1
|
Dong D, Yu X, Xu J, Yu N, Liu Z, Sun Y. Cellular and molecular mechanisms of gastrointestinal cancer liver metastases and drug resistance. Drug Resist Updat 2024; 77:101125. [PMID: 39173439 DOI: 10.1016/j.drup.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Distant metastases and drug resistance account for poor survival of patients with gastrointestinal (GI) malignancies such as gastric cancer, pancreatic cancer, and colorectal cancer. GI cancers most commonly metastasize to the liver, which provides a unique immunosuppressive tumour microenvironment to support the development of a premetastatic niche for tumor cell colonization and metastatic outgrowth. Metastatic tumors often exhibit greater resistance to drugs than primary tumors, posing extra challenges in treatment. The liver metastases and drug resistance of GI cancers are regulated by complex, intertwined, and tumor-dependent cellular and molecular mechanisms that influence tumor cell behavior (e.g. epithelial-to-mesenchymal transition, or EMT), tumor microenvironment (TME) (e.g. the extracellular matrix, cancer-associated fibroblasts, and tumor-infiltrating immune cells), tumor cell-TME interactions (e.g. through cytokines and exosomes), liver microenvironment (e.g. hepatic stellate cells and macrophages), and the route and mechanism of tumor cell dissemination (e.g. circulating tumor cells). This review provides an overview of recent advances in the research on cellular and molecular mechanisms that regulate liver metastases and drug resistance of GI cancers. We also discuss recent advances in the development of mechanism-based therapy for these GI cancers. Targeting these cellular and molecular mechanisms, either alone or in combination, may potentially provide novel approaches to treat metastatic GI malignancies.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Na Yu
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
2
|
Li L, Sun X, Zhang M, Zhang B, Yang Y, Wang S. FOXN2, identified as a novel biomarker in serum, modulates the transforming growth factor-beta signaling pathway through its interaction with partitioning defective 6 homolog alpha, contributing to the pathogenesis of gastric cancer. Growth Factors 2024; 42:62-73. [PMID: 38954805 DOI: 10.1080/08977194.2023.2297700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/07/2023] [Indexed: 07/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Dysregulated expression of Forkhead Box N2 (FOXN2) has been detected in various cancer types. However, the underlying mechanisms by which FOXN2 contributes to the onset and progression of gastric cancer (GC) remain largely unexplored. This study aimed to elucidate the potential role of FOXN2 within GC, its downstream molecular mechanisms, and its feasibility as a novel serum biomarker for GC. METHODS Tissue samples from GC patients and corresponding non-cancerous tissues were collected. Peripheral blood samples were obtained from GC patients and healthy controls. The expression of FOXN2 was determined using quantitative real-time PCR, western blotting, and immunohistochemistry. The expression of FOXN2 in GC cells was modulated by transfection with small interfering RNA (siRNA) or the pcDNA 3.1 expression vector. Cell proliferation was assessed using the Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine incorporation assays. The migratory and invasive capacities of cells were evaluated by Transwell assays, apoptosis rates were measured by flow cytometry, and the expression of proliferative, apoptotic, and epithelial-mesenchymal transition (EMT) markers were assessed by western blot analysis. RESULTS FOXN2 was found to be overexpressed in the serum, tissues, and cells of GC, correlating with distant metastasis and TNM staging. FOXN2 demonstrated diagnostic value in differentiating GC patients from healthy individuals, with higher levels of FOXN2 being indicative of poorer survival rates. Silencing FOXN2 in vitro inhibited the proliferation, invasion, migration, and EMT of GC cells, while promoting apoptosis. FOXN2 was shown to regulate the transforming growth factor-beta (TGFβ) receptor signaling pathway in GC cells via its interaction with Partitioning Defective 6 Homolog Alpha (PARD6A). CONCLUSION In summary, our data suggest that FOXN2 acts as an oncogenic factor in GC, modulating the TGFβ pathway by binding to PARD6A, thereby influencing gastric carcinogenesis. This study underscores the functional significance of FOXN2 as a potential serum biomarker and therapeutic target in GC.
Collapse
Affiliation(s)
- Liang Li
- Department of Gastroenterology, Three Gorges Hospital Affiliated to Chongqing University, Chongqing City, China
| | - XueFeng Sun
- Department of Gastroenterology, Three Gorges Hospital Affiliated to Chongqing University, Chongqing City, China
| | - Mei Zhang
- Department of Gastroenterology, Three Gorges Hospital Affiliated to Chongqing University, Chongqing City, China
| | - BangShuo Zhang
- Department of Hematology, Three Gorges Hospital Affiliated to Chongqing University, Chongqing City, China
| | - Yi Yang
- Department of Hematology, Three Gorges Hospital Affiliated to Chongqing University, Chongqing City, China
| | - Sheng Wang
- Department of Rheumatology and Immunology, Three Gorges Hospital Affiliated to Chongqing University, Chongqing City, China
| |
Collapse
|
3
|
Jeong JH, Park SH, Kim H, Nam HY, Kim SH, Jeong M, Kong MJ, Son J, Jeong JE, Song JH, Kim SW, Choi KC. ZBTB7A suppresses glioblastoma tumorigenesis through the transcriptional repression of EPB41L5. Exp Mol Med 2023; 55:43-54. [PMID: 36596853 PMCID: PMC9898510 DOI: 10.1038/s12276-022-00908-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma multiforme (GBM), the most aggressive and malignant glioma, has a poor prognosis. Although patients with GBM are treated with surgery, chemotherapy, and radiation therapy, GBM is highly resistant to treatment, making it difficult and expensive to treat. In this study, we analyzed the Gene Expression Profiling Interactive Analysis dataset, the Cancer Genome Atlas dataset, and Gene Expression Omnibus array data. ZBTB7A (also called FBI1/POKEMON/LRF) was found to be highly expressed in low-grade glioma but significantly downregulated in patients with GBM. ZBTB7A is a transcription factor that plays an important role in many developmental stages, including cell proliferation. The activation of epithelial-mesenchymal transition (EMT) is a key process in cancer progression and metastasis. Erythrocyte membrane protein band 4.1 like 5 (EPB41L5) is an essential protein for EMT progression and metastasis in various types of cancer. We found that ZBTB7A depletion in U87 cells induced GBM progression and metastasis. Based on RNA sequencing data, ZBTB7A directly binds to the promoter of the EPB41L5 gene, reducing its expression and inhibiting GBM progression. We demonstrated that ZBTB7A dramatically inhibits GBM tumor growth through transcriptional repression of EPB41L5. Thus, both ZBTB7A and EPB41L5 may be potential biomarkers and novel therapeutic targets for GBM treatment. Overall, we discovered the role of a novel tumor suppressor that directly inhibits GBM progression (ZBTB7A) and identified EPB41L5 as a therapeutic target protein for patients with GBM.
