1
|
Tanjak P, Chaiboonchoe A, Suwatthanarak T, Thanormjit K, Acharayothin O, Chanthercrob J, Parakonthun T, Methasate A, Fischer JM, Wong MH, Chinswangwatanakul V. Tumor-immune hybrid cells evade the immune response and potentiate colorectal cancer metastasis through CTLA4. Clin Exp Med 2024; 25:2. [PMID: 39499374 PMCID: PMC11538261 DOI: 10.1007/s10238-024-01515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024]
Abstract
Understanding the metastatic cascade is critical for the treatment and prevention of cancer-related death. Within a tumor, immune cells have the capacity to fuse with tumor cells to generate tumor-immune hybrid cells (THCs). THCs are hypothesized to be a subset of cancer cells with the capacity to enter circulation as circulating hybrid cells (CHC) and seed metastases. To understand the mechanism of THC metastasis, we investigated CHCs in peripheral blood from patients with stage IV colorectal cancer (CRC), as well as THCs in tissues of primary colorectal cancers and their liver metastasis sites using immunofluorescence, spatial proteomic, spatial transcriptomic, molecular classification, and molecular pathway analyses. Our findings indicated a high prevalence of CHCs and THCs in patients with stage IV CRC. THCs expressed CTLA4 in primary CRC lesions and correlated with upregulation of CD68, CD4, and HLA-DR in metastatic liver lesions, which is found in the consensus molecular subtype (CMS) 1 of primary CRC tissue. Pathway analysis of these genes suggested that THCs are associated with neutrophils due to upregulation of neutrophil extracellular trap signaling (NET) and neutrophil degranulation pathways. These data provide molecular pathways for the formation of THCs suggesting fusion with neutrophils, which may facilitate extravasation and metastatic seeding.
Collapse
Grants
- R016234003 Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
- R016234003 Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
- R016234003 Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
- R016234003 Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
- R016234003 Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
- RO16241047 Foundation for Cancer Care, Siriraj Hospital, Thailand
- RO16241047 Foundation for Cancer Care, Siriraj Hospital, Thailand
- RO16241047 Foundation for Cancer Care, Siriraj Hospital, Thailand
- RO16241047 Foundation for Cancer Care, Siriraj Hospital, Thailand
- RO16241047 Foundation for Cancer Care, Siriraj Hospital, Thailand
- RO16241047 Foundation for Cancer Care, Siriraj Hospital, Thailand
- RO16241047 Foundation for Cancer Care, Siriraj Hospital, Thailand
- 63-117 and 66-083 Health Systems Research Institute (HSRI), Thailand
- 63-117 and 66-083 Health Systems Research Institute (HSRI), Thailand
- 63-117 and 66-083 Health Systems Research Institute (HSRI), Thailand
- 63-117 and 66-083 Health Systems Research Institute (HSRI), Thailand
- 63-117 and 66-083 Health Systems Research Institute (HSRI), Thailand
- 63-117 and 66-083 Health Systems Research Institute (HSRI), Thailand
- 63-117 and 66-083 Health Systems Research Institute (HSRI), Thailand
- Mahidol University
Collapse
Affiliation(s)
- Pariyada Tanjak
- Faculty of Medicine Siriraj Hospital, Siriraj Cancer Center, Mahidol University, Bangkok, 10700, Thailand
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Amphun Chaiboonchoe
- Siriraj Center of Research Excellent for Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thanawat Suwatthanarak
- Faculty of Medicine Siriraj Hospital, Siriraj Cancer Center, Mahidol University, Bangkok, 10700, Thailand
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Kullanist Thanormjit
- Faculty of Medicine Siriraj Hospital, Siriraj Cancer Center, Mahidol University, Bangkok, 10700, Thailand
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Onchira Acharayothin
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Jantappapa Chanthercrob
- Siriraj Center of Research Excellent for Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thammawat Parakonthun
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Asada Methasate
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Jared M Fischer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland , OR, 97201, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Melissa H Wong
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Vitoon Chinswangwatanakul
- Faculty of Medicine Siriraj Hospital, Siriraj Cancer Center, Mahidol University, Bangkok, 10700, Thailand.
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
2
|
Aruquipa MPS, Donadio MS, Peixoto RD. Liver metastasis and resistance to immunotherapy in microsatellite stable colorectal cancer. A literature review. Ecancermedicalscience 2024; 18:1771. [PMID: 39430087 PMCID: PMC11489097 DOI: 10.3332/ecancer.2024.1771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 10/22/2024] Open
Abstract
Background Microsatellite stable (MSS) metastatic colorectal cancer (CRC) remains predominantly managed with chemotherapy. The use of immunotherapy, whether alone or in combination with other systemic or local treatments, displays limited success, especially in the context of active liver metastases (LM). The mechanisms responsible for this resistance are not fully understood. Methods We conducted a comprehensive search across electronic databases such as Medline, PubMed, Google Scholar and ScienceDirect. This search targeted translational studies evaluating the liver tumour immune microenvironment and immune tolerance mechanisms in CRC with LM and prospective studies that assessed immunotherapy either as a standalone treatment or in combination with other systemic or local therapies for patients diagnosed with MSS CRC. Our primary objectives included elucidating the mechanisms of resistance originating from LM in a non-systematic literature review and presenting a summary of the outcomes observed in prospective trials utilising immune checkpoint inhibitors (ICIs), with a focus on the presence of LM. Findings There were 16 prospective trials evaluating immunotherapy for metastatic CRC comprising 1,713 patients. Response rates to immunotherapy inpatients with colorectal liver metastases (CRLM) varied from 0% to 23%. Overall, reduced or null responses to immunotherapy in the presence of liver metastasis in comparison to patients without liver involvement were observed. Conclusion Studies consistently show the resistance derived from classical ICI, both alone and in combination with other systemic treatments in patients with CRLM. The design of upcoming trials using immunotherapy should consider LM as a stratification factor or contemplate excluding patients with liver involvement.
Collapse
Affiliation(s)
| | - Mauro S Donadio
- Gastrointestinal Oncology Department, Oncoclinicas, São Paulo 04513-100, Brazil
- https://orcid.org/0000-0002-4705-4802
| | - Renata D Peixoto
- BC Cancer Agency, Vancouver, BC V5Z 4E6, Canada
- https://orcid.org/0000-0003-0053-7951
| |
Collapse
|
3
|
Tejwani V, Carroll T, Macartney T, Bandau S, Alabert C, Saredi G, Toth R, Rouse J. PROTAC-mediated conditional degradation of the WRN helicase as a potential strategy for selective killing of cancer cells with microsatellite instability. Sci Rep 2024; 14:20824. [PMID: 39242638 PMCID: PMC11379953 DOI: 10.1038/s41598-024-71160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
Multiple studies have demonstrated that cancer cells with microsatellite instability (MSI) are intolerant to loss of the Werner syndrome helicase (WRN), whereas microsatellite-stable (MSS) cancer cells are not. Therefore, WRN represents a promising new synthetic lethal target for developing drugs to treat cancers with MSI. Given the uncertainty of how effective inhibitors of WRN activity will prove in clinical trials, and the likelihood of tumours developing resistance to WRN inhibitors, alternative strategies for impeding WRN function are needed. Proteolysis-targeting chimeras (PROTACs) are heterobifunctional small molecules that target specific proteins for degradation. Here, we engineered the WRN locus so that the gene product is fused to a bromodomain (Bd)-tag, enabling conditional WRN degradation with the AGB-1 PROTAC specific for the Bd-tag. Our data revealed that WRN degradation is highly toxic in MSI but not MSS cell lines. In MSI cells, WRN degradation caused G2/M arrest, chromosome breakage and ATM kinase activation. We also describe a multi-colour cell-based platform for facile testing of selective toxicity in MSI versus MSS cell lines. Together, our data show that a degrader approach is a potentially powerful way of targeting WRN in MSI cancers and paves the way for the development of WRN-specific PROTAC compounds.
Collapse
Affiliation(s)
- Vikram Tejwani
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Thomas Carroll
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Susanne Bandau
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, DD1 5EH, UK
| | - Constance Alabert
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, DD1 5EH, UK
| | - Giulia Saredi
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
4
|
Mo H, Yu Y, Sun X, Ge H, Yu L, Guan X, Zhai J, Zhu A, Wei Y, Wang J, Yan X, Qian H, Xu B, Ma F. Metronomic chemotherapy plus anti-PD-1 in metastatic breast cancer: a Bayesian adaptive randomized phase 2 trial. Nat Med 2024; 30:2528-2539. [PMID: 38969879 DOI: 10.1038/s41591-024-03088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/24/2024] [Indexed: 07/07/2024]
Abstract
It remains unclear whether metronomic chemotherapy is superior to conventional chemotherapy when combined with immune checkpoint blockade. Here we performed a phase 2 clinical trial of metronomic chemotherapy combined with PD-1 blockade to compare the efficacy of combined conventional chemotherapy and PD-1 blockade using Bayesian adaptive randomization and efficacy monitoring. Eligible patients had metastatic HER2-negative breast cancer and had not received more than one prior line of standard chemotherapy. Patients (total n = 97) were randomized to receive (1) metronomic vinorelbine (NVB) monotherapy (n = 11), (2) NVB plus anti-PD-1 toripalimab (n = 7), (3) anti-angiogenic bevacizumab, NVB and toripalimab (n = 27), (4) conventional cisplatin, NVB and toripalimab (n = 26), or (5) metronomic cyclophosphamide, capecitabine, NVB and toripalimab (the VEX cohort) (n = 26). The primary endpoint was disease control rate (DCR). Secondary objectives included progression-free survival (PFS) and safety. The study met the primary endpoint. The VEX (69.7%) and cisplatin (73.7%) cohorts had the highest DCR. The median PFS of patients in the VEX cohort was the longest, reaching 6.6 months, followed by the bevacizumab (4.0 months) and cisplatin (3.5 months) cohorts. In general, the five regimens were well tolerated, with nausea and neutropenia being the most common adverse events. An exploratory mass cytometry analysis indicated that metronomic VEX chemotherapy reprograms the systemic immune response. Together, the clinical and translational data of this study indicate that metronomic VEX chemotherapy combined with PD-1 blockade can be a treatment option in patients with breast cancer. ClinicalTrials.gov Identifier: NCT04389073 .
Collapse
Affiliation(s)
- Hongnan Mo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongpei Yu
- Department of Biostatistics, Peking University Clinical Research Institute, Beijing, China
| | - Xiaoying Sun
- Department of Medical Oncology, Cancer Hospital of HuanXing ChaoYang District, Beijing, China
| | - Hewei Ge
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lanlan Yu
- Department of Biostatistics, Peking University Clinical Research Institute, Beijing, China
| | - Xiuwen Guan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingtong Zhai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aihua Zhu
- Department of Medical Oncology, Cancer Hospital of HuanXing ChaoYang District, Beijing, China
| | - Yuhan Wei
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinjing Wang
- Department of Medical Oncology, Cancer Hospital of HuanXing ChaoYang District, Beijing, China
| | - Xiaoyan Yan
- Department of Biostatistics, Peking University Clinical Research Institute, Beijing, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Zhang XC, Zhou YW, Wei GX, Luo YQ, Qiu M. Locoregional therapies combined with immune checkpoint inhibitors for liver metastases. Cancer Cell Int 2024; 24:302. [PMID: 39217341 PMCID: PMC11365172 DOI: 10.1186/s12935-024-03484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have achieved remarkable success in clinical research and practice. Notably, liver metastasis is not sensitive to ICIs. Liver locoregional therapies can cause irreversible damage to tumor cells and release tumor antigens, thereby providing a rationale for immunotherapy treatments in liver metastasis. The combination therapy of ICIs with locoregional therapies is a promising option for patients with liver metastasis. Preclinical studies have demonstrated that combining ICIs with locoregional therapies produces a significantly synergistic anti-tumor effect. However, the current evidence for the efficacy of ICIs combined with locoregional therapies remains insufficient. Therefore, we review the literature on the mechanisms of locoregional therapies in treating liver metastasis and the clinical research progress of their combination with ICIs.
