1
|
Wu Y, Wang A, Feng G, Pan X, Shuai W, Yang P, Zhang J, Ouyang L, Luo Y, Wang G. Autophagy modulation in cancer therapy: Challenges coexist with opportunities. Eur J Med Chem 2024; 276:116688. [PMID: 39033611 DOI: 10.1016/j.ejmech.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Autophagy, a crucial intracellular degradation process facilitated by lysosomes, plays a pivotal role in maintaining cellular homeostasis. The elucidation of autophagy key genes and signaling pathways has significantly advanced our understanding of this process and has led to the exploration of autophagy as a promising therapeutic approach. This review comprehensively assesses the latest developments in small molecule modulators targeting autophagy. Moreover, the review delves into the most recent strategies for drug discovery, specifically focusing on selective agents that exploit autophagosomes and lysosomes for targeted protein degradation. Additionally, this article highlights the prevailing challenges and outlines potential future advancements in the field. By amalgamating the cutting-edge knowledge in the field, we aim to offer valuable insights and references for the anti-cancer drug development of autophagy-targeted therapies, thus contributing to the advancement of novel therapeutic interventions.
Collapse
Affiliation(s)
- Yongya Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Aoxue Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Guotai Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiaoli Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Panpan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yi Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Davis SL, Messersmith WA, Purcell WT, Lam ET, Corr BR, Leal AD, Lieu CH, O’Bryant CL, Smoots SG, Dus ED, Jordan KR, Serkova NJ, Pitts TM, Diamond JR. A Phase Ib Expansion Cohort Evaluating Aurora A Kinase Inhibitor Alisertib and Dual TORC1/2 Inhibitor Sapanisertib in Patients with Advanced Solid Tumors. Cancers (Basel) 2024; 16:1456. [PMID: 38672538 PMCID: PMC11048245 DOI: 10.3390/cancers16081456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/09/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND This study further evaluated the safety and efficacy of the combination of alisertib and sapanisertib in an expansion cohort of patients, including a subset of patients with refractory pancreatic adenocarcinoma, with further evaluation of the pharmacodynamic characteristics of combination therapy. METHODS Twenty patients with refractory solid tumors and 11 patients with pancreatic adenocarcinoma were treated at the recommended phase 2 dose of alisertib and sapanisertib. Adverse events and disease response were assessed. Patients in the expansion cohort were treated with a 7-day lead-in of either alisertib or sapanisertib prior to combination therapy, with tumor tissue biopsy and serial functional imaging performed for correlative analysis. RESULTS Toxicity across treatment groups was overall similar to prior studies. One partial response to treatment was observed in a patient with ER positive breast cancer, and a patient with pancreatic cancer experienced prolonged stable disease. In an additional cohort of pancreatic cancer patients, treatment response was modest. Correlative analysis revealed variability in markers of apoptosis and immune cell infiltrate according to lead-in therapy and response. CONCLUSIONS Dual targeting of Aurora A kinase and mTOR resulted in marginal clinical benefit in a population of patients with refractory solid tumors, including pancreatic adenocarcinoma, though individual patients experienced significant response to therapy. Correlatives indicate apoptotic response and tumor immune cell infiltrate may affect clinical outcomes.
Collapse
Affiliation(s)
- S. Lindsey Davis
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Wells A. Messersmith
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - W. Thomas Purcell
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elaine T. Lam
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Bradley R. Corr
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Alexis D. Leal
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Christopher H. Lieu
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Cindy L. O’Bryant
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Stephen G. Smoots
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Evan D. Dus
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kimberly R. Jordan
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Natalie J. Serkova
- Department of Radiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Todd M. Pitts
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jennifer R. Diamond
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Rao X, Qiao Z, Yang Y, Deng Y, Zhang Z, Yu X, Guo X. Unveiling Epigenetic Vulnerabilities in Triple-Negative Breast Cancer through 3D Organoid Drug Screening. Pharmaceuticals (Basel) 2024; 17:225. [PMID: 38399440 PMCID: PMC10892330 DOI: 10.3390/ph17020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Triple-negative breast cancer (TNBC) poses a therapeutic challenge due to its aggressive nature and lack of targeted therapies. Epigenetic modifications contribute to TNBC tumorigenesis and drug resistance, offering potential therapeutic targets. Recent advancements in three-dimensional (3D) organoid cultures, enabling precise drug screening, hold immense promise for identifying novel compounds targeting TNBC. In this study, we established two patient-derived TNBC organoids and implemented a high-throughput drug screening system using these organoids and two TNBC cell lines. Screening a library of 169 epigenetic compounds, we found that organoid-based systems offer remarkable precision in drug response assessment compared to cell-based models. The top 30 compounds showing the highest drug sensitivity in the initial screening were further assessed in a secondary screen. Four compounds, panobinostat, pacritinib, TAK-901, and JIB-04, targeting histone deacetylase, JAK/STAT, histone demethylases, and aurora kinase pathways, respectively, exhibited potent anti-tumor activity in TNBC organoids, surpassing the effect of paclitaxel. Our study highlights the potential of these novel epigenetic drugs as effective therapeutic agents for TNBC and demonstrates the valuable role of patient-derived organoids in advancing drug discovery.
