xiao
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Guohua Xie
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingxian Bian
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Wang
- Department of Clinical Laboratory, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China
| | - Yunlan Zhou
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhui Ma
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Liu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai, China
| |
Collapse
|
22
|
Alberca-del Arco F, Prieto-Cuadra D, Santos-Perez de la Blanca R, Sáez-Barranquero F, Matas-Rico E, Herrera-Imbroda B. New Perspectives on the Role of Liquid Biopsy in Bladder Cancer: Applicability to Precision Medicine. Cancers (Basel) 2024; 16:803. [PMID: 38398192 PMCID: PMC10886494 DOI: 10.3390/cancers16040803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Bladder cancer (BC) is one of the most common tumors in the world. Cystoscopy and tissue biopsy are the standard methods in screening and early diagnosis of suspicious bladder lesions. However, they are invasive procedures that may cause pain and infectious complications. Considering the limitations of both procedures, and the recurrence and resistance to BC treatment, it is necessary to develop a new non-invasive methodology for early diagnosis and multiple evaluations in patients under follow-up for bladder cancer. In recent years, liquid biopsy has proven to be a very useful diagnostic tool for the detection of tumor biomarkers. This non-invasive technique makes it possible to analyze single tumor components released into the peripheral circulation and to monitor tumor progression. Numerous biomarkers are being studied and interesting clinical applications for these in BC are being presented, with promising results in early diagnosis, detection of microscopic disease, and prediction of recurrence and response to treatment.
Collapse
Affiliation(s)
- Fernardo Alberca-del Arco
- Departamento de Urología, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain; (F.A.-d.A.); (R.S.-P.d.l.B.); (F.S.-B.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), 29590 Málaga, Spain
| | - Daniel Prieto-Cuadra
- Departamento de Anatomía Patológica, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain;
- Unidad de Gestion Clinica de Anatomia Patologica, IBIMA, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- SYNLAB Pathology, 29007 Málaga, Spain
| | - Rocio Santos-Perez de la Blanca
- Departamento de Urología, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain; (F.A.-d.A.); (R.S.-P.d.l.B.); (F.S.-B.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), 29590 Málaga, Spain
- Genitourinary Alliance for Research and Development (GUARD Consortium), 29071 Málaga, Spain
| | - Felipe Sáez-Barranquero
- Departamento de Urología, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain; (F.A.-d.A.); (R.S.-P.d.l.B.); (F.S.-B.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), 29590 Málaga, Spain
- Genitourinary Alliance for Research and Development (GUARD Consortium), 29071 Málaga, Spain
| | - Elisa Matas-Rico
- Departamento de Urología, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain; (F.A.-d.A.); (R.S.-P.d.l.B.); (F.S.-B.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), 29590 Málaga, Spain
- Genitourinary Alliance for Research and Development (GUARD Consortium), 29071 Málaga, Spain
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga (UMA), 29071 Málaga, Spain
| | - Bernardo Herrera-Imbroda
- Departamento de Urología, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain; (F.A.-d.A.); (R.S.-P.d.l.B.); (F.S.-B.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), 29590 Málaga, Spain
- Genitourinary Alliance for Research and Development (GUARD Consortium), 29071 Málaga, Spain
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Universidad de Málaga (UMA), 29071 Málaga, Spain
| |
Collapse
|
23
|
Song B, Wei F, Peng J, Wei X, Liu M, Nie Z, Ma Y, Peng T. Icariin Regulates EMT and Stem Cell-Like Character in Breast Cancer through Modulating lncRNA NEAT1/TGFβ/SMAD2 Signaling Pathway. Biol Pharm Bull 2024; 47:399-410. [PMID: 38220208 DOI: 10.1248/bpb.b23-00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Metastases and drug resistance are the major risk factors associated with breast cancer (BC), which is the most common type of tumor affecting females. Icariin (ICA) is a traditional Chinese medicine compound that possesses significant anticancer properties. Long non-coding RNAs (lncRNAs) are involved in a wide variety of biological and pathological processes and have been shown to modulate the effectiveness of certain drugs in cancer. The purpose of this study was to examine the potential effect of ICA on epithelial mesenchymal transition (EMT) and stemness articulation in BC cells, as well as the possible relationship between its inhibitory action on EMT and stemness with the NEAT1/transforming growth factor β (TGFβ)/SMAD2 pathway. The effect of ICA on the proliferation (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony assays), EMT (Western blotting, immunofluorescence, and wound healing), and stemness (mammosphere formation assays, Western blotting) of BC cells were examined. According to the findings, ICA suppressed the proliferation, EMT, and stem cell-like in MDA-MB-231 cells, and exerted its inhibitory impact by downregulating the TGFβ/SMAD2 signaling pathway. ICA could significantly downregulate the expression of lncRNA NEAT1, and silencing NEAT1 enhanced the effect of ICA in suppressing EMT and expression of different stem cell markers. In addition, silencing NEAT1 was found to attenuate the TGFβ/SMAD2 signaling pathway, thereby improving the inhibitory impact of ICA on stemness and EMT in BC cells. In conclusion, ICA can potentially inhibit the metastasis of BC via affecting the NEAT1/TGFβ/SMAD2 pathway, which provides a theoretical foundation for understanding the mechanisms involved in potential application of ICA for BC therapy.
Collapse
Affiliation(s)
- Bo Song
- School of Third Clinical Medicine, Shanxi University of Chinese Medicine
| | - Fuxia Wei
- School of Third Clinical Medicine, Shanxi University of Chinese Medicine
| | - Jiehao Peng
- School of Third Clinical Medicine, Shanxi University of Chinese Medicine
| | - Xiuhong Wei
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine
| | - Mingran Liu
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine
| | - Zhongbiao Nie
- Pharmaceutical Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
| | - Yanmiao Ma
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine
| | - Tao Peng
- Famous Chinese Medicine Studio, Shanxi Hospital of Integrated Traditional Chinese and Western Medicine
- Shanxi Provincial Key Laboratory of Classical Prescription Strengthening Yang, Shanxi Hospital of Integrated Traditional Chinese and Western Medicine
| |
Collapse
|
24
|
Chen Y, Huang M, Lu J, Zhang Q, Wu J, Peng S, Chen S, Zhang Y, Cheng L, Lin T, Chen X, Huang J. Establishment of a prognostic model to predict chemotherapy response and identification of RAC3 as a chemotherapeutic target in bladder cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:509-528. [PMID: 37310098 DOI: 10.1002/tox.23860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/14/2023]
Abstract
Cisplatin-based chemotherapy is considered the primary treatment option for patients with advanced bladder cancer (BCa). However, the objective response rate to chemotherapy is often unsatisfactory, leading to a poor 5-year survival rate. Furthermore, current strategies for evaluating chemotherapy response and prognosis are limited and inefficient. In this study, we aimed to address these challenges by establishing a chemotherapy response type gene (CRTG) signature consisting of 9 genes and verified the prognostic value of this signature using TCGA and GEO BCa cohorts. The risk scores based on the CRTG signature were found to be associated with advanced clinicopathological status and demonstrated favorable predictive power for chemotherapy response in the TCGA cohort. Meanwhile, tumors with high risk scores exhibited a tendency toward a "cold tumor" phenotype. These tumors showed a low abundance of T cells, CD8+ T cells and cytotoxic lymphocytes, along with a high abundance of cancer-associated fibroblasts. Moreover, they displayed higher mRNA levels of these immune checkpoints: CD200, CD276, CD44, NRP1, PDCD1LG2 (PD-L2), and TNFSF9. Furthermore, we developed a nomogram that integrated the CRTG signature with clinicopathologic risk factors. This nomogram proved to be a more effective tool for predicting the prognosis of BCa patients. Additionally, we identified Rac family small GTPase 3 (RAC3) as a biomarker in our model. RAC3 was found to be overexpressed in chemoresistant BCa tissues and enhance the chemotherapeutic resistance of BCa cells in vitro and in vivo by regulating the PAK1-ERK1/2 pathway. In conclusion, our study presents a novel CRTG model for predicting chemotherapy response and prognosis in BCa. We also highlight the potential of combining chemotherapy with immunotherapy as a promising strategy for chemoresistant BCa and that RAC3 might be a latent target for therapeutic intervention.