Collapse
Affiliation(s)
- Ji-Hoon Jeong
- grid.413967.e0000 0001 0842 2126Department of Biomedical Sciences, AAMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung-Ho Park
- grid.413967.e0000 0001 0842 2126Department of Biomedical Sciences, AAMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyunhee Kim
- grid.413967.e0000 0001 0842 2126Department of Biomedical Sciences, AAMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hae Yun Nam
- grid.413967.e0000 0001 0842 2126Department of Biochemistry and Molecular Biology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Hak Kim
- grid.14005.300000 0001 0356 9399Department of Animal Science, Chonnam National University, Gwangju, Korea
| | - Minseok Jeong
- grid.413967.e0000 0001 0842 2126Department of Biomedical Sciences, AAMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min-Jeong Kong
- grid.413967.e0000 0001 0842 2126Department of Biomedical Sciences, AAMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jihyun Son
- grid.413967.e0000 0001 0842 2126Department of Biomedical Sciences, AAMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Eun Jeong
- grid.413967.e0000 0001 0842 2126Department of Biomedical Sciences, AAMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Hye Song
- grid.418974.70000 0001 0573 0246Korea Food Research Institute, Wanju-gun, 55365 Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Kyung-Chul Choi
- Department of Biomedical Sciences, AAMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Tyryshkin K, Moore A, Good D, Popov J, Crocker S, Rauh MJ, Baetz T, LeBrun DP. Expression of TCF3 target genes defines a subclass of diffuse large B-cell lymphoma characterized by up-regulation of MYC target genes and poor clinical outcome following R-CHOP therapy. Leuk Lymphoma 2023; 64:119-129. [PMID: 36336953 DOI: 10.1080/10428194.2022.2136968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
TCF3 is a lymphopoietic transcription factor that acquires somatic driver mutations in diffuse large B-cell lymphoma (DLBCL). Hypothesizing that expression patterns of TCF3-regulated genes can inform clinical management, we found that unsupervised clustering analysis with 15 TCF3-regulated genes and eight additional ones resolved local DLBCL cases into two main clusters, denoted Groups A and B, of which Group A manifested inferior overall survival (OS, p = 0.0005). We trained a machine learning model to classify samples into the Groups based on expression of the 23 transcripts in an independent validation cohort of 569 R-CHOP-treated DLBCL cases. Group A overlapped with the ABC cell-of-origin subgroup but its prognostic power was superior. GSEA analysis demonstrated asymmetric expression of 30 gene sets between the Groups, pointing to biological differences. We present, validate and make available a novel method to assign DLBCL cases into biologically-distinct groups with divergent OS following R-CHOP therapy.
Collapse
Affiliation(s)
- Kathrin Tyryshkin
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.,School of Computing, Queen's University, Kingston, Ontario, Canada
| | - Alison Moore
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - David Good
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Jesse Popov
- Department of Internal Medicine, Queen's University, Kingston, Ontario, Canada
| | - Susan Crocker
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Tara Baetz
- Department of Medical Oncology, Queen's University, Kingston, Ontario, Canada
| | - David P LeBrun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
5
|
Fang C, Zhang X, Li C, Liu F, Liu H. Troponin C-1 Activated by E2F1 Accelerates Gastric Cancer Progression via Regulating TGF-β/Smad Signaling. Dig Dis Sci 2022; 67:4444-4457. [PMID: 34797443 DOI: 10.1007/s10620-021-07287-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Troponin C-1 (TNNC1) has been previously characterized as an oncogenic gene. AIMS This study aimed to reveal the roles of TNNC1 in gastric cancer and the potential underlying mechanisms. METHODS TNNC1 siRNAs and TNNC1 overexpression plasmid were used to alter its expression in AGS, MKN45, and HGC-27 cells. CCK-8 assay, colony formation, EdU assay, flow cytometry, transwell assay, and scratch test were conducted to measure the phenotype changes. In vivo effects of TNNC1 silence were confirmed by using a xenograft mouse model. Bioinformatics analysis was conducted to screen out the transcription factor and downstream signaling of TNNC1. RESULTS TNNC1 was highly expressed in gastric cancer tissues and cell lines, and its expression was associated with poor prognosis. TNNC1 silence suppressed the proliferation, migration, and invasion of AGS and MKN45 cells. However, TNNC1 silence induced apoptosis by mediating the cleavage of caspase-3 and caspase-9. Overexpression of TNNC1 in HGC-27 cells led to the contrary effects. The anti-tumor effects of TNNC1 silence were also confirmed in a xenograft animal model. E2F1 was validated as an upstream transcription factor of TNNC1. Effects of TNNC1 silence on AGS cell migration and invasion were attenuated by E2F1 overexpression. Besides, TGF-β/Smad was a downstream signaling pathway of TNNC1. The anti-tumor impacts of TNNC1 silence were weaken by SB431542 (a specific inhibitor of TGF-β signaling) while accelerated by TGF-β. CONCLUSION TNNC1 activated by E2F1 functioned as an oncogenic gene through regulating TGF-β/Smad signaling. TNNC1 was suggested as a potential molecular drug target of gastric cancer.