Collapse
Affiliation(s)
- Xinxin Rao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.R.); (Z.Q.); (Y.Y.); (Y.D.); (Z.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Zhibin Qiao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.R.); (Z.Q.); (Y.Y.); (Y.D.); (Z.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Yang Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.R.); (Z.Q.); (Y.Y.); (Y.D.); (Z.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Yun Deng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.R.); (Z.Q.); (Y.Y.); (Y.D.); (Z.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.R.); (Z.Q.); (Y.Y.); (Y.D.); (Z.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Xiaoli Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.R.); (Z.Q.); (Y.Y.); (Y.D.); (Z.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.R.); (Z.Q.); (Y.Y.); (Y.D.); (Z.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| |
Collapse
|
4
|
Huang X, You L, Nepovimova E, Psotka M, Malinak D, Valko M, Sivak L, Korabecny J, Heger Z, Adam V, Wu Q, Kuca K. Inhibitors of phosphoinositide 3-kinase (PI3K) and phosphoinositide 3-kinase-related protein kinase family (PIKK). J Enzyme Inhib Med Chem 2023; 38:2237209. [PMID: 37489050 PMCID: PMC10392309 DOI: 10.1080/14756366.2023.2237209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 02/02/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3K) and phosphoinositide 3-kinase-related protein kinases (PIKK) are two structurally related families of kinases that play vital roles in cell growth and DNA damage repair. Dysfunction of PIKK members and aberrant stimulation of the PI3K/AKT/mTOR signalling pathway are linked to a plethora of diseases including cancer. In recent decades, numerous inhibitors related to the PI3K/AKT/mTOR signalling have made great strides in cancer treatment, like copanlisib and sirolimus. Notably, most of the PIKK inhibitors (such as VX-970 and M3814) related to DNA damage response have also shown good efficacy in clinical trials. However, these drugs still require a suitable combination therapy to overcome drug resistance or improve antitumor activity. Based on the aforementioned facts, we summarised the efficacy of PIKK, PI3K, and AKT inhibitors in the therapy of human malignancies and the resistance mechanisms of targeted therapy, in order to provide deeper insights into cancer treatment.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Miroslav Psotka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
Masci D, Naro C, Puxeddu M, Urbani A, Sette C, La Regina G, Silvestri R. Recent Advances in Drug Discovery for Triple-Negative Breast Cancer Treatment. Molecules 2023; 28:7513. [PMID: 38005235 PMCID: PMC10672974 DOI: 10.3390/molecules28227513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most heterogeneous and aggressive breast cancer subtypes with a high risk of death on recurrence. To date, TNBC is very difficult to treat due to the lack of an effective targeted therapy. However, recent advances in the molecular characterization of TNBC are encouraging the development of novel drugs and therapeutic combinations for its therapeutic management. In the present review, we will provide an overview of the currently available standard therapies and new emerging therapeutic strategies against TNBC, highlighting the promises that newly developed small molecules, repositioned drugs, and combination therapies have of improving treatment efficacy against these tumors.
Collapse
Affiliation(s)
- Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (D.M.); (A.U.)
| | - Chiara Naro
- Department of Neurosciences, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (C.N.); (C.S.)
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Michela Puxeddu
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (D.M.); (A.U.)
| | - Claudio Sette
- Department of Neurosciences, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (C.N.); (C.S.)