Collapse
Affiliation(s)
- Yuelong Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Ming Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Junlin Lu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Qiang Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Jilin Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Siting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Yangjie Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Liang Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| |
Collapse
|
25
|
Jasim SA, Majeed AA, Uinarni H, Alshuhri M, Alzahrani AA, Ibrahim AA, Alawadi A, Abed Al-Abadi NK, Mustafa YF, Ahmed BA. Long non-coding RNA (lncRNA) PVT1 in drug resistance of cancers: Focus on pathological mechanisms. Pathol Res Pract 2024; 254:155119. [PMID: 38309019 DOI: 10.1016/j.prp.2024.155119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
According to estimates, cancer will be the leading cause of death globally in 2022, accounting for 9.6 million deaths. At present, the three main therapeutic modalities utilized to treat cancer are radiation therapy, chemotherapy, and surgery. However, during treatment, tumor cells resistant to chemotherapy may arise. Drug resistance remains a major oppose since it often leads to therapeutic failure. Furthermore, the term "acquired drug resistance" describes the situation where tumor cells already display drug resistance before undergoing chemotherapy. However, little is still known about the basic mechanisms underlying chemotherapy-induced drug resistance. The development of new technologies and bioinformatics has led to the discovery of additional genes associated with drug resistance. Long noncoding RNA plasmacytoma variant translocation 1 (PVT1) has been linked to an increased risk of cancer, according to a growing body of research. Apart from biological functions associated with cell division, development, pluripotency, and cell cycle, lncRNA PVT1 contributes significantly to the regulation of various aspects of genome function, such as transcription, splicing, and epigenetics. The article will address the mechanism by which lncRNA PVT1 influences drug resistance in cancer cells.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Anbar, Iraq; Biotechnology department, College of Applied Science, Fallujah University, Anbar, Iraq
| | - Ali A Majeed
- Department of Pathological Analyses, Faculty of Science, University of Kufa, Najaf, Iraq.
| | - Herlina Uinarni
- Department of Anatomy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia; Radiology Department of Pantai Indah Kapuk Hospital, Jakarta, Indonesia.
| | - Mohammed Alshuhri
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Kharj, Sauadi Arabia
| | | | - Abeer A Ibrahim
- Inorganic Chemistry Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Batool Ali Ahmed
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| |
Collapse
|
26
|
Jiang LY, Wang GH, Xu JJ, Li XL, Lin XY, Fang X, Zhang HX, Feng M, Jiang CM. CREB-induced LINC00473 promotes chemoresistance to TMZ in glioblastoma by regulating O6-methylguanine-DNA-methyltransferase expression via CEBPα binding. Neuropharmacology 2024; 243:109790. [PMID: 37981063 DOI: 10.1016/j.neuropharm.2023.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
Temozolomide (TMZ) offers substantial therapeutic benefits for glioblastoma (GB), yet its efficacy is hindered the development of chemoresistance. The role of long non-coding RNAs (lncRNAs) in tumorigenesis and chemoresistance has garnered great attention in studies on TMZ resistance. This study aimed to reveal the role of LINC00473 in TMZ chemoresistance and the underlying mechanism in GB. The expression of LINC00473 in TMZ-resistant and TMZ-sensitive GB cells was investigated using qPCR analysis. The role of LINC00473 in regulating TMZ resistance in GB cells was analyzed using the CCK-8 assay, colony formation assay, and flow cytometry. The next steps included assessing if LINC00473 is regulated by CREB and whether LINC00473 promotes chemoresistance through MGMT regulation via CEBPα. Further, chemoresistance delivery between cells via exosomal LINC00473 was validated in vitro and in vivo. Results showed that LINC00473 levels were elevated in TMZ-resistant cells upon CREB activation, and the lncRNA promoted the chemoresistance of GB cells through the upregulation of MGMT expression. Mechanistically, LINC00473 regulated the MGMT expression by binding to CEBPα. The highly-expressed LINC00473 packaged in exosomes transferred chemoresistance to the adjacent TMZ-sensitive GB cells. In conclusion, a novel CREB/LINC00473/CEBPα/MGMT pathway was revealed in the GB TMZ-resistance formation. In addition, an exosome-based mechanism of chemoresistance transmission was revealed, suggesting that LINC00473 could be used as a novel therapeutic target for GB.
Collapse
Affiliation(s)
- Li-Ya Jiang
- Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, China; Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Guan-Hao Wang
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China; The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Jing-Jiao Xu
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China; The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Xiao-Li Li
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Xiao-Yan Lin
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Xiang Fang
- Department of Clinical Laboratory Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Hong-Xu Zhang
- Department of Ophthalmology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Mei Feng
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China.
| | - Chun-Ming Jiang
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China.
| |
Collapse
|
27
|
Shi H, Tan Z, Duan B, Guo C, Li C, Luan T, Li N, Huang Y, Chen S, Gao J, Feng W, Xu H, Wang J, Fu S, Wang H. LASS2 enhances chemosensitivity to cisplatin by inhibiting PP2A-mediated β-catenin dephosphorylation in a subset of stem-like bladder cancer cells. BMC Med 2024; 22:19. [PMID: 38191448 PMCID: PMC10775422 DOI: 10.1186/s12916-023-03243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/01/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The benefits of first-line, cisplatin-based chemotherapy for muscle-invasive bladder cancer are limited due to intrinsic or acquired resistance to cisplatin. Increasing evidence has revealed the implication of cancer stem cells in the development of chemoresistance. However, the underlying molecular mechanisms remain to be elucidated. This study investigates the role of LASS2, a ceramide synthase, in regulating Wnt/β-catenin signaling in a subset of stem-like bladder cancer cells and explores strategies to sensitize bladder cancer to cisplatin treatment. METHODS Data from cohorts of our center and published datasets were used to evaluate the clinical characteristics of LASS2. Flow cytometry was used to sort and analyze bladder cancer stem cells (BCSCs). Tumor sphere formation, soft agar colony formation assay, EdU assay, apoptosis analysis, cell viability, and cisplatin sensitivity assay were used to investigate the functional roles of LASS2. Immunofluorescence, immunoblotting, coimmunoprecipitation, LC-MS, PCR array, luciferase reporter assays, pathway reporter array, chromatin immunoprecipitation, gain-of-function, and loss-of-function approaches were used to investigate the underlying mechanisms. Cell- and patient-derived xenograft models were used to investigate the effect of LASS2 overexpression and a combination of XAV939 on cisplatin sensitization and tumor growth. RESULTS Patients with low expression of LASS2 have a poorer response to cisplatin-based chemotherapy. Loss of LASS2 confers a stem-like phenotype and contributes to cisplatin resistance. Overexpression of LASS2 results in inhibition of self-renewal ability of BCSCs and increased their sensitivity to cisplatin. Mechanistically, LASS2 inhibits PP2A activity and dissociates PP2A from β-catenin, preventing the dephosphorylation of β-catenin and leading to the accumulation of cytosolic phospho-β-catenin, which decreases the transcription of the downstream genes ABCC2 and CD44 in BCSCs. Overexpression of LASS2 combined with a tankyrase inhibitor (XAV939) synergistically inhibits tumor growth and restores cisplatin sensitivity. CONCLUSIONS Targeting the LASS2 and β-catenin pathways may be an effective strategy to overcome cisplatin resistance and inhibit tumor growth in bladder cancer patients.
Collapse
Affiliation(s)
- Hongjin Shi
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Zhiyong Tan
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Bowen Duan
- Kunming Medical University, Kunming, China
| | - Chunming Guo
- School for Life Science, Yunnan University, Kunming, China
| | - Chong Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ting Luan
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Ning Li
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Yinglong Huang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Shi Chen
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Jixian Gao
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Wei Feng
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Haole Xu
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Jiansong Wang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Shi Fu
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China.
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China.
| | - Haifeng Wang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China.
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China.
| |
Collapse
|
28
|
Li K, Qi L, Tang G, Xu H, Li Z, Fan B, Li Z, Li Y. Epigenetic Regulation in Urothelial Carcinoma. Curr Mol Med 2024; 24:85-97. [PMID: 36545729 DOI: 10.2174/1566524023666221221094432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022]
Abstract
Urothelial carcinoma (UC) is a common malignancy that remains a clinical challenge: Non-muscle-invasive urothelial carcinoma (NMIUC) has a high rate of recurrence and risk of progression, while muscle-invasive urothelial carcinoma (MIUC) has a high mortality. Although some new treatments, such as immunotherapies, have shown potential effects on some patients, most cases of advanced UC remain incurable. While treatments based on epigenetic mechanisms, whether combined with traditional platinum-based chemotherapy or emerging immunotherapy, show therapeutic advantages. With the advancement of sequencing and bioinformatics, the study of epigenomics, containing DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA, is increasingly linked with the occurrence and progression of UC. Since the epigenetics of UC is a constantly developing field of medicine, this review aims to summarize the latest research on epigenetic regulation of UC, generalize the mechanism of epigenetics in UC, and reveal the potential epigenetic therapies in the clinical setting, in order to provide some new clues on the discovery of new drugs based on the epigenetics.