Collapse
Affiliation(s)
- Can Fang
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Street, Muping District, Yantai, 264100, Shandong, People's Republic of China
| | - Xinxin Zhang
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Street, Muping District, Yantai, 264100, Shandong, People's Republic of China
| | - Chengyan Li
- Department of Digestive Endoscopy Room, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, People's Republic of China
| | - Fang Liu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Street, Muping District, Yantai, 264100, Shandong, People's Republic of China
| | - Hui Liu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Street, Muping District, Yantai, 264100, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Liu X, Zeng Y, Liu Z, Li W, Wang L, Wu M. Bioinformatics analysis of the circRNA-miRNA-mRNA network for atrial fibrillation. Medicine (Baltimore) 2022; 101:e30221. [PMID: 36042613 PMCID: PMC9410607 DOI: 10.1097/md.0000000000030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Atrial fibrillation (AF) is a chronic and progressive disease, with advancing age, the morbidity of which will increase exponentially. Circular ribonucleic acids (RNAs; circRNAs) have gained a growing attention in the development of AF in recent years. The purpose of this study is to explore the mechanism of circRNA regulation in AF, in particular, the intricate interactions among circRNA, microRNA (miRNA), and messenger RNA (mRNA). Three datasets (GSE129409, GSE68475, and GSE79768) were obtained from the Gene Expression Omnibus database to screen differentially expressed (DE) circRNAs, DE miRNAs, and DE mRNAs in AF, respectively. Based on circRNA-miRNA pairs and miRNA-mRNA pairs, a competing endogenous RNAs (ceRNAs) network was built. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis of DE mRNAs in the network were performed and protein-protein interaction (PPI) networks were established to identify hub genes. Finally, a circRNA-miRNA-hub gene subnetwork was constructed. A total of 103 DE circRNAs, 16 DE miRNAs, and 110 DE mRNAs were screened in AF. Next, ceRNAs network in AF was constructed with 3 upregulated circRNAs, 2 downregulated circRNAs, 2 upregulated miRNAs, 2 downregulated miRNAs, 17 upregulated mRNAs, and 24 downregulated mRNAs. Thirty GO terms and 6 KEGG pathways were obtained. Besides, 6 hub genes (C-X-C chemokine receptor type 4 [CXCR4], C-X-C chemokine receptor type 2 [CXCR2], C-X-C motif chemokine 11 [CXCL11], neuromedin-U, B1 bradykinin receptor, and complement C3) were screened from constructing a PPI network. Finally, a circRNA-miRNA-hub gene subnetwork with 10 regulatory axes was constructed to describe the interactions among the differential circRNAs, miRNA, and hub genes. We speculated that hsa_circRNA_0056281/hsa_circRNA_0006665 -hsa-miR-613-CXCR4/CXCR2/CXCL11 regulatory axes and hsa_circRNA_0003638-hsa-miR-1207-3p-CXCR4 regulatory axis may be associated with the pathogenesis of AF.
Collapse
Affiliation(s)
- Xing Liu
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Yiqian Zeng
- Department of Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Zhao Liu
- Department of Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Wenbin Li
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Lei Wang
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Mingxing Wu
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
- *Correspondence: Mingxing Wu, Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, China (e-mail: )
| |
Collapse
|
7
|
Targeting HIC1/TGF-β axis-shaped prostate cancer microenvironment restrains its progression. Cell Death Dis 2022; 13:624. [PMID: 35853880 PMCID: PMC9296670 DOI: 10.1038/s41419-022-05086-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023]
Abstract
Prostate cancer (PCa) is a malignant tumor that seriously threatens men's health worldwide. Recently, stromal cells in the tumor microenvironment (TME) have been reported to contribute to the progression of PCa. However, the role and mechanism of how PCa cells interact with stromal cells to reshape the TME remain largely unknown. Here, using a spontaneous prostate adenocarcinoma (PRAD) model driven by the loss of Pten and Hic1, we found that M2 macrophages markedly infiltrated the stroma of Pten and Hic1 double conditional knockout (dCKO) mice compared with those in control (Ctrl) mice due to higher TGF-β levels secreted by HIC1-deleted PCa cells. Mechanistically, TGF-β in TME promoted the polarization of macrophages into "M2" status by activating the STAT3 pathway and modulating c-Myc to upregulate CXCR4 expression. Meanwhile, TGF-β activated the fibroblasts to form cancer-associated fibroblasts (CAFs) that secrete higher CXCL12 levels, which bound to its cognate receptor CXCR4 on M2 macrophages. Upon interaction with CAFs, M2 macrophages secreted more CXCL5, which promoted the epithelial-mesenchymal transition (EMT) of PCa via CXCR2. Moreover, using the TGF-β receptor I antagonist, galunisertib, significantly inhibited the tumor growth and progression of the TRAMP-C1 cell line-derived subcutaneous tumor model. Finally, we confirmed that the stromal microenvironment was shaped by TGF-β in HIC1-deficient PCa and was associated with the progression of PCa.