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| | - Romano Silvestri
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| |
Collapse
|
6
|
Vuaroqueaux V, Musch A, Peille AL, Kelter G, Weichert L, Metz T, Hendriks HR, Fiebig HH. High In Vitro and In Vivo Activity of BI-847325, a Dual MEK/Aurora Kinase Inhibitor, in Human Solid and Hematologic Cancer Models. CANCER RESEARCH COMMUNICATIONS 2023; 3:2170-2181. [PMID: 37830744 PMCID: PMC10599287 DOI: 10.1158/2767-9764.crc-22-0221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/23/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
BI-847325 is an ATP-competitive inhibitor of MEK/Aurora kinases with the potential to treat a wide range of cancers. In a panel of 294 human tumor cell lines in vitro, BI-847325 was found to be a highly selective inhibitor that was active in the submicromolar range. The most sensitive cancer types were acute lymphocytic and myelocytic leukemia, melanomas, bladder, colorectal, and mammary cancers. BI-847325 showed a broader range of activity than the MEK inhibitor GDC-0623. The high efficacy of BI-847325 was associated with but not limited to cell lines with oncogenic mutations in NRAS, BRAF, and MAP2K1.The high antiproliferative activity of BI-847325 was validated in vivo using subcutaneous xenograft models. After oral administration of 80 and 40 mg/kg once weekly for 3 or 4 weeks, BI-847325 was highly active in four of five colorectal, two of two gastric, two of two mammary, and one of one pancreatic cancer models (test/control < 25%), and tumor regressions were observed in five of 11 cancer models. The treatment was well tolerated with no relevant lethality or body weight changes. In combination with capecitabine, BI-847325 displayed synergism over single-agent therapies, leading to complete remission in the triple-negative mammary model MAXFTN 401, partial regression in the colon model CXF 1103, and stasis in the gastric models GXA 3011 and GXA 3023. In conclusion, dual MEK/Aurora kinase inhibition shows remarkable potential for treating multiple types of hematologic and solid tumors. The combination with capecitabine was synergistic in colorectal, gastric, and mammary cancer. SIGNIFICANCE We report the preclinical evaluation of BI-847325, a MEK/Aurora kinase inhibitor. Our data demonstrate that BI-847325 has potent antitumor activity in a broad range of human solid and hematologic cancer models in vitro and in vivo and is well tolerated in animal models. It also shows synergistic effect when combined with capecitabine. These findings provide a strong rationale for further development of BI-847325 as a potential therapeutic for patients with cancer.
Collapse
Affiliation(s)
| | | | | | - Gerhard Kelter
- Charles River, Discovery Research Services GmbH, Freiburg, Germany
| | - Loreen Weichert
- Charles River, Discovery Research Services GmbH, Freiburg, Germany
| | | | | | | |
Collapse
|
7
|
Guo K, Liu C, Shi J, Lai C, Gao Z, Luo J, Li Z, Tang Z, Li K, Xu K. HMMR promotes prostate cancer proliferation and metastasis via AURKA/mTORC2/E2F1 positive feedback loop. Cell Death Dis 2023; 9:48. [PMID: 36750558 PMCID: PMC9905489 DOI: 10.1038/s41420-023-01341-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/09/2023]
Abstract
Although dysregulated HMMR is linked to prostate cancer (PCa) prognosis, the precise mechanisms remain unclear. Here, we sought to elucidate the role of HMMR in PCa progression as well as underlying mechanism. Herein, we found that upregulation of HMMR frequently observed in PCa samples and was associated with poor prognosis. Additionally, HMMR significantly promoted PCa proliferation and metastasis through gain- and loss-of function approaches in vitro and in vivo. Mechanistically, HMMR may interact with AURKA and elevated AURKA protein level through inhibiting ubiquitination-mediated degradation, which subsequently activated mTORC2/AKT pathway to ensure the reinforcement of PCa progression. Moreover, upregulated E2F1 caused from sustained activation of mTORC2/AKT pathway in turn function as transcription factor to promote HMMR transcription, thereby forming a positive feedback loop to trigger PCa progression. Importantly, administration of the mTOR inhibitor partially antagonised HMMR-mediated PCa progression in vivo. In summary, we not only reveal a novel possible post-translation mechanism mediated by HMMR involved in AURKA regulation, but also describe a positive feedback loop that contributes to PCa deterioration, suggesting HMMR may serve as a potential promising therapeutic target in PCa.