Collapse
Affiliation(s)
- Xing-Chen Zhang
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu, 610041, Sichuan Province, China
| | - Yu-Wen Zhou
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu, 610041, Sichuan Province, China
| | - Gui-Xia Wei
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yi-Qiao Luo
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Meng Qiu
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
6
|
Lukovic J, Dawson LA. Stereotactic body radiation therapy for colorectal cancer liver metastases. J Gastrointest Oncol 2024; 15:1917-1925. [PMID: 39279927 PMCID: PMC11399821 DOI: 10.21037/jgo-22-1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/29/2023] [Indexed: 09/18/2024] Open
Abstract
The management of colorectal cancer liver metastases requires a multidisciplinary approach, which may incorporate systemic therapy, surgery, or local ablative therapies. Stereotactic body radiation therapy (SBRT) is a non-invasive highly conformal radiation technique that enables the delivery of large doses of radiation in a few fractions to well-defined targets using image-guidance and motion management. For selected patients with colorectal cancer liver metastases, stereotactic body radiation therapy can be delivered safely, with excellent long-term local control and overall survival. The purpose of this clinical practice review is to review the background, indications, and treatment details of stereotactic body radiation therapy for the treatment of colorectal liver metastases. SBRT for colorectal cancer liver metastases may be considered for patients with oligometastatic colorectal cancer in combination with surgery or other locally ablative therapies; for patients who are not candidates for surgical resection; or after failure of resection or other ablative therapies. When planning SBRT both a computed tomography and magnetic resonance imaging simulation may be obtained, where feasible, for target delineation. One or 3 fraction SBRT can be considered for lesions away from the central liver and luminal organs at risk, whereas 5 fraction SBRT is preferred otherwise. Image-guidance and motion management strategies are essential components of liver SBRT and will guide the creation of relevant internal and planning target volume margins. For lesions in close proximity to or overlapping with organs-at-risk, the balance between adequate local control and potential for cure with potential acute and late toxicity must be carefully considered.
Collapse
Affiliation(s)
- Jelena Lukovic
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Laura A Dawson
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
8
|
Meng Y, Sun J, Zhang G. A viable remedy for overcoming resistance to anti-PD-1 immunotherapy: Fecal microbiota transplantation. Crit Rev Oncol Hematol 2024; 200:104403. [PMID: 38838927 DOI: 10.1016/j.critrevonc.2024.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Anti-PD-1 immunotherapy is a cancer therapy that focuses explicitly on the PD-1 receptor found on the surface of immune cells. This targeted therapeutic strategy is specifically designed to amplify the immune system's innate capacity to detect and subsequently eliminate cells that have become cancerous. Nevertheless, it should be noted that not all patients exhibit a favourable response to this particular therapeutic modality, necessitating the exploration of novel strategies to augment the effectiveness of immunotherapy. Previous studies have shown that fecal microbiota transplantation (FMT) can enhance the efficacy of anti-PD-1 immunotherapy in advanced melanoma patients. To investigate this intriguing possibility further, we turned to PubMed and conducted a comprehensive search for studies that analyzed the interplay between FMT and anti-PD-1 therapy in the context of tumor treatment. Our search criteria were centred around two key phrases: "fecal microbiota transplantation" and "anti-PD-1 therapy." The studies we uncovered all echo a similar sentiment. They pointed towards the potential of FMT to improve the effectiveness of immunotherapy. FMT may enhance the effectiveness of immunotherapy by altering the gut microbiota and boosting the patient's immunological response. Although promising, additional investigation is needed to improve the efficacy of FMT in the context of cancer therapy and attain a comprehensive understanding of the possible advantages and drawbacks associated with this therapeutic strategy.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| |
Collapse
|
9
|
Lynch C, Pitroda SP, Weichselbaum RR. Radiotherapy, immunity, and immune checkpoint inhibitors. Lancet Oncol 2024; 25:e352-e362. [PMID: 39089313 DOI: 10.1016/s1470-2045(24)00075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 08/03/2024]
Abstract
Radiotherapy exerts immunostimulatory and immunosuppressive effects, both locally, within the irradiated tumour microenvironment, and systemically, outside the radiation field. Inspired by preclinical data that showed synergy between radiotherapy and immune checkpoint inhibitors, multiple clinical trials were initiated with the hypothesis that combined treatment with radiotherapy and immune checkpoint inhibitors could stimulate a robust systemic immune response and improve clinical outcomes. However, despite early optimism, radioimmunotherapy trials in the curative and metastatic settings have met with little success. In this Review, we summarise the immunostimulatory effects of radiotherapy that provided the theoretical basis for trials of combination radiotherapy and immune checkpoint inhibitors. We also discuss findings from clinical trials incorporating radiotherapy and immune checkpoint inhibitors and examine the success of these trials in the context of the immunosuppressive effects of radiotherapy. We conclude by highlighting targets for relieving radiotherapy-induced immunosuppression with the goal of enhancing the combined effects of radiotherapy and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Connor Lynch
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Sean P Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
10
|
Passelli K, Repáraz D, Kinj R, Herrera FG. Strategies for overcoming tumour resistance to immunotherapy: harnessing the power of radiation therapy. Br J Radiol 2024; 97:1378-1390. [PMID: 38833685 PMCID: PMC11256940 DOI: 10.1093/bjr/tqae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have revolutionized cancer treatment; yet their efficacy remains variable across patients. This review delves into the intricate interplay of tumour characteristics contributing to resistance against ICI therapy and suggests that combining with radiotherapy holds promise. Radiation, known for its ability to trigger immunogenic cell death and foster an in situ vaccination effect, may counteract these resistance mechanisms, enhancing ICI response and patient outcomes. However, particularly when delivered at high-dose, it may trigger immunosuppressive mechanism and consequent side-effects. Notably, low-dose radiotherapy (LDRT), with its capacity for tumour reprogramming and reduced side effects, offers the potential for widespread application. Preclinical and clinical studies have shown encouraging results in this regard.
Collapse
Affiliation(s)
- Katiuska Passelli
- Centre Hospitalier Universitaire Vaudoise, Service of Radiation Oncology, Department of Oncology, University of Lausanne, AGORA Center for Cancer Research, Swiss Cancer Center Leman, 1012-Lausanne, Switzerland
| | - David Repáraz
- Centre Hospitalier Universitaire Vaudoise, Service of Radiation Oncology, Department of Oncology, University of Lausanne, AGORA Center for Cancer Research, Swiss Cancer Center Leman, 1012-Lausanne, Switzerland
| | - Remy Kinj
- Centre Hospitalier Universitaire Vaudoise, Service of Radiation Oncology, Department of Oncology, University of Lausanne, 1012-Lausanne, Switzerland
| | - Fernanda G Herrera
- Centre Hospitalier Universitaire Vaudois, Service of Radiation Oncology and Service of Immuno-oncology, Department of Oncology, University of Lausanne, Ludwig Institute for Cancer Research, Agora Center for Cancer Research, Swiss Cancer Center Leman, 1012-Lausanne, Switzerland
| |
Collapse
|
11
|
McMillan MT, Khan AJ, Powell SN, Humm J, Deasy JO, Haimovitz-Friedman A. Spatially Fractionated Radiotherapy in the Era of Immunotherapy. Semin Radiat Oncol 2024; 34:276-283. [PMID: 38880536 DOI: 10.1016/j.semradonc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Spatially fractionated radiotherapy (SFRT) includes historical grid therapy approaches but more recently encompasses the controlled introduction of one or more cold dose regions using intensity modulation delivery techniques. The driving hypothesis behind SFRT is that it may allow for an increased immune response that is otherwise suppressed by radiation effects. With both two- and three-dimensional SFRT approaches, SFRT dose distributions typically include multiple dose cold spots or valleys. Despite its unconventional methods, reported clinical experience shows that SFRT can sometimes induce marked tumor regressions, even in patients with large hypoxic tumors. Preclinical models using extreme dose distributions (i.e., half-sparing) have been shown to nevertheless result in full tumor eradications, a more robust immune response, and systemic anti-tumor immunity. SFRT takes advantage of the complementary immunomodulatory features of low- and high-dose radiotherapy to integrate the delivery of both into a single target. Clinical trials using three-dimensional SFRT (i.e., lattice-like dose distributions) have reported both promising tumor and toxicity results, and ongoing clinical trials are investigating synergy between SFRT and immunotherapies.
Collapse
Affiliation(s)
| | | | | | - John Humm
- Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Joseph O Deasy
- Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | |
Collapse
|
12
|
Wang L, Lynch C, Pitroda SP, Piffkó A, Yang K, Huser AK, Liang HL, Weichselbaum RR. Radiotherapy and immunology. J Exp Med 2024; 221:e20232101. [PMID: 38771260 PMCID: PMC11110906 DOI: 10.1084/jem.20232101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
The majority of cancer patients receive radiotherapy during the course of treatment, delivered with curative intent for local tumor control or as part of a multimodality regimen aimed at eliminating distant metastasis. A major focus of research has been DNA damage; however, in the past two decades, emphasis has shifted to the important role the immune system plays in radiotherapy-induced anti-tumor effects. Radiotherapy reprograms the tumor microenvironment, triggering DNA and RNA sensing cascades that activate innate immunity and ultimately enhance adaptive immunity. In opposition, radiotherapy also induces suppression of anti-tumor immunity, including recruitment of regulatory T cells, myeloid-derived suppressor cells, and suppressive macrophages. The balance of pro- and anti-tumor immunity is regulated in part by radiotherapy-induced chemokines and cytokines. Microbiota can also influence radiotherapy outcomes and is under clinical investigation. Blockade of the PD-1/PD-L1 axis and CTLA-4 has been extensively investigated in combination with radiotherapy; we include a review of clinical trials involving inhibition of these immune checkpoints and radiotherapy.
Collapse
Affiliation(s)
- Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Connor Lynch
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Sean P. Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - András Piffkó
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Amy K. Huser
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Hua Laura Liang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Mitrea DA, Froicu EM, Prenen H, Gambacorta MA, Span PN, Poortmans P. Combining immunotherapy and radiation therapy in gastrointestinal cancers: A review. Crit Rev Oncol Hematol 2024; 199:104381. [PMID: 38735504 DOI: 10.1016/j.critrevonc.2024.104381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
INTRODUCTION AND PURPOSE With a significant global impact, treatment of gastrointestinal (GI) cancers still presents with challenges, despite current multimodality approaches in advanced stages. Clinical trials are expanding for checkpoint inhibition (ICI) combined with radiation therapy (RT). This review intends to offer a comprehensive image of the current data regarding the effectiveness of this association, and to reflect on possible directions to further optimize the results. RESULTS Several early phase studies demonstrated encouraging potential. However, translating preclinical outcomes to clinical settings proves challenging, especially in immunologically "cold" environments. GI cancers exhibit heterogeneity, requiring tailored approaches based on disease stage and patient characteristics. Current results, though promising, lack the power of evidence to influence the general practice. CONCLUSIONS Finding biomarkers for identifying or converting resistant cancers is essential for maximizing responses, moreover in this context strategic RT parameters need to be carefully considered. Our review emphasizes the significance of having a thorough grasp of how immunology, tumour biology, and treatment settings interact in order to propose novel research avenues and efficient GI cancer therapy.