Collapse
|
8
|
Zhang Y, Zhang L, Zheng S, Li M, Xu C, Jia D, Qi Y, Hou T, Wang L, Wang B, Li A, Chen S, Si J, Zhuo W. Fusobacterium nucleatum promotes colorectal cancer cells adhesion to endothelial cells and facilitates extravasation and metastasis by inducing ALPK1/NF-κB/ICAM1 axis. Gut Microbes 2022; 14:2038852. [PMID: 35220887 PMCID: PMC8890384 DOI: 10.1080/19490976.2022.2038852] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Metastasis is the leading cause of death for colorectal cancer (CRC) patients, and the spreading tumor cells adhesion to endothelial cells is a critical step for extravasation and further distant metastasis. Previous studies have documented the important roles of gut microbiota-host interactions in the CRC malignancy, and Fusobacterium nucleatum (F. nucleatum) was reported to increase proliferation and invasive activities of CRC cells. However, the potential functions and underlying mechanisms of F. nucleatum in the interactions between CRC cells and endothelial cells and subsequent extravasation remain unclear. Here, we uncovered that F. nucleatum enhanced the adhesion of CRC cells to endothelial cells, promoted extravasation and metastasis by inducing ICAM1 expression. Mechanistically, we identified that F. nucleatum induced a new pattern recognition receptor ALPK1 to activate NF-κB pathway, resulting in the upregulation of ICAM1. Interestingly, the abundance of F. nucleatum in tumor tissues of CRC patients was positively associated with the expression levels of ALPK1 and ICAM1. Moreover, high expression of ALPK1 or ICAM1 was significantly associated with a shorter overall survival time of CRC patients. This study provides a new insight into the role of gut microbiota in engaging into the distant metastasis of CRC cells.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Lu Zhang
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Sheng Zheng
- Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China,Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Mengjie Li
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Chaochao Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Dingjiacheng Jia
- Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China,Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yadong Qi
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Lan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Boya Wang
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China,Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Aiqing Li
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China,Shujie Chen Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China,Jianmin Si Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Wei Zhuo
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China,CONTACT Wei Zhuo Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310058, Zhejiang, China
| |
Collapse
|
9
|
Elevation of microRNA-365 impedes malignant behaviors of gastric cancer cells by inhibiting PAX6. Funct Integr Genomics 2022; 22:825-834. [PMID: 35484308 DOI: 10.1007/s10142-022-00858-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022]
Abstract
MicroRNA-365 (miR-365) has been revealed to be a vital regulator in tumorigenesis of multiple cancers, while there is a large gap in the knowledge about miR-365 expression and gastric cancer (GC). This research focused on the effects of miR-365 and paired box 6 (PAX6) on GC development. Levels of miR-365 and PAX6 in GC tissues and cell lines were determined, followed by the screening of the AGS and NCI-N87 cells. Gain- or loss-of-function assays were used to analyze the effect of miR-365, PAX6 on AGS and NCI-N87 cell behaviors. The effects of altered miR-365 and PAX6 on animal models were observed. Moreover, to assess the interaction between miR-365 and PAX6, we implemented the bioinformatic method and dual luciferase reporter gene assay. MiR-365 was decreased while PAX6 was increased in GC tissues and cell lines. There existed a negative association between miR-365 and PAX6. The promoted miR-365 could repress oncogenicity in vivo and malignant transformation in vitro of GC. PAX6 was the target gene of miR-365. Overexpression of PAX6 reversed the inhibitory effect of up-regulated miR-365 on malignant behavior of gastric cancer cells. Our research displays that the amplification of miR-365 could suppress the malignant behaviors of GC cells via inhibiting PAX6, which may be helpful for GC treatment.
Collapse
|
10
|
Dong C, Wu K, Gu S, Wang W, Xie S, Zhou Y. PTBP3 mediates TGF-β-induced EMT and metastasis of lung adenocarcinoma. Cell Cycle 2022; 21:1406-1421. [PMID: 35323096 PMCID: PMC9345618 DOI: 10.1080/15384101.2022.2052530] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is associated with a poor prognosis due to early metastasis to distant organs. TGF-β potently induces epithelial-to-mesenchymal transition (EMT) and promotes invasion and metastasis of cancers. However, the mechanisms underlying this alteration are largely unknown. PTBP3 plays a critical role in RNA splicing and transcriptional regulation. Although accumulating evidence has revealed that PTBP3 exhibits a pro-oncogenic role in several cancers, whether and how PTBP3 mediates TGF-β-induced EMT and metastasis in LUAD remains unknown. The expression levels and prognostic value of PTBP3 were analyzed in human LUAD tissues and matched normal tissues. siRNAs and lentivirus-mediated vectors were used to transfect LUAD cell lines. Various in vitro experiments including western blot, qRT-PCR, a luciferase reporter assay, chromatin immunoprecipitation (ChIP), transwell migration and invasion assay and in vivo metastasis experiment were performed to determine the roles of PTBP3 in TGF-β-induced EMT and metastasis. PTBP3 expression was significantly upregulated in patients with LUAD, and high expression of PTBP3 indicated a poor prognosis. Intriguingly, we found that PTBP3 expression level in LUAD cell lines was significantly increased by exogenous TGF-β1 in a Smad-dependent manner. Mechanistically, p-Smad3 was recruited to the PTBP3 promoter and activated its transcription. In turn, PTBP3 knockdown abolished TGF-β1-mediated EMT through the inhibition of Smad2/3 expression. Furthermore, PTBP3 overexpression increased lung and liver metastasis of LUAD cells in vivo. PTBP3 is indispensable to TGF-β-induced EMT and metastasis of LUAD cells and is a novel potential therapeutic target for the treatment of LUAD.
