1
|
Hitchcock CL, Chapman GJ, Mojzisik CM, Mueller JK, Martin EW. A Concept for Preoperative and Intraoperative Molecular Imaging and Detection for Assessing Extent of Disease of Solid Tumors. Oncol Rev 2024; 18:1409410. [PMID: 39119243 PMCID: PMC11306801 DOI: 10.3389/or.2024.1409410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/28/2024] [Indexed: 08/10/2024] Open
Abstract
The authors propose a concept of "systems engineering," the approach to assessing the extent of diseased tissue (EODT) in solid tumors. We modeled the proof of this concept based on our clinical experience with colorectal carcinoma (CRC) and gastrinoma that included short and long-term survival data of CRC patients. This concept, applicable to various solid tumors, combines resources from surgery, nuclear medicine, radiology, pathology, and oncology needed for preoperative and intraoperative assessments of a patient's EODT. The concept begins with a patient presenting with biopsy-proven cancer. An appropriate preferential locator (PL) is a molecule that preferentially binds to a cancer-related molecular target (i.e., tumor marker) lacking in non-malignant tissue and is the essential element. Detecting the PL after an intravenous injection requires the PL labeling with an appropriate tracer radionuclide, a fluoroprobe, or both. Preoperative imaging of the tracer's signal requires molecular imaging modalities alone or in combination with computerized tomography (CT). These include positron emission tomography (PET), PET/CT, single-photon emission computed tomography (SPECT), SPECT/CT for preoperative imaging, gamma cameras for intraoperative imaging, and gamma-detecting probes for precise localization. Similarly, fluorescent-labeled PLs require appropriate cameras and probes. This approach provides the surgeon with real-time information needed for R0 resection.
Collapse
Affiliation(s)
- Charles L. Hitchcock
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Actis Medical, LLC, Powell, OH, United States
| | - Gregg J. Chapman
- Actis Medical, LLC, Powell, OH, United States
- Department of Electrical and Computer Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | | | | | - Edward W. Martin
- Actis Medical, LLC, Powell, OH, United States
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
2
|
Wang Q, Chen B, Duan C, Wang T, Lou X, Dai J, Xia F. Unfolded Protein-Based Sandwich AIE Probe Imparts High Fluorescent Contrast for Pan-Cancer Surgical Navigation. Anal Chem 2024; 96:3609-3617. [PMID: 38364862 DOI: 10.1021/acs.analchem.3c05735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Fluorescence imaging-guided navigation for cancer surgery has a promising clinical application. However, pan-cancer encompasses a wide variety of cancer types with significant heterogeneity, resulting in the lack of universal and highly contrasted fluorescent probes for surgical navigation. Here, we developed an aggregation-induced emission (AIE) probe (MI-AIE-TsG, MAT) with dual activation for pan-cancer surgical navigation. MAT weakly activates fluorescence by targeting the SUR1 protein on the endoplasmic reticulum (ER) through the TsG group. Subsequently, the sulfhydryl groups on the unfolded proteins, which are highly enriched in cancer ER, react with the maleimide (MI) of MAT through the thiol-ene click reaction, further enhancing the fluorescence. The formation of a SUR1-MAT-unfolded protein sandwich complex reinforces the restriction of intramolecular motion and eliminates photoinduced electron transfer of MAT, leading to high signal-to-noise (9.2) fluorescence imaging and use for surgical navigation of pan-cancer. The generally high content of unfolded proteins in cancer cells makes MAT imaging generalizable, and it currently has proven feasibility in ovarian, cervical, and breast cancers. Meanwhile, MAT promotes cellular autophagy by hindering protein folding, thereby inhibiting cancer cell proliferation. This generalizable, high-contrast AIE fluorescent probe spans the heterogeneity of pancreatic cancer, enabling precise pancreatic cancer surgery navigation and treatment.