Collapse
Affiliation(s)
- Diana A Mitrea
- Department of Radiation Oncology, Centre Antoine-Lacassagne, 33 Av. de Valombrose, Nice 06100, France.
| | - Eliza M Froicu
- Department of Medical Oncology, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Hans Prenen
- Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Maria A Gambacorta
- Department of Radiation Oncology Fondazione Policlinico Universitario "A. Gemelli", Rome, Italy
| | - Paul N Span
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Philip Poortmans
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk-Antwerp, Belgium; University of Antwerp, Faculty of Medicine and Health Sciences, Wilrijk-Antwerp, Belgium
| |
Collapse
|
14
|
Wu Y, Yi M, Niu M, Zhou B, Mei Q, Wu K. Beyond success: unveiling the hidden potential of radiotherapy and immunotherapy in solid tumors. Cancer Commun (Lond) 2024; 44:739-760. [PMID: 38837878 PMCID: PMC11260771 DOI: 10.1002/cac2.12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Immunotherapy, particularly with immune checkpoint inhibitors, has significantly transformed cancer treatment. Despite its success, many patients struggle to respond adequately or sustain long-lasting clinical improvement. A growing consensus has emerged that radiotherapy (RT) enhances the response rate and overall efficacy of immunotherapy. Although combining RT and immunotherapy has been extensively investigated in preclinical models and has shown promising results, establishing itself as a dynamic and thriving area of research, clinical evidence for this combination strategy over the past five years has shown both positive and disappointing results, suggesting the need for a more nuanced understanding. This review provides a balanced and updated analysis of the combination of immunotherapy and RT. We summarized the preclinical mechanisms through which RT boosts antitumor immune responses and mainly focused on the outcomes of recently updated clinical trials, including those that may not have met expectations. We investigated the optimization of the therapeutic potential of this combined strategy, including key challenges, such as fractionation and scheduling, lymph node irradiation, and toxicity. Finally, we offered insights into the prospects and challenges associated with the clinical translation of this combination therapy, providing a realistic perspective on the current state of research and potential future directions.
Collapse
Affiliation(s)
- Yuze Wu
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Ming Yi
- Department of Breast SurgeryZhejiang University School of Medicine First Affiliated HospitalHangzhouZhejiangP. R. China
| | - Mengke Niu
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Binghan Zhou
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Qi Mei
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Kongming Wu
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuanShanxiP. R. China
- Cancer CenterTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| |
Collapse
|
15
|
Pennel K, Dutton L, Melissourgou-Syka L, Roxburgh C, Birch J, Edwards J. Novel radiation and targeted therapy combinations for improving rectal cancer outcomes. Expert Rev Mol Med 2024; 26:e14. [PMID: 38623751 PMCID: PMC11140547 DOI: 10.1017/erm.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/29/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Neoadjuvant radiotherapy (RT) is commonly used as standard treatment for rectal cancer. However, response rates are variable and survival outcomes remain poor, highlighting the need to develop new therapeutic strategies. Research is focused on identifying novel methods for sensitising rectal tumours to RT to enhance responses and improve patient outcomes. This can be achieved through harnessing tumour promoting effects of radiation or preventing development of radio-resistance in cancer cells. Many of the approaches being investigated involve targeting the recently published new dimensions of cancer hallmarks. This review article will discuss key radiation and targeted therapy combination strategies being investigated in the rectal cancer setting, with a focus on exploitation of mechanisms which target the hallmarks of cancer.
Collapse
Affiliation(s)
- Kathryn Pennel
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Louise Dutton
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Lydia Melissourgou-Syka
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
- CRUK Scotland Institute, Glasgow, G611BD, UK
| | - Campbell Roxburgh
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
- Academic Unit of Surgery, Glasgow Royal Infirmary, University of Glasgow, Glasgow, G4 0SF, UK
| | - Joanna Birch
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| |
Collapse
|
16
|
Wang L, Shen K, Gao Z, Ren M, Wei C, Yang Y, Li Y, Zhu Y, Zhang S, Ding Y, Zhang T, Li J, Zhu M, Zheng S, Yang Y, Du S, Wei C, Gu J. Melanoma Derived Exosomes Amplify Radiotherapy Induced Abscopal Effect via IRF7/I-IFN Axis in Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304991. [PMID: 38286661 PMCID: PMC10987102 DOI: 10.1002/advs.202304991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/11/2023] [Indexed: 01/31/2024]
Abstract
Radiotherapy (RT) can induce tumor regression outside the irradiation field, known as the abscopal effect. However, the detailed underlying mechanisms remain largely unknown. A tumor-bearing mouse model is successfully constructed by inducing both subcutaneous tumors and lung metastases. Single-cell RNA sequencing, immunofluorescence, and flow cytometry are performed to explore the regulation of tumor microenvironment (TME) by RT. A series of in vitro assays, including luciferase reporter, RNA Pulldown, and fluorescent in situ hybridization (FISH) assays, are performed to evaluate the detailed mechanism of the abscopal effect. In addition, in vivo assays are performed to investigate combination therapy strategies for enhancing the abscopal effect. The results showed that RT significantly inhibited localized tumor and lung metastasis progression and improved the TME. Mechanistically, RT promoted the release of tumor-derived exosomes carrying circPIK3R3, which is taken up by macrophages. circPIK3R3 promoted Type I interferon (I-IFN) secretion and M1 polarization via the miR-872-3p/IRF7 axis. Secreted I-IFN activated the JAK/STAT signaling pathway in CD8+ T cells, and promoted IFN-γ and GZMB secretion. Together, the study shows that tumor-derived exosomes promote I-IFN secretion via the circPIK3R3/miR-872-3p/IRF7 axis in macrophages and enhance the anti-tumor immune response of CD8+ T cells.
Collapse
Affiliation(s)
- Lu Wang
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Kangjie Shen
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Zixu Gao
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Ming Ren
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Chenlu Wei
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Yang Yang
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Yinlam Li
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Yu Zhu
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Simin Zhang
- Department of Plastic SurgeryShanghai Geriatric Medical CenterShanghai201104P. R. China
| | - Yiteng Ding
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Tianyi Zhang
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Jianrui Li
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Ming Zhu
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Shaoluan Zheng
- Department of Plastic SurgeryZhongshan Hospital Xiamen BranchFudan UniversityXiamen361015P. R. China
| | - Yanwen Yang
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Shisuo Du
- Department of RadiotherapyZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Chuanyuan Wei
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Jianying Gu
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
- Department of Plastic SurgeryZhongshan Hospital Xiamen BranchFudan UniversityXiamen361015P. R. China
| |
Collapse
|
17
|
Zhou L, Liu Y, Wu Y, Yang X, Spring Kong FM, Lu Y, Xue J. Low-dose radiation therapy mobilizes antitumor immunity: New findings and future perspectives. Int J Cancer 2024; 154:1143-1157. [PMID: 38059788 DOI: 10.1002/ijc.34801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
Radiotherapy has unique immunostimulatory and immunosuppressive effects. Although high-dose radiotherapy has been found to have systemic antitumor effects, clinically significant abscopal effects were uncommon on the basis of irradiating single lesion. Low-dose radiation therapy (LDRT) emerges as a novel approach to enhance the antitumor immune response due to its role as a leverage to reshape the tumor immune microenvironment (TIME). In this article, from bench to bedside, we reviewed the possible immunomodulatory role of LDRT on TIME and systemic tumor immune environment, and outlined preclinical evidence and clinical application. We also discussed the current challenges when LDRT is used as a combination therapy, including the optimal dose, fraction, frequency, and combination of drugs. The advantage of low toxicity makes LDRT potential to be applied in multiple lesions to amplify antitumor immune response in polymetastatic disease, and its intersection with other disciplines might also make it a direction for radiotherapy-combined modalities.
Collapse
Affiliation(s)
- Laiyan Zhou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanjun Wu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Yang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feng-Ming Spring Kong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Wisdom AJ, Barker CA, Chang JY, Demaria S, Formenti S, Grassberger C, Gregucci F, Hoppe BS, Kirsch DG, Marciscano AE, Mayadev J, Mouw KW, Palta M, Wu CC, Jabbour SK, Schoenfeld JD. The Next Chapter in Immunotherapy and Radiation Combination Therapy: Cancer-Specific Perspectives. Int J Radiat Oncol Biol Phys 2024; 118:1404-1421. [PMID: 38184173 DOI: 10.1016/j.ijrobp.2023.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Immunotherapeutic agents have revolutionized cancer treatment over the past decade. However, most patients fail to respond to immunotherapy alone. A growing body of preclinical studies highlights the potential for synergy between radiation therapy and immunotherapy, but the outcomes of clinical studies have been mixed. This review summarizes the current state of immunotherapy and radiation combination therapy across cancers, highlighting existing challenges and promising areas for future investigation.
Collapse
Affiliation(s)
- Amy J Wisdom
- Harvard Radiation Oncology Program, Boston, Massachusetts
| | - Christopher A Barker
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joe Y Chang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Silvia Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Clemens Grassberger
- Department of Radiation Oncology, University of Washington, Fred Hutch Cancer Center, Seattle, Washington
| | - Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Bradford S Hoppe
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| | - David G Kirsch
- Department of Radiation Oncology, University of Toronto, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ariel E Marciscano
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jyoti Mayadev
- Department of Radiation Oncology, UC San Diego School of Medicine, San Diego, California
| | - Kent W Mouw
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Manisha Palta
- Department of Radiation Oncology, Duke Cancer Center, Durham, North Carolina
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.
| | - Jonathan D Schoenfeld
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
19
|
Ma L, Deng L, Peng J, Yu J, Meng X. Chemotherapy-free radiotherapy combined with immune checkpoint inhibitors: a new regimen for locally advanced non-small cell lung cancer? Cancer Biol Med 2024; 20:j.issn.2095-3941.2023.0402. [PMID: 38318930 PMCID: PMC10845940 DOI: 10.20892/j.issn.2095-3941.2023.0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024] Open
Abstract
Maintenance immunotherapy after concurrent chemoradiotherapy remains the standard therapeutic approach in patients with unresectable locally advanced non-small cell lung cancer (LA-NSCLC). The efficacy of pembrolizumab without chemotherapy in stage IV NSCLC has incited interest in similar approaches for LA-NSCLC. Several recent investigations involving the synergistic potential of immunotherapy combined with radiotherapy (iRT) have generated encouraging results. This review discusses the existing studies and prospective directions of chemotherapy-free iRT strategies in unresectable LA-NSCLC. Although the initial findings of chemotherapy-free iRT strategies have shown promising efficacy, we must consider the methodologic limitations of current studies and the myriad of challenges that accompany the implementation of chemotherapy-free iRT. These challenges include determining the optimal dose and fractionation, precise target volume delineation, and identification of additional suitable patient cohorts. Furthermore, the feasibility of chemotherapy-free iRT as a novel treatment modality for select patients with LA-NSCLC is contingent upon validation through randomized phase III trials.