Collapse
Affiliation(s)
- Chenglai Dong
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kaiqin Wu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shaorui Gu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenli Wang
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiliang Xie
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongxin Zhou
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Tobar LE, Farnsworth RH, Stacker SA. Brain Vascular Microenvironments in Cancer Metastasis. Biomolecules 2022; 12:biom12030401. [PMID: 35327593 PMCID: PMC8945804 DOI: 10.3390/biom12030401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
Primary tumours, particularly from major solid organs, are able to disseminate into the blood and lymphatic system and spread to distant sites. These secondary metastases to other major organs are the most lethal aspect of cancer, accounting for the majority of cancer deaths. The brain is a frequent site of metastasis, and brain metastases are often fatal due to the critical role of the nervous system and the limited options for treatment, including surgery. This creates a need to further understand the complex cell and molecular biology associated with the establishment of brain metastasis, including the changes to the environment of the brain to enable the arrival and growth of tumour cells. Local changes in the vascular network, immune system and stromal components all have the potential to recruit and foster metastatic tumour cells. This review summarises our current understanding of brain vascular microenvironments, fluid circulation and drainage in the context of brain metastases, as well as commenting on current cutting-edge experimental approaches used to investigate changes in vascular environments and alterations in specialised subsets of blood and lymphatic vessel cells during cancer spread to the brain.
Collapse
Affiliation(s)
- Lucas E. Tobar
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.E.T.); (R.H.F.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Rae H. Farnsworth
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.E.T.); (R.H.F.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Steven A. Stacker
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.E.T.); (R.H.F.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC 3050, Australia
- Correspondence: ; Tel.: +61-3-8559-7106
| |
Collapse
|
12
|
Neutrophil extracellular traps promote metastasis in gastric cancer patients with postoperative abdominal infectious complications. Nat Commun 2022; 13:1017. [PMID: 35197446 PMCID: PMC8866499 DOI: 10.1038/s41467-022-28492-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
Postoperative abdominal infectious complication (AIC) is associated with metastasis in locally advanced gastric cancer (GC) patients after radical gastrectomy. However, the underlying mechanism remains unclear. Herein, we report that neutrophil extracellular traps (NETs), the DNA meshes released by neutrophils in response to infection, could promote GC cells proliferation, invasion, migration and epithelial–mesenchymal transition dependent on TGF-β signaling. Then we model nude mice with cecal puncture without ligation to simulate postoperative AIC and find that NETs in peripheral blood and ascites fluid facilitate GC cells extravasation and implantation into liver and peritoneum for proliferation and metastasis. Notably, TGF-β signaling inhibitor LY 2157299 could effectively impede liver and peritoneal metastasis but not concurrently aggravate sepsis in those AIC-bearing nude mice. These findings implicate that targeting downstream effectors of NETs such as TGF-β signaling might provide potential therapeutic prospect to reduce the risk of GC metastasis. Postoperative abdominal infections have been associated with tumor recurrence and metastasis in patients treated for locally advanced gastric cancer. Here the authors show that infectious complications are associated with the release of neutrophil extracellular traps that facilitate gastric cancer cell extravasation and metastasis formation.
Collapse
|
13
|
Bao S, Ji Z, Shi M, Liu X. EPB41L5 promotes EMT through the ERK/p38 MAPK signaling pathway in esophageal squamous cell carcinoma. Pathol Res Pract 2021; 228:153682. [PMID: 34784520 DOI: 10.1016/j.prp.2021.153682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors worldwide and is characterized by activation of epithelial-mesenchymal transition (EMT). EPB41L5 is regarded as a key factor in the progression of EMT and metastasis in various kinds of cancers, although the role and mechanism of EPB41L5 in ESCC have not yet been elucidated. In addition, tumor cells can acquire enhanced aggressiveness and a mesenchymal phenotype through phosphorylation of MAPK signaling pathway components. Here, we intend to explore whether EPB41L5 can regulate the EMT process in ESCC and reveal whether the MAPK signaling pathway is involved. METHODS We compared the expression level of EPB41L5 with the prognostic characteristics of 100 ESCC patients to hypothesize the role of EPB41L5 in the progression of ESCC. Furthermore, in vivo and in vitro experiments were conducted to verify the conclusions from the analysis of clinical specimens and investigate the underlying mechanism by which EPB41L5 contributes to ESCC. RESULTS We discovered that EPB41L5 was overexpressed in ESCC and that higher EPB41L5 expression was related to higher TNM stage, a higher incidence of lymphatic metastasis and worse prognosis. Moreover, using ESCC cells and nude mouse models, we found that EPB41L5 promoted EMT, proliferation, migration and invasion in ESCC. Mechanistically, activation of phosphorylation in the ERK/p38 MAPK signaling pathway was involved in the EPB41L5-mediated regulation of EMT. CONCLUSION In conclusion, our findings suggest that EPB41L5 plays a critical role in the regulation of EMT and the progression of ESCC.