Collapse
Affiliation(s)
- Quan Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Chong Duan
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Tingting Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
3
|
Zhu H, Roelands J, Ahmed EI, Stouten I, Hoorntje R, van Vlierberghe RLP, Ijsselsteijn ME, Lei X, de Miranda NFCC, Tollenaar RAEM, Vahrmeijer AL, Bedognetti D, Hendrickx WRL, Kuppen PJK. Location matters: spatial dynamics of tumor-infiltrating T cell subsets is prognostic in colon cancer. Front Immunol 2024; 15:1293618. [PMID: 38375478 PMCID: PMC10875018 DOI: 10.3389/fimmu.2024.1293618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Background Colon cancer is a heterogeneous disease and consists of various molecular subtypes. Despite advances in high-throughput expression profiling, limitations remain in predicting clinical outcome and assigning specific treatment to individual cases. Tumor-immune interactions play a critical role, with tumors that activate the immune system having better outcome for the patient. The localization of T cells within tumor epithelium, to enable direct contact, is essential for antitumor function, but bulk DNA/RNA sequencing data lacks spatial distribution information. In this study, we provide spatial T cell tumor distribution and connect these data with previously determined genomic data in the AC-ICAM colon cancer patient cohort. Methods Colon cancer patients (n=90) with transcriptome data available were selected. We used a custom multiplex immunofluorescence assay on colon tumor tissue sections for quantifying T cell subsets spatial distribution in the tumor microenvironment, in terms of cell number, location, mutual distance, and distance to tumor cells. Statistical analyses included the previously determined Immunologic Constant of Rejection (ICR) transcriptome correlation and patient survival, revealing potential prognostic value in T cell spatial distribution. Results T cell phenotypes were characterized and CD3+CD8-FoxP3- T cells were found to be the predominant tumor-infiltrating subtype while CD3+FoxP3+ T cells and CD3+CD8+ T cells showed similar densities. Spatial distribution analysis elucidated that proliferative T cells, characterized by Ki67 expression, and Granzyme B-expressing T cells were predominantly located within the tumor epithelium. We demonstrated an increase in immune cell density and a decrease in the distance of CD3+CD8+ T cells to the nearest tumor cell, in the immune active, ICR High, immune subtypes. Higher densities of stromal CD3+FoxP3+ T cells showed enhanced survival outcomes, and patients exhibited superior clinical benefits when greater spatial distances were observed between CD3+CD8-FoxP3- or CD3+CD8+ T cells and CD3+FoxP3+ T cells. Conclusion Our study's in-depth analysis of the spatial distribution and densities of major T cell subtypes within the tumor microenvironment has provided valuable information that paves the way for further research into the intricate relationships between immune cells and colon cancer development.
Collapse
Affiliation(s)
- Hehuan Zhu
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Jessica Roelands
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Eiman I. Ahmed
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Imke Stouten
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Rachel Hoorntje
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Xin Lei
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | | - Davide Bedognetti
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Kite, A Gilead Company, Santa Monica, CA, United States
| | - Wouter R. L. Hendrickx
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Tumor Biology and Immunology Lab, Research Branch, Sidra Medicine, Doha, Qatar
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
4
|
Li L, Lin X, Wang L, Ma X, Zeng Z, Liu F, Jia B, Zhu H, Wu A, Yang Z. Immuno-PET of colorectal cancer with a CEA-targeted [68 Ga]Ga-nanobody: from bench to bedside. Eur J Nucl Med Mol Imaging 2023; 50:3735-3749. [PMID: 37382662 DOI: 10.1007/s00259-023-06313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