Collapse
Affiliation(s)
- Ke Li
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Lin Qi
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Guyu Tang
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Haozhe Xu
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Zhi Li
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Bo Fan
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Zhongbei Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Yuan Li
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
29
|
Zhao X, Xu Z, Meng B, Ren T, Wang X, Hou R, Li S, Ma W, Liu D, Zheng J, Shi M. Long noncoding RNA NONHSAT160169.1 promotes resistance via hsa-let-7c-3p/SOX2 axis in gastric cancer. Sci Rep 2023; 13:20858. [PMID: 38012281 PMCID: PMC10682003 DOI: 10.1038/s41598-023-47961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
In clinical trials involving patients with HER2 (ERBB2 receptor tyrosine kinase 2) positive gastric cancer, the efficacy of the HER2-targeted drug lapatinib has proven to be disappointingly poor. Under the persistent pressure exerted by targeted drug therapy, a subset of tumor cells exhibit acquired drug resistance through the activation of novel survival signaling cascades, alongside the proliferation of tumor cells that previously harbored mutations conferring resistance to the drug. This study was undertaken with the aim of elucidating in comprehensive detail the intricate mechanisms behind adaptive resistance and identifying novel therapeutic targets that hold promise in the development of effective lapatinib-based therapies for the specific subset of patients afflicted with gastric cancer. We have successfully established a gastric cancer cell line with acquired lapatinib resistance, designated as HGC-27-LR cells. Utilizing comprehensive coding and noncoding transcriptome sequencing analysis, we have identified key factors that regulate lapatinib resistance in HGC-27 cells. We have compellingly validated that among all the lncRNAs identified in HGC-27-LR cells, a novel lncRNA (long noncoding RNA) named NONHSAT160169.1 was found to be most notably upregulated following exposure to lapatinib treatment. The upregulation of NONHSAT160169.1 significantly augmented the migratory, invasive, and stemness capabilities of HGC-27-LR cells. Furthermore, we have delved into the mechanism by which NONHSAT160169.1 regulates lapatinib resistance. The findings have revealed that NONHSAT160169.1, which is induced by the p-STAT3 (signal transducer and activator of transcription 3) nuclear transport pathway, functions as a decoy that competitively interacts with hsa-let-7c-3p and thereby abrogates the inhibitory effect of hsa-let-7c-3p on SOX2 (SRY-box transcription factor 2) expression. Hence, our study has unveiled the NONHSAT160169.1/hsa-let-7c-3p/SOX2 signaling pathway as a novel and pivotal axis for comprehending and surmounting lapatinib resistance in the treatment of HER2-positive gastric cancer.
Collapse
Affiliation(s)
- Xuan Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Zijian Xu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Bi Meng
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Tong Ren
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xu Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Wen Ma
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
30
|
Hong X, Chen X, Wang H, Xu Q, Xiao K, Zhang Y, Chi Z, Liu Y, Liu G, Li H, Fang J, Lin T, Zhang Y. A HER2-targeted Antibody-Drug Conjugate, RC48-ADC, Exerted Promising Antitumor Efficacy and Safety with Intravesical Instillation in Preclinical Models of Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302377. [PMID: 37824205 PMCID: PMC10646285 DOI: 10.1002/advs.202302377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/30/2023] [Indexed: 10/14/2023]
Abstract
More than half of non-muscle-invasive bladder cancer (NMIBC) patients eventually relapse even if treated with surgery and BCG without optional bladder-preserving therapy. This study aims to investigate the antitumor activity and safety of a HER2-targeted antibody-drug conjugate, RC48-ADC, intravesical instillation for NMIBC treatment. In this preclinical study, it is revealed that human epidermal growth factor receptor 2 (HER2) expression scores of 1+, 2+, and 3+ are recorded for 16.7%, 56.2%, and 14.6% of NMIBC cases. The antitumor effect of RC48-ADC is positively correlated with HER2 expression in bladder cancer (BCa) cell lines and organoid models. Furthermore, RC48-ADC is revealed to exert its antitumor effect by inducing G2/M arrest and caspase-dependent apoptosis. In an orthotopic BCa model, tumor growth is significantly inhibited by intravesical instillation of RC48-ADC versus disitamab, monomethyl auristatin E, epirubicin, or phosphate-buffered saline control. The potential toxicity of intravesical RC48-ADC is also assessed by dose escalation in normal nude mice and revealed that administration of RC48-ADC by intravesical instillation is safe within the range of effective therapeutic doses. Taken together, RC48-ADC demonstrates promising antitumor effects and safety with intravesical administration in multiple preclinical models. These findings provide a rational for clinical trials of intravesical RC48-ADC in NMIBC patients.
Collapse
Affiliation(s)
- Xuwei Hong
- Department of UrologyShantou Central HospitalShantouGuangdong515031P. R. China
- Department of UrologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510120P. R. China
| | - Xu Chen
- Department of UrologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510120P. R. China
| | - Hongjin Wang
- Department of UrologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510120P. R. China
| | - Qingchun Xu
- Department of UrologyShantou Central HospitalShantouGuangdong515031P. R. China
| | - Kanghua Xiao
- Department of UrologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510120P. R. China
| | - Yuanfeng Zhang
- Department of UrologyShantou Central HospitalShantouGuangdong515031P. R. China
| | - Zepai Chi
- Department of UrologyShantou Central HospitalShantouGuangdong515031P. R. China
| | - Yeqing Liu
- Department of PathologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510120P. R. China
| | - Guangyao Liu
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510120P. R. China
| | - Hong Li
- BioMed LaboratoryGuangzhou Jingke Biotech GroupGuangzhouGuangdong510120P. R. China
| | - Jianmin Fang
- RemeGenLtd.YantaiShandong264006P. R. China
- School of Life Science and TechnologyTongji UniversityShanghai200092P. R. China
| | - Tianxin Lin
- Department of UrologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510120P. R. China
- Guangdong Provincial Clinical Research Centre for Urological DiseasesGuangzhouGuangdong510120P. R. China
| | - Yonghai Zhang
- Department of UrologyShantou Central HospitalShantouGuangdong515031P. R. China
| |
Collapse
|
31
|
Xie M, Zhang L, Han L, Huang L, Huang Y, Yang M, Zhang N. The ASH1L-AS1-ASH1L axis controls NME1-mediated activation of the RAS signaling in gastric cancer. Oncogene 2023; 42:3435-3445. [PMID: 37805663 DOI: 10.1038/s41388-023-02855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Gastric cancer (GC) is one of the most leading cause of malignancies. However, the molecular mechanisms underlying stomach carcinogenesis remain incompletely understood. Dysregulated genetic and epigenetic alternations significantly contribute to GC development. Here, we report that ASH1L and its antisense lncRNA ASH1L-AS1, which are transcribed from the most significant GC-risk signal at 1q22, act as novel oncogenes. The high levels of ASH1L or lncRNA ASH1L-AS1 expression in GC specimens are associated with worse prognosis of patients. In line with this, ASH1L and ASH1L-AS1 are functionally important in promoting GC disease progression. LncRNA ASH1L-AS1 up-regulates ASH1L transcription, increases histone methyltransferase ASH1L expression and elevates genome-wide H3K4me3 modification levels in GC cells. Furthermore, ASH1L-AS1 directly interacts with transcription factor NME1 protein to form the ASH1L-AS1-NME1 ribonucleoprotein, which transcriptionally promotes expression of ASH1L, ASH1L-AS1, KRAS and RAF1, and activates the RAS signaling pathway in GC cells. Taken together, our data demonstrated that the ASH1L-AS1-ASH1L regulatory axis controls histone modification reprogram and activation of the RAS signaling in cancers. Thus, ASH1L-AS1 might be a novel targets of GC therapeutics and diagnosis in the clinic.
