1
|
Babaeenezhad E, Abdolvahabi Z, Asgharzadeh S, Abdollahi M, Shakeri S, Moradi Sarabi M, Yarahmadi S. Potential function of microRNA miRNA-206 in breast cancer pathogenesis: Mechanistic aspects and clinical implications. Pathol Res Pract 2024; 260:155454. [PMID: 39002434 DOI: 10.1016/j.prp.2024.155454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Breast cancer (BC) is a major public health problem that affects women worldwide. Growing evidence has highlighted the role of miRNA-206 in BC pathogenesis. Changes in its expression have diagnostic and prognostic potential as they are associated with clinicopathological parameters, including lymph node metastasis, overall survival, tumor size, metastatic stage, resistance to chemotherapy, and recurrence. In the present study, we summarized, assessed, and discussed the most recent understanding of the functions of miRNA-206 in BC. Unexpectedly, miRNA-206 was found to control both oncogenic and tumor-suppressive pathways. We also considered corresponding downstream effects and upstream regulators. Finally, we addressed the diagnostic and prognostic value of miRNA-206 and its potential for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zohreh Abdolvahabi
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sahar Asgharzadeh
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Masume Abdollahi
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sara Shakeri
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mostafa Moradi Sarabi
- Hepatities Research Center, Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sahar Yarahmadi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
2
|
Strachowska M, Robaszkiewicz A. Characteristics of anticancer activity of CBP/p300 inhibitors - Features of their classes, intracellular targets and future perspectives of their application in cancer treatment. Pharmacol Ther 2024; 257:108636. [PMID: 38521246 DOI: 10.1016/j.pharmthera.2024.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Due to the contribution of highly homologous acetyltransferases CBP and p300 to transcription elevation of oncogenes and other cancer promoting factors, these enzymes emerge as possible epigenetic targets of anticancer therapy. Extensive efforts in search for small molecule inhibitors led to development of compounds targeting histone acetyltransferase catalytic domain or chromatin-interacting bromodomain of CBP/p300, as well as dual BET and CBP/p300 inhibitors. The promising anticancer efficacy in in vitro and mice models led CCS1477 and NEO2734 to clinical trials. However, none of the described inhibitors is perfectly specific to CBP/p300 since they share similarity of a key functional domains with other enzymes, which are critically associated with cancer progression and their antagonists demonstrate remarkable clinical efficacy in cancer therapy. Therefore, we revise the possible and clinically relevant off-targets of CBP/p300 inhibitors that can be blocked simultaneously with CBP/p300 thereby improving the anticancer potential of CBP/p300 inhibitors and pharmacokinetic predicting data such as absorption, distribution, metabolism, excretion (ADME) and toxicity.
Collapse
Affiliation(s)
- Magdalena Strachowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, 90-236 Lodz, Poland; University of Lodz, Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Banacha 12 /16, 90-237 Lodz, Poland.
| | - Agnieszka Robaszkiewicz
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, 90-236 Lodz, Poland; Johns Hopkins University School of Medicine, Institute of Fundamental and Basic Research, 600 5(th) Street South, Saint Petersburg FL33701, United States of America.
| |
Collapse
|
3
|
Guo Y, Liu Z, Wu Q, Li Z, Yang J, Xuan H. Integration with Transcriptomic and Metabolomic Analyses Reveals the In Vitro Cytotoxic Mechanisms of Chinese Poplar Propolis by Triggering the Glucose Metabolism in Human Hepatocellular Carcinoma Cells. Nutrients 2023; 15:4329. [PMID: 37892405 PMCID: PMC10610315 DOI: 10.3390/nu15204329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Natural products serve as a valuable reservoir of anticancer agents. Chinese poplar propolis (CP) has exhibited remarkable antitumor activities, yet its precise mechanisms of action remain elusive. This study aims to elucidate the in vitro cytotoxic mechanisms of CP in human hepatocellular carcinoma cells (HepG2) through comprehensive transcriptomic and metabolomic analyses. Our evidence suggested that CP possesses a great potential to inhibit the proliferation of HepG2 cells by targeting the glucose metabolism. Notably, CP exhibited a dose- and time-dependent reduction in the viability of HepG2 cells. Transcriptome sequencing unveiled significant alterations in the cellular metabolism, particularly within glucose metabolism pathways. CP effectively restrained glucose consumption and lactic acid production. Moreover, the CP treatment led to a substantial decrease in the mRNA expression levels of key glucose transporters (GLUT1 and GLUT3) and glycolytic enzymes (LDHA, HK2, PKM2, and PFK). Correspondingly, CP suppressed some key protein levels. Cellular metabolomic analysis demonstrated a marked reduction in intermediary products of glucose metabolism, specifically fructose 1,6-bisphosphate and acetyl-CoA, following CP administration. Finally, key compounds in CP were screened, and apigenin, pinobanksin, pinocembrin, and galangin were identified as potential active agents against glycolysis. It indicates that the effectiveness of propolis in inhibiting liver cancer is the result of the combined action of several components. These findings underscore the potential therapeutic value of propolis in the treatment of liver cancer by targeting glycolytic pathways.