Collapse
Affiliation(s)
- Kaixuan Guo
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong P. R. China
| | - Cheng Liu
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong P. R. China
| | - Juanyi Shi
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XDepartment of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong P. R. China
| | - Cong Lai
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong P. R. China
| | - Ze Gao
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong P. R. China
| | - Jiawen Luo
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong P. R. China
| | - Zhuohang Li
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong P. R. China
| | - Zhuang Tang
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong P. R. China
| | - Kuiqing Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China. .,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China. .,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P. R. China.
| | - Kewei Xu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China. .,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China. .,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
8
|
Liu G, Chen T, Zhang X, Ma X, Shi H. Small molecule inhibitors targeting the cancers. MedComm (Beijing) 2022; 3:e181. [PMID: 36254250 PMCID: PMC9560750 DOI: 10.1002/mco2.181] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Compared with traditional therapies, targeted therapy has merits in selectivity, efficacy, and tolerability. Small molecule inhibitors are one of the primary targeted therapies for cancer. Due to their advantages in a wide range of targets, convenient medication, and the ability to penetrate into the central nervous system, many efforts have been devoted to developing more small molecule inhibitors. To date, 88 small molecule inhibitors have been approved by the United States Food and Drug Administration to treat cancers. Despite remarkable progress, small molecule inhibitors in cancer treatment still face many obstacles, such as low response rate, short duration of response, toxicity, biomarkers, and resistance. To better promote the development of small molecule inhibitors targeting cancers, we comprehensively reviewed small molecule inhibitors involved in all the approved agents and pivotal drug candidates in clinical trials arranged by the signaling pathways and the classification of small molecule inhibitors. We discussed lessons learned from the development of these agents, the proper strategies to overcome resistance arising from different mechanisms, and combination therapies concerned with small molecule inhibitors. Through our review, we hoped to provide insights and perspectives for the research and development of small molecule inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Gui‐Hong Liu
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Tao Chen
- Department of CardiologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xin Zhang
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Xue‐Lei Ma
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Hua‐Shan Shi
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
9
|
Nemes K, Johann PD, Tüchert S, Melchior P, Vokuhl C, Siebert R, Furtwängler R, Frühwald MC. Current and Emerging Therapeutic Approaches for Extracranial Malignant Rhabdoid Tumors. Cancer Manag Res 2022; 14:479-498. [PMID: 35173482 PMCID: PMC8841298 DOI: 10.2147/cmar.s289544] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Extracranial malignant rhabdoid tumors (extracranial MRT) are rare, highly aggressive malignancies affecting mainly infants and children younger than 3 years. Common anatomic sites comprise the kidneys (RTK – rhabdoid tumor of kidney) and other soft tissues (eMRT – extracranial, extrarenal malignant rhabdoid tumor). The genetic origin of these diseases is linked to biallelic pathogenic variants in the genes SMARCB1, or rarely SMARCA4, encoding subunits of the SWI/SNF chromatin-remodeling complex. Even if extracranial MRT seem to be quite homogeneous, recent epigenome analyses reveal a certain degree of epigenetic heterogeneity. Use of intensified therapies has modestly improved survival for extracranial MRT. Patients at standard risk profit from conventional therapies; most high-risk patients still experience a dismal course and often therapy resistance. Discoveries of clinical and molecular hallmarks and the exploration of experimental therapeutic approaches open exciting perspectives for clinical and molecularly stratified experimental treatment approaches. To ultimately improve the outcome of patients with extracranial MRTs, they need to be characterized and stratified clinically and molecularly. High-risk patients need novel therapeutic approaches including selective experimental agents in phase I/II clinical trials.
Collapse
Affiliation(s)
- Karolina Nemes
- Paediatrics and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Augsburg, Germany
| | - Pascal D Johann
- Paediatrics and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Augsburg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Tüchert
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Augsburg, Germany
| | - Patrick Melchior
- Department of Radiation Oncology, University of Saarland, Homburg, Germany
| | - Christian Vokuhl
- Section of Pediatric Pathology, Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Rhoikos Furtwängler
- Department of Pediatric Hematology and Oncology, University of Saarland, Homburg, Germany
| | - Michael C Frühwald
- Paediatrics and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Augsburg, Germany
| |
Collapse
|