Collapse
Affiliation(s)
- Mengyu Xie
- Departemnt of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Linying Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Yizhou Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Nasha Zhang
- Departemnt of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
32
|
Su N, Fang Y, Chen X, Chen X, Xia Z, Huang H, Xia Y, Liu P, Tian X, Cai Q. Targeting P21-activated kinase suppresses proliferation and enhances chemosensitivity in T-cell lymphoblastic lymphoma. BLOOD SCIENCE 2023; 5:249-257. [PMID: 37941919 PMCID: PMC10629744 DOI: 10.1097/bs9.0000000000000169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/28/2023] [Indexed: 11/10/2023] Open
Abstract
T-cell lymphoblastic lymphoma (T-LBL) is a highly aggressive non-Hodgkin lymphoma with a poor prognosis. P21-activated kinase (PAK) is a component of the gene expression-based classifier that can predict the prognosis of T-LBL. However, the role of PAK in T-LBL progression and survival remains poorly understood. Herein, we found that the expression of PAK1 was significantly higher in T-LBL cell lines (Jurkat, SUP-T1, and CCRF-CEM) compared to the human T-lymphoid cell line. Moreover, PAK2 mRNA level of 32 relapsed T-LBL patients was significantly higher than that of 37 cases without relapse (P = .012). T-LBL patients with high PAK1 and PAK2 expression had significantly shorter median RFS than those with low PAK1 and PAK2 expression (PAK1, P = .028; PAK2, P = .027; PAK1/2, P = .032). PAK inhibitors, PF3758309 (PF) and FRAX597, could suppress the proliferation of T-LBL cells by blocking the G1/S cell cycle phase transition. Besides, PF could enhance the chemosensitivity to doxorubicin in vitro and in vivo. Mechanistically, through western blotting and RNA sequencing, we identified that PF could inhibit the phosphorylation of PAK1/2 and downregulate the expression of cyclin D1, NF-κB and cell adhesion signaling pathways in T-LBL cell lines. These findings suggest that PAK might be associated with T-LBL recurrence and further found that PAK inhibitors could suppress proliferation and enhance chemosensitivity of T-LBL cells treated with doxorubicin. Collectively, our present study underscores the potential therapeutic effect of inhibiting PAK in T-LBL therapy.
Collapse
Affiliation(s)
- Ning Su
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xu Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Hematology Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhongjun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Hematology Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huiqiang Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Xia
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Panpan Liu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaopeng Tian
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qingqing Cai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
33
|
Lu J, Lai J, Xiao K, Peng S, Zhang Y, Xia Q, Liu S, Cheng L, Zhang Q, Chen Y, Chen X, Lin T. A clinically practical model for the preoperative prediction of lymph node metastasis in bladder cancer: a multicohort study. Br J Cancer 2023; 129:1166-1175. [PMID: 37542107 PMCID: PMC10539530 DOI: 10.1038/s41416-023-02383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND The aim of this study was to construct a clinically practical model to precisely predict lymph node (LN) metastasis in bladder cancer patients. METHODS Four independent cohorts were included. The least absolute shrinkage and selection operator regression with multivariate logistic regression were applied. The diagnostic efficacy of LN score and CT/MRI was compared by accuracy, sensitivity, specificity, and area under curve (AUC). RESULTS A total of 606 patients were included to develop a basic prediction model. After multistep gene selection, the LN metastasis prediction model was constructed with 5 genes. The model can accurately predict LN metastasis with an AUC of 0.781. For clinically practical use, we transformed the model into a Fast LN Scoring System using the SYSMH cohort (n = 105). High LN score patients exhibited a 72.2% LN metastasis rate, while low LN score patients showed a 3.4% LN metastasis rate. The LN score achieved a superior accuracy than CT/MRI (0.882 vs. 0.727). Application of LN score can correct the diagnosis of 88% (22/25) patients who were misdiagnosed by CT/MRI. DISCUSSION The clinically practical LN score can precisely, rapidly, and conveniently predict LN status, which will assist preoperative diagnosis for LN metastasis and guide precise therapy.
Collapse
Affiliation(s)
- Junlin Lu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China
| | - Jiajian Lai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China
| | - Kanghua Xiao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China
| | - Yangjie Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China
| | - Qidong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, P. R. China
| | - Sen Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China
| | - Liang Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China
| | - Qiang Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China
| | - Yuelong Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, 510120, Guangzhou, Guangdong, P. R. China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, P. R. China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, 510120, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
34
|
Rasmussen A, Okholm T, Knudsen M, Vang S, Dyrskjøt L, Hansen T, Pedersen J. Circular stable intronic RNAs possess distinct biological features and are deregulated in bladder cancer. NAR Cancer 2023; 5:zcad041. [PMID: 37554968 PMCID: PMC10405568 DOI: 10.1093/narcan/zcad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/02/2023] [Indexed: 08/10/2023] Open
Abstract
Until recently, intronic lariats were regarded as short-lasting splicing byproducts with no apparent function; however, increasing evidence of stable derivatives suggests regulatory roles. Yet little is known about their characteristics, functions, distribution, and expression in healthy and tumor tissue. Here, we profiled and characterized circular stable intronic sequence RNAs (sisRNAs) using total RNA-Seq data from bladder cancer (BC; n = 457, UROMOL cohort), healthy tissue (n = 46), and fractionated cell lines (n = 5). We found that the recently-discovered full-length intronic circles and the stable lariats formed distinct subclasses, with a surprisingly high intronic circle fraction in BC (∼45%) compared to healthy tissues (0-20%). The stable lariats and their host introns were characterized by small transcript sizes, highly conserved BP regions, enriched BP motifs, and localization in multiple cell fractions. Additionally, circular sisRNAs showed tissue-specific expression patterns. We found nine circular sisRNAs as differentially expressed across early-stage BC patients with different prognoses, and sisHNRNPK expression correlated with progression-free survival. In conclusion, we identify distinguishing biological features of circular sisRNAs and point to specific candidates (incl. sisHNRNPK, sisWDR13 and sisMBNL1) that were highly expressed, had evolutionary conserved sequences, or had clinical correlations, which may facilitate future studies and further insights into their functional roles.
Collapse
Affiliation(s)
- Asta M Rasmussen
- Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus N 8200, Denmark
- Bioinformatics Research Center (BiRC), Aarhus University, Aarhus 8000, Denmark
| | - Trine Line H Okholm
- Departments of Otolaryngology-Head and Neck Surgery and Microbiology & Immunology, University of California, San Francisco, CA, USA
| | - Michael Knudsen
- Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Søren Vang
- Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Lars Dyrskjøt
- Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Thomas B Hansen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus 8000, Denmark
| | - Jakob S Pedersen
- Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus N 8200, Denmark
- Bioinformatics Research Center (BiRC), Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
35
|
Guo L, Mohanty A, Singhal S, Srivastava S, Nam A, Warden C, Ramisetty S, Yuan YC, Cho H, Wu X, Li A, Vohra M, Saladi SV, Wheeler D, Arvanitis L, Massarelli E, Kulkarni P, Zeng Y, Salgia R. Targeting ITGB4/SOX2-driven lung cancer stem cells using proteasome inhibitors. iScience 2023; 26:107302. [PMID: 37554452 PMCID: PMC10405066 DOI: 10.1016/j.isci.2023.107302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/08/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
This study investigates the role of integrin β4 (ITGB4) and stemness-associated factor SOX2 in platinum resistance in lung squamous cell carcinoma (LUSC). The expression of SOX2 and ITGB4 is found to be high in all LUSC subtypes, but the impact of ITGB4 expression on overall patient survival varies by subtype. Cancer stem cells (CSCs) isolated from LUSC patients were found to be resistant to cisplatin, but knocking down ITGB4 or SOX2 sensitized them to cisplatin. Carfilzomib (CFZ) synergized with cisplatin and suppressed CSC growth by inhibiting ITGB4 and SOX2 expression. Additionally, CFZ was found to inhibit SOX2 expression epigenetically by inhibiting histone acetylation at the SOX2 promoter site. CFZ also suppressed the growth of SOX2-dependent small cell lung cancer cells in vitro and in vivo. The study highlights the unique function of CFZ as a transcriptional suppressor of SOX2, independent of its proteasome inhibitory function.