PURPOSE An accurate diagnosis of colorectal carcinoma (CRC) can assist physicians in developing reasonable therapeutic regimens, thereby significantly improving the patient's prognosis. Carcinoembryonic antigen (CEA)-targeted PET imaging shows great potential for this purpose. Despite showing remarkable abilities to detect primary and metastatic CRC, previously reported CEA-specific antibody radiotracers or pretargeted imaging are not suitable for clinical use due to poor pharmacokinetics and complicated imaging procedures. In contrast, radiolabeled nanobodies exhibit ideal characteristics for PET imaging, for instance, rapid clearance rates and excellent distribution profiles, allowing same-day imaging with sufficient contrast. In this study, we developed a novel CEA-targeted nanobody radiotracer, [68 Ga]Ga-HNI01, and assessed its tumor imaging ability and biodistribution profile in preclinical xenografts and patients with primary and metastatic CRC. METHODS The novel nanobody HNI01 was acquired by immunizing the llama with CEA proteins. [68 Ga]Ga-HNI01 was synthesized by site-specifically conjugating [68 Ga]Ga with tris(hydroxypyridinone) (THP). Small-animal PET imaging and biodistribution studies were performed in CEA-overexpressed LS174T and CEA-low-expressed HT-29 tumor models. Following successful preclinical assessment, a phase I study was conducted on 9 patients with primary and metastatic CRC. Study participants received 151.21 ± 25.25 MBq of intravenous [68 Ga]Ga-HNI01 and underwent PET/CT scans at 1 h and 2 h post injection. Patients 01-03 also underwent whole-body dynamic PET imaging within 0-40 min p.i. All patients underwent [18F]F-FDG PET/CT imaging within 1 week after [68 Ga]Ga-HNI01 imaging. Tracer distribution, pharmacokinetics, and radiation dosimetry were calculated. RESULTS [68 Ga]Ga-HNI01 was successfully synthesized within 10 min under mild conditions, and the radiochemical purity was more than 98% without purification. Micro-PET imaging with [68 Ga]Ga-HNI01 revealed clear visualization of LS174T tumors, while signals from HT-29 tumors were significantly lower. Biodistribution studies indicated that uptake of [68 Ga]Ga-HNI01 in LS174T and HT-29 was 8.83 ± 3.02%ID/g and 1.81 ± 0.87%ID/g, respectively, at 2 h p.i. No adverse events occurred in all clinical participants after the injection of [68 Ga]Ga-HNI01. A fast blood clearance and low background uptake were observed, and CRC lesions could be visualized with high contrast as early as 30 min after injection. [68 Ga]Ga-HNI01 PET could clearly detect metastatic lesions in the liver, lung, and pancreas and showed superior ability in detecting small metastases. A significant accumulation of radioactivity was observed in the kidney, and normal tissues physiologically expressing CEA receptors showed slight uptakes of [68 Ga]Ga-HNI01. An interesting finding was that strong uptake of [68 Ga]Ga-HNI01 was found in non-malignant colorectal tissues adjacent to the primary tumor in some patients, suggesting abnormal CEA expression in these healthy tissues. CONCLUSION [68 Ga]Ga-HNI01 is a novel CEA-targeted PET imaging radiotracer with excellent pharmacokinetics and favorable dosimetry profiles. [68 Ga]Ga-HNI01 PET is an effective and convenient imaging tool for detecting CRC lesions, particularly for identifying small metastases. Furthermore, its high specificity for CEA in vivo makes it an ideal tool for selecting patients for anti-CEA therapy.
Collapse
Affiliation(s)
- Liqiang Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Xinfeng Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Lin Wang
- Department of Gastrointestinal Cancer Centre, Unit III, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, China
| | - Xiaopan Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Ziqing Zeng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Futao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Bing Jia
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China.
| | - Aiwen Wu
- Department of Gastrointestinal Cancer Centre, Unit III, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, China.
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China.
| |
Collapse
|
5
|
Husarova T, MacCuaig WM, Dennahy IS, Sanderson EJ, Edil BH, Jain A, Bonds MM, McNally MW, Menclova K, Pudil J, Zaruba P, Pohnan R, Henson CE, Grizzle WE, McNally LR. Intraoperative Imaging in Hepatopancreatobiliary Surgery. Cancers (Basel) 2023; 15:3694. [PMID: 37509355 PMCID: PMC10377919 DOI: 10.3390/cancers15143694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatopancreatobiliary surgery belongs to one of the most complex fields of general surgery. An intricate and vital anatomy is accompanied by difficult distinctions of tumors from fibrosis and inflammation; the identification of precise tumor margins; or small, even disappearing, lesions on currently available imaging. The routine implementation of ultrasound use shifted the possibilities in the operating room, yet more precision is necessary to achieve negative resection margins. Modalities utilizing fluorescent-compatible dyes have proven their role in hepatopancreatobiliary surgery, although this is not yet a routine practice, as there are many limitations. Modalities, such as photoacoustic imaging or 3D holograms, are emerging but are mostly limited to preclinical settings. There is a need to identify and develop an ideal contrast agent capable of differentiating between malignant and benign tissue and to report on the prognostic benefits of implemented intraoperative imaging in order to navigate clinical translation. This review focuses on existing and developing imaging modalities for intraoperative use, tailored to the needs of hepatopancreatobiliary cancers. We will also cover the application of these imaging techniques to theranostics to achieve combined diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Tereza Husarova