Collapse
Affiliation(s)
- Lin Ma
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430000, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Liufu Deng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianfeng Peng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Jinming Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430000, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| |
Collapse
|
20
|
Ghiringhelli F, Rébé C. Using immunogenic cell death to improve anticancer efficacy of immune checkpoint inhibitors: From basic science to clinical application. Immunol Rev 2024; 321:335-349. [PMID: 37593811 DOI: 10.1111/imr.13263] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Even though the discovery of immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment, a high proportion of patients do not respond. Moreover, some types of cancers are refractory to these treatments. Thus, the need to find predictive biomarkers of efficacy and to evaluate the association with other treatments, such as chemotherapy or radiotherapy, appears to be essential. Because ICIs reactivate or maintain an active status of T cells, one possibility is to combine these treatments with therapies that engage an immune response against tumor cells. Thus, by inducing immunogenic cell death (ICD) of cancer cells, some conventional anticancer treatments induce such immune response and may have an interest to be combined with ICIs. In this review, we explore preclinical studies and clinical trials that evaluate the combination of ICIs with ICD inducers. More than inducing ICD, some of these treatments appear to modulate the tumor microenvironment and more particularly to inhibit immunosuppression, thus improving treatment efficacy.
Collapse
Affiliation(s)
- François Ghiringhelli
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
- Genetic and Immunology Medical Institute, Dijon, France
| | - Cédric Rébé
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
21
|
Lin KX, Istl AC, Quan D, Skaro A, Tang E, Zheng X. PD-1 and PD-L1 inhibitors in cold colorectal cancer: challenges and strategies. Cancer Immunol Immunother 2023; 72:3875-3893. [PMID: 37831146 PMCID: PMC10700246 DOI: 10.1007/s00262-023-03520-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/08/2023] [Indexed: 10/14/2023]
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer mortality, with mismatch repair proficient (pMMR) and/or microsatellite stable (MSS) CRC making up more than 80% of metastatic CRC. Programmed death-ligand 1 (PD-L1) and programmed death 1 (PD-1) immune checkpoint inhibitors (ICIs) are approved as monotherapy in many cancers including a subset of advanced or metastatic colorectal cancer (CRC) with deficiency in mismatch repair (dMMR) and/or high microsatellite instability (MSI-H). However, proficient mismatch repair and microsatellite stable (pMMR/MSS) cold CRCs have not shown clinical response to ICIs alone. To potentiate the anti-tumor response of PD-L1/PD-1 inhibitors in patients with MSS cold cancer, combination strategies currently being investigated include dual ICI, and PD-L1/PD-1 inhibitors in combination with chemotherapy, radiotherapy, vascular endothelial growth factor (VEGF) /VEGF receptor (VEGFR) inhibitors, mitogen-activated protein kinase (MEK) inhibitors, and signal transducer and activation of transcription 3 (STAT3) inhibitors. This paper will review the mechanisms of PD-1/PD-L1 ICI resistance in pMMR/MSS CRC and potential combination strategies to overcome this resistance, summarize the published clinical experience with different combination therapies, and make recommendations for future avenues of research.
Collapse
Affiliation(s)
- Ke Xin Lin
- Department of Pathology, University of Western Ontario, London, ON, N6A 5A5, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alexandra C Istl
- Division of Surgical Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Douglas Quan
- Department of Surgery, University of Western Ontario, London, ON, N6A 5A5, Canada
| | - Anton Skaro
- Department of Surgery, University of Western Ontario, London, ON, N6A 5A5, Canada
| | - Ephraim Tang
- Department of Surgery, University of Western Ontario, London, ON, N6A 5A5, Canada
| | - Xiufen Zheng
- Department of Pathology, University of Western Ontario, London, ON, N6A 5A5, Canada.
- Department of Surgery, University of Western Ontario, London, ON, N6A 5A5, Canada.
- Department of Oncology, University of Western Ontario, London, ON, N6A 5A5, Canada.
- Department of Microbiology & Immunology, University of Western Ontario, London, ON, N6A 5A5, Canada.
- Lawson Health Research Institute, London, ON, N6A 5A5, Canada.
| |
Collapse
|
22
|
Van Dingenen L, Segers C, Wouters S, Mysara M, Leys N, Kumar-Singh S, Malhotra-Kumar S, Van Houdt R. Dissecting the role of the gut microbiome and fecal microbiota transplantation in radio- and immunotherapy treatment of colorectal cancer. Front Cell Infect Microbiol 2023; 13:1298264. [PMID: 38035338 PMCID: PMC10687483 DOI: 10.3389/fcimb.2023.1298264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and poses a major burden on the human health worldwide. At the moment, treatment of CRC consists of surgery in combination with (neo)adjuvant chemotherapy and/or radiotherapy. More recently, immune checkpoint blockers (ICBs) have also been approved for CRC treatment. In addition, recent studies have shown that radiotherapy and ICBs act synergistically, with radiotherapy stimulating the immune system that is activated by ICBs. However, both treatments are also associated with severe toxicity and efficacy issues, which can lead to temporary or permanent discontinuation of these treatment programs. There's growing evidence pointing to the gut microbiome playing a role in these issues. Some microorganisms seem to contribute to radiotherapy-associated toxicity and hinder ICB efficacy, while others seem to reduce radiotherapy-associated toxicity or enhance ICB efficacy. Consequently, fecal microbiota transplantation (FMT) has been applied to reduce radio- and immunotherapy-related toxicity and enhance their efficacies. Here, we have reviewed the currently available preclinical and clinical data in CRC treatment, with a focus on how the gut microbiome influences radio- and immunotherapy toxicity and efficacy and if these treatments could benefit from FMT.
Collapse
Affiliation(s)
- Lena Van Dingenen
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Charlotte Segers
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Shari Wouters
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Mohamed Mysara
- Bioinformatics Group, Center for Informatics Science, School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Natalie Leys
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Samir Kumar-Singh
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Rob Van Houdt
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| |
Collapse
|
23
|
Zlotnik O, Krzywon L, Bloom J, Kalil J, Altubi I, Lazaris A, Metrakos P. Targeting Liver Metastases to Potentiate Immunotherapy in MS-Stable Colorectal Cancer-A Review of the Literature. Cancers (Basel) 2023; 15:5210. [PMID: 37958384 PMCID: PMC10649257 DOI: 10.3390/cancers15215210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Immunotherapy has revolutionized the treatment of several cancers, including melanoma and lung cancer. However, for colorectal cancer, it is ineffective for 95% of patients with microsatellite-stable disease. Recent evidence suggests that the liver's immune microenvironment plays a pivotal role in limiting the effectiveness of immunotherapy. There is also evidence to show that targeting liver metastases with locoregional therapies, such as surgery or irradiation, could potentiate immunotherapy for these patients. This review presents evidence from preclinical studies regarding the underlying mechanisms and from clinical studies that support this approach. Furthermore, we outline potential directions for future clinical trials. This innovative strategy could potentially establish immunotherapy as an effective treatment for MS-stable colorectal cancer patients, which are currently considered resistant.
Collapse
Affiliation(s)
- Oran Zlotnik
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (O.Z.); (L.K.); (J.B.); (J.K.); (A.L.)
- Division of General Surgery, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Lucyna Krzywon
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (O.Z.); (L.K.); (J.B.); (J.K.); (A.L.)
| | - Jessica Bloom
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (O.Z.); (L.K.); (J.B.); (J.K.); (A.L.)
| | - Jennifer Kalil
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (O.Z.); (L.K.); (J.B.); (J.K.); (A.L.)
- Division of General Surgery, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Ikhtiyar Altubi
- Division of General Surgery, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Anthoula Lazaris
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (O.Z.); (L.K.); (J.B.); (J.K.); (A.L.)
| | - Peter Metrakos
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (O.Z.); (L.K.); (J.B.); (J.K.); (A.L.)
- Division of General Surgery, McGill University, Montreal, QC H4A 3J1, Canada;
| |
Collapse
|
24
|
Zhou X, Zhou L, Yao Z, Huang M, Gong Y, Zou B, Zhu J, Liu Y, Peng F, Zhang Y, Yu M, Li Y, Na F, Wu Y, Kang K, Xiu W, Zhang X, Zhou L, Xu Y, Wang J, Wang Y, Yang X, Wu Y, Li R, Zhang Y, Yang Z, Zhou Z, Bai J, Yi X, Tong R, Yin L, Chen C, Niedermann G, Lu Y, Xue J. Safety and Tolerability of Low-Dose Radiation and Stereotactic Body Radiotherapy + Sintilimab for Treatment-Naïve Stage IV PD-L1+ Non-Small Cell Lung Cancer Patients. Clin Cancer Res 2023; 29:4098-4108. [PMID: 37581611 DOI: 10.1158/1078-0432.ccr-23-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/04/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE Low-dose radiotherapy (LDRT) may enhance the synergistic antitumor effect of combined immunotherapy and stereotactic body radiotherapy (SBRT). The safety and efficacy of this novel triple-combination therapy were evaluated for the first time as first-line treatment for patients with metastatic non-small cell lung cancer (NSCLC). PATIENTS AND METHODS This prospective phase I study enrolled 29 patients and included a dose-escalation and dose-expansion phase. Patients received SBRT [30 Gray (Gy)/3f] to small lesions and LDRT (2 Gy/1f, 4 Gy/2f, or 10 Gy/5f) to a large lesion concurrently, followed by sintilimab (a programmed death-1 inhibitor). The primary endpoint was safety and tolerability; secondary endpoints included objective response rate (ORR), progression-free survival (PFS), and overall survival (OS). RESULTS No dose-limiting toxicities were observed during the dose-escalation phase; 4 Gy/2f was the recommended LDRT dose. Median follow-up was 15.6 months. Treatment-related adverse events (TRAE) occurred in 96.6% (28/29) of patients [grade ≥ 3; 20.7% (6/29)]; 2 patients (6.9%) discontinued due to TRAEs. Seven patients experienced pneumonitis (grade 2, n = 6; grade 3, n = 1). Immune-related adverse events were noted in 58.6% (17/29) of patients. In patients with tumor assessment (n = 28), ORR and confirmed ORR were 60.7% and 57.1%, respectively. Median PFS was 8.6 months (95% confidence interval, 3.7-16.5), and median OS was not reached. Exploratory analyses suggested both expanded and newly emerging T-cell receptor clonotypes were associated with better PFS. CONCLUSIONS The findings indicate that the novel SBRT + LDRT + sintilimab therapy is safe and promising in patients with programmed death ligand-1-positive, driver gene-negative primary metastatic NSCLC.