Collapse
Affiliation(s)
- Linlin Guo
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Atish Mohanty
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sharad Singhal
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Saumya Srivastava
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Arin Nam
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Charles Warden
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA
| | - Sravani Ramisetty
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Divison of Translational Bioinformatics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Hyejin Cho
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA
| | - Aimin Li
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Manik Vohra
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Srinivas Vinod Saladi
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Deric Wheeler
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Leonidas Arvanitis
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Erminia Massarelli
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
36
|
Zhou Q, Chen X, Yao K, Zhang Y, He H, Huang H, Chen H, Peng S, Huang M, Cheng L, Zhang Q, Xie R, Li K, Lin T, Huang H. TSPAN18 facilitates bone metastasis of prostate cancer by protecting STIM1 from TRIM32-mediated ubiquitination. J Exp Clin Cancer Res 2023; 42:195. [PMID: 37542345 PMCID: PMC10403854 DOI: 10.1186/s13046-023-02764-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/12/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Bone metastasis is a principal cause of mortality in patients with prostate cancer (PCa). Increasing evidence indicates that high expression of stromal interaction molecule 1 (STIM1)-mediated store-operated calcium entry (SOCE) significantly activates the calcium (Ca2+) signaling pathway and is involved in multiple steps of bone metastasis in PCa. However, the regulatory mechanism and target therapy of STIM1 is poorly defined. METHODS Liquid chromatography-mass spectrometry analysis was performed to identify tetraspanin 18 (TSPAN18) as a binding protein of STIM1. Co-IP assay was carried out to explore the mechanism by which TSPAN18 inhibits STIM1 degradation. The biological function of TSPAN18 in bone metastasis of PCa was further investigated in vitro and in vivo models. RESULT We identified that STIM1 directly interacted with TSPAN18, and TSPAN18 competitively inhibited E3 ligase tripartite motif containing 32 (TRIM32)-mediated STIM1 ubiquitination and degradation, leading to increasing STIM1 protein stability. Furthermore, TSPAN18 significantly stimulated Ca2+ influx in an STIM1-dependent manner, and then markedly accelerated PCa cells migration and invasion in vitro and bone metastasis in vivo. Clinically, overexpression of TSPAN18 was positively associated with STIM1 protein expression, bone metastasis and poor prognosis in PCa. CONCLUSION Taken together, this work discovers a novel STIM1 regulative mechanism that TSPAN18 protects STIM1 from TRIM32-mediated ubiquitination, and enhances bone metastasis of PCa by activating the STIM1-Ca2+ signaling axis, suggesting that TSPAN18 may be an attractive therapeutic target for blocking bone metastasis in PCa.
Collapse
Affiliation(s)
- Qianghua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th yanjiangxi road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of urology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th yanjiangxi road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kai Yao
- Department of urology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yangjie Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th yanjiangxi road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Haixia He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Hao Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th yanjiangxi road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th yanjiangxi road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th yanjiangxi road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ming Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th yanjiangxi road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Liang Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th yanjiangxi road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiang Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th yanjiangxi road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th yanjiangxi road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th yanjiangxi road, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th yanjiangxi road, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510120, Guangdong, China.
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th yanjiangxi road, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
| |
Collapse
|
37
|
He P, Dai Q, Wu X. New insight in urological cancer therapy: From epithelial-mesenchymal transition (EMT) to application of nano-biomaterials. ENVIRONMENTAL RESEARCH 2023; 229:115672. [PMID: 36906272 DOI: 10.1016/j.envres.2023.115672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 05/21/2023]
Abstract
A high number of cancer-related deaths (up to 90) are due to metastasis and simple definition of metastasis is new colony formation of tumor cells in a secondary site. In tumor cells, epithelial-mesenchymal transition (EMT) stimulates metastasis and invasion, and it is a common characteristic of malignant tumors. Prostate cancer, bladder cancer and renal cancer are three main types of urological tumors that their malignant and aggressive behaviors are due to abnormal proliferation and metastasis. EMT has been well-documented as a mechanism for promoting invasion of tumor cells and in the current review, a special attention is directed towards understanding role of EMT in malignancy, metastasis and therapy response of urological cancers. The invasion and metastatic characteristics of urological tumors enhance due to EMT induction and this is essential for ensuring survival and ability in developing new colonies in neighboring and distant tissues and organs. When EMT induction occurs, malignant behavior of tumor cells enhances and their tend in developing therapy resistance especially chemoresistance promotes that is one of the underlying reasons for therapy failure and patient death. The lncRNAs, microRNAs, eIF5A2, Notch-4 and hypoxia are among common modulators of EMT mechanism in urological tumors. Moreover, anti-tumor compounds such as metformin can be utilized in suppressing malignancy of urological tumors. Besides, genes and epigenetic factors modulating EMT mechanism can be therapeutically targeted for interfering malignancy of urological tumors. Nanomaterials are new emerging agents in urological cancer therapy that they can improve potential of current therapeutics by their targeted delivery to tumor site. The important hallmarks of urological cancers including growth, invasion and angiogenesis can be suppressed by cargo-loaded nanomaterials. Moreover, nanomaterials can improve chemotherapy potential in urological cancer elimination and by providing phototherapy, they mediate synergistic tumor suppression. The clinical application depends on development of biocompatible nanomaterials.
Collapse
Affiliation(s)
- Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
38
|
Xiao K, Peng S, Lu J, Zhou T, Hong X, Chen S, Liu G, Li H, Huang J, Chen X, Lin T. UBE2S interacting with TRIM21 mediates the K11-linked ubiquitination of LPP to promote the lymphatic metastasis of bladder cancer. Cell Death Dis 2023; 14:408. [PMID: 37422473 PMCID: PMC10329682 DOI: 10.1038/s41419-023-05938-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
Lymphatic metastasis is the most common pattern of bladder cancer (BCa) metastasis and has an extremely poor prognosis. Emerging evidence shows that ubiquitination plays crucial roles in various processes of tumors, including tumorigenesis and progression. However, the molecular mechanisms underlying the roles of ubiquitination in the lymphatic metastasis of BCa are largely unknown. In the present study, through bioinformatics analysis and validation in tissue samples, we found that the ubiquitin-conjugating E2 enzyme UBE2S was positively correlated with the lymphatic metastasis status, high tumor stage, histological grade, and poor prognosis of BCa patients. Functional assays showed that UBE2S promoted BCa cell migration and invasion in vitro, as well as lymphatic metastasis in vivo. Mechanistically, UBE2S interacted with tripartite motif containing 21 (TRIM21) and jointly induced the ubiquitination of lipoma preferred partner (LPP) via K11-linked polyubiquitination but not K48- or K63-linked polyubiquitination. Moreover, LPP silencing rescued the anti-metastatic phenotypes and inhibited the epithelial-mesenchymal transition of BCa cells after UBE2S knockdown. Finally, targeting UBE2S with cephalomannine distinctly inhibited the progression of BCa in cell lines and human BCa-derived organoids in vitro, as well as in a lymphatic metastasis model in vivo, without significant toxicity. In conclusion, our study reveals that UBE2S, by interacting with TRIM21, degrades LPP through K11-linked ubiquitination to promote the lymphatic metastasis of BCa, suggesting that UBE2S represents a potent and promising therapeutic target for metastatic BCa.
Collapse
Affiliation(s)
- Kanghua Xiao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China
| | - Junlin Lu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China
| | - Ting Zhou
- Biobank of Sun Yat-sen University Cancer Center, Guangzhou, 510120, Guangdong, PR China
| | - Xuwei Hong
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| | - Siting Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China
| | - Guangyao Liu
- School of Medicine, South China University of Technology, Guangzhou, 510120, Guangdong, PR China
| | - Hong Li
- BioMed Laboratory, Guangzhou Jingke Biotech Group, Guangzhou, 510120, Guangdong, PR China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510120, Guangdong, PR China.
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510120, Guangdong, PR China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510120, Guangdong, PR China.
| |
Collapse
|
39
|
Segal D, Dostie J. The Talented LncRNAs: Meshing into Transcriptional Regulatory Networks in Cancer. Cancers (Basel) 2023; 15:3433. [PMID: 37444543 DOI: 10.3390/cancers15133433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
As a group of diseases characterized by uncontrollable cell growth, cancer is highly multifaceted in how it overrides checkpoints controlling proliferation. Amongst the regulators of these checkpoints, long non-coding RNAs (lncRNAs) can have key roles in why natural biological processes go haywire. LncRNAs represent a large class of regulatory transcripts that can localize anywhere in cells. They were found to affect gene expression on many levels from transcription to mRNA translation and even protein stability. LncRNA participation in such control mechanisms can depend on cell context, with given transcripts sometimes acting as oncogenes or tumor suppressors. Importantly, the tissue-specificity and low expression levels of lncRNAs make them attractive therapeutic targets or biomarkers. Here, we review the various cellular processes affected by lncRNAs and outline molecular strategies they use to control gene expression, particularly in cancer and in relation to transcription factors.