Collapse
Affiliation(s)
- ShiHao Bao
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - ZhiQi Ji
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - XiangYan Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
14
|
Wu D, Deng S, Li L, Liu T, Zhang T, Li J, Yu Y, Xu Y. TGF-β1-mediated exosomal lnc-MMP2-2 increases blood-brain barrier permeability via the miRNA-1207-5p/EPB41L5 axis to promote non-small cell lung cancer brain metastasis. Cell Death Dis 2021; 12:721. [PMID: 34285192 PMCID: PMC8292445 DOI: 10.1038/s41419-021-04004-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
Brain metastases remain a major problem in patients with advanced non-small cell lung cancer (NSCLC). The permeability of the blood-brain barrier (BBB) is highly increased during lung cancer brain metastasis; however, the underlying mechanism remains largely unknown. We previously found that lnc-MMP2-2 is highly enriched in tumor growth factor (TGF)-β1-mediated exosomes and regulates the migration of lung cancer cells. This study aimed to explore the role of exosomal lnc-MMP2-2 in the regulation of BBB and NSCLC brain metastasis. Here, using endothelial monolayers and mouse models, we found that TGF-β1-mediated NSCLC-derived exosomes efficiently destroyed tight junctions and the integrity of these natural barriers. Overexpression of lnc-MMP2-2 in human brain microvascular endothelial cells increased vascular permeability in endothelial monolayers, whereas inhibition of lnc-MMP2-2 alleviated these effects. Furthermore, lnc-MMP2-2 knockdown markedly reduced NSCLC brain metastasis in vivo. Mechanistically, through luciferase reporter assays, RNA pull-down assay, and Ago2 RNA immunoprecipitation assay, we showed that lnc-MMP2-2 served as a microRNA sponge or a competing endogenous RNA for miR-1207-5p and consequently modulated the derepression of EPB41L5. In conclusion, TGF-β1-mediated exosomal lnc-MMP2-2 increases BBB permeability to promote NSCLC brain metastasis. Thus, exosomal lnc-MMP2-2 may be a potential biomarker and therapeutic target against lung cancer brain metastasis.
Collapse
Affiliation(s)
- Dongming Wu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, PR China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, PR China
| | - Shihua Deng
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, PR China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, PR China
| | - Li Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, PR China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, PR China
| | - Teng Liu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, PR China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, PR China
| | - Ting Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, PR China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, PR China
| | - Jing Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, PR China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, PR China
| | - Ye Yu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, PR China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, PR China
| | - Ying Xu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, PR China.
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, PR China.
| |
Collapse
|
15
|
Biehler C, Rothenberg KE, Jette A, Gaude HM, Fernandez-Gonzalez R, Laprise P. Pak1 and PP2A antagonize aPKC function to support cortical tension induced by the Crumbs-Yurt complex. eLife 2021; 10:67999. [PMID: 34212861 PMCID: PMC8282337 DOI: 10.7554/elife.67999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022] Open
Abstract
The Drosophila polarity protein Crumbs is essential for the establishment and growth of the apical domain in epithelial cells. The protein Yurt limits the ability of Crumbs to promote apical membrane growth, thereby defining proper apical/lateral membrane ratio that is crucial for forming and maintaining complex epithelial structures such as tubes or acini. Here, we show that Yurt also increases Myosin-dependent cortical tension downstream of Crumbs. Yurt overexpression thus induces apical constriction in epithelial cells. The kinase aPKC phosphorylates Yurt, thereby dislodging the latter from the apical domain and releasing apical tension. In contrast, the kinase Pak1 promotes Yurt dephosphorylation through activation of the phosphatase PP2A. The Pak1–PP2A module thus opposes aPKC function and supports Yurt-induced apical constriction. Hence, the complex interplay between Yurt, aPKC, Pak1, and PP2A contributes to the functional plasticity of Crumbs. Overall, our data increase our understanding of how proteins sustaining epithelial cell polarization and Myosin-dependent cell contractility interact with one another to control epithelial tissue architecture.
Collapse
Affiliation(s)
- Cornelia Biehler
- Centre de Recherche sur le Cancer, Université Laval, Québec, Canada.,axe oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec-UL, Québec, Canada
| | - Katheryn E Rothenberg
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Canada
| | - Alexandra Jette
- Centre de Recherche sur le Cancer, Université Laval, Québec, Canada.,axe oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec-UL, Québec, Canada
| | - Helori-Mael Gaude
- Centre de Recherche sur le Cancer, Université Laval, Québec, Canada.,axe oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec-UL, Québec, Canada
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Patrick Laprise
- Centre de Recherche sur le Cancer, Université Laval, Québec, Canada.,axe oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec-UL, Québec, Canada
| |
Collapse
|
16
|