Collapse
Affiliation(s)
- Yuyang Guo
- School of Life Science, Liaocheng University, Liaocheng 252059, China; (Y.G.); (Z.L.); (Q.W.); (Z.L.)
| | - Zhengxin Liu
- School of Life Science, Liaocheng University, Liaocheng 252059, China; (Y.G.); (Z.L.); (Q.W.); (Z.L.)
| | - Qian Wu
- School of Life Science, Liaocheng University, Liaocheng 252059, China; (Y.G.); (Z.L.); (Q.W.); (Z.L.)
| | - Zongze Li
- School of Life Science, Liaocheng University, Liaocheng 252059, China; (Y.G.); (Z.L.); (Q.W.); (Z.L.)
| | - Jialin Yang
- College of Life Science, Shihezi University, Shihezi 832000, China
- Yili Prefecture Agricultural and Rural Bureau, Yili 835000, China
| | - Hongzhuan Xuan
- School of Life Science, Liaocheng University, Liaocheng 252059, China; (Y.G.); (Z.L.); (Q.W.); (Z.L.)
| |
Collapse
|
4
|
Liu F, Wei X, Chen Z, Chen Y, Hu P, Jin Y. PFKFB2 is a favorable prognostic biomarker for colorectal cancer by suppressing metastasis and tumor glycolysis. J Cancer Res Clin Oncol 2023; 149:10737-10752. [PMID: 37311985 DOI: 10.1007/s00432-023-04946-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
PURPOSE This study was to investigate the biological effect of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 (PFKFB2) in colorectal cancer (CRC). METHODS PFKFB2 was selected by metabolism polymerase chain reaction (PCR) array from CRC cells under alkaline culture medium (pH 7.4) and acidic culture medium (pH 6.8). The expression of PFKFB2 mRNA and protein was detected by quantitative real-time PCR and immunohistochemistry in 70 paired fresh and 268 paired paraffin-embedded human CRC tissues, respectively, and then the prognostic value of PFKFB2 was investigated. The effects of PFKFB2 on CRC cells were also verified in vitro, which were through detecting the change of migration, invasion, sphere formation, proliferation, colony formation, and extracellular acidification rate of CRC cells after PFKFB2 knockdown in alkaline culture medium (pH 7.4) and overexpression in acidic culture medium (pH 6.8). RESULTS PFKFB2 expression was downregulated in acidic culture medium (pH 6.8). In addition, we found PFKFB2 expression decreased in human CRC tissues compared with the adjacent normal tissues. Furthermore, the OS and DFS rate of CRC patients with low PFKFB2 expression was significantly shorter than those of patients with high PFKFB2 expression. Multivariate analysis indicated that low PFKFB2 expression was an independent prognostic factor for both OS and DFS in CRC patients. Moreover, the abilities of migration, invasion, spheroidizing ability, proliferation, and colony formation of CRC cells were significantly increased after depletion of PFKFB2 in alkaline culture medium (pH 7.4) and decreased after overexpression of PFKFB2 in acidic culture medium (pH 6.8) in vitro. Epithelial-mesenchymal transition (EMT) pathway was found and verified involved in the PFKFB2-mediated regulation of metastatic function in CRC cells. Further, glycolysis of CRC cells was significantly elevated after knockdown of PFKFB2 in alkaline culture medium (pH 7.4) and decreased after overexpression of PFKFB2 in acidic culture medium (pH 6.8). CONCLUSION PFKFB2 expression is downregulated in CRC tissues and associated with worse survival for CRC patients. PFKFB2 could inhibit metastasis and the malignant progression of CRC cells by suppressing EMT and glycolysis.
Collapse
Affiliation(s)
- Furong Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- Department of Clinical Research, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Xiaoli Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Zhanhong Chen
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Tianhe District, Guangzhou, 510630, China
| | - Yanxing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Peishan Hu
- Guangdong Institute of Gastroenterology, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital (Guangdong Gastrointestinal and Anal Hospital), Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.
| | - Ying Jin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Pang H, Hu Z. Metabolomics in drug research and development: The recent advances in technologies and applications. Acta Pharm Sin B 2023; 13:3238-3251. [PMID: 37655318 PMCID: PMC10465962 DOI: 10.1016/j.apsb.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 09/02/2023] Open
Abstract
Emerging evidence has demonstrated the vital role of metabolism in various diseases or disorders. Metabolomics provides a comprehensive understanding of metabolism in biological systems. With advanced analytical techniques, metabolomics exhibits unprecedented significant value in basic drug research, including understanding disease mechanisms, identifying drug targets, and elucidating the mode of action of drugs. More importantly, metabolomics greatly accelerates the drug development process by predicting pharmacokinetics, pharmacodynamics, and drug response. In addition, metabolomics facilitates the exploration of drug repurposing and drug-drug interactions, as well as the development of personalized treatment strategies. Here, we briefly review the recent advances in technologies in metabolomics and update our knowledge of the applications of metabolomics in drug research and development.
Collapse
Affiliation(s)
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Lei P, Wang W, Sheldon M, Sun Y, Yao F, Ma L. Role of Glucose Metabolic Reprogramming in Breast Cancer Progression and Drug Resistance. Cancers (Basel) 2023; 15:3390. [PMID: 37444501 PMCID: PMC10341343 DOI: 10.3390/cancers15133390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The involvement of glucose metabolic reprogramming in breast cancer progression, metastasis, and therapy resistance has been increasingly appreciated. Studies in recent years have revealed molecular mechanisms by which glucose metabolic reprogramming regulates breast cancer. To date, despite a few metabolism-based drugs being tested in or en route to clinical trials, no drugs targeting glucose metabolism pathways have yet been approved to treat breast cancer. Here, we review the roles and mechanisms of action of glucose metabolic reprogramming in breast cancer progression and drug resistance. In addition, we summarize the currently available metabolic inhibitors targeting glucose metabolism and discuss the challenges and opportunities in targeting this pathway for breast cancer treatment.