Collapse
Affiliation(s)
- Dana Segal
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Josée Dostie
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| |
Collapse
|
40
|
Steele TM, Tsamouri MM, Siddiqui S, Lucchesi CA, Vasilatis D, Mooso BA, Durbin-Johnson BP, Ma AH, Hejazi N, Parikh M, Mudryj M, Pan CX, Ghosh PM. Cisplatin-induced increase in heregulin 1 and its attenuation by the monoclonal ErbB3 antibody seribantumab in bladder cancer. Sci Rep 2023; 13:9617. [PMID: 37316561 PMCID: PMC10267166 DOI: 10.1038/s41598-023-36774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/09/2023] [Indexed: 06/16/2023] Open
Abstract
Cisplatin-based combination chemotherapy is the foundation for treatment of advanced bladder cancer (BlCa), but many patients develop chemoresistance mediated by increased Akt and ERK phosphorylation. However, the mechanism by which cisplatin induces this increase has not been elucidated. Among six patient-derived xenograft (PDX) models of BlCa, we observed that the cisplatin-resistant BL0269 express high epidermal growth factor receptor, ErbB2/HER2 and ErbB3/HER3. Cisplatin treatment transiently increased phospho-ErbB3 (Y1328), phospho-ERK (T202/Y204) and phospho-Akt (S473), and analysis of radical cystectomy tissues from patients with BlCa showed correlation between ErbB3 and ERK phosphorylation, likely due to the activation of ERK via the ErbB3 pathway. In vitro analysis revealed a role for the ErbB3 ligand heregulin1-β1 (HRG1/NRG1), which is higher in chemoresistant lines compared to cisplatin-sensitive cells. Additionally, cisplatin treatment, both in PDX and cell models, increased HRG1 levels. The monoclonal antibody seribantumab, that obstructs ErbB3 ligand-binding, suppressed HRG1-induced ErbB3, Akt and ERK phosphorylation. Seribantumab also prevented tumor growth in both the chemosensitive BL0440 and chemoresistant BL0269 models. Our data demonstrate that cisplatin-associated increases in Akt and ERK phosphorylation is mediated by an elevation in HRG1, suggesting that inhibition of ErbB3 phosphorylation may be a useful therapeutic strategy in BlCa with high phospho-ErbB3 and HRG1 levels.
Collapse
Affiliation(s)
- Thomas M Steele
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Department of Urological Surgery, University of California Davis School of Medicine, 4860 Y Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Maria Malvina Tsamouri
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Department of Urological Surgery, University of California Davis School of Medicine, 4860 Y Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Salma Siddiqui
- Research Service, VA Northern California Health Care System, Mather, CA, USA
| | - Christopher A Lucchesi
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, USA
| | - Demitria Vasilatis
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Department of Urological Surgery, University of California Davis School of Medicine, 4860 Y Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Benjamin A Mooso
- Research Service, VA Northern California Health Care System, Mather, CA, USA
| | - Blythe P Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Ai-Hong Ma
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| | - Nazila Hejazi
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Yosemite Pathology Medical Group, Inc., Modesto, CA, USA
| | - Mamta Parikh
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Maria Mudryj
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Chong-Xian Pan
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paramita M Ghosh
- Research Service, VA Northern California Health Care System, Mather, CA, USA.
- Department of Urological Surgery, University of California Davis School of Medicine, 4860 Y Street, Suite 3500, Sacramento, CA, 95817, USA.
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA.
| |
Collapse
|
41
|
Wang C, Zhang C, Yang S, Xiang J, Zhou D, Xi X. Identification and validation of m5c-related lncRNA risk model for ovarian cancer. J Ovarian Res 2023; 16:96. [PMID: 37183262 PMCID: PMC10184408 DOI: 10.1186/s13048-023-01182-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/05/2023] [Indexed: 05/16/2023] Open
Abstract
Ovarian cancer (OC) is one of the common malignant tumors that seriously threaten women's health, and there is a lack of clinical prognostic predictors, while m5c and lncRNA have been shown to be predictive of multiple cancers, including OC. Therefore, our goal was to construct a risk model for OC based on m5c-related lncRNA.340 m5c-related lncRNA were identified and a novel risk model of OC ground on nine m5C-related lncRNA was constructed using LASSO-COX regression analysis. Kaplan-Meier analysis showed there was a significant difference in prognosis between risk groups. We established a nomogram which was a good predictor of overall survival. In addition, GSEA was enriched in multiple pathways and immune function analysis suggested that immune infiltration varies depending on the risk group. In vitro experiments show that AC005562.1, a key lncRNA of the risk model, is highly expressed in OC cells and promotes OC cell proliferation. Finally, we further explored the potential biological markers of m5c-related lncRNA in OC with WGCNA analysis and established a ceRNA network. In conclusion,we have developed a reliable m5c-related prediction model and performed systematic validation and exploration of various aspects. These results can be used for the assessment of OC prognosis and the discovery of novel biomarkers.
Collapse
Affiliation(s)
- Chong Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunxiao Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shimin Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiangdong Xiang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongmei Zhou
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowei Xi
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
42
|
Huang C, Zhou Y, Feng X, Wang J, Li Y, Yao X. Delivery of Engineered Primary Tumor-Derived Exosomes Effectively Suppressed the Colorectal Cancer Chemoresistance and Liver Metastasis. ACS NANO 2023. [PMID: 37141393 DOI: 10.1021/acsnano.3c00668] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Liver metastasis is one of the major causes of colorectal cancer (CRC)-related morbidity and mortality. Delivering small interfering RNAs (siRNAs) or noncoding RNAs has been reported as a promising method to target liver metastasis and chemoresistance in CRC. Here, we report a noncoding RNA delivery system using exosomes derived from primary patient cells. Coiled-coil domain-containing protein 80 (CCDC80) was strongly associated with CRC liver metastasis and chemoresistance, a finding validated by bioinformatic analysis and clinical specimens. Silencing CCDC80 significantly increased sensitivity to chemotherapy agents in OXA-resistant cell lines and a mouse model. The primary cell-derived exosome delivery system was designed to simultaneously deliver siRNAs targeting CCDC80 and increase chemotherapy sensitivity in the distant CRC liver metastasis mouse models and patient-derived xenograft mouse models. We further validated the antitumor effect in an ex vivo model of chemoresistant CRC organoids and a patient-derived organoid xenograft model. Tumor-bearing mice treated with the siRNA-delivering exosomes and hepatectomy showed ideal overall survival. Our results provide a therapeutic target and represent a possible therapeutic alternative for patients with CRC and distant metastasis and in cases of chemoresistance.
Collapse
Affiliation(s)
- Chengzhi Huang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510000, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, China
| | - Yue Zhou
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510000, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
| | - Xingyu Feng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510000, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
| | - Xueqing Yao
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510000, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
43
|
Ren D, Li L, Wang S, Zuo Y. The c-MYC transcription factor conduces to resistance to cisplatin by regulating MMS19 in bladder cancer cells. Tissue Cell 2023; 82:102096. [PMID: 37201439 DOI: 10.1016/j.tice.2023.102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/09/2023] [Accepted: 04/15/2023] [Indexed: 05/20/2023]
Abstract
Chemoresistance is one of the dominant causes for tumor progression and recurrence of bladder cancer (BC). This paper investigated the effects of transcription factor c-MYC through promoting MMS19 expression on proliferation, metastasis and cisplatin (DDP) resistance in BC cells. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database were applied to acquire the needed BC gene data. The mRNA and protein levels of c-MYC and MMS19 were verified with q-PCR or Western blot assay. MTT and Transwell assays were utilized to detect cell viability and metastasis. Chromatin Immunoprecipitation (ChIP) assay and Luciferase reporter assay were exerted to confirm the relationship between c-MYC and MMS19. TCGA and GEO BC datasets results implied MMS19 could be an independent indicator for BC patients' prognosis. MMS19 expression was dramatically augmented in BC cell lines. Overexpression of MMS19 conduced to accelerate BC cells proliferation, metastasis and increase DDP resistance. c-MYC was positively correlated with MMS19 and acted as a transcription activator for MMS19 in BC cell lines and activated MMS19 expression. Overexpression of c-MYC facilitated BC cells proliferation, metastasis and DDP resistance. In conclusions, c-MYC gene was a transcriptional regulator of MMS19. Up-regulation of c-MYC facilitated BC cells proliferation, metastasis and DDP resistance by motivating MMS19 expression. This molecular mechanism between c-MYC and MMS19 exerts a crucial mission in BC tumorigenesis and DDP resistance, and may contribute to the diagnosis and therapy of BC for the time to come.