Collapse
Affiliation(s)
- Xiaojuan Zhou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Laiyan Zhou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Disaster Medical Center, Sichuan University, Chengdu, Sichuan, China
| | - Zhuoran Yao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Youling Gong
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bingwen Zou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiang Zhu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongmei Liu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Peng
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanying Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feifei Na
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yijun Wu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weigang Xiu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Zhou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yong Xu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xue Yang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanjun Wu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Li
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Yu Zhang
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zhenzhou Yang
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | - Jing Bai
- Geneplus-Beijing Institute, Beijing, China
| | - Xin Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Ruizhan Tong
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Limei Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany, German Cancer Consortium (DKTK), partner site Freiburg, and German Cancer Research Center, Heidelberg, Germany
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Disaster Medical Center, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Monjazeb AM, Daly ME, Luxardi G, Maverakis E, Merleev AA, Marusina AI, Borowsky A, Mirhadi A, Shiao SL, Beckett L, Chen S, Eastham D, Li T, Vick LV, McGee HM, Lara F, Garcia L, Morris LA, Canter RJ, Riess JW, Schalper KA, Murphy WJ, Kelly K. Atezolizumab plus stereotactic ablative radiotherapy for medically inoperable patients with early-stage non-small cell lung cancer: a multi-institutional phase I trial. Nat Commun 2023; 14:5332. [PMID: 37658083 PMCID: PMC10474145 DOI: 10.1038/s41467-023-40813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/11/2023] [Indexed: 09/03/2023] Open
Abstract
Stereotactic ablative radiotherapy (SABR) is a standard-of-care for medically-inoperable-early-stage non-small cell lung cancer (NSCLC). One third of patients progress and chemotherapy is rarely used in this population. We questioned if addition of the immune-checkpoint-inhibitor (ICI) atezolizumab to standard-of-care SABR can improve outcomes. We initiated a multi-institutional single-arm phase I study (NCT02599454) enrolling twenty patients with the primary endpoint of maximum tolerated dose (MTD); secondary endpoints of safety and efficacy; and exploratory mechanistic correlatives. Treatment is well tolerated and full dose atezolizumab (1200 mg) is the MTD. Efficacy signals include early responses (after 2 cycles of ICI, before initiation of SABR) in 17% of patients. Biomarkers of functional adaptive immunity, including T cell activation in the tumor and response to ex-vivo stimulation by circulating T cells, are highly predictive of benefit. These results require validation and are being tested in a phase III randomized trial.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amin Mirhadi
- Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | | | | | - Shuai Chen
- UC Davis Health, Sacramento, CA, 95817, USA
| | - David Eastham
- David Grant USAF Medical Center, Travis AFB, Fairfield, CA, 93405, USA
| | | | | | | | | | | | | | | | | | | | | | - Karen Kelly
- UC Davis Health, Sacramento, CA, 95817, USA
- International Association for the Study of Lung Cancer, Denver, CO, 80202, USA
| |
Collapse
|
26
|
Liu J, West H, McGee HM, Williams TM, Lee P, Amini A. Challenges in synergizing radiotherapy with immunotherapy to unlock the abscopal effect in metastatic NSCLC: A systematic review. Neoplasia 2023; 43:100914. [PMID: 37348427 PMCID: PMC10314288 DOI: 10.1016/j.neo.2023.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/04/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND With the recent success of immunotherapy, there is a growing interest in combining radiation with immunotherapy to boost abscopal response rates. Several challenges exist in determining how to synergize these two modalities in the treatment of metastatic NSCLC. METHODS References for this review were identified through searches of MEDLINE/PubMed and Clinicaltrials.gov databases with the search terms "abscopal", "radiation OR radiotherapy," "NSCLC", and "lung" on the index date of July 2022 from 2000-2022. This systematic review focuses primarily on clinical papers. DISCUSSION Early work combining radiotherapy with immunotherapy show promise in unlocking the abscopal effect. Preliminary evidence suggests that radiotherapy regimens with <5 fractions and smaller fields may be superior to regimens with 15 fractions and larger fields. There does not appear to be enough evidence to draw conclusions about the optimal timing of radiotherapy in relation to immunotherapy or the optimal anatomical location of radiation to induce the abscopal effect. Several studies suggest selecting patients with a higher absolute lymphocyte count (ALC) and lower neutrophil-to-lymphocyte ratio (NLR) may help to further boost abscopal response rates. Furthermore, selecting tumors with programmed death ligand-1 (PD-L1) expression, mismatch repair deficiency, and higher tumor mutational burden may similarly achieve this goal. Lastly, additional work is needed to minimize and predict for severe toxicity associated with combination therapy.
Collapse
Affiliation(s)
- Jason Liu
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States
| | - Howard West
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States
| | - Heather M McGee
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States; Department of Immuno-Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States
| | - Terence M Williams
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States
| | - Percy Lee
- Department of Radiation Oncology, City of Hope Orange County, Irvine, CA 92618, United States
| | - Arya Amini
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States.
| |
Collapse
|
27
|
Pontoriero A, Critelli P, Chillari F, Ferrantelli G, Sciacca M, Brogna A, Parisi S, Pergolizzi S. Modulation of Radiation Doses and Chimeric Antigen Receptor T Cells: A Promising New Weapon in Solid Tumors-A Narrative Review. J Pers Med 2023; 13:1261. [PMID: 37623511 PMCID: PMC10455986 DOI: 10.3390/jpm13081261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Tumor behavior is determined by its interaction with the tumor microenvironment (TME). Chimeric antigen receptor (CART) cell therapy represents a new form of cellular immunotherapy (IT). Immune cells present a different sensitivity to radiation therapy (RT). RT can affect tumor cells both modifying the TME and inducing DNA damage, with different effects depending on the low and high doses delivered, and can favor the expression of CART cells. CART cells are patients' T cells genetically engineered to recognize surface structure and to eradicate cancer cells. High-dose radiation therapy (HDRT, >10-20 Gy/fractions) converts immunologically "cold" tumors into "hot" ones by inducing necrosis and massive inflammation and death. LDRT (low-dose radiation therapy, >5-10 Gy/fractions) increases the expansion of CART cells and leads to non-immunogenetic death. An innovative approach, defined as the LATTICE technique, combines a high dose in higher FDG- uptake areas and a low dose to the tumor periphery. The association of RT and immune checkpoint inhibitors increases tumor immunogenicity and immune response both in irradiated and non-irradiated sites. The aim of this narrative review is to clarify the knowledge, to date, on CART cell therapy and its possible association with radiation therapy in solid tumors.
Collapse
Affiliation(s)
- Antonio Pontoriero
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Paola Critelli
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Federico Chillari
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Giacomo Ferrantelli
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Miriam Sciacca
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Anna Brogna
- Radiotherapy Unit, Medical Physics Unit, A.O.U. “G. Martino”, 98125 Messina, Italy;
| | - Silvana Parisi
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Stefano Pergolizzi
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| |
Collapse
|
28
|
Ye C, Huang Y, Gao Y, Zhu S, Yuan J. Exploring the glycolytic cross-talk genes between inflammatory bowel disease and colorectal cancer. Funct Integr Genomics 2023; 23:230. [PMID: 37428395 PMCID: PMC10333365 DOI: 10.1007/s10142-023-01170-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Patients with inflammatory bowel disease (IBD) have a higher risk of developing colorectal cancer (CRC). Glycolysis is involved in the development of both IBD and CRC. However, the mechanisms and outcomes of glycolysis shared between IBD and CRC remain unclear. This study aimed to explore the glycolytic cross-talk genes between IBD and CRC integrating bioinformatics and machine learning. With WGCNA, LASSO, COX, and SVM-RFE algorithms, P4HA1 and PMM2 were identified as glycolytic cross-talk genes. The independent risk signature of P4HA1 and PMM2 was constructed to predict the overall survival rate of patients with CRC. The risk signature correlated with clinical characteristics, prognosis, tumor microenvironment, immune checkpoint, mutants, cancer stemness, and chemotherapeutic drug sensitivity. CRC patients with high risk have increased microsatellite instability, tumor mutation burden. The nomogram integrating risk score, tumor stage, and age showed high accuracy for predicting overall survival rate. In addition, the diagnostic model for IBD based on P4HA1 and PMM2 showed excellent accuracy. Finally, immunohistochemistry results showed that P4HA1 and PMM2 were significantly upregulated in IBD and CRC. Our study reveals the presence of glycolytic cross-talk genes P4HA1 and PMM2 between IBD and CRC. This may prove to be beneficial in advancing research on the mechanism of development of IBD-associated CRC.
Collapse
Affiliation(s)
- Chenglin Ye
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yabing Huang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yuan Gao
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Sizhe Zhu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, People's Republic of China.
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
29
|
Wang CX, Hunt J, Feinstein S, Kim SK, Monjazeb AM. Advances in Radiotherapy Immune Modulation: From Bench-to-Bedside and Back Again. Surg Oncol Clin N Am 2023; 32:617-629. [PMID: 37182996 DOI: 10.1016/j.soc.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Pre-clinical and clinical data clearly demonstrate the immune modulatory effects of radiotherapy (RT) but clinical trials testing RT + immunotherapy have been equivocal. An improved understanding of the immune modulatory effects of RT and how practical parameters of RT delivery (site and number of lesions, dose, fractionation, timing) influence these effects are needed to optimally combine RT with immunotherapy. Additionally, increased exploration of immunotherapy combinations with RT, beyond immune checkpoint inhibitors, are needed. A "bench-to-bedside and back again" approach will improve our understanding of RT immune modulation and allow for the implementation of more effective RT + immunotherapy strategies.
Collapse
Affiliation(s)
- Charles X Wang
- UC Davis Health, Department of Radiation Oncology, 4501 X-Street, Sacramento, CA 95817, USA
| | - Jared Hunt
- UC Davis Health, Department of Radiation Oncology, 4501 X-Street, Sacramento, CA 95817, USA
| | - Shera Feinstein
- UC Davis Health, Department of Radiation Oncology, 4501 X-Street, Sacramento, CA 95817, USA
| | - Soo Kyoung Kim
- UC Davis Health, Department of Radiation Oncology, 4501 X-Street, Sacramento, CA 95817, USA
| | - Arta M Monjazeb
- UC Davis Health, Department of Radiation Oncology, 4501 X-Street, Sacramento, CA 95817, USA.
| |
Collapse
|
30
|
Fitzgerald KJ, Schoenfeld JD. Radiotherapy Dose in Patients Receiving Immunotherapy. Semin Radiat Oncol 2023; 33:327-335. [PMID: 37331787 DOI: 10.1016/j.semradonc.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
There is significant rationale for combining radiation therapy (RT) and immuno-oncology (IO) agents, but the optimal radiation parameters are unknown. This review summarizes key trials in the RT and IO space with a focus on RT dose. Very low RT doses solely modulate the tumor immune microenvironment, intermediate doses both modulate the tumor immune microenvironment and kill some fraction of tumor cells, and ablative doses eliminate the majority of target tumor cells and also possess immunomodulatory effects. Ablative RT doses may have high toxicity if targets are adjacent to radiosensitive normal organs. The majority of completed trials have been conducted in the setting of metastatic disease and direct RT to a single lesion with the goal of generating systemic antitumor immunity termed the abscopal effect. Unfortunately, reliable generation of an abscopal effect has proved elusive over a range of radiation doses. Newer trials are exploring the effects of delivering RT to all or most sites of metastatic disease, with dose personalization based on the number and location of lesions. Additional directions include testing RT and IO in earlier stages of disease, sometimes in further combination with chemotherapy and surgery, where lower doses of RT may still contribute substantially to pathologic responses.