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - William M. MacCuaig
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Isabel S. Dennahy
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Emma J. Sanderson
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Barish H. Edil
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Morgan M. Bonds
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Molly W. McNally
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Katerina Menclova
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Jiri Pudil
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Pavel Zaruba
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Radek Pohnan
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Christina E. Henson
- Department of Radiation Oncology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lacey R. McNally
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
6
|
Derks YHW, Schilham MGM, Rijpkema M, Smeets EMM, Amatdjais-Groenen HIV, Kip A, van Lith SAM, van de Kamp J, Sedelaar JPM, Somford DM, Simons M, Laverman P, Gotthardt M, Löwik DWPM, Heskamp S, Lütje S. Imaging and photodynamic therapy of prostate cancer using a theranostic PSMA-targeting ligand. Eur J Nucl Med Mol Imaging 2023; 50:2872-2884. [PMID: 37060367 PMCID: PMC10317872 DOI: 10.1007/s00259-023-06224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE Incomplete resection of prostate cancer (PCa) results in increased risk of disease recurrence. Combined fluorescence-guided surgery with tumor-targeted photodynamic therapy (tPDT) may help to achieve complete tumor eradication. We developed a prostate-specific membrane antigen (PSMA) ligand consisting of a DOTA chelator for 111In labeling and a fluorophore/photosensitizer IRDye700DX (PSMA-N064). We evaluated the efficacy of PSMA-tPDT using PSMA-N064 in cell viability assays, a mouse xenograft model and in an ex vivo incubation study on fresh human PCa tissue. METHODS In vitro, therapeutic efficacy of PSMA-N064 was evaluated using PSMA-positive LS174T cells and LS174T wild-type cells. In vivo, PSMA-N064-mediated tPDT was tested in immunodeficient BALB/c mice-bearing PSMA-positive LS174T xenografts. Tumor growth and survival were compared to control mice that received either NIR light or ligand injection only. Ex vivo tPDT efficacy was evaluated in excised fresh human PCa tissue incubated with PSMA-N064. RESULTS In vitro, tPDT led to a PSMA-specific light- and ligand dose-dependent loss in cell viability. In vivo, tPDT-induced tumor cell apoptosis, delayed tumor growth, and significantly improved survival (p = 0.004) of the treated PSMA-positive tumor-bearing mice compared with the controls. In fresh ex vivo human PCa tissue, apoptosis was significantly increased in PSMA-tPDT-treated samples compared to non-treated control samples (p = 0.037). CONCLUSION This study showed the feasibility of PSMA-N064-mediated tPDT in cell assays, a xenograft model and excised fresh human PCa tissue. This paves the way to investigate the impact of in vivo PSMA-tPDT on surgical outcome in PCa patients.
Collapse
Affiliation(s)
- Yvonne H W Derks
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, The Netherlands.
| | - Melline G M Schilham
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, The Netherlands
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
- Prosper Prostate Cancer Clinics, Nijmegen, The Netherlands
| | - Mark Rijpkema
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, The Netherlands
| | - Esther M M Smeets
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, The Netherlands
| | - Helene I V Amatdjais-Groenen
- Institute for Molecules and Materials, Systems Chemistry, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Annemarie Kip
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, The Netherlands
| | - Sanne A M van Lith
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, The Netherlands
| | - Jill van de Kamp
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, The Netherlands
| | - J P Michiel Sedelaar
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
- Prosper Prostate Cancer Clinics, Nijmegen, The Netherlands
| | - Diederik M Somford
- Prosper Prostate Cancer Clinics, Nijmegen, The Netherlands
- Department of Urology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Michiel Simons
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Laverman
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, The Netherlands
| | - Dennis W P M Löwik
- Institute for Molecules and Materials, Systems Chemistry, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, The Netherlands
| | - Susanne Lütje
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, The Netherlands
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
7
|
Xiao Y, Mei C, Xu D, Yang F, Yang M, Bi L, Mao J, Pang P, Li D. Identification of a CEACAM5 targeted nanobody for positron emission tomography imaging and near-infrared fluorescence imaging of colorectal cancer. Eur J Nucl Med Mol Imaging 2023; 50:2305-2318. [PMID: 36914753 DOI: 10.1007/s00259-023-06183-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
PURPOSE Here, we aim to identify a CEACAM5-targeted nanobody and demonstrate its application in positron emission tomography (PET) imaging and near-infrared (NIR) fluorescence imaging in colorectal cancer (CRC). METHODS Immunohistochemistry was applied to verify CEACAM5 expression in CRC and metastatic lymph nodes (mLNs). CEACAM5-targeted nanobodies were obtained by immunization of human CEACAM5 protein in a dromedary, followed by several rounds of phage screenings. Immunofluorescence staining and flow cytometry was carried out to determine the binding affinity of the nanobodies. The nanobodies were radiolabeled by coupling 18F-SFB for PET imaging of CRC subcutaneous xenografts and lymph node metastasis (LNM). IRDye800CW (IR800) were conjugated to form NIR probes for NIR imaging in CRC subcutaneous models. RESULTS CEACAM5 was overexpressed in either human CRC tissues or mLNs. A CEACAM5 targeted nanobody, Nb41 was successfully generated, with excellent in vitro binding properties. Incorporation of albumin binding domain (ABD) did not affect the affinity of Nb41. In vivo imaging showed that both 18F-FB-Nb41 and 18F-FB-Nb41-ABD showed obvious accumulation in the tumor. Due to the longer retention in the blood, 18F-FB-Nb41-ABD enrichment in tumors was significantly delayed but higher compared to 18F-FB-Nb41. Both 18F-FB-Nb41 and 18F-FB-Nb41-ABD showed prominent LNM enrichment. Similarly, the IR800-conjugated nanobodies Nb41-IR800 and Nb41-ABD-IR800 exhibited superior imaging effects in subcutaneous models, while Nb41-ABD-IR800 exhibited higher fluorescence intensity in the tumor accompanied with a remarkedly delay compared to Nb41-IR800. CONCLUSION Collectively, we presented the identification and in vivo validation of a CEACAM5-targeted nanobody and a fused nanobody with an ABD, which enabled to the non-invasive visualization of malignancy of CRC using PET imaging and NIR imaging in subcutaneous models as well as LNM models.
Collapse
Affiliation(s)
- Yitai Xiao
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
| | - Chaoming Mei
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
| | - Duo Xu
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
| | - Fan Yang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
| | - Meilin Yang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
| | - Lei Bi
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China
| | - Junjie Mao
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China.
| | - Pengfei Pang
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China.
| | - Dan Li
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province, 519000, China.
| |
Collapse
|
8
|
Liang R, Liu N, Li F. Recent Advances of Anticancer Studies Based on Nano-Fluorescent Metal-Organic Frameworks. ChemMedChem 2022; 17:e202200480. [PMID: 36220780 DOI: 10.1002/cmdc.202200480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Indexed: 01/14/2023]
Abstract
Nano-fluorescent metal-organic frameworks (NF-MOFs), a kind of newly emerged nano-scaled platform, can provide visual, rapid, and highly sensitive optical imaging of cancer lesions both in vitro and in vivo. Meanwhile, the excellent porosity, structural tunability, and chemical modifiability also enable NF-MOFs to achieve simultaneous loading of targeted molecules and therapeutic agents. These NF-MOFs not only possess excellent targeted imaging ability, but also can guide the carried cargos to perform precise therapy, drawing considerable attention in current framework of anticancer drug design. In this review, we outline the fluorescence types and response mechanisms of NF-MOFs, and highlight their applications in cancer diagnosis and therapy in recent years. Based on this panorama, we also discuss current issues and future trends of NF-MOFs in biomedical fields, attempting to clarify the potential value of fluorescence imaging guided anticancer investigations.
Collapse
Affiliation(s)
- Ranxi Liang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
9
|
Nguyen PV, Allard-Vannier E, Aubrey N, Labrugère-Sarroste C, Chourpa I, Sobilo J, Le Pape A, Hervé-Aubert K. Radiolabeling, Quality Control and In Vivo Imaging of Multimodal Targeted Nanomedicines. Pharmaceutics 2022; 14:pharmaceutics14122679. [PMID: 36559172 PMCID: PMC9784797 DOI: 10.3390/pharmaceutics14122679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Following our previous study on the development of EGFR-targeted nanomedicine (NM-scFv) for the active delivery of siRNA in EGFR-positive cancers, this study focuses on the development and the quality control of a radiolabeling method to track it in in vivo conditions with nuclear imaging. Our NM-scFv is based on the electrostatic complexation of targeted nanovector (NV-scFv), siRNA and two cationic polymers. NV-scFv comprises an inorganic core, a fluorescent dye, a polymer layer and anti-EGFR ligands. To track NM-scFv in vivo with nuclear imaging, the DTPA chemistry was used to radiolabel NM-scFv with 111In. DTPA was thiolated and introduced onto NV-scFv via the maleimide chemistry. To obtain suitable radiolabeling efficiency, different DTPA/NV-scFv ratios were tested, including 0.03, 0.3 and 0.6. At the optimized ratio (where the DTPA/NV-scFv ratio was 0.3), a high radiolabeling yield was achieved (98%) and neither DTPA-derivatization nor indium-radiolabeling showed any impact on NM-scFv’s physicochemical characteristics (DH ~100 nm, PDi < 0.24). The selected NM-scFv-DTPA demonstrated good siRNA protection capacity and comparable in vitro transfection efficiency into EGFR-overexpressing cells in comparison to that of non-derivatized NM-scFv (around 67%). Eventually, it was able to track both qualitatively and quantitatively NM-scFv in in vivo environments with nuclear imaging. Both the radiolabeling and the NM-scFv showed a high in vivo stability level. Altogether, a radiolabeling method using DTPA chemistry was developed with success in this study to track our NM-scFv in in vivo conditions without any impact on its active targeting and physicochemical properties, highlighting the potential of our NM-scFv for future theranostic applications in EGFR-overexpressing cancers.
Collapse
Affiliation(s)
- Phuoc-Vinh Nguyen
- EA6295 Nanomedicines and Nanoprobes, University of Tours, 37000 Tours, France
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | | | - Nicolas Aubrey
- ISP UMR 1282, INRA, BioMAP, University of Tours, 37000 Tours, France
| | | | - Igor Chourpa
- EA6295 Nanomedicines and Nanoprobes, University of Tours, 37000 Tours, France
| | | | | | - Katel Hervé-Aubert
- EA6295 Nanomedicines and Nanoprobes, University of Tours, 37000 Tours, France
- Correspondence:
| |
Collapse
|
10
|
Boekestijn I, van Oosterom MN, Dell'Oglio P, van Velden FHP, Pool M, Maurer T, Rietbergen DDD, Buckle T, van Leeuwen FWB. The current status and future prospects for molecular imaging-guided precision surgery. Cancer Imaging 2022; 22:48. [PMID: 36068619 PMCID: PMC9446692 DOI: 10.1186/s40644-022-00482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/21/2022] [Indexed: 01/19/2023] Open
Abstract
Molecular imaging technologies are increasingly used to diagnose, monitor, and guide treatment of i.e., cancer. In this review, the current status and future prospects of the use of molecular imaging as an instrument to help realize precision surgery is addressed with focus on the main components that form the conceptual basis of intraoperative molecular imaging. Paramount for successful interventions is the relevance and accessibility of surgical targets. In addition, selection of the correct combination of imaging agents and modalities is critical to visualize both microscopic and bulk disease sites with high affinity and specificity. In this context developments within engineering/imaging physics continue to drive the growth of image-guided surgery. Particularly important herein is enhancement of sensitivity through improved contrast and spatial resolution, features that are critical if sites of cancer involvement are not to be overlooked during surgery. By facilitating the connection between surgical planning and surgical execution, digital surgery technologies such as computer-aided visualization nicely complement these technologies. The complexity of image guidance, combined with the plurality of technologies that are becoming available, also drives the need for evaluation mechanisms that can objectively score the impact that technologies exert on the performance of healthcare professionals and outcome improvement for patients.
Collapse
Affiliation(s)
- Imke Boekestijn
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paolo Dell'Oglio
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Urology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Floris H P van Velden
- Medical Physics, Department of Radiology , Leiden University Medical Center, Leiden, the Netherlands
| | - Martin Pool
- Department of Clinical Farmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tobias Maurer
- Martini-Klinik Prostate Cancer Centre Hamburg, Hamburg, Germany
| | - Daphne D D Rietbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
11
|
Daniluk P, Mazur N, Swierblewski M, Chand M, Diana M, Polom K. Fluorescence Imaging in Colorectal Surgery: An Updated Review and Future Trends. Surg Innov 2022; 29:479-487. [PMID: 35232304 DOI: 10.1177/15533506211072678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fluorescence imaging in colorectal surgery is considered a novel predominantly intraoperative method of ensuring a greater surgical success. The use of fluorescence is linked to advanced tumor visualization and projection of its lymphatics, both vessels and nodes, which results in a higher chance of achieving a total excision. Additionally, iatrogenic complications prove to be reduced using fluorescence during the surgical excision. The combination of fluorescence and artificial intelligence to better facilitate oncological surgery will soon become an established approach in operating rooms worldwide.
Collapse
Affiliation(s)
- Paulina Daniluk
- Department of Surgical Oncology, 37804Medical University of Gdansk, Gdansk, Poland
| | - Natalia Mazur
- Department of Surgical Oncology, 37804Medical University of Gdansk, Gdansk, Poland
| | - Maciej Swierblewski
- Department of Surgical Oncology, 37804Medical University of Gdansk, Gdansk, Poland
| | - Manish Chand
- Department of Surgery and Interventional Sciences, GENIE Centre, 4919University College London, University College London Hospitals, NHS Trust, London, UK
| | - Michele Diana
- Department of General, Digestive, and Endocrine Surgery, University Hospital of Strasbourg, Strasbourg, France
| | - Karol Polom
- Department of Surgical Oncology, 37804Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
12
|
Multispectral Imaging Using Fluorescent Properties of Indocyanine Green and Methylene Blue in Colorectal Surgery-Initial Experience. J Clin Med 2022; 11:jcm11020368. [PMID: 35054062 PMCID: PMC8778329 DOI: 10.3390/jcm11020368] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Introduction: Image-guided surgery is becoming a new tool in colorectal surgery. Intraoperative visualisation of different structures using fluorophores helps during various steps of operations. In our report, we used two fluorophores—indocyanine green (ICG), and methylene blue (MB)—during different steps of colorectal surgery, using one camera system for two separate near-infrared wavelengths. Material and methods: Twelve patients who underwent complex open or laparoscopic colorectal surgeries were enrolled. Intravenous injections of MB and ICG at different time points were administered. Visualisation of intraoperative ureter position and fluorescent angiography for optimal anastomosis was performed. A retrospective analysis of patients treated in our departments during 2020 was performed, and data about ureter injury and anastomotic site complications were collected. Results: Intraoperative localisation of ureters with MB under fluorescent light was possible in 11 patients. The mean signal-to-background ratio was 1.58 ± 0.71. Fluorescent angiography before performing anastomosis using ICG was successful in all 12 patients, and none required a change in position of the planned colon resection for anastomosis. The median signal-to-background ratios was 1.25 (IQR: 1.22–1.89). Across both centres, iatrogenic injury of the ureter was found in 0.4% of cases, and complications associated with anastomosis was found in 5.5% of cases. Conclusions: Our study showed a substantial opportunity for using two different fluorophores in colorectal surgery, whereby the visualisation of one will not change the possible quantification analysis of the other. Using two separate dyes during one procedure may help in optimisation of the fluorescent properties of both dyes when using them for different applications. Visualisation of different structures by different fluorophores seems to be the future of image-guided surgery, and shows progress in optical technologies used in image-guided surgery.
Collapse
|
13
|
Usefulness of microfocus computed tomography in life science research: preliminary study using murine micro-hepatic tumor models. Surg Today 2021; 52:715-720. [PMID: 34694491 DOI: 10.1007/s00595-021-02396-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Microfocus computed tomography (micro-CT) has not been widely used at high radiation intensity (industrial micro-CT) in life science fields. In this preliminary study, we investigated its potential value in the detection of micro-hepatic tumors in a mouse model. METHODS The liver with micro-hepatic tumors was surgically resected en-bloc from mice, and examined with industrial micro-CT and lower intensity micro-CT (small animal micro-CT). The number of hepatic tumors was manually counted on serial images. Then, the accuracy of each technique was determined by preparing matching liver sections and comparing the number of tumors identified in a conventional pathological examination. RESULTS The number of hepatic tumors evaluated with industrial micro-CT showed high concordance with the results of the pathological examinations (intraclass correlation coefficient [ICC]: 0.984; 95% confidence interval [CI] 0.959-0.994). On the other hand, the number of hepatic tumors evaluated with the small animal micro-CT showed low concordance with the number identified in the pathological examinations (ICC: 0.533; 95% CI 0.181-0.815). CONCLUSION Industrial micro-CT improved the detection of small structures in resected specimens, and might be a promising solution for life science research.
Collapse
|
14
|
Gao J, Liao Z, Liu W, Hu Y, Ma H, Xia L, Li F, Lan T, Yang Y, Yang J, Liao J, Liu N. Simple and efficient method for producing high radionuclidic purity 111In using enriched 112Cd target. Appl Radiat Isot 2021; 176:109828. [PMID: 34166947 DOI: 10.1016/j.apradiso.2021.109828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/21/2021] [Accepted: 06/08/2021] [Indexed: 11/25/2022]
Abstract
In this work, a simple and efficient method for producing high radionuclidic purity 111In from an enriched 112Cd target was developed. The enriched 112Cd metal target formed by cyanide-free electroplating was bombarded with protons of 21 MeV in a CS-30 cyclotron. Then, we explored a purification scheme using CL-P204 cation exchange resin wherein 98% of the 111In in the bombarded target could be extracted in less than 1 h. The purified 111In in the form of [111In]In-chloride had a high radionuclidic purity (99.9%) and a low impurity concentration (<1.2 ppm). The yield of 111In via the reaction of 112Cd (p, 2n) 111In was measured to be 222 ± 5 MBq/μA∙h. In addition, a chemical procedure for collecting the unreacted 112Cd at a recovery rate of 96.6% was explored.
Collapse
Affiliation(s)
- Jing Gao
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Zhonghui Liao
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Weihao Liu
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Yingjiang Hu
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Huan Ma
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Lingting Xia
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Jijun Yang
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
15
|
Debie P, Declerck NB, van Willigen D, Huygen CM, De Sloovere B, Mateusiak L, Bridoux J, Puttemans J, Devoogdt N, van Leeuwen FWB, Hernot S. The Design and Preclinical Evaluation of a Single-Label Bimodal Nanobody Tracer for Image-Guided Surgery. Biomolecules 2021; 11:biom11030360. [PMID: 33652977 PMCID: PMC7996797 DOI: 10.3390/biom11030360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 01/22/2023] Open
Abstract
Intraoperative guidance using targeted fluorescent tracers can potentially provide surgeons with real-time feedback on the presence of tumor tissue in resection margins. To overcome the limited depth penetration of fluorescent light, combining fluorescence with SPECT/CT imaging and/or gamma-ray tracing has been proposed. Here, we describe the design and preclinical validation of a novel bimodal nanobody-tracer, labeled using a “multifunctional single attachment point” (MSAP) label, integrating a Cy5 fluorophore and a diethylenetriaminepentaacetic acid (DTPA) chelator into a single structure. After conjugation of the bimodal MSAP to primary amines of the anti-HER2 nanobody 2Rs15d and 111In-labeling of DTPA, the tracer’s characteristics were evaluated in vitro. Subsequently, its biodistribution and tumor targeting were assessed by SPECT/CT and fluorescence imaging over 24 h. Finally, the tracer’s ability to identify small, disseminated tumor lesions was investigated in mice bearing HER2-overexpressing SKOV3.IP1 peritoneal lesions. [111In]In-MSAP.2Rs15d retained its affinity following conjugation and remained stable for 24 h. In vivo SPECT/CT and fluorescence images showed specific uptake in HER2-overexpressing tumors with low background. High tumor-to-muscle ratios were obtained at 1h p.i. and remained 19-fold on SPECT/CT and 3-fold on fluorescence images over 24 h. In the intraperitoneally disseminated model, the tracer allowed detection of larger lesions via nuclear imaging, while fluorescence enabled accurate removal of submillimeter lesions. Bimodal nuclear/fluorescent nanobody-tracers can thus be conveniently designed by conjugation of a single-molecule MSAP-reagent carrying a fluorophore and chelator for radioactive labeling. Such tracers hold promise for clinical applications.
Collapse
Affiliation(s)
- Pieterjan Debie
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Noemi B. Declerck
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Danny van Willigen
- Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University, 2311 Leiden, The Netherlands; (D.v.W.); (F.W.B.v.L.)
| | - Celine M. Huygen
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Bieke De Sloovere
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Lukasz Mateusiak
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Jessica Bridoux
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Janik Puttemans
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Nick Devoogdt
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Fijs W. B. van Leeuwen
- Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University, 2311 Leiden, The Netherlands; (D.v.W.); (F.W.B.v.L.)
| | - Sophie Hernot
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
- Correspondence: ; Tel.: +32-2477-4991
| |
Collapse
|