Collapse
Affiliation(s)
- Pan Lei
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (W.W.)
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Wenzhou Wang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (W.W.)
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (W.W.)
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston TX 77030, USA
| |
Collapse
|
7
|
Li R, Yan L, Tian S, Zhao Y, Zhu Y, Wang X. Increased response to TPF chemotherapy promotes immune escape in hypopharyngeal squamous cell carcinoma. Front Pharmacol 2023; 13:1097197. [PMID: 36712687 PMCID: PMC9880322 DOI: 10.3389/fphar.2022.1097197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Background: There is an urgent need to identify which patients would benefit from TPF chemotherapy in hypopharyngeal squamous cell carcinoma (HPSCC) and to explore new combinations to improve the treatment effect. Materials and methods: Gene-expression profiles in 15 TPF-sensitive patients were compared to 13 resistant patients. Immunohistochemistry (IHC) was performed to detect CD8+ T cells in 28 samples. Patient-Derived Tumor Xenograft (PDX) model and IHC were used to verify markers that optimize treatment for HPSCC. Results: Through RNA sequencing 188 genes were up-regulated in TPF chemotherapy-resistant (CR) tissues were involved in T cell activation, while 60 down-regulated genes were involved in glycolysis. Gene set enrichment analysis (GSEA) showed that chemotherapy-sensitive (CS) group upregulation of the pathways of glycolysis, while immune response was downregulated. CIBERSORT, MCP-counter, and IHC proved that most immune cells including CD8+ T cells in the CR significantly higher than that in CS group. Among the 16 up-regulated genes in CS had close associations, the most significant negative correlation between the gene level and CD8+ T cells existed in SEC61G. SEC61G was related to glycolysis, which was transcriptionally regulated by E2F1, and participated in antigen degradation through ubiquitin-dependent protein catabolic process. Palbociclib, combined with Cetuximab decreased the tumor burden and significantly suppressed the expression of E2F1 and SEC61G while activating MHC-I in PDX model. Conclusion: Enhanced glycolysis promoted immune escape, but increased response to TPF chemotherapy. SEC61G was the center of the molecular network and targeting the E2F1/SEC61G pathway increased the expression level of MHC-I.
Collapse
Affiliation(s)
| | | | - Shu Tian
- *Correspondence: Xiaoshen Wang, ; Yi Zhu, ; Shu Tian,
| | | | - Yi Zhu
- *Correspondence: Xiaoshen Wang, ; Yi Zhu, ; Shu Tian,
| | - Xiaoshen Wang
- *Correspondence: Xiaoshen Wang, ; Yi Zhu, ; Shu Tian,
| |
Collapse
|
8
|
Paul S, Ghosh S, Kumar S. Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol 2022; 86:1216-1230. [PMID: 36330953 DOI: 10.1016/j.semcancer.2022.09.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Cancer cells undergo metabolic alterations to meet the immense demand for energy, building blocks, and redox potential. Tumors show glucose-avid and lactate-secreting behavior even in the presence of oxygen, a process known as aerobic glycolysis. Glycolysis is the backbone of cancer cell metabolism, and cancer cells have evolved various mechanisms to enhance it. Glucose metabolism is intertwined with other metabolic pathways, making cancer metabolism diverse and heterogeneous, where glycolysis plays a central role. Oncogenic signaling accelerates the metabolic activities of glycolytic enzymes, mainly by enhancing their expression or by post-translational modifications. Aerobic glycolysis ferments glucose into lactate which supports tumor growth and metastasis by various mechanisms. Herein, we focused on tumor glycolysis, especially its interactions with the pentose phosphate pathway, glutamine metabolism, one-carbon metabolism, and mitochondrial oxidation. Further, we describe the role and regulation of key glycolytic enzymes in cancer. We summarize the role of lactate, an end product of glycolysis, in tumor growth, and the metabolic adaptations during metastasis. Lastly, we briefly discuss limitations and future directions to improve our understanding of glucose metabolism in cancer.
Collapse
Affiliation(s)
- Sumana Paul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076 Mumbai, India
| | - Saikat Ghosh
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sushil Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076 Mumbai, India.