Collapse
|
31
|
Chi A, Nguyen NP. Mechanistic rationales for combining immunotherapy with radiotherapy. Front Immunol 2023; 14:1125905. [PMID: 37377970 PMCID: PMC10291094 DOI: 10.3389/fimmu.2023.1125905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Immunotherapy consisted mainly of immune checkpoint inhibitors (ICIs) has led to significantly improved antitumor response. However, such response has been observed only in tumors possessing an overall responsive tumor immune micro-environment (TIME), in which the presence of functional tumor-infiltrating lymphocytes (TILs) is critical. Various mechanisms of immune escape from immunosurveillance exist, leading to different TIME phenotypes in correlation with primary or acquired resistance to ICIs. Radiotherapy has been shown to induce antitumor immunity not only in the irradiated primary tumor, but also at unirradiated distant sites of metastases. Such antitumor immunity is mainly elicited by radiation's stimulatory effects on antigenicity and adjuvanticity. Furthermore, it may be significantly augmented when irradiation is combined with immunotherapy, such as ICIs. Therefore, radiotherapy represents one potential therapeutic strategy to restore anti-tumor immunity in tumors presenting with an unresponsive TIME. In this review, the generation of anti-tumor immunity, its impairment, radiation's immunogenic properties, and the antitumor effects of combining radiation with immunotherapy will be comprehensively discussed.
Collapse
Affiliation(s)
- Alexander Chi
- Department of Radiation Oncology, Capital Medical University Xuanwu Hospital, Beijing, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Nam Phong Nguyen
- Department of Radiation Oncology, Howard University, Washington, DC, United States
| |
Collapse
|
32
|
Wang J, Zhang J, Wen W, Wang F, Wu M, Chen D, Yu J. Exploring low-dose radiotherapy to overcome radio-immunotherapy resistance. Biochim Biophys Acta Mol Basis Dis 2023:166789. [PMID: 37302425 DOI: 10.1016/j.bbadis.2023.166789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the current treatment landscape for cancer, yet the response rates of ICIs remain unmet. Synergistic with immunotherapy, low-dose radiotherapy (LDRT) has been demonstrated to activate anti-tumor immunity - a transition from traditional radiation therapy geared toward local radical treatment to a type of immunological adjuvant. As such, studies utilizing LDRT to enhance the efficacy of immunotherapy have been increasing preclinically and clinically. This paper reviews the recent strategies of using LDRT to overcome the resistance of ICIs, as well as providing potential opportunities in cancer treatment. Despite the potential of LDRT in immunotherapy is recognized, the mechanisms behind this form of treatment remain largely elusive. Thus, we reviewed history, mechanisms and challenges associated with this form of treatment, as well as different modes of its application, to provide relatively accurate practice standards for LDRT as a sensitizing treatment when combined with immunotherapy or radio-immunotherapy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Jingxin Zhang
- Shandong University Cancer Center, Jinan, Shandong 250117, PR China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Weitao Wen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Fei Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Dawei Chen
- Shandong University Cancer Center, Jinan, Shandong 250117, PR China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| | - Jinming Yu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Shandong University Cancer Center, Jinan, Shandong 250117, PR China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| |
Collapse
|
33
|
Wang J, Ge H, Tian Z. Immunotherapy Plus Radiotherapy for the Treatment of Sarcomas: Is There a Potential for Synergism? Onco Targets Ther 2023; 16:385-397. [PMID: 37313391 PMCID: PMC10258041 DOI: 10.2147/ott.s410693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Soft tissue sarcoma (STS) is a highly heterogeneous malignant tumor derived from mesenchymal tissue. Advanced STS has a poor response to the current anti-cancer therapeutic options, with a median overall survival of less than two years. Thus, new and more effective treatment methods for STS are needed. Increasing evidence has shown that immunotherapy and radiotherapy have synergistic therapeutic effects against malignant tumors. In addition, immunoradiotherapy has yielded positive results in clinical trials for various cancers. In this review, we discuss the synergistic mechanism of immunoradiotherapy in cancer treatment and the application of this combined regimen for the treatment of several cancers. In addition, we summarize the existing evidence on the use of immunoradiotherapy for the treatment of STS and the relevant clinical trials that are currently ongoing. Furthermore, we identify challenges in the use of immunoradiotherapy for the treatment of sarcomas and propose methods and precautions for overcoming these challenges. Lastly, we propose clinical research strategies and future research directions to help in the research and treatment of STS.
Collapse
Affiliation(s)
- Jiaqiang Wang
- Department of Bone and Soft Tissue, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, 450008, People’s Republic of China
| | - Hong Ge
- Department of Radiotherapy, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, 450008, People’s Republic of China
| | - Zhichao Tian
- Department of Bone and Soft Tissue, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, 450008, People’s Republic of China
| |
Collapse
|
34
|
Galluzzi L, Aryankalayil MJ, Coleman CN, Formenti SC. Emerging evidence for adapting radiotherapy to immunotherapy. Nat Rev Clin Oncol 2023:10.1038/s41571-023-00782-x. [PMID: 37280366 DOI: 10.1038/s41571-023-00782-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Immunotherapy has revolutionized the clinical management of many malignancies but is infrequently associated with durable objective responses when used as a standalone treatment approach, calling for the development of combinatorial regimens with superior efficacy and acceptable toxicity. Radiotherapy, the most commonly used oncological treatment, has attracted considerable attention as a combination partner for immunotherapy owing to its well-known and predictable safety profile, widespread clinical availability, and potential for immunostimulatory effects. However, numerous randomized clinical trials investigating radiotherapy-immunotherapy combinations have failed to demonstrate a therapeutic benefit compared with either modality alone. Such a lack of interaction might reflect suboptimal study design, choice of end points and/or administration of radiotherapy according to standard schedules and target volumes. Indeed, radiotherapy has empirically evolved towards radiation doses and fields that enable maximal cancer cell killing with manageable toxicity to healthy tissues, without much consideration of potential radiation-induced immunostimulatory effects. Herein, we propose the concept that successful radiotherapy-immunotherapy combinations might require modifications of standard radiotherapy regimens and target volumes to optimally sustain immune fitness and enhance the antitumour immune response in support of meaningful clinical benefits.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
35
|
Shi J, Sun Z, Gao Z, Huang D, Hong H, Gu J. Radioimmunotherapy in colorectal cancer treatment: present and future. Front Immunol 2023; 14:1105180. [PMID: 37234164 PMCID: PMC10206275 DOI: 10.3389/fimmu.2023.1105180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Colorectal cancer (CRC) is a deadly form of cancer worldwide. Patients with locally advanced rectal cancer and metastatic CRC have a poor long-term prognosis, and rational and effective treatment remains a major challenge. Common treatments include multi-modal combinations of surgery, radiotherapy, and chemotherapy; however, recurrence and metastasis rates remain high. The combination of radiotherapy and immunotherapy (radioimmunotherapy [RIT]) may offer new solutions to this problem, but its prospects remain uncertain. This review aimed to summarize the current applications of radiotherapy and immunotherapy, elaborate on the underlying mechanisms, and systematically review the preliminary results of RIT-related clinical trials for CRC. Studies have identified several key predictors of RIT efficacy. Summarily, rational RIT regimens can improve the outcomes of some patients with CRC, but current study designs have limitations. Further studies on RIT should focus on including larger sample sizes and optimizing the combination therapy regimen based on underlying influencing factors.
Collapse
Affiliation(s)
- Jingyi Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhuang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhaoya Gao
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Dandan Huang
- Department of Oncology, Peking University Shougang Hospital, Beijing, China
| | - Haopeng Hong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jin Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Peking Tsinghua Center for Life Science, Peking University International Cancer Center, Beijing, China
| |
Collapse
|
36
|
Passelli K, Repáraz D, Herrera FG. Opportunities and challenges of low-dose radiation to enable immunotherapy efficacy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:137-156. [PMID: 37438016 DOI: 10.1016/bs.ircmb.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Therapeutic monoclonal antibodies blocking different immune checkpoints, have demonstrated efficacy against a wide variety of solid tumors. The exclusion or absence of lymphocytes within the tumor microenvironment (TME) is one of the main resistance mechanisms to immune checkpoint inhibitor (ICI)-based therapies. Therefore, there is a growing interest in identifying novel approaches to promote T cell infiltration on immune-deserted (cold) and immune-excluded tumors to turn them into inflamed (hot) tumors. Here, we provide a comprehensive overview of the recently published studies showing the potential of low-dose radiation (LDRT) to reprogram the TME to allow and promote T-cell infiltration and thus, improve currently approved ICI-based therapies.
Collapse
Affiliation(s)
- Katiuska Passelli
- Centre Hospitalier Universitaire Vaudois, Service of Radiation Oncology, Department of Oncology, University of Lausanne, Ludwig Institute for Cancer Research, Agora Center for Cancer Research, Swiss Cancer Center Leman, Lausanne, Switzerland
| | - David Repáraz
- Centre Hospitalier Universitaire Vaudois, Service of Radiation Oncology, Department of Oncology, University of Lausanne, Ludwig Institute for Cancer Research, Agora Center for Cancer Research, Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Fernanda G Herrera
- Centre Hospitalier Universitaire Vaudois, Service of Radiation Oncology and Service of Immuno-oncology, Department of Oncology, University of Lausanne, Ludwig Institute for Cancer Research, Agora Center for Cancer Research, Swiss Cancer Center Leman, Lausanne, Switzerland.
| |
Collapse
|
37
|
Shen J, Yan J, Du J, Li X, Wei J, Liu Q, Yong H, Wang X, Chang X, Ding Z, Sun W, Liu C, Zhu S, Guo J, Li H, Liu Y, Zhang W, Liu Z, Li R, Liu B. Multicenter, single-arm, phase II study (CAP) of radiotherapy plus liposomal irinotecan followed by camrelizumab and anti-angiogenic treatment in advanced solid tumors. Front Immunol 2023; 14:1133689. [PMID: 37056765 PMCID: PMC10086408 DOI: 10.3389/fimmu.2023.1133689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/31/2023] [Indexed: 03/30/2023] Open
Abstract
IntroductionCombination therapeutic mode is likely to be the key to enhance the efficacy of immunotherapy in a wider range of cancer patients. Herein, we conducted an open-label, single-arm, multicenter, phase II clinical trial that enrolled patients with advanced solid tumors who had progressed after standard treatments.MethodsRadiotherapy of 24 Gy/3 fractions/3-10 days was given to the targeted lesions. Liposomal irinotecan (80mg/m2, dose could be adjusted to 60 mg/m2 for intolerable cases) was intravenously (IV) administered once within 48 hours after radiotherapy. Then, camrelizumab (200mg IV, q3w) and anti-angiogenic drugs were given regularly until disease progression. The primary endpoint was objective response rate (ORR) in the target lesions evaluated by investigators per RECIST 1.1. The secondary endpoints were disease control rate (DCR) and treatment-related adverse events (TRAEs).ResultsBetween November 2020 and June 2022, 60 patients were enrolled. The median follow-up was 9.0 months (95% confidence interval (CI) 5.5-12.5). Of 52 evaluable patients, the overall ORR and DCR were 34.6% and 82.7%, respectively. Fifty patients with target lesions were evaluable, the ORR and DCR of the target lesions were 35.3% and 82.4%, respectively. The median progression-free survival was 5.3 months (95% CI 3.6, 6.2), and the median overall survival was not reached. TRAEs (all grades) occurred in 55 (91.7%) patients. The most common grade 3-4 TRAEs were lymphopenia (31.7%), anemia (10.0%), and leukopenia (10.0%).ConclusionThe combination of radiotherapy, liposomal irinotecan, camrelizumab, and anti-angiogenesis therapy demonstrated promising anti-tumor activity and well tolerance in various advanced solid tumors.Clinical trial registrationhttps://clinicaltrials.gov/ct2/home, identifier NCT04569916.