Hui Y, Yang Y, Li D, Wang J, Di M, Zhang S, Wang S. LncRNA FEZF1-AS1 Modulates Cancer Stem Cell Properties of Human Gastric Cancer Through miR-363-3p/HMGA2. Cell Transplant 2021; 29:963689720925059. [PMID: 32638620 PMCID: PMC7563941 DOI: 10.1177/0963689720925059] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer (GC) is a leading cause of cancer-related death with poor prognosis. Growing evidence has shown that long noncoding ribonucleic acid (lncRNA) FEZ family zinc finger 1 antisense RNA 1(FEZF1-AS1), an "oncogene," regulates tumor progression and supports cancer stem cell. However, the tumorigenic mechanism of FEZF1-AS1 on gastric cancer stem cell (GCSC) is yet to be investigated. Here, we discovered that FEZF1-AS1 was upregulated in GC tissues and cell lines. Knockdown of FEZF1-AS1 inhibited sphere formation and decreased expression of stem factors and markers. Moreover, FEZF1-AS1 silence also suppressed cell proliferation, viability, invasion, and migration of GCSCs. MiR-363-3p is used as a target of FEZF1-AS1, because its expression was suppressed by FEZF1-AS1 in GCSCs. FEZF1-AS1 could sponge miR-363-3p and increased the expression of high-mobility group AT-hook 2 (HMGA2). The expression of FEZF1-AS1 and miR-363-3p, as well as that of miR-363-3p and HMGA2, was negatively correlated in GC tissues. Finally, FEZF1-AS1 contributed to promotion of GCSCs progression partially through inhibition of miR-363-3p. Subcutaneous xenotransplanted tumor model revealed that silence of FEZF1-AS1 suppressed in vivo tumorigenic ability of GSCS via downregulation of HMGA2. In general, our findings clarified the critical regulatory role of FEZF1-AS1/miR-363-3p/HMGA2 axis in GCSC progression, providing a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Yuanjian Hui
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China.,* Both the authors contributed equally to this article
| | - Yan Yang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China.,* Both the authors contributed equally to this article
| | - Deping Li
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Juan Wang
- Department of Vasculocardiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Maojun Di
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Shichao Zhang
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Shasha Wang
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| |
Collapse
|
17
|
Song C, Zhou C. HOXA10 mediates epithelial-mesenchymal transition to promote gastric cancer metastasis partly via modulation of TGFB2/Smad/METTL3 signaling axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:62. [PMID: 33563300 PMCID: PMC7874610 DOI: 10.1186/s13046-021-01859-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/28/2021] [Indexed: 01/06/2023]
Abstract
Background Homeobox A10 (HOXA10) belongs to the HOX gene family, which plays an essential role in embryonic development and tumor progression. We previously demonstrated that HOXA10 was significantly upregulated in gastric cancer (GC) and promoted GC cell proliferation. This study was designed to investigate the role of HOXA10 in GC metastasis and explore the underlying mechanism. Methods Immunohistochemistry (IHC) was used to evaluate the expression of HOXA10 in GC. In vitro cell migration and invasion assays as well as in vivo mice metastatic models were utilized to investigate the effects of HOXA10 on GC metastasis. GSEA, western blot, qRT-PCR and confocal immunofluorescence experiments preliminarily analyzed the relationship between HOXA10 and EMT. ChIP-qPCR, dual-luciferase reporter (DLR), co-immunoprecipitation (CoIP), colorimetric m6A assay and mice lung metastasis rescue models were performed to explore the mechanism by which HOXA10 accelerated the EMT process in GC. Results In this study, we demonstrated HOXA10 was upregulated in GC patients and the difference was even more pronounced in patients with lymph node metastasis (LNM) than without. Functionally, HOXA10 promoted migration and invasion of GC cells in vitro and accelerated lung metastasis in vivo. EMT was an important mechanism responsible for HOXA10-involved metastasis. Mechanistically, we revealed HOXA10 enriched in the TGFB2 promoter region, promoted transcription, increased secretion, thus triggered the activation of TGFβ/Smad signaling with subsequent enhancement of Smad2/3 nuclear expression. Moreover, HOXA10 upregulation elevated m6A level and METTL3 expression in GC cells possible by regulating the TGFB2/Smad pathway. CoIP and ChIP-qPCR experiments demonstrated that Smad proteins played an important role in mediating METTL3 expression. Furthermore, we found HOXA10 and METTL3 were clinically relevant, and METTL3 was responsible for the HOXA10-mediated EMT process by performing rescue experiments with western blot and in vivo mice lung metastatic models. Conclusions Our findings indicated the essential role of the HOXA10/TGFB2/Smad/METTL3 signaling axis in GC progression and metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01859-0.
Collapse
Affiliation(s)
- Chenlong Song
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chongzhi Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Algood HMS. T Cell Cytokines Impact Epithelial Cell Responses during Helicobacter pylori Infection. THE JOURNAL OF IMMUNOLOGY 2020; 204:1421-1428. [PMID: 32152211 DOI: 10.4049/jimmunol.1901307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/08/2019] [Indexed: 12/24/2022]
Abstract
The goal of this Brief Review is to highlight literature that demonstrates how cytokines made by T lymphocytes impact the gastric epithelium, especially during Helicobacter pylori infection. These cytokines effect many of the diverse functions of the epithelium and the epithelium's interactions with H. pylori The focal point of this Brief Review will be on how T cell cytokines impact antimicrobial function and barrier function and how T cell cytokines influence the development and progression of cancer. Furthermore, the modulation of epithelial-derived chemokines by H. pylori infection will be discussed.