| |
Collapse
|
9
|
Antiviral Effect of Polyphenolic Substances in Geranium wilfordii Maxim against HSV-2 Infection Using in vitro and in silico Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7953728. [PMID: 35646147 PMCID: PMC9132656 DOI: 10.1155/2022/7953728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/09/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022]
Abstract
Background Herpes simplex virus type 2 (HSV-2) infestation was the most widespread STD (sexually transmitted diseases) among humans and was the leading cause of infectious recurrent genital herpes. Existing therapies against HSV-2 did incompletely restrain the comeback of activated HSV-2 infestation. Geranium wilfordii Maxim had long been used as traditional Chinese medicine for treating the diseases owing to its anti-inflammatory and antiviral effects. Herein, the study was designed to investigate the antiviral activity of G.wilfordii and its potential effect in regulating the host's immune response. Methods To identify the stage of infection at which the compounds inhibited HSV-2, we performed virucidal, therapeutic, and prophylactic assays. The antiviral efficacy was evaluated by the analysis of viral components HSV-2 gD and VP16. The antiviral activities of these compounds were also evaluated by phenotypic analysis, such as cell proliferation and apoptosis. Molecular docking studies on candidate compounds were done to indicate binding interactions between the compounds and adopted compound targets. Results Quercetin, corilagin, and geraniin inhibited the replication of HSV-2, with geraniin showing greater TI. The obtained IC50 value of quercetin was 204.7 μM and TI (IC50/EC50) was 5.1, whereas the obtained IC50 value of corilagin was 118.0 μg/ml and TI was 4.05. Geraniin exhibited prominent antiviral activity with an IC50 of 212.4 μM and an EC50 of 18.37 μM, resulting in a therapeutic index (TI) of 11.56. Geraniin showed important in vitro virucidal activity through blocking viral attachment. Compared with the virus group, the apoptosis rates in quercetin-, corilagin-, and geraniin-treated groups were significantly decreased (p < 0.001).The expressions at the transcription genes of virus own replication key factors (including HSV-2 gD and VP16) and cytokines (including TBK1) of infected cells treated with quercetin, corilagin, and geraniin were inhibited. The in silico approaches demonstrated a high number of potential strong intermolecular interactions as hydrogen bonds between geraniin, corilagin, and the activity site of HSV-2 gD. Molecular docking studies demonstrated the effects of corilagin by targeting TBK1. Conclusions Together, these results highlighted the importance of G.wilfordii treatment in HSV-2 infection and underscored its therapeutic potential. However, additional in vitro and in vivo research was required to validate our findings.
Collapse
|
10
|
Ji F, Dai C, Xin M, Zhang J, Zhang Y, Liu S. Long intergenic non-protein coding RNA 115 (LINC00115) aggravates retinoblastoma progression by targeting microRNA miR-489-3p that downregulates 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2). Bioengineered 2022; 13:5330-5343. [PMID: 35184643 PMCID: PMC8973781 DOI: 10.1080/21655979.2022.2037362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Fang Ji
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Chunhua Dai
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Meng Xin
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Jing Zhang
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yuru Zhang
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shu Liu
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| |
Collapse
|
11
|
Adhikari S, Guha D, Mohan C, Mukherjee S, Tyler JK, Das C. Reprogramming Carbohydrate Metabolism in Cancer and Its Role in Regulating the Tumor Microenvironment. Subcell Biochem 2022; 100:3-65. [PMID: 36301490 PMCID: PMC10760510 DOI: 10.1007/978-3-031-07634-3_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Altered metabolism has become an emerging feature of cancer cells impacting their proliferation and metastatic potential in myriad ways. Proliferating heterogeneous tumor cells are surrounded by other resident or infiltrating cells, along with extracellular matrix proteins, and other secretory factors constituting the tumor microenvironment. The diverse cell types of the tumor microenvironment exhibit different molecular signatures that are regulated at their genetic and epigenetic levels. The cancer cells elicit intricate crosstalks with these supporting cells, exchanging essential metabolites which support their anabolic processes and can promote their survival, proliferation, EMT, angiogenesis, metastasis and even therapeutic resistance. In this context, carbohydrate metabolism ensures constant energy supply being a central axis from which other metabolic and biosynthetic pathways including amino acid and lipid metabolism and pentose phosphate pathway are diverged. In contrast to normal cells, increased glycolytic flux is a distinguishing feature of the highly proliferative cancer cells, which supports them to adapt to a hypoxic environment and also protects them from oxidative stress. Such rewired metabolic properties are often a result of epigenetic alterations in the cancer cells, which are mediated by several factors including, DNA, histone and non-histone protein modifications and non-coding RNAs. Conversely, epigenetic landscapes of the cancer cells are also dictated by their diverse metabolomes. Altogether, this metabolic and epigenetic interplay has immense potential for the development of efficient anti-cancer therapeutic strategies. In this book chapter we emphasize upon the significance of reprogrammed carbohydrate metabolism in regulating the tumor microenvironment and cancer progression, with an aim to explore the different metabolic and epigenetic targets for better cancer treatment.
Collapse
Affiliation(s)
- Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Deblina Guha
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chitra Mohan
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.
- Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
12
|
Liu M, Liu Y, Feng H, Jing Y, Zhao S, Yang S, Zhang N, Jin S, Li Y, Weng M, Xue X, Wang F, Yang Y, Jin X, Kong D. Clinical Significance of Screening Differential Metabolites in Ovarian Cancer Tissue and Ascites by LC/MS. Front Pharmacol 2021; 12:701487. [PMID: 34795577 PMCID: PMC8593816 DOI: 10.3389/fphar.2021.701487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor cells not only show a vigorous metabolic state, but also reflect the disease progression and prognosis from their metabolites. To judge the progress and prognosis of ovarian cancer is generally based on the formation of ascites, or whether there is ascites recurrence during chemotherapy after ovarian cancer surgery. To explore the relationship between the production of ascites and ovarian cancer tissue, metabolomics was used to screen differential metabolites in this study. The significant markers leading to ascites formation and chemoresistance were screened by analyzing their correlation with the formation of ascites in ovarian cancer and the clinical indicators of patients, and then provided a theoretical basis. The results revealed that nine differential metabolites were screened out from 37 ovarian cancer tissues and their ascites, among which seven differential metabolites were screened from 22 self-paired samples. Sebacic acid and 20-COOH-leukotriene E4 were negatively correlated with the high expression of serum CA125. Carnosine was positively correlated with the high expression of serum uric acid. Hexadecanoic acid was negatively correlated with the high expression of serum γ-GGT and HBDH. 20a,22b-Dihydroxycholesterol was positively correlated with serum alkaline phosphatase and γ-GGT. In the chemotherapy-sensitive and chemotherapy-resistant ovarian cancer tissues, the differential metabolite dihydrothymine was significantly reduced in the chemotherapy-resistant group. In the ascites supernatant of the drug-resistant group, the differential metabolites, 1,25-dihydroxyvitamins D3-26, 23-lactonel and hexadecanoic acid were also significantly reduced. The results indicated that the nine differential metabolites could reflect the prognosis and the extent of liver and kidney damage in patients with ovarian cancer. Three differential metabolites with low expression in the drug-resistant group were proposed as new markers of chemotherapy efficacy in ovarian cancer patients with ascites.