Collapse
Affiliation(s)
- Da Ren
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Lei Li
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong Province, China
| | - Shuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yali Zuo
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
44
|
Nandi S, Mondal A, Ghosh A, Mukherjee S, Das C. Lnc-ing epigenetic mechanisms with autophagy and cancer drug resistance. Adv Cancer Res 2023; 160:133-203. [PMID: 37704287 DOI: 10.1016/bs.acr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) comprise a diverse class of RNA molecules that regulate various physiological processes and have been reported to be involved in several human pathologies ranging from neurodegenerative disease to cancer. Therapeutic resistance is a major hurdle for cancer treatment. Over the past decade, several studies has emerged on the role of lncRNAs in cancer drug resistance and many trials have been conducted employing them. LncRNAs also regulate different cell death pathways thereby maintaining a fine balance of cell survival and death. Autophagy is a complex cell-killing mechanism that has both cytoprotective and cytotoxic roles. Similarly, autophagy can lead to the induction of both chemosensitization and chemoresistance in cancer cells upon therapeutic intervention. Recently the role of lncRNAs in the regulation of autophagy has also surfaced. Thus, lncRNAs can be used in cancer therapeutics to alleviate the challenges of chemoresistance by targeting the autophagosomal axis. In this chapter, we discuss about the role of lncRNAs in autophagy-mediated cancer drug resistance and its implication in targeted cancer therapy.
Collapse
Affiliation(s)
- Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Aritra Ghosh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Indian Institute of Science Education and Research, Kolkata, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
45
|
Zhang Q, Liu S, Wang H, Xiao K, Lu J, Chen S, Huang M, Xie R, Lin T, Chen X. ETV4 Mediated Tumor-Associated Neutrophil Infiltration Facilitates Lymphangiogenesis and Lymphatic Metastasis of Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205613. [PMID: 36670069 PMCID: PMC10104629 DOI: 10.1002/advs.202205613] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/21/2022] [Indexed: 05/08/2023]
Abstract
As a key step of tumor lymphatic metastasis, lymphangiogenesis is regulated by VEGFC-VEGFR3 signaling pathway mediated by immune cells, mainly macrophages, in the tumor microenvironment. However, little is known whether tumor associated neutrophils are involved in lymphangiogenesis. Here, it is found that TANs infiltration is increased in LN-metastatic BCa and is associated with poor prognosis. Neutrophil depletion results in significant reduction in popliteal LN metastasis and lymphangiogenesis. Mechanistically, transcription factor ETV4 enhances BCa cells-derived CXCL1/8 to recruit TANs, leading to the increase of VEGFA and MMP9 from TANs, and then facilitating lymphangiogenesis and LN metastasis of BCa. Moreover, phosphorylation of ETV4 at tyrosine 392 by tyrosine kinase PTK6 increases nuclear translocation of ETV4 and is essential for its function in BCa. Overall, the findings reveal a novel mechanism of how tumor cells regulate TANs-induced lymphangiogenesis and LN metastasis and identify ETV4 as a therapeutic target of LN metastasis in BCa.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Sen Liu
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Hongjin Wang
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Kanghua Xiao
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Junlin Lu
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Siting Chen
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Ming Huang
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Ruihui Xie
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Tianxin Lin
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Xu Chen
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| |
Collapse
|
46
|
Wu Y, Xu Y, He S, Li Y, Feng N, Fan J, Gong Y, Li X, Zhou L. Cytoskeleton regulator RNA expression on cancer-associated fibroblasts is associated with prognosis and immunotherapy response in bladder cancer. Heliyon 2023; 9:e13707. [PMID: 36873531 PMCID: PMC9976329 DOI: 10.1016/j.heliyon.2023.e13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Background Dysregulation of long noncoding RNAs (lncRNAs) has been reported to be associated with multiple tumors where they act as tumor suppressors or accelerators. The lncRNA CYTOR was identified as an oncogene involved in many cancers, such as gastric cancer, colorectal cancer, hepatocellular carcinoma, and renal cell carcinoma. However, the role of CYTOR in bladder cancer (BCa) has rarely been reported. Methods Using cancer datasets from The Cancer Genome Atlas (TCGA) program, we analyzed the association between CYTOR expression and prognostic value, oncogenic pathways, antitumor immunity and immunotherapy response in BCa. The influence of CYTOR on the immune infiltration pattern in the urothelial carcinoma microenvironment was further verified in our dataset. Single-cell analysis revealed the role of CYTOR in the tumor microenvironment (TME) of BCa. Finally, we evaluated the expression of CYTOR in BCa in the Peking University First Hospital (PKU-BCa) dataset and its correlation with the malignant phenotype of BCa in vitro and in vivo. Results The results indicated that CYTOR was highly expressed in multiple cancer samples, including BCa, and increased CYTOR expression contributed to poor overall survival (OS). Additionally, elevated CYTOR expression was significantly correlated with clinicopathological features of BCa, such as female sex, advanced TNM stage, high histological grade and non-papillary subtype. Functional characterization revealed that CYTOR may be involved in immune-related pathways and the epithelial mesenchymal transformation (EMT) process. Moreover, CYTOR had a significant association with infiltrating immune cells, including M2 macrophages and regulatory T cells (Tregs). CYTOR facilitates the crosstalk between cancer-associated fibroblasts (CAFs) and macrophages, and mediates M2 polarization of macrophages. Correlation analysis revealed a positive correlation between CYTOR expression and programmed cell death-1 (PD-1)/programmed death ligand 1 (PD-L1)/expression and other targets for specific immunotherapy in BCa, which are recognized to predict the efficacy of immunotherapy. Conclusions These results suggest that CYTOR serves as a potential biomarker for predicting survival outcome, TME cell infiltration characteristics and immunotherapy response in BCa.
Collapse
Key Words
- BCa, Bladder cancer
- Bladder cancer
- CAFs, Cancer-associated fibroblasts
- CIBERSOFT, Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts
- CYTOR
- CYTOR, Cytoskeleton regulator RNA
- EMT, Epithelial mesenchymal transformation
- Immune infiltration
- Immunotherapy
- LncRNAs, Long non-coding RNAs
- MIBC, Muscle-invasive bladder cancer
- OS, Overall survival
- PCA, Principal component analysis
- PD-1, Programmed cell death-1
- PD-L1, Programmed death ligand 1
- RT-qPCR, Reverse transcription-quantitative polymerase chain reaction
- Survival
- TCGA, The Cancer Genome Atlas
- TME, Tumor microenvironment
- UMI, Unique molecular identifier
- UTUC, Upper-tract urothelial carcinoma
Collapse
Affiliation(s)
- Yucai Wu
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, China
| | - Yangyang Xu
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, China
| | - Shiming He
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, China
| | - Yifan Li
- Department of Urology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
| | | | - Jian Fan
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, China
| |
Collapse
|
47
|
Shah SD, Gillard BM, Wrobel MM, Karasik E, Moser MT, Mastri M, Long MD, Sule N, Brackett CM, Huss WJ, Foster BA. Syngeneic model of carcinogen-induced tumor mimics basal/squamous, stromal-rich, and neuroendocrine molecular and immunological features of muscle-invasive bladder cancer. Front Oncol 2023; 13:1120329. [PMID: 36816919 PMCID: PMC9936245 DOI: 10.3389/fonc.2023.1120329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Bladder cancer is a heterogenous disease and the emerging knowledge on molecular classification of bladder tumors may impact treatment decisions based on molecular subtype. Pre-clinical models representing each subtype are needed to test novel therapies. Carcinogen-induced bladder cancer models represent heterogeneous, immune-competent, pre-clinical testing options with many features found in the human disease. Methods Invasive bladder tumors were induced in C57BL/6 mice when continuously exposed to N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) in the drinking water. Tumors were excised and serially passed by subcutaneous implantation into sex-matched syngeneic C57BL/6 hosts. Eight lines were named BBN-induced Urothelium Roswell Park (BURP) tumor lines. BURP lines were characterized by applying consensus molecular classification to RNA expression, histopathology, and immune profiles by CIBERSORT. Two lines were further characterized for cisplatin response. Results Eight BURP tumor lines were established with 3 male and 3 female BURP tumor lines, having the basal/squamous (BaSq) molecular phenotype and morphology. BURP-16SR was established from a male mouse and has a stromal-rich (SR) molecular phenotype and a sarcomatoid carcinoma morphology. BURP-19NE was established from a male mouse and has a neuroendocrine (NE)-like molecular phenotype and poorly differentiated morphology. The established BURP tumor lines have unique immune profiles with fewer immune infiltrates compared to their originating BBN-induced tumors. The immune profiles of the BURP tumor lines capture some of the features observed in the molecular classifications of human bladder cancer. BURP-16SR growth was inhibited by cisplatin treatment, while BURP-24BaSq did not respond to cisplatin. Discussion The BURP lines represent several molecular classifications, including basal/squamous, stroma-rich, and NE-like. The stroma-rich (BURP-16SR) and NE-like (BURP-19NE) represent unique immunocompetent models that can be used to test novel treatments in these less common bladder cancer subtypes. Six basal/squamous tumor lines were established from both male and female mice. Overall, the BURP tumor lines have less heterogeneity than the carcinogen-induced tumors and can be used to evaluate treatment response without the confounding mixed response often observed in heterogeneous tumors. Additionally, basal/squamous tumor lines were established and maintained in both male and female mice, thereby allowing these tumor lines to be used to compare differential treatment responses between sexes.