Collapse
Affiliation(s)
- Holly M Scott Algood
- Veterans Affairs Tennessee Valley Healthcare Services, Nashville, TN 37212; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37212; and Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37212
| |
Collapse
|
19
|
Zhou J, Song Y, Gan W, Liu L, Chen G, Chen Z, Luo G, Zhang L, Zhang G, Wang P, Cao Y. Upregulation of COL8A1 indicates poor prognosis across human cancer types and promotes the proliferation of gastric cancer cells. Oncol Lett 2020; 20:34. [PMID: 32774507 PMCID: PMC7405348 DOI: 10.3892/ol.2020.11895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) was one of the most common types of the digestive system. COL8A1 was reported to be associated with cancer progression. The present study showed COL8A1 was overexpressed and correlated to shorter overall survival (OS) time across human cancer types. Specially, our results showed COL8A1 was up-regulated in advanced stage GC compared to low stage GC samples. Higher expression of COL8A1 was significantly correlated to shorter OS time in patients with GC. Bioinformatics analysis revealed COL8A1 was involved in regulating cell proliferation and metastasis. Experimental validations of COL8A1 showed that silencing of COL8A1 could significantly suppressed cell proliferation, migration and invasion in GC. These results provided a potential target for the clinical prognosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Gastrointestinal Surgery, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Yaning Song
- Department of Gastrointestinal Surgery, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Wei Gan
- Department of Gastrointestinal Surgery, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Liye Liu
- Department of Gastrointestinal Surgery, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Guibing Chen
- Department of Gastrointestinal Surgery, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Zhenyu Chen
- Department of Gastrointestinal Surgery, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Guode Luo
- Department of Gastrointestinal Surgery, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Lin Zhang
- Department of Gastrointestinal Surgery, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Guohu Zhang
- Department of Gastrointestinal Surgery, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Peihong Wang
- Department of Gastrointestinal Surgery, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Yongkuan Cao
- Department of Gastrointestinal Surgery, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
20
|
Ashrafizadeh M, Najafi M, Ang HL, Moghadam ER, Mahabady MK, Zabolian A, Jafaripour L, Bejandi AK, Hushmandi K, Saleki H, Zarrabi A, Kumar AP. PTEN, a Barrier for Proliferation and Metastasis of Gastric Cancer Cells: From Molecular Pathways to Targeting and Regulation. Biomedicines 2020; 8:E264. [PMID: 32756305 PMCID: PMC7460532 DOI: 10.3390/biomedicines8080264] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the life-threatening disorders that, in spite of excellent advances in medicine and technology, there is no effective cure for. Surgery, chemotherapy, and radiotherapy are extensively applied in cancer therapy, but their efficacy in eradication of cancer cells, suppressing metastasis, and improving overall survival of patients is low. This is due to uncontrolled proliferation of cancer cells and their high migratory ability. Finding molecular pathways involved in malignant behavior of cancer cells can pave the road to effective cancer therapy. In the present review, we focus on phosphatase and tensin homolog (PTEN) signaling as a tumor-suppressor molecular pathway in gastric cancer (GC). PTEN inhibits the PI3K/Akt pathway from interfering with the migration and growth of GC cells. Its activation leads to better survival of patients with GC. Different upstream mediators of PTEN in GC have been identified that can regulate PTEN in suppressing growth and invasion of GC cells, such as microRNAs, long non-coding RNAs, and circular RNAs. It seems that antitumor agents enhance the expression of PTEN in overcoming GC. This review focuses on aforementioned topics to provide a new insight into involvement of PTEN and its downstream and upstream mediators in GC. This will direct further studies for evaluation of novel signaling networks and their targeting for suppressing GC progression.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz 6461665145, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan 8715988141, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (A.K.B.); (H.S.)
| | - Leila Jafaripour
- Department of Anatomy, School of Medicine, Dezful University of Medical Sciences, Dezful 3419759811, Iran;
| | - Atefe Kazemzade Bejandi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (A.K.B.); (H.S.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (A.K.B.); (H.S.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
| |
Collapse
|
21
|
Xie W, Chen C, Han Z, Huang J, Liu X, Chen H, Zhang T, Chen S, Chen C, Lu M, Shen X, Xue X. CD2AP inhibits metastasis in gastric cancer by promoting cellular adhesion and cytoskeleton assembly. Mol Carcinog 2020; 59:339-352. [PMID: 31989722 PMCID: PMC7078920 DOI: 10.1002/mc.23158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/29/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
Diffuse gastric cancer (DGC) is a lethal malignancy lacking effective systemic therapy. Among the most provocative recent results in DGC has been that the alter of the cellular cytoskeleton and intercellular adhesion. CD2‐associated protein (CD2AP) is one of the critical proteins regulating cytoskeleton assembly and intercellular adhesion. However, no study has investigated the expression and biological significance of CD2AP in gastric cancer (GC) to date. Therefore, the aim of our study was to explore if the expression of CD2AP is associated with any clinical features of GC and to elucidate the underlying mechanism. Immunohistochemistry of 620 patient tissue samples indicated that the expression of CD2AP is downregulated in DGC. Moreover, a low CD2AP level was indicative of poor patient prognosis. In vitro, forced expression of CD2AP caused a significant decrease in the migration and invasion of GC cells, whereas depletion of CD2AP had the opposite effect. Immunofluorescence analysis indicated that CD2AP promoted cellular adhesion and influenced cell cytoskeleton assembly via interaction with the F‐actin capping protein CAPZA1. Overall, the upregulation of CD2AP could attenuate GC metastasis, suggesting CD2AP as a novel biomarker for the prognosis and treatment of patients with GC.
Collapse
Affiliation(s)
- Wangkai Xie
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Microbiology and Immunology, School of Basic Medical Science, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chao Chen
- Department of Microbiology and Immunology, School of Basic Medical Science, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China.,Department of Oncology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Zhejiang Chinese Medical University, Wenzhou, China
| | - Zheng Han
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Microbiology and Immunology, School of Basic Medical Science, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jingjing Huang
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Liu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Microbiology and Immunology, School of Basic Medical Science, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hongjun Chen
- Department of Microbiology and Immunology, School of Basic Medical Science, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Teming Zhang
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Microbiology and Immunology, School of Basic Medical Science, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Sian Chen
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenbin Chen
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Microbiology and Immunology, School of Basic Medical Science, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Mingdong Lu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xian Shen
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, School of Basic Medical Science, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|