Collapse
Affiliation(s)
- Miao Liu
- Department of Pathology, Harbin Medical University, Harbin, China.,Department of Pathology, Beidahuang Industry Group General Hospital, Harbin, China
| | - Yu Liu
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Hua Feng
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yixin Jing
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Shuang Zhao
- Department of Gynecology, Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shujia Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Nan Zhang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Shi Jin
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yafei Li
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Mingjiao Weng
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xinzhu Xue
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Fuya Wang
- Department of Gynecology, Tumor Hospital of Harbin Medical University, Harbin, China
| | - Yongheng Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xiaoming Jin
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Dan Kong
- Department of Gynecology, Tumor Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Impact of Hypoxia over Human Viral Infections and Key Cellular Processes. Int J Mol Sci 2021; 22:ijms22157954. [PMID: 34360716 PMCID: PMC8347150 DOI: 10.3390/ijms22157954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Oxygen is essential for aerobic cells, and thus its sensing is critical for the optimal maintenance of vital cellular and tissue processes such as metabolism, pH homeostasis, and angiogenesis, among others. Hypoxia-inducible factors (HIFs) play central roles in oxygen sensing. Under hypoxic conditions, the α subunit of HIFs is stabilized and forms active heterodimers that translocate to the nucleus and regulate the expression of important sets of genes. This process, in turn, will induce several physiological changes intended to adapt to these new and adverse conditions. Over the last decades, numerous studies have reported a close relationship between viral infections and hypoxia. Interestingly, this relation is somewhat bidirectional, with some viruses inducing a hypoxic response to promote their replication, while others inhibit hypoxic cellular responses. Here, we review and discuss the cellular responses to hypoxia and discuss how HIFs can promote a wide range of physiological and transcriptional changes in the cell that modulate numerous human viral infections.
Collapse
|
14
|
Zhao CY, Hua CH, Li CH, Zheng RZ, Li XY. High PYGL Expression Predicts Poor Prognosis in Human Gliomas. Front Neurol 2021; 12:652931. [PMID: 34177761 PMCID: PMC8225935 DOI: 10.3389/fneur.2021.652931] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background: PYGL has been reported as a glycogen degradation-related gene, which is up-regulated in many tumors. This study was designed to investigate the predictive value of high PYGL expression in patients with gliomas through bioinformatics analysis of the gene transcriptome and the single-cell sequencing data. Methods: The gene transcriptome data of 595 glioma patients from the TCGA database and the single-cell RNA sequencing data of 7,930 GBM cells from the GEO database were included in the study. Differential analysis was used to find the distribution of expression of PYGL in different groups of glioma patients. OS analysis was used to assess the influence of the high expression of PYGL on the prognosis of patients. The reliability of its prediction was evaluated by the AUC of ROC and the C-index. The GSEA be used to reveal potential mechanisms. The single-cell analysis was used to observe the high expression of PYGL in different cell groups to further analyze the mechanism of its prediction. Results: Differential analysis identified the expression level of PYGL is positively associated with glioma malignancy. OS analysis and Cox regression analyses showed high expression of PYGL was an independent factor for poor prognosis of gliomas (p < 0.05). The AUC values were 0.838 (1-year ROC), 0.864 (3-year ROC) and 0.833 (5-year ROC). The C index was 0.81. The GSEA showed that gene sets related to MTORC1 signaling, glycolysis, hypoxia, PI3K/AKT/mTOR signaling, KRAS signaling up and angiogenesis were differentially enriched in the high PYGL expression phenotype. The single-cell sequencing data analysis showed TAMs and malignant cells in GBM tissues expressed a high level of PYGL. Conclusion: The high expression of PYGL is an independent predictor of poor prognosis in patients with glioma.
Collapse
Affiliation(s)
- Chang-Yi Zhao
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-Hui Hua
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang-Hua Li
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Zhe Zheng
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Yuan Li
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Sha L, Lv Z, Liu Y, Zhang Y, Sui X, Wang T, Zhang H. Shikonin inhibits the Warburg effect, cell proliferation, invasion and migration by downregulating PFKFB2 expression in lung cancer. Mol Med Rep 2021; 24:560. [PMID: 34109434 PMCID: PMC8201656 DOI: 10.3892/mmr.2021.12199] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/04/2021] [Indexed: 01/24/2023] Open
Abstract
Lung cancer is one of the most lethal diseases and therefore poses a significant threat to human health. The Warburg effect, which is the observation that cancer cells predominately produce energy through glycolysis, even under aerobic conditions, is a hallmark of cancer. 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB) is an important regulator of glycolysis. Shikonin is a Traditional Chinese herbal medicine, which has been reported to exert antitumor effects. The present study aimed to investigate the anticancer activity of shikonin in lung cancer. Cell Counting Kit-8 (CCK-8) and colony formation assays were used to analyze proliferation in A549 and H446 cells. Wound healing and Transwell assays were used to measure migration and invasion in A549 and H446 cells. Cell apoptosis was analyzed using flow cytometry. Lactate levels, glucose uptake and cellular ATP levels were measured using their corresponding commercial kits. Western blotting was performed to analyze the protein expression levels of key enzymes involved in aerobic glucose metabolism. Reverse transcription-quantitative PCR was used to analyze the mRNA expression levels of PFKFB2. The results of the present study revealed that PFKFB2 expression levels were significantly upregulated in NSCLC tissues. Shikonin treatment decreased the proliferation, migration, invasion, glucose uptake, lactate levels, ATP levels and PFKFB2 expression levels and increased apoptosis in lung cancer cells in a dose-dependent manner. The overexpression of PFKFB2 increased the proliferation, migration, glucose uptake, lactate levels and ATP levels in lung cancer cells, while the knockdown of PFKFB2 expression exerted the opposite effects. Moreover, there were no significant differences in lung cancer cell migration, apoptosis, glucose uptake, lactate levels and ATP levels between cells with knocked down PFKFB2 expression or treated with shikonin and the knockdown of PFKFB2 in cells treated with shikonin. In conclusion, the results of the present study revealed that shikonin inhibited the Warburg effect and exerted antitumor activity in lung cancer cells, which was associated with the downregulation of PFKFB2 expression.
Collapse
Affiliation(s)
- Liying Sha
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zhiqiang Lv
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yujun Liu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yun Zhang
- Department of Business, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xin Sui
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Teng Wang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Hui Zhang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
16
|
Tyagi K, Mandal S, Roy A. Recent advancements in therapeutic targeting of the Warburg effect in refractory ovarian cancer: A promise towards disease remission. Biochim Biophys Acta Rev Cancer 2021; 1876:188563. [PMID: 33971276 DOI: 10.1016/j.bbcan.2021.188563] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
Epithelial ovarian cancer, the most lethal gynecological malignancy, is diagnosed at advanced stage, recurs and displays chemoresistance to standard chemotherapeutic regimen of taxane/platinum drugs. Despite development of recent therapeutic approaches including poly-ADP ribose polymerase inhibitors, this fatal disease is diagnosed at advanced stage and heralds strategies for early detection and improved treatment. Recent literature suggests that high propensity of ovarian cancer cells to consume and metabolize glucose via glycolysis even in the presence of oxygen (the 'Warburg effect') can significantly contribute to disease progression and chemoresistance and hence, it has been exploited as novel drug target. This review focuses on the molecular cues of aberrant glycolysis as drivers of chemo-resistance and aggressiveness of recurrent ovarian cancer. Furthermore, we discuss the status quo of small molecule inhibition of aerobic glycolysis and significance of metabolic coupling between cancer cells and tumor microenvironment as novel therapeutic interventions against this lethal pathology.
Collapse
Affiliation(s)
- Komal Tyagi
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector-125, Noida, Uttar Pradesh 201303, India
| | - Supratim Mandal
- Department of Microbiology, Kalyani University, West Bengal 741235, India
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector-125, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|
17
|
Zhu Q, Chen J, Pan P, Lin F, Zhang X. UBE2N Regulates Paclitaxel Sensitivity of Ovarian Cancer via Fos/P53 Axis. Onco Targets Ther 2020; 13:12751-12761. [PMID: 33363381 PMCID: PMC7751838 DOI: 10.2147/ott.s271164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/10/2020] [Indexed: 01/10/2023] Open
Abstract
Background Chemo-resistance is still considered one of the key factors in the mortality of ovarian cancer. In this work, we found that ubiquitin-conjugating enzyme E2 N (UBE2N) is downregulated in paclitaxel-resistant ovarian cancer cells. It suggests UBE2N to be critical in the regulation of paclitaxel sensitivity in ovarian cancer. Materials and Methods Ovarian cancer cells with stably overexpressed UBE2N were injected into nude mice to assess tumor growth and paclitaxel sensitivity in vivo. The MTT assay was applied to observe the effect of UBE2N expression on paclitaxel sensitivity. A real-time PCR array, specific for human cancer drug resistance, was used to examine the potential downstream target genes of UBE2N. The expression of UBE2N and potential downstream target genes was determined by Western blotting. The analysis of Gene Ontology and protein–protein interactions of these differentially expressed genes (DEGs) was performed using online tools. To evaluate the prognostic value of hub genes expression for ovarian cancer patients treated with paclitaxel, we applied the online survival analysis tool. Results Overexpressed UBE2N enhanced the paclitaxel sensitivity of ovarian cancer cells in vitro and in vivo. Thirteen upregulated DEGs and 11 downregulated DEGs were identified when we knockdown UBE2N. Meanwhile, 9 hub genes with a high degree of connectivity were selected. Only Fos proto-oncogene, AP-1 transcription factor subunit (Fos), was overexpressed upon decreasing UBE2N levels, indicating a poor outcome for patients treated with paclitaxel. Moreover, reduced UBE2N could increase Fos expression and reduce P53. Furthermore, reversed regulation of Fos and P53 based on UBE2N reduction could reverse paclitaxel sensitivity, respectively. Conclusion Our study suggests that UBE2N could be used as a therapeutic agent for paclitaxel-resistant ovarian cancer through Fos/P53 pathway. Further studies are needed to elucidate the specific mechanism.