Collapse
Affiliation(s)
- Shruti D. Shah
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Bryan M. Gillard
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Michelle M. Wrobel
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Michael T. Moser
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Michalis Mastri
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Mark D. Long
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Norbert Sule
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Craig M. Brackett
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States,*Correspondence: Craig M. Brackett, ; Wendy J. Huss, ; Barbara A. Foster,
| | - Wendy J. Huss
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States,Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States,*Correspondence: Craig M. Brackett, ; Wendy J. Huss, ; Barbara A. Foster,
| | - Barbara A. Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States,*Correspondence: Craig M. Brackett, ; Wendy J. Huss, ; Barbara A. Foster,
| |
Collapse
|
48
|
Shi SJ, Han DH, Zhang JL, Li Y, Yang AG, Zhang R. VIM‑AS1 promotes proliferation and drives enzalutamide resistance in prostate cancer via IGF2BP2‑mediated HMGCS1 mRNA stabilization. Int J Oncol 2023; 62:34. [PMID: 36734275 PMCID: PMC9911078 DOI: 10.3892/ijo.2023.5482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
VIM‑AS1, a cancer‑specific long non‑coding RNA, has been recognized as a pivotal regulator in multiple types of cancer. However, the role of VIM‑AS1 in the proliferation and resistance to anti‑androgen therapy of LNCaP and C4‑2 prostate cancer cells remains to be determined. In the current study, gain‑and‑loss experiments were used to investigate the effects of VIM‑AS on the proliferation and anti‑androgen therapy of LNCaP and C4‑2 cells. RNA sequencing, RNA pulldown and RNA immunoprecipitation were used to elucidate the underlying mechanism of VIM‑AS1 driving prostate progression. It was demonstrated that VIM‑AS1 was upregulated in C4‑2 cells, an established castration‑resistant prostate cancer (CRPC) cell line, compared with in LNCaP cells, an established hormone‑sensitive prostate cancer cell line. The present study further demonstrated that VIM‑AS1 was positively associated with the clinical stage of prostate cancer. Functionally, overexpression of VIM‑AS1 decreased the sensitivity to enzalutamide treatment and enhanced the proliferation of LNCaP cells in vitro, whereas knockdown of VIM‑AS1 increased the sensitivity to enzalutamide treatment and reduced the proliferation of C4‑2 cells in vitro and in vivo. Mechanistically, 3‑hydroxy‑3‑methylglutaryl‑CoA synthase 1 (HMGCS1) was identified as one of the direct downstream targets of VIM‑AS1, and VIM‑AS1 promoted HMGCS1 expression by enhancing HMGCS1 mRNA stability through a VIM‑AS1/insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2)/HMGCS1 RNA‑protein complex. Rescue assays indicated that knockdown of HMGCS1 expression ameliorated the increase in proliferation and enzalutamide resistance of prostate cancer cells induced by VIM‑AS1 overexpression. Overall, the present study determined the roles and mechanism of the VIM‑AS1/IGF2BP2/HMGCS1 axis in regulating proliferation and enzalutamide sensitivity of prostate cancer cells and suggested that VIM‑AS1 may serve as a novel therapeutic target for the treatment of patients with CRPC.
Collapse
Affiliation(s)
- Sheng-Jia Shi
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Department of Andrology, Reproduction Center, Northwest Women's and Children's Hospital, Xian Jiaotong University Health Science Center, Xi'an, Shaanxi 710004, P.R. China,Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Dong-Hui Han
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Jing-Liang Zhang
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Yu Li
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Correspondence to: Professor Rui Zhang or Professor An-Gang Yang, State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, P.R. China, E-mail: , E-mail:
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Correspondence to: Professor Rui Zhang or Professor An-Gang Yang, State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, P.R. China, E-mail: , E-mail:
| |
Collapse
|
49
|
Re-Sensitizing Cancer Stem Cells to Conventional Chemotherapy Agents. Int J Mol Sci 2023; 24:ijms24032122. [PMID: 36768445 PMCID: PMC9917165 DOI: 10.3390/ijms24032122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer stem cells are found in many cancer types. They comprise a distinct subpopulation of cells within the tumor that exhibit properties of stem cells. They express a number of cell surface markers, such as CD133, CD44, ALDH, and EpCAM, as well as embryonic transcription factors Oct4, Nanog, and SOX2. CSCs are more resistant to conventional chemotherapy and can potentially drive tumor relapse. Therefore, it is essential to understand the molecular mechanisms that drive chemoresistance and to target them with specific therapy effectively. Highly conserved developmental signaling pathways such as Wnt, Hedgehog, and Notch are commonly reported to play a role in CSCs chemoresistance development. Studies show that particular pathway inhibitors combined with conventional therapy may re-establish sensitivity to the conventional therapy. Another significant contributor of chemoresistance is a specific tumor microenvironment. Surrounding stroma in the form of cancer-associated fibroblasts, macrophages, endothelial cells, and extracellular matrix components produce cytokines and other factors, thus creating a favorable environment and decreasing the cytotoxic effects of chemotherapy. Anti-stromal agents may potentially help to overcome these effects. Epigenetic changes and autophagy were also among the commonly reported mechanisms of chemoresistance. This review provides an overview of signaling pathway components involved in the development of chemoresistance of CSCs and gathers evidence from experimental studies in which CSCs can be re-sensitized to conventional chemotherapy agents across different cancer types.
Collapse
|
50
|
Ciafrè SA, Russo M, Michienzi A, Galardi S. Long Noncoding RNAs and Cancer Stem Cells: Dangerous Liaisons Managing Cancer. Int J Mol Sci 2023; 24:ijms24031828. [PMID: 36768150 PMCID: PMC9915130 DOI: 10.3390/ijms24031828] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Decades of research have investigated the mechanisms that lead to the origin of cancer, striving to identify tumor-initiating cells. These cells, also known as cancer stem cells, are characterized by the ability to self-renew, to give rise to differentiated tumor populations, and on a larger scale, are deemed responsible not only for tumor initiation but also for recurrent tumors, often resistant to chemotherapy and radiotherapy. Long noncoding RNAs are RNA molecules longer than 200 nt, lacking the ability to code for proteins, with recognized roles as fine regulators of gene expression. They can exert these functions through a variety of mechanisms, acting at almost all steps of gene expression, from modulation of the epigenetic state of chromatin to modulation of protein stability. In all cases, lncRNAs do not work alone, but they always interact with other RNA molecules, either coding or non-coding, or with protein factors. In this review, we summarize the latest results obtained about the involvement of lncRNAs in the initiating cells of several types of tumors, and highlight the different mechanisms through which they work, while discussing how the modulation of a lncRNA can affect several aspects of tumor onset and progression.
Collapse
Affiliation(s)
- Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (S.A.C.); (S.G.)
| | - Monia Russo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Silvia Galardi
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (S.A.C.); (S.G.)
| |
Collapse
|