Collapse
Affiliation(s)
- Jie Shen
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jing Yan
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Juan Du
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoqin Li
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jia Wei
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qin Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hongmei Yong
- Department of Oncology, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huai’an, China
| | - Xiaolu Wang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaofeng Chang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhou Ding
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wu Sun
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chenxi Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Sihui Zhu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingyi Guo
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Huajun Li
- Department of Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Ying Liu
- Department of Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Wulou Zhang
- Department-II of General Surgery, Nanjing Jiangbei Hospital, Nanjing, China
| | - Zonghang Liu
- Department-II of General Surgery, Nanjing Jiangbei Hospital, Nanjing, China
| | - Rutian Li
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Baorui Liu, ; Rutian Li,
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Baorui Liu, ; Rutian Li,
| |
Collapse
|
38
|
Al Bitar S, El-Sabban M, Doughan S, Abou-Kheir W. Molecular mechanisms targeting drug-resistance and metastasis in colorectal cancer: Updates and beyond. World J Gastroenterol 2023; 29:1395-1426. [PMID: 36998426 PMCID: PMC10044855 DOI: 10.3748/wjg.v29.i9.1395] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 11/17/2022] [Indexed: 03/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed malignancy and a major leading cause of cancer-related deaths worldwide. Despite advances in therapeutic regimens, the number of patients presenting with metastatic CRC (mCRC) is increasing due to resistance to therapy, conferred by a small population of cancer cells, known as cancer stem cells. Targeted therapies have been highly successful in prolonging the overall survival of patients with mCRC. Agents are being developed to target key molecules involved in drug-resistance and metastasis of CRC, and these include vascular endothelial growth factor, epidermal growth factor receptor, human epidermal growth factor receptor-2, mitogen-activated extracellular signal-regulated kinase, in addition to immune checkpoints. Currently, there are several ongoing clinical trials of newly developed targeted agents, which have shown considerable clinical efficacy and have improved the prognosis of patients who do not benefit from conventional chemotherapy. In this review, we highlight recent developments in the use of existing and novel targeted agents against drug-resistant CRC and mCRC. Furthermore, we discuss limitations and challenges associated with targeted therapy and strategies to combat intrinsic and acquired resistance to these therapies, in addition to the importance of implementing better preclinical models and the application of personalized therapy based on predictive biomarkers for treatment selection.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
39
|
Bando H, Ohtsu A, Yoshino T. Therapeutic landscape and future direction of metastatic colorectal cancer. Nat Rev Gastroenterol Hepatol 2023; 20:306-322. [PMID: 36670267 DOI: 10.1038/s41575-022-00736-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/22/2023]
Abstract
In the era of targeted therapy based on genomic alterations, the treatment strategy for metastatic colorectal cancer (mCRC) has been changing. Before systemic treatment initiation, determination of tumour genomic status for KRAS and NRAS, BRAFV600E mutations, ERBB2, and microsatellite instability and/or mismatch repair (MMR) status is recommended. In patients with deficient MMR and BRAFV600E mCRC, randomized phase III trials have established the efficacy of pembrolizumab as first-line therapy and the combination of encorafenib and cetuximab as second-line or third-line therapy. In addition, new agents have been actively developed in other rare molecular fractions such as ERBB2 alterations and KRASG12C mutations. In March 2022, the combination of pertuzumab and trastuzumab for ERBB2-positive mCRC was approved in Japan, thereby combining real-world evidence from the SCRUM-Japan Registry. As the populations are highly fragmented owing to rare genomic alterations, various strategies in clinical development are expected. Clinical development of a tumour-agnostic approach, such as NTRK fusion and tumour mutational burden, has successfully introduced corresponding drugs to clinical practice. Considering the difficulty of randomized trials owing to cost-benefit and rarity, a promising solution could be real-world evidence utilized as an external control from the molecular-based disease registry.
Collapse
Affiliation(s)
- Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Atsushi Ohtsu
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| |
Collapse
|
40
|
Xin H, Zhou C, Wang G, Liu Y, Zhang J, Liu Y, Li B, Zhang J, Su M, Li Z, Wang G. Heterogeneity of PD-L1 expression and CD8 lymphocyte infiltration in metastatic colorectal cancer and their prognostic significance. Heliyon 2023; 9:e13048. [PMID: 36814622 PMCID: PMC9939551 DOI: 10.1016/j.heliyon.2023.e13048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Purpose In recent years, immune checkpoint inhibitors have become a major therapeutic method for the treatment of metastatic colorectal cancer (mCRC). Growing evidence indicates that tumour-infiltrating lymphocytes (TILs) in the tumour microenvironment are a prerequisite for the effectiveness of PD-1/PD-L1 blockade therapy. In this study, we aimed to compare PD-L1 expression and cluster of differentiation 4 (CD4) and CD8 TIL infiltration in primary tumours and paired metastases. Patients and methods Altogether, 111 patients with mCRC who underwent surgery at our hospital were included. PD-L1, CD4, and CD8 expression were detected by immunohistochemistry in a tissue microarray. PD-L1 expression was assessed using the combined positivity score (CPS), and a score ≥1 was judged as positive. The area proportion of TILs with positive staining ≥10% was classified as "high", while <10% was classified as "low". Results We observed the discordance of PD-L1 expression between primary tumours and paired metastases in 35/111 (31.5%) patients (κ = 0.137, P = 0.142). This heterogeneity was significantly correlated with discordance of CD8 TIL infiltration between primary tumours and paired metastases (P = 0.003). Compared with corresponding colorectal cancer tumours, lung metastases showed more CD8 TIL infiltration (P = 0.022, median: 8.5% vs. 5.0%), whereas liver metastases exhibited less CD8 TIL infiltration (P = 0.028, median: 3.0% vs. 5.0%). Area proportion of CD4+ and CD8+ TIL infiltration in lung metastases were all higher than those in liver metastases (P = 0.005, median: 15.0% vs. 9.0%; P = 0.001, median: 8.5% vs. 3.0%). Compared with p MMR (MSI-L/MS-S) subgroup, area proportion of CD8 TIL infiltration in primary tumours and CD4, CD8 TIL infiltration in paired metastases were all higher in d MMR (MSI-H) group (P = 0.026, median: 15.0% vs 5.0%; P = 0.039, median: 15.0% vs 9.0%; P = 0.015, median: 15.0% vs 5.0%). Preoperative chemo/radiotherapy may increase CD8 TIL infiltration in primary tumours (P = 0.045, median: 10.0% vs. 5.0%). CD8 TIL infiltration in primary tumours was an independent predictive factor for overall survival (HR 0.28, 95% CI 0.09-0.93, P = 0.038). Conclusion Heterogeneity in PD-L1 expression and CD8 TIL infiltration was found between primary tumours and paired metastases in mCRC. CD8 TIL infiltration in primary tumours could independently forecast the overall survival of patients with mCRC.
Collapse
Key Words
- CD8 tumour infiltrating lymphocytes (TILs)
- CD8, cluster of differentiation 8
- CPS, combined positivity score
- Heterogeneity
- MS-S, microsatellite stability
- MSI-H, microsatellite instability-high
- MSI-L, microsatellite instability-low
- Metastatic colorectal cancer (mCRC)
- PD-L1, programmed death-ligand 1
- Prognosis
- Programmed death-ligand 1 (PD-L1)
- TILs, tumour infiltrating lymphocytes
- dMMR, deficient mismatch repair
- mCRC, metastatic colorectal cancer
- pMMR, proficient mismatch repair
Collapse
Affiliation(s)
- Haisong Xin
- Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Chaoxi Zhou
- Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Guanglin Wang
- Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Yan Liu
- Department of Endocrinology, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Juan Zhang
- Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Youqiang Liu
- Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Baokun Li
- Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Jianfeng Zhang
- Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Mingming Su
- Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Zhihan Li
- Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Guiying Wang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China,Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, People’s Republic of China,Corresponding author. Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050051, People’s Republic of China.
| |
Collapse
|
41
|
Ji X, Jiang W, Wang J, Zhou B, Ding W, Liu S, Huang H, Chen G, Sun X. Application of individualized multimodal radiotherapy combined with immunotherapy in metastatic tumors. Front Immunol 2023; 13:1106644. [PMID: 36713375 PMCID: PMC9877461 DOI: 10.3389/fimmu.2022.1106644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
Radiotherapy is one of the mainstays of cancer treatment. More than half of cancer patients receive radiation therapy. In addition to the well-known direct tumoricidal effect, radiotherapy has immunomodulatory properties. When combined with immunotherapy, radiotherapy, especially high-dose radiotherapy (HDRT), exert superior systemic effects on distal and unirradiated tumors, which is called abscopal effect. However, these effects are not always effective for cancer patients. Therefore, many studies have focused on exploring the optimized radiotherapy regimens to further enhance the antitumor immunity of HDRT and reduce its immunosuppressive effect. Several studies have shown that low-dose radiotherapy (LDRT) can effectively reprogram the tumor microenvironment, thereby potentially overcoming the immunosuppressive stroma induced by HDRT. However, bridging the gap between preclinical commitment and effective clinical delivery is challenging. In this review, we summarized the existing studies supporting the combined use of HDRT and LDRT to synergistically enhance antitumor immunity, and provided ideas for the individualized clinical application of multimodal radiotherapy (HDRT+LDRT) combined with immunotherapy.
Collapse
|
42
|
Ghazvinian Z, Abdolahi S, Tokhanbigli S, Tarzemani S, Piccin A, Reza Zali M, Verdi J, Baghaei K. Contribution of natural killer cells in innate immunity against colorectal cancer. Front Oncol 2023; 12:1077053. [PMID: 36686835 PMCID: PMC9846259 DOI: 10.3389/fonc.2022.1077053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Natural killer cells are members of the innate immune system and promote cytotoxic activity against tumor or infected cells independently from MHC recognition. NK cells are modulated by the expression of activator/inhibitory receptors. The ratio of this activator/inhibitory receptors is responsible for the cytotoxic activity of NK cells toward the target cells. Owing to the potent anti-tumor properties of NK cells, they are considered as interesting approach in tumor treatment. Colorectal cancer (CRC) is the second most common cause of death in the world and the incidence is about 2 million new cases per year. Metastatic CRC is accompanied by a poor prognosis with less than three years of overall survival. Chemotherapy and surgery are the most adopted treatments. Besides, targeted therapy and immune checkpoint blockade are novel approach to CRC treatment. In these patients, circulating NK cells are a prognostic marker. The main target of CRC immune cell therapy is to improve the tumor cell's recognition and elimination by immune cells. Adaptive NK cell therapy is the milestone to achieve the purpose. Allogeneic NK cell therapy has been widely investigated within clinical trials. In this review, we focus on the NK related approaches including CAR NK cells, cell-based vaccines, monoclonal antibodies and immunomodulatory drugs against CRC tumoral cells.