Collapse
Affiliation(s)
- Qiuyuan Zhu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Jieyuan Chen
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Peipei Pan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Feng Lin
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Xu Zhang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| |
Collapse
|
18
|
Wu H, Wang T, Liu Y, Li X, Xu S, Wu C, Zou H, Cao M, Jin G, Lang J, Wang B, Liu B, Luo X, Xu C. Mitophagy promotes sorafenib resistance through hypoxia-inducible ATAD3A dependent Axis. J Exp Clin Cancer Res 2020; 39:274. [PMID: 33280610 PMCID: PMC7720487 DOI: 10.1186/s13046-020-01768-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The identification of novel targets for recovering sorafenib resistance is pivotal for Hepatocellular carcinoma (HCC) patients. Mitophagy is the programmed degradation of mitochondria, and is likely involved in drug resistance of cancer cells. Here, we identified hyperactivated mitophagy is essential for sorafenib resistance, and the mitophagy core regulator gene ATAD3A (ATPase family AAA domain containing 3A) was down regulated in hypoxia induced resistant HCC cells. Blocking mitophagy may restore the sorafenib sensitivity of these cells and provide a new treatment strategy for HCC patients. METHODS Hypoxia induced sorafenib resistant cancer cells were established by culturing under 1% O2 with increasing drug treatment. RNA sequencing was conducted in transfecting LM3 cells with sh-ATAD3A lentivirus. Subsequent mechanistic studies were performed in HCC cell lines by manipulating ATAD3A expression isogenically where we evaluated drug sensitivity, molecular signaling events. In vivo study, we investigated the combined treatment effect of sorafenib and miR-210-5P antagomir. RESULTS We found a hyperactivated mitophagy regulating by ATAD3A-PINK1/PARKIN axis in hypoxia induced sorafenib resistant HCC cells. Gain- and loss- of ATAD3A were related to hypoxia-induced mitophagy and sorafenib resistance. In addition, ATAD3A is a functional target of miR-210-5p and its oncogenic functions are likely mediated by increased miR-210-5P expression. miR-210-5P was upregulated under hypoxia and participated in regulating sorafenib resistance. In vivo xenograft assay showed that miR-210-5P antagomir combined with sorafenib abrogated the tumorigenic effect of ATAD3A down-regulation in mice. CONCLUSIONS Loss of ATAD3A hyperactivates mitophagy which is a core event in hypoxia induced sorafenib resistance in HCC cells. Targeting miR-210-5P-ATAD3A axis is a novel therapeutic target for sorafenib-resistant HCC.
Collapse
Affiliation(s)
- Hong Wu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, 518055, Shenzhen, China
- Integrative Cancer Center&Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, P. R. China
- Department of Experimental Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 510000, P. R. China
| | - Tao Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P. R. China
| | - Yiqiang Liu
- Integrative Cancer Center&Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, P. R. China
- Department of Experimental Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 510000, P. R. China
| | - Xin Li
- Department of Experimental Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 510000, P. R. China
| | - Senlin Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital and Key Laboratory of Tumor Immunopathology, Army Medical University (Third Military Medical University), Chongqing, 400042, P. R. China
| | - Changtao Wu
- Integrative Cancer Center&Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, P. R. China
- Department of Experimental Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 510000, P. R. China
| | - Hongbo Zou
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital and Key Laboratory of Tumor Immunopathology, Army Medical University (Third Military Medical University), Chongqing, 400042, P. R. China
| | - Mianfu Cao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital and Key Laboratory of Tumor Immunopathology, Army Medical University (Third Military Medical University), Chongqing, 400042, P. R. China
| | - Guoxiang Jin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital and Key Laboratory of Tumor Immunopathology, Army Medical University (Third Military Medical University), Chongqing, 400042, P. R. China
| | - Jinyi Lang
- Integrative Cancer Center&Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, P. R. China
| | - Bin Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P. R. China
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, 518055, Shenzhen, China.
| | - Xiaolin Luo
- Department of Experimental Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 510000, P. R. China.
| | - Chuan Xu
- Integrative Cancer Center&Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, P. R. China.
| |
Collapse
|
19
|
Pan X, Li H, Tan J, Weng X, Zhou L, Weng Y, Cao X. miR-1297 Suppresses Osteosarcoma Proliferation and Aerobic Glycolysis by Regulating PFKFB2. Onco Targets Ther 2020; 13:11265-11275. [PMID: 33173315 PMCID: PMC7648564 DOI: 10.2147/ott.s274744] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022] Open
Abstract
Background MiR-1297 is reported to function as a tumor suppressor of various cancers. However, the role of miR-1297 in the development of osteosarcoma (OS) has not been elaborated. The purpose of this study was to investigate the functional effects of miR-1297 on OS progression and the underlying mechanism. Methods The expression of protein and mRNA in OS cells was evaluated by Western blotting and quantitative real-time polymerase chain reaction. Cellular proliferation was investigated by cell counting kit-8, colony formation and apoptosis assays. Bioinformatics methods were used to predict target genes. The relationship between PFKFB2 and miR-1297 was demonstrated by dual-luciferase reporter assay. Metabolic changes in OS cells were monitored using an XF96 metabolic flux analyzer. Results We found that miR-1297 was downregulated in OS and that lower expression of miR-1297 promoted proliferation and contributed to the Warburg effect in OS cells. Furthermore, we showed that silencing PFKFB2 inhibited proliferation and reduced aerobic glycolysis while overexpression of PFKFB2 reduced the anti-tumor function of miR-1297 in OS cells. Mechanistically, miR-1297 acted as a tumor suppressor in OS and reduced the expression of PFKFB2 by directly targeting its 3ʹUTR. Conclusion The miR-1297/PFKFB2 axis regulated OS proliferation by controlling the Warburg effect. Our results revealed a previously undiscovered function of miR-1297 in OS, which strongly linked metabolic alterations with cancer progression. Targeting miR-1297 may become a promising therapeutic approach for OS.
Collapse
Affiliation(s)
- Xiaohui Pan
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, Jiangsu 213003, People's Republic of China
| | - Haibo Li
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, Jiangsu 213003, People's Republic of China
| | - Jingxue Tan
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, Jiangsu 213003, People's Republic of China
| | - Xiaokun Weng
- Department of Radiotherapy, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, Jiangsu 213003, People's Republic of China
| | - Li Zhou
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, Jiangsu 213003, People's Republic of China
| | - Yiping Weng
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, Jiangsu 213003, People's Republic of China
| | - Xiaojian Cao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| |
Collapse
|
20
|
Xue D, Zhou X, Qiu J. Emerging role of NRF2 in ROS-mediated tumor chemoresistance. Biomed Pharmacother 2020; 131:110676. [PMID: 32858502 DOI: 10.1016/j.biopha.2020.110676] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022] Open
Abstract
Chemoresistance is a central cause for the tumor management failure. Cancer cells disrupt the redox homeostasis through reactive oxygen species (ROS) regulatory mechanisms, leading to tumor progression and chemoresistance. The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of neutralizing cellular ROS and restoring redox balance. Understanding the role of NRF2 in ROS-mediated chemoresistance can be helpful in the development of chemotherapy strategies with better efficiency. In this review, we sum up the roles of ROS in the development of chemoresistance to classical chemotherapy agents including cisplatin, 5-fluorouracil, gemcitabine, oxaliplatin, paclitaxel, and doxorubicin, and how to overcome ROS-mediated tumor chemoresistance by targeting NRF2. Finally, we propose that targeting NRF2 might be a promising strategy to resist ROS-driven chemoresistance and acquire better efficacy in cancer treatment.
Collapse
Affiliation(s)
- Danfeng Xue
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiongming Zhou
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jiaxuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
21
|
Liu Y, Ma X, Zhou M, Hao X, Zhu X. An effective method to produce 7-epitaxol from taxol in HCO 3.. Bioorg Med Chem Lett 2020; 30:127285. [PMID: 32527458 DOI: 10.1016/j.bmcl.2020.127285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/16/2020] [Accepted: 05/23/2020] [Indexed: 11/17/2022]
Abstract
It is known that 7-epitaxol has much stronger cytotoxicity than taxol does. However, the content of 7-epitaxol in yew is much less than taxol, which makes it more costly to obtain. We describe here a method to effectively convert taxol to 7-epitaxol. The key condition for reaction needs NaHCO3 in solvent acetonitrile (ACN). The conversion rate can be over 82%.
Collapse
Affiliation(s)
- Yanjie Liu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Science, Beijing Normal University, Beijing 100875, PR China
| | - Xiaoyu Ma
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Science, Beijing Normal University, Beijing 100875, PR China
| | - Mengkai Zhou
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Science, Beijing Normal University, Beijing 100875, PR China
| | - Xiaoran Hao
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Science, Beijing Normal University, Beijing 100875, PR China
| | - Xudong Zhu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Science, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
22
|
Moldogazieva NT, Mokhosoev IM, Terentiev AA. Metabolic Heterogeneity of Cancer Cells: An Interplay between HIF-1, GLUTs, and AMPK. Cancers (Basel) 2020; 12:E862. [PMID: 32252351 PMCID: PMC7226606 DOI: 10.3390/cancers12040862] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
It has been long recognized that cancer cells reprogram their metabolism under hypoxia conditions due to a shift from oxidative phosphorylation (OXPHOS) to glycolysis in order to meet elevated requirements in energy and nutrients for proliferation, migration, and survival. However, data accumulated over recent years has increasingly provided evidence that cancer cells can revert from glycolysis to OXPHOS and maintain both reprogrammed and oxidative metabolism, even in the same tumor. This phenomenon, denoted as cancer cell metabolic plasticity or hybrid metabolism, depends on a tumor micro-environment that is highly heterogeneous and influenced by an intensity of vasculature and blood flow, oxygen concentration, and nutrient and energy supply, and requires regulatory interplay between multiple oncogenes, transcription factors, growth factors, and reactive oxygen species (ROS), among others. Hypoxia-inducible factor-1 (HIF-1) and AMP-activated protein kinase (AMPK) represent key modulators of a switch between reprogrammed and oxidative metabolism. The present review focuses on cross-talks between HIF-1, glucose transporters (GLUTs), and AMPK with other regulatory proteins including oncogenes such as c-Myc, p53, and KRAS; growth factor-initiated protein kinase B (PKB)/Akt, phosphatydyl-3-kinase (PI3K), and mTOR signaling pathways; and tumor suppressors such as liver kinase B1 (LKB1) and TSC1 in controlling cancer cell metabolism. The multiple switches between metabolic pathways can underlie chemo-resistance to conventional anti-cancer therapy and should be taken into account in choosing molecular targets to discover novel anti-cancer drugs.
Collapse
Affiliation(s)
- Nurbubu T. Moldogazieva
- Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Innokenty M. Mokhosoev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.M.M.); (A.A.T.)
| | - Alexander A. Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.M.M.); (A.A.T.)
| |
Collapse
|