Collapse
Affiliation(s)
- Zeinab Ghazvinian
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Tarzemani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Piccin
- Northern Ireland Blood Transfusion Service, Belfast, United Kingdom
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Tan VS, Palma DA. Top Ten Lessons Learned from Trials in Oligometastatic Cancers. Cancer Res Treat 2023; 55:5-14. [PMID: 36567069 PMCID: PMC9873316 DOI: 10.4143/crt.2022.1460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Recent evidence supports the role of aggressive local treatment in the oligometastatic setting. In this review, we discuss the top 10 lessons we have learned from trials in oligometastatic cancers. Major lessons learned pertain to definitions of oligometastatic disease, outcomes, toxicity, costs, and the combination of ablative therapies with systemic therapy, including immunotherapy. Barriers to accrual for trials and upcoming phase III trials are also reviewed. These lessons may help to inform clinical practice and may be the basis for future research in the oligometastatic space.
Collapse
|
44
|
Abstract
The hypothesis that ablative therapies (such as surgery or radiation) can be used to cure patients with a limited number of metastases was influential in changing practice. Early assertions of efficacy were based on observational studies, often without control groups, showing better-than-expected outcomes. However, in the past decade, new evidence from randomized trials has emerged, which in some cases have affirmed old hypotheses, but in other cases have raised new questions. In this review, we discuss the challenges in defining oligometastatic disease, summarize the randomized evidence evaluating metastasis-directed therapy in patients with oligometastatic disease, provide context for the difficulty in generating randomized evidence, and examine ongoing phase III studies.
Collapse
Affiliation(s)
- Wei Liu
- Division of Radiation Oncology, BC Cancer Vancouver, Vancouver, BC, Canada
| | - Houda Bahig
- Department of Radiation Oncology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - David A Palma
- Department of Oncology, Division of Radiation Oncology, London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
45
|
Liu X, Xu X, Wu Z, Shan Q, Wang Z, Wu Z, Ding X, Huang W, Wang Z. Integrated single-cell RNA-seq analysis identifies immune heterogeneity associated with KRAS/TP53 mutation status and tumor-sideness in colorectal cancers. Front Immunol 2022; 13:961350. [PMID: 36172359 PMCID: PMC9510840 DOI: 10.3389/fimmu.2022.961350] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe main objective of this study was to analyze the effects of KRAS/TP53 mutation status and tumor sideness on the immune microenvironment of colorectal cancer using integrated scRNA-seq data.MethodsA total of 78 scRNA-seq datasets, comprising 42 treatment-naive colorectal tumors, 13 tumor adjacent tissues and 23 normal mucosa tissues were included. Standardized Seurat procedures were applied to identify cellular components with canonical cell marks. The batch-effect was assessed and corrected using harmony algorithm. The scMetabolism algorithm was used for single-cell metabolic analysis. The results and clinical significance were further validated using immunofluorescent-staining and TCGA-COAD datasets. Immune-infiltration scores of bulk-RNA-seq data were estimated using ssGSEA. The presto-wilcoxauc algorithm was used to identify differentially enriched genes or pathways across different subgroups. Two-sided p-value less than 0.05 was considered statistically significant.ResultsWe refined the landscape of functional immune cell subtypes, especially T cells and myeloid cells, across normal mucosa, tumor adjacent and tumor tissue. The existence and function of two states of exhausted CD8+ T (Tex) subtypes in colorectal cancer, and FOLR2+ LYVE1+ macrophages indicating unfavorable prognosis in colorectal cancer were identified and validated. The diverse tumor mutation status reshaped the immune cell function and immune checkpoint ligands/receptors (ICLs/ICRs) expression pattern. Importantly, the KRAS/TP53 dual mutations significantly reduced the major energy metabolic functions in immune cells, and promoted the cell-to-cell communications towards immunosuppression in colorectal cancers. The results revealed LAG3, CD24-SIGLEC10 and HBEGF-CD9 pathways as potential therapeutic targets for dual mutant colorectal cancers.ConclusionsWe revealed that the immune microenvironment underwent a gradual remodeling with an enrichment of immunosuppressive myeloid cells from normal mucosa to tumor regions in colorectal cancers. Moreover, we revealed the metabolic heterogeneity of tumor-infiltrating immune cells and suggested that the KRAS/TP53 dual mutation may impair antitumor immunity by reducing T and myeloid cell energy metabolism and reshaping cellular interactions toward immunosuppression.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuozhuo Wu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qungang Shan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyin Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyuan Wu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyi Ding
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Huang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhongmin Wang, ; Wei Huang,
| | - Zhongmin Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhongmin Wang, ; Wei Huang,
| |
Collapse
|
46
|
Evaluating the utility of an immune checkpoint-related lncRNA signature for identifying the prognosis and immunotherapy response of lung adenocarcinoma. Sci Rep 2022; 12:12785. [PMID: 35896612 PMCID: PMC9329438 DOI: 10.1038/s41598-022-16715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 07/14/2022] [Indexed: 12/03/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most frequent subtype of lung cancer globally. However, the survival rate of lung adenocarcinoma patients remains low. Immune checkpoints and long noncoding RNAs are emerging as vital tools for predicting the immunotherapeutic response and outcomes of patients with lung adenocarcinoma. It is critical to identify lncRNAs associated with immune checkpoints in lung adenocarcinoma patients. In this study, immune checkpoint-related lncRNAs (IClncRNAs) were analysed and identified by coexpression. Based on the immune checkpoint-related lncRNAs, we divided patients with lung adenocarcinoma into two clusters and constructed a risk model. Kaplan–Meier analysis, Gene Set Enrichment Analysis, and nomogram analysis of the 2 clusters and the risk model were performed. Finally, the potential immunotherapeutic prediction value of this model was discussed. The risk model consisting of 6 immune checkpoint-related lncRNAs was an independent predictor of survival. Through regrouping the patients with this model, we can distinguish between them more effectively in terms of their immunotherapeutic response, tumour microenvironment, and chemotherapy response. This risk model based on immune checkpoint-based lncRNAs may have an excellent clinical value for predicting the immunotherapeutic response and outcomes of patients with LUAD.
Collapse
|
47
|
Ji H, Zhou Z. A ‘Hybrid’ Radiotherapy Regimen Designed for Immunomodulation: Combining High-Dose Radiotherapy with Low-Dose Radiotherapy. Cancers (Basel) 2022; 14:cancers14143505. [PMID: 35884565 PMCID: PMC9319172 DOI: 10.3390/cancers14143505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Radiotherapy is an important cancer treatment. Aside from its direct killing effect, it also affects anti-tumor immunity. However, radiotherapy’s immune effect is not clear; it depends on the dose and fraction, cancer type, combined immunotherapy, and many other factors. Studies have focused on the optimal radiotherapy regimen to stimulate anti-tumor immunity, but conflicts exist, especially regarding the best radiation dose and fractions. Interestingly, high-dose radiotherapy and low-dose radiotherapy have complementary effects on stimulating anti-tumor immunity. Preclinical studies supporting this finding have accumulated, but gaps between theory and clinical practice still exist. This review summarizes the evidence supporting the use of this ‘hybrid’ radiotherapy approach to effectively stimulate anti-tumor immunity, explains the immune mechanisms of this combination, raises questions that must be addressed in clinical practice, and provides ideas for designing individualized treatment to increase efficiency in stimulating anti-tumor immunity using high-dose plus low-dose radiotherapy. Abstract Radiotherapy (RT) affects anti-tumor immunity. However, the exact impact of RT on anti-tumor immune response differs among cancer types, RT dose and fractions, patients’ innate immunity, and many other factors. There are conflicting findings on the optimal radiation dose and fractions to stimulate effective anti-tumor immunity. High-dose radiotherapy (HDRT) acts in the same way as a double-edged sword in stimulating anti-tumor immunity, while low-dose radiotherapy (LDRT) seems to play a vital role in modulating the tumor immune microenvironment. Recent preclinical data suggest that a ‘hybrid’ radiotherapy regimen, which refers to combining HDRT with LDRT, can reap the advantages of both. Clinical data have also indicated a promising potential. However, there are still questions to be addressed in order to put this novel combination therapy into clinical practice. For example, the selection of treatment site, treatment volume, the sequencing of high-dose radiotherapy and low-dose radiotherapy, combined immunotherapy, and so on. This review summarizes the current evidence supporting the use of HDRT + LDRT, explains possible immune biology mechanisms of this ‘hybrid’ radiotherapy, raises questions to be considered when working out individualized treatment plans, and lists possible avenues to increase efficiency in stimulating anti-tumor immunity using high-dose plus low-dose radiotherapy.
Collapse
|
48
|
Clonal evolution and expansion associated with therapy resistance and relapse of colorectal cancer. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108445. [PMID: 36371022 DOI: 10.1016/j.mrrev.2022.108445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Colorectal cancer (CRC) arises by a continuous process of genetic diversification and clonal evolution. Multiple genes and pathways have a role in tumor initiation and progression. The gradual accumulation of genetic and epigenetic processes leads to the establishment of adenoma and cancer. The important 'driver' mutations in tumor suppressor genes (such as TP53, APC, and SMAD4) and oncogenes (such as KRAS, NRAS, MET, and PIK3CA) confer selective growth advantages and cause CRC advancement. Clonal evolution induced by therapeutic pressure, as well as intra-tumoral heterogeneity, has been a great challenge in the treatment of metastatic CRC. Tumors often develop resistance to treatments as a result of intra-tumor heterogeneity, clonal evolution, and selection. Hence, the development of a multidrug personalized approach should be prioritized to pave the way for therapeutics repurposing and combination therapy to arrest tumor progression. This review summarizes how selective drug pressure can impact tumor evolution, resulting in the formation of polyclonal resistance mechanisms, ultimately promoting cancer progression. Current strategies for targeting clonal evolution are described. By understanding sources and consequences of tumor heterogeneity, customized and effective treatment plans to combat drug resistance may be devised.
Collapse
|
49
|
Ochoa-de-Olza M, Bourhis J, Coukos G, Herrera FG. Low-dose irradiation for reversing immunotherapy resistance: how to translate? J Immunother Cancer 2022; 10:jitc-2022-004939. [PMID: 35835490 PMCID: PMC9289035 DOI: 10.1136/jitc-2022-004939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
The use of low-dose irradiation (LDI) for mobilizing innate and adaptive immunity is gaining interest among the scientific community. Recent evidence suggests that LDI can reprogramme the tumor microenvironment, induce inflammation and turn cold tumors susceptible to immunecheckpoint blockade therapy. Translating immuno-radiation preclinical findings in the clinic is more challenging than expected. We propose therapeutic strategies for combining LDI with immunotherapy, and emphasize the importance of pursuing clinical research to determine optimal radiation dosage, fractionation, volumes, and sequencing to stimulate immune-mediated tumor responses.
Collapse
Affiliation(s)
- Maria Ochoa-de-Olza
- Ludwig Institute for Cancer Research Lausanne branch, Lausanne, Switzerland.,Immuno-oncology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Jean Bourhis
- Radiation Oncology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research Lausanne branch, Lausanne, Switzerland.,Immuno-oncology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Fernanda G Herrera
- Ludwig Institute for Cancer Research Lausanne branch, Lausanne, Switzerland .,Immuno-oncology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,Radiation Oncology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
50
|
Charpentier M, Spada S, VanNest S, Demaria S. Radiation therapy-induced remodeling of the tumor immune microenvironment. Semin Cancer Biol 2022; 86:737-747. [DOI: 10.1016/j.semcancer.2022.